Table 3.
Performance comparison of DL algorithms used for nonhealing burn segmentation from MSI images
Algorithm | PAR-AUC | Sensitivity (%) | PPV (%) | Specificity (%) | NPV (%) |
---|---|---|---|---|---|
U-Net | 0.167 | 6.6 (0.5, 51.2) | 86.5 (70.9, 94.4) | 100 (99.9, 100) | 100 (99.9, 100) |
SegNet | 0.425 | 65.6 (30.4, 89.3) | 34.7 (3.7, 88.1) | 100 (99.9, 100) | 100 (99.9, 100) |
dFCN | 0.561 | 43.5 (19.9, 70.5) | 80.1 (42.3, 95.7) | 100 (99.9, 100) | 100 (99.9, 100) |
Voting Ensemble | 0.812 | 80.5 (60.6, 91.7) | 96.7 (80.9, 99.5) | 100 (99.9, 100) | 100 (99.9, 100) |
dFCN, Dilated fully connected neural network; NPV, negative predictive value; PAR-AUC, precision and recall curve; PPV, positive predictive value.