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Abstract

Multidimensional MRI is an emerging approach that simultaneously encodes water relaxation (T1 

and T2) and mobility (diffusion) and replaces voxel-averaged values with subvoxel distributions of 

those MR properties. While conventional (i.e., voxel-averaged) MRI methods cannot adequately 

quantify the microscopic heterogeneity of biological tissue, using subvoxel information allows 

to selectively map a specific T1-T2-diffusion spectral range that corresponds to a group of 

tissue elements. The major obstacle to the adoption of rich, multidimensional MRI protocols for 

diagnostic or monitoring purposes is the prolonged scan time. Our main goal in the present study 

is to evaluate the performance of a nonlocal estimation of multispectral magnitudes (NESMA) 

filter on reduced datasets to limit the total acquisition time required for reliable multidimensional 

MRI characterization of the brain. Here we focused and reprocessed results from a recent study 

that identified potential imaging biomarkers of axonal injury pathology from the joint analysis of 

multidimensional MRI, in particular voxelwise T1-T2 and diffusion-T2 spectra in human Corpus 

Callosum, and histopathological data. We tested the performance of NESMA and its effect on the 

accuracy of the injury biomarker maps, relative to the co-registered histological reference. Noise 

reduction improved the accuracy of the resulting injury biomarker maps, while permitting data 

reduction of 35.7 and 59.6% from the full dataset for T1-T2 and diffusion-T2 cases, respectively. 

As successful clinical proof-of-concept applications of multidimensional MRI are continuously 

being introduced, reliable and robust noise removal and consequent acquisition acceleration would 

advance the field towards clinically-feasible diagnostic multidimensional MRI protocols.
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1 INTRODUCTION

Water molecules within biological tissues interact with their local chemical environment via 

nuclear relaxation processes and follow diffusion patterns trajectories that are governed by 

the local tissue density and geometry. Using a combination of magnetic field profiles to 

probe these mechanisms, magnetic resonance (MR) provides exquisite sensitivity to both the 

chemical composition, through relaxation parameters, and microstructure, through diffusion 

parameters, of biological tissues.

One fundamental obstacle for using MRI to characterize tissue heterogeneity is the 

averaging that occurs across the image volume elements, known as voxels (i.e., pixels 

with thickness). Voxel-averaged images can only provide macroscopic information with 

respect to the voxel size, which is typically ~1–3 mm3. In a mammalian brain, an 

individual voxel contains multiple chemical and physical microenvironments such as axons, 
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neurons, glia, myelin, and cerebrospinal fluid. Many biological processes-of-interest take 

place at a microscopic scale that only affects a small portion of any given voxel, which 

therefore makes them undetectable using conventional voxel-averaged MRI methods. The 

inability to separate normal and pathological tissue within a voxel is a major contributor 

to the insensitivity and ensuing non-specificity of conventional MRI methods in detecting 

abnormal cellular processes.

By simultaneously encoding multiple MR “dimensions”, such as relaxation times (T1 and 

T2) [1] and diffusion [2, 3], multidimensional distributions of those MR parameters can 

provide fingerprints of various chemical and physical microenvironments within the volume-

of-interest, which can be traced back to specific materials and cellular components. If 

combined with imaging [4], multidimensional MRI has the potential to overcome the voxel-

averaging limitation by accomplishes two fundamental goals: 1) it provides unique intra-

voxel distributions instead of an average over the whole voxel; this allows identification of 

multiple components within a given voxel [5–7], while 2) the multiplicity of dimensions 

inherently facilitates their disentanglement; this allows higher accuracy and precision in 

derived quantitative values [8–11].

Although traditionally multidimensional MR experiments required many repeated 

acquisitions and therefore have imposed serious time constraints [12], acquisition strategy 

[13, 14], computational [3, 6, 15, 16], and pulse design [17, 18] technological breakthroughs 

have significantly reduced the data burden and positioned multidimensional MRI as a 

powerful emerging imaging modality for studying biological media. Despite of these 

advances, wide-spread clinical translation still presents challenges, in particular, due 

to relatively low signal-to-noise ratio (SNR) and the ensuing increased data amount 

requirement. To address that, we report the use of a nonlocal estimation of multispectral 

magnitudes (NESMA) filter [19] on multidimensional MRI data to perform noise reduction 

for reliable parameter determination and further data reduction. To date, NESMA has been 

successfully used to improve determination of myelin water fraction from multi-spin-echo 

MR images [20], or cerebral blood flow from arterial spin labeling MR images [21].

We chose to focus and reprocess a subset of data from our recent study that showed 

multidimensional MRI can uncover subtle axonal injury patterns in the human brain, 

otherwise inaccessible using conventional quantitative MRI techniques such as diffusion 

tensor imaging (DTI), T1 or T2 maps [22]. The study investigated brain samples 

derived from human subjects who had sustained traumatic brain injury (TBI) and control 

brain donors using MRI, followed by co-registered histopathology that included amyloid 

precursor protein (APP) immunoreactivity to define axonal injury severity [23]. Abnormal 

multidimensional T1-T2, mean diffusivity-T2 (MD-T2), and MD-T1 spectral signatures that 

were strongly correlated with injured voxels were identified and used to generate axonal 

injury biomarker maps [22]. Here we study the effect of applying a multispectral nonlocal 

filter on three representative cases (a control and two TBI cases), with the main goal of 

evaluating the performance of NESMA on reduced datasets to limit the total acquisition 

time required for reliable multidimensional MRI characterization of brain tissue. The co-

registered APP histology images serve as a “ground truth” reference, thus providing a 
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unique opportunity to quantitatively evaluate to what extent the accuracy of the injury 

biomarkers maps is preserved under substantial data reduction.

2 METHODS

2.1 Donors Specimens Employed in the Present Study

We evaluated autopsy-derived brain specimens from two different human brain collections. 

Formalin-fixed portions of approximately 20 × 20 × 10 mm3 of the Corpus Callosum (CC) 

were obtained from one military subject from the DoD/USU Brain Tissue Repository and 

Neuropathology Program (https://www.researchbraininjury.org, Bethesda, MD; Subject 1), 

and two civilian subjects enrolled in the Transforming Research and Clinical Knowledge in 

Traumatic Brain Injury study (TRACK-TBI; https://tracktbi.ucsf.edu/transforming-research-

and-clinical-knowledge-tbi) (Subjects 2 and 3). For each case, a next–of-kin or legal 

representative provided a written consent for donation of the brain for use in research. 

The brain tissues used have undergone procedures for donation of the tissue, its storage, 

and use of available clinical information that have been approved by the USU Institutional 

Review Board (IRB) prior to the initiation of the study. All experiments were performed 

in accordance with current federal, state, DoD, and NIH guidelines and regulations for 

postmortem analysis.

Subject 1 was a 44 years old male with no known TBI history and postmortem APP-negative 

histopathology. Subject 2 was a 60 year old male that died as a result of a intraparenchymal 

hemorrhage following a motor vehicle accident. Subject 3 was a 49 year old male that died 

as a result of intraparenchymal and subarachnoid hemorrhages following a fall.

2.2 MRI Acquisition

Prior to MRI scanning, each formalin-fixed brain specimen was transferred to a phosphate-

buffered saline (PBS) filled container for 12 days to ensure that any residual fixative was 

removed from the tissue. The specimen was then placed in a 25 mm tube, and immersed 

in perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy), a proton free fluid void of a 

proton-MRI signal. Specimens were imaged using a 7 T Bruker vertical bore MRI scanner 

equipped with a microimaging probe and a 25 mm quadrupole RF coil.

Multidimensional data were acquired using a 3D echo planar imaging (EPI) sequence with 

a total of 56 and 302 images for T1-T2 and MD- T2, respectively, and with 300 μm isotropic 

spatial resolution, which resulted in respective acquisition times of 4.5 and 17.8 h. To test 

the feasibility of data reduction using NESMA we derived reduced datasets by sub-sampling 

the full datasets. The total number of T1-T2 images was reduced from 56 to 36 (35.7% 

decrease), while the total number of MD-T2 images was reduced from 302 to 122 (59.6% 

decrease). Further details can be found in the Supplementary Material.

The SNR was always maintained above 100 (defined as the ratio between the average 

unattenuated signal intensity within a tissue region of interest, and the standard deviation of 

the signal intensity within the background). The sample temperature was set at 16.8°C.
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2.3 Multidimensional MRI Processing

Here we implemented a marginally-constrained, ℓ2-regularized, nonnegative least square 

optimization to compute the multidimensional distribution in each voxel, as previously 

described [8, 24]. It is a well-tested approach that had been proved robust and reliable [2, 

14, 25–29], which in this study had resulted in two types of distributions in each voxel: 

T1-T2 and MD-T2. The 2D T1-T2 and MD-T2 distributions were evaluated on 50 × 50 

logarithmically sampled grids using a previously described algorithm [13]. The range for 

T1 was 1–10,000 m, the range for T2 was 1–500 m, and the range for MD was 0.0001–5 

μm2/ms.

If one considers the multidimensional distributions as spectra, it is possible to use 

them to generate maps of specific spectral components by means of integration over a 

predefined parameter range generally associated with a spectral peak. The integral value 

is a number between 0 and 1, representing a certain spectral component (SC) in a given 

multidimensional distribution, which can be computed in each voxel to generate an image of 

that specific SC [30]. Here we apply a recently proposed unsupervised algorithm to identify 

the injury-associated spectral information [22], and generate injury biomarker maps that 

closely follow APP histopathology.

2.4 The Nonlocal Estimation of Multispectral Magnitudes (NESMA) Filter

For each sample, the multidimensional distributions were derived from the original 

multidimensional data as well as from data denoised using the NESMA filter to improve 

accuracy and precision in derived distributions.

We consider K multidimensional images defined on a discrete grid describing the 3D spatial 

domain spanned by the image. The underlying idea of quantitative filters is to reduce 

noise by replacing the intensity of a given voxel by an unbiased estimate of its underlying 

amplitude. This requires selection of voxels that are likely to come from similar tissue. The 

NESMA filter restores the amplitude, A, of an index voxel, i, based on intensities of M 
preselected voxels with similar multispectral signal patterns through:

Ak(i) = 1
M ∑

j

M
Sk(j), (1)

where Sk(j) is the measured amplitude in voxel j of frame k. M is the total number of similar 

voxels defined using the relative Manhattan distance (RMD) between voxel intensities as

RMD(i, j) = 100 × ∑k = 1
K Sk(i) − Sk(j)

∑k = 1
K Sk(i)

. (2)

The RMD was calculated between the index voxel i and all voxels belonging to a relatively 

large search window of size R, centered around the index voxel i, in which emission and 

reception B1 fields and noise standard deviation (SD) were assumed to be approximately 

constant. The size of the window must be sufficiently large to ensure inclusion of an 

adequate number of similar voxels, and sufficiently restricted to ensure that the transmission 
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and reception B1 fields and noise SD are approximately constant within the window. In 

this work, we used a relatively conservative window size to avoid introducing bias in the 

estimated amplitudes. The size of the search window, R, was fixed at 11 × 11 × 11 voxels. 

Voxels with RMD <5% were considered similar to the index voxel.

2.5 Histopathology

After MRI scanning, each CC tissue block was transferred for histopathological processing. 

Tissue blocks from each brain specimen were processed using an automated tissue processor 

(ASP 6025, Leica Biosystems, Nussloch, Germany). After tissue processing, each tissue 

block was embedded in paraffin and cut in a series of 5 μm-thick consecutive sections 

on which immunohistochemistry for anti-amyloid precursor protein (APP) was performed 

(DS9800, Leica Biosystems, Buffalo Grove, IL). Further details can be found in [22].

2.6 Quantification of Axonal Damage

Images of APP stained sections were digitized using an Aperio whole slide scanning scanner 

system (Leica Biosystems, Richmond, IL) at ×20 magnification. The following steps, all 

implemented using MATLAB (The Mathworks, Natick, MA), were taken to allow for a 

quantitative analysis of the APP images. First, the images were transformed into a common, 

normalized space to enable improved quantitative analysis [31]. Then, the normalized 

images were deconvolved to unmix the primary (APP) and secondary (hematoxylin and 

eosin, H&E) stains, and background to three separate channels [32]. Once an APP-only 

image was obtained, a final thresholding step was taken to exclude non-specific staining and 

to allow for a subsequent % area calculation.

From each tissue section, based on APP staining, traumatic axonal injury (TAI) lesions 

were identified by an experienced neuropathologist (DI) as white matter (WM) areas with 

swollen axonal varicosities, axonal bulbs, or distorted axons. Accordingly, regions of interest 

(ROI) of normal-appearing WM and TAI lesions were manually defined. Additionally, gray 

matter (GM) ROIs from adjacent cingulate cortex were defined in all sections. Twelve ROIs, 

covering together an average 81 mm2 of tissue, were identified per tissue section. After 

extracting the ROIs, APP density was expressed as the percentage of total area within the 

ROI in the binary deconvolved APP image. In total, 36 ROIs from three subjects were 

included in this study.

3 RESULTS

3.1 Axonal Injury Spectral Signatures Are Preserved After Filtering

We first investigated the spatially-resolved subvoxel T1-T2 and MD-T2 spectral components 

to assess the effect of NESMA on the derived voxelwise spectra. To do that, it is useful 

to summarize the 4D information, which consists of 2D images with 50 × 50 spectra in 

each voxel, as arrays of images with varying subvoxel T1, T2, and MD values. To make 

them more readable, the 50 × 50 spectra were sub-sampled on a 10 × 10 grid. These 

maps are shown in Figures 1–3 for all three Subjects. Corresponding histological APP 

images (co-registered with the MRI) are shown on the left panel of Figure 4, with red color 

indicating abnormal APP accumulation.
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Starting with the control case (Subject 1), the spatially-resolved subvoxel T1-T2 and MD-T2 

spectral components are shown in Figure 1. The left column shows the results from the 

unfiltered data (T1-T2 and MD-T2 in Figures 1A, C, respectively), while the right column 

shows the results from the filtered data (T1-T2 and MD-T2 in Figures 1B, D, respectively). 

The maps revealed signal components that were spatially consistent with specific tissue 

types such as white matter and gray matter.

The spatially-resolved subvoxel T1-T2 and MD-T2 spectral components from the first TBI 

case (Subject 2) are shown in Figure 2. As before, the left column shows the results from 

the unfiltered data (T1-T2 and MD-T2 in Figures 2A,C, respectively), and the right column 

shows the results from the filtered data (T1-T2 and MD-T2 in Figures 2B,D, respectively). 

Similarly to the control case, here too the maps revealed signal components that were 

spatially consistent with specific tissue types.

The spatially-resolved subvoxel T1-T2 and MD-T2 spectral components from the second 

TBI case (Subject 3) are shown in Figure 3. Unfiltered (T1-T2 and MD-T2 in Figures 3A, C, 

respectively) and filtered data (T1-T2 and MD-T2 in Figures 3B, D, respectively) are shown. 

As before, signal components that were spatially consistent with specific tissue types as a 

function of T1, T2, and MD were revealed.

Figure 4 shows histological images and multidimensional MR-derived injury biomarker 

maps of the three representative cases. Histological images (red = APP stain) of the control 

case (Subject 1) show negative APP staining, compared with positive APP staining in the 

injured samples (Subjects two and 3). We then examine separately the two MRI-derived 

injury biomarkers, T1-T2 and MD-T2, and show the resulting images obtained using the 

unfiltered full dataset (as originally published in [22]), the filtered full dataset, and the 

filtered reduced dataset. In addition, the MRI-derived injury biomarkers obtained by using 

the unfiltered reduced dataset are shown in Supplementary Figure S1 in the Supplementary 

Material.

Visual inspection of the different injury biomarker maps shown in Figure 4 and 

Supplementary Figure S1 revealed that filtering of the data does not result in loss of the 

spectral information of interest, and furthermore, the filtered images appear qualitatively 

of higher quality. Importantly, the data reduction in the case of the filtered data did not 

significantly affect the resulting injury biomarker maps (Figure 4).

3.2 Evaluation of Performance and Correlation With Histology

Evaluation of filtering performance was based upon the extent of noise reduction and feature 

preservation, and was quantified by computing the structural similarity index (SSIM) values 

[33] between the injury biomarker maps under the different experimental conditions (e.g., 

unfiltered, filtered) and the co-registered APP density histological image as reference. All 

of the SSIM values are shown in Figure 5. In the context of the current study we are most 

interested in the ability to accelerate the multidimensional MRI acquisition, and therefore 

the accuracy and quality of the reduced data cases are of particular importance. Compared 

with the unfiltered and reduced data injury biomarker maps, the SSIM values of the filtered 

and reduced data images increased by 11.1, 0.9, and 14.3% for the MD-T2-based biomarker 
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for Subjects 1 to 3, respectively, and increased by 8.6, 7.7, and 4.6% for the T1-T2-based 

biomarker for Subjects 1 to 3, respectively. All of these increases in SSIM were statistically 

significant (p < 0.001).

To further evaluate the performance of the NESMA filter and the subsequent data reduction, 

we performed radiological–pathological correlation analyses with histological APP density 

and all the investigated MRI parameters under the different experimental conditions (e.g., 

MD-T2 unfiltered, T1-T2 filtered and reduced). Figure 6 summarizes the association between 

the investigated MR metrics and the pathological findings in normal WM, cortical GM, and 

TAI ROIs.

To assess the relationship of the MRI parameters with the degree of injury, all tissue 

ROIs were grouped together and correlated with the APP density (solid lines in Figure 

6). All multidimensional injury biomarker cases under every experimental condition were 

strongly and significantly positively correlated with the APP density (i.e., % area APP). 

These correlations illustrate how the multidimensional injury biomarker maps provide “true 

negative”, in the sense that any region outside of the TAI lesions has zero or close to zero 

intensity.

Of particular interest was the case of the MD-T2 injury biomarker, where the unfiltered 

dataset resulted in relatively scattered correlation (r = 0.565, p < 2 × 10−4, Figure 6A), 

which was largely unaffected by the data reduction (r = 0.557, p < 3 × 10−4, Figure 6B). 

Marked improvement was observed after filtering the data, which led to significantly tighter 

correlation between the MRI biomarker and the histological marker (r = 0.812, p < 2 × 

10−9, Figure 6C). As can be expected, the 59.6% reduction in the data amount led to some 

reduction in the radiological–pathological correlation (r = 0.723, p < 4 × 10−7, Figure 6D), 

although still performing better than the unfiltered full MD-T2 dataset. Furthermore, filtering 

led to a reduced variance within the ROIs, as seen by the decrease in the 95% confidence 

intervals (error bars in Figure 6).

The T1-T2 injury biomarker derived from the unfiltered dataset had excellent correlation 

with histological APP density (r = 0.970, p < 1 × 10−22, Figure 6E), and therefore, it 

is not surprising that this strong relationship was maintained under all of the investigated 

experimental conditions (r = 0.963, p < 1 × 10−20, r = 0.962, p < 1 × 10−20, and r = 0.969, 

p < 1 × 10−21, Figures 6F–H, for unfiltered and reduced, filtered, and filtered and reduced, 

respectively).

4 DISCUSSION

Here we report the use of the NESMA filter on multidimensional MRI data, in particular 

voxelwise T1-T2 and MD-T2 spectra in fixed human Corpus Callosum, to remove noise 

and reduce total scan time. We focused on results from a recent study that identified 

potential imaging biomarkers of axonal injury pathology from the joint analysis of 

multidimensional MRI and histopathological data [22]. These axonal injury maps were 

shown to be significantly and strongly correlated with histological evidence of axonal injury. 

Reprocessing these data provided an opportunity to test the performance of the NESMA 
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filter and its effect on the accuracy of the injury biomarker maps, relative to the histological 

reference.

Our findings showed that noise reduction in the multidimensional MRI data using an 

adaptive nonlocal multispectral filter (i.e., NESMA [20]) improved the accuracy of the 

resulting injury biomarker maps, and furthermore, allowed for data reduction of 35.7 and 

59.6% from the full dataset, which led to using only 36 and 122 images in the T1-T2 and 

MD-T2 cases, respectively.

Specifically, visual inspection and a side-by-side comparison of the unfiltered and filtered 

subvoxel T1-T2 and MD-T2 spectral components (Figures 1–3) showed that the filtered maps 

exhibit lower random variations, in particular at the lower ends of the spectra, and that there 

was no apparent loss of spectral information. For example, Subject 3 exhibited a relatively 

focal axonal injury at the bottom of the CC (Figure 4, left panel), captured at the lower end 

of the T1-T2 spectra, which was previously associated with axonal injury [22]. Noticeable 

noise reduction at these spectral lower ends was observed, which is crucial to the robust 

identification of axonal injury from these multidimensional MRI data.

Visual inspection of the resulting T1-T2 and MD-T2 injury biomarker maps with respect 

to co-registered APP histological images suggested improved accuracy after applying 

the NESMA filter, even after the data was reduced (Figure 4). Quantitative evaluation 

that compared the SSIM between the co-registered APP histological images and injury 

biomarker maps derived from unfiltered and filtered reduced datasets showed a significant 

increase as a result of the filtering across all subjects (Figure 5).

We performed radiological–pathological correlation analyses with histological APP density 

and all the investigated MRI parameters under the different experimental conditions to 

assess quantitatively whether and to what extent the proposed approach preserves strong 

correlations even under substantial data reduction (Figure 6). This analysis indicated that 

not only the correlations were preserved, but furthermore, they were considerably improved, 

even after data reduction, as a result of filtering the data. Lastly, our results suggest that 

the previously proposed [22] adaptive method of locating the injury-associated T1-T2-MD 

spectral signature is robust to noise removal procedures and to data reduction.

Common to all ex vivo human MRI studies, our data include the effects of post-mortem 

degeneration, fixation and resulting dehydration. Because T1, T2, and diffusion dynamics are 

different in fixed tissue compared with living systems, further investigation will be needed 

to establish whether and how the axonal injury-related T1-T2-MD range of multidimensional 

magnetic resonance parameters is altered in vivo. In this context it is important to note that 

our findings are not based on absolute values of T1, T2, and MD, which indeed are expected 

to change in vivo. Instead, all of the injury biomarkers maps are generated using the relative 

signal fraction of an automatically identified T1-T2-MD range that does not depend on the 

actual values of these parameters [22]. We therefore anticipate that in vivo spectra will be 

shifted in all T1, T2, and MD dimensions compared to our ex vivo findings, however, the 

distributions of the signal fractions should largely remain similar.
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The performance of the NESMA filter does not depend on the particular multidimensional 

spectra quantification processing pipeline because the filter is applied in the image domain, 

before its transformed into voxelwise spectra. Here we applied a constrained ℓ2 regularized 

inversion framework [13], however, we anticipate that the demonstrated improvement after 

filtering could be extended to other approaches such as ℓ1 regularization [34], Monte-Carlo 

inversion [35, 36], and InSpect [16].

Multidimensional MRI is an emerging approach [37] that is now being applied to address 

a range of medical conditions such as prediction of pregnancy complications via placenta 

characterization [9], spinal cord injury [6, 38], prostate cancer [39], breast cancer [40], and 

axonal injury due to TBI [22]. Recent in vivo proof-of-concept applications of subvoxel 

T1-T2 correlation spectra using 105 images [41] and of subvoxel diffusion-T1 correlation 

spectra using 363 [11] and 304 [42] images are promising. Here we showed that accurate 

and robust subvoxel T1-T2 and MD-T2 correlation spectra can be obtained using only 36 and 

122 images, respectively, by using a constrained optimization data processing framework 

(i.e., MADCO [13]) in conjunction with applying the NESMA filter to reduce noise. A 

reliable and robust noise removal and consequent acquisition acceleration should further 

advance the field towards clinically-feasible diagnostic multidimensional MRI protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 |. 
Maps of 2D probability density functions (i.e., 2D normalized spectra) from Subject 1 

(control) of (A) unfiltered and (B) filtered subvoxel T1-T2 values reconstructed on a 10 × 

10 grid of subvoxel T1 values (horizontal axes) and subvoxel T2 values (vertical axes), and 

maps of (C) unfiltered and (D) filtered subvoxel MD-T2 values reconstructed on a 10 × 10 

grid of subvoxel MD values (horizontal axes) and subvoxel T2 values (vertical axes).
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FIGURE 2 |. 
Maps of 2D probability density functions (i.e., 2D normalized spectra) from Subject 2 (TBI) 

of (A) unfiltered and (B) filtered subvoxel T1-T2 values reconstructed on a 10 × 10 grid of 

subvoxel T1 values (horizontal axes) and subvoxel T2 values (vertical axes), and maps of 

(C) unfiltered and (D) filtered subvoxel MD-T2 values reconstructed on a 10 × 10 grid of 

subvoxel MD values (horizontal axes) and subvoxel T2 values (vertical axes).
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FIGURE 3 |. 
Maps of 2D probability density functions (i.e., 2D normalized spectra) from Subject 3 (TBI) 

of (A) unfiltered and (B) filtered subvoxel T1-T2 values reconstructed on a 10 × 10 grid of 

subvoxel T1 values (horizontal axes) and subvoxel T2 values (vertical axes), and maps of 

(C) unfiltered and (D) filtered subvoxel MD-T2 values reconstructed on a 10 × 10 grid of 

subvoxel MD values (horizontal axes) and subvoxel T2 values (vertical axes).
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FIGURE 4 |. 
Histological images and multidimensional MR-derived injury biomarker maps of three 

representative cases, and under different conditions (left to right: unfiltered, filtered, and 

filtered and reduced data). Deconvolved histological APP images (co-registered with the 

MRI) are shown on the left panel, red = APP stain (top to bottom: control, and two 

TBI cases). All multidimensional injury maps were thresholded at 10% of the maximal 

intensity and overlaid on grayscale proton density images. Multidimensional injury maps 

of Subject 1 (control) show absent of significant injury under all experimental conditions. 

Multidimensional injury maps of Subject 2 (TBI) show substantial injury along the white-

gray matter interface under all experimental conditions. Multidimensional injury maps of 

Subject 3 (TBI) show substantial injury at the bottom of the CC under all experimental 

conditions.
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FIGURE 5 |. 
The structural similarity index (SSIM) values between the injury biomarker images under 

the different experimental conditions (e.g., T1-T2 unfiltered, MD-T2 filtered reduced data) 

and the co-registered APP density histological image as reference. The three bars at each 

condition represent the different Subjects (blue = Subject 1, red = Subject 2, and yellow = 

Subject 3).
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FIGURE 6 |. 
APP density (% area) from 36 tissue regions (APP-positive regions from each TBI case, 

WM and GM regions), and its correlation with injury biomarker parameter under different 

experimental conditions. Individual data points represent the mean ROI value from each 

post-mortem tissue sample. Scatterplots of the mean (with 95% confidence interval error 

bars) % area APP and (A) MD-T2 unfiltered (B) MD-T2 unfiltered and reduced (C) MD-T2 

filtered (D) MD-T2 filtered and reduced (E) T1-T2 unfiltered (F) T1-T2 unfiltered and 

reduced (G) T1-T2 filtered, and (H) T1-T2 filtered and reduced, show positive and significant 

correlation with APP density.
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