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Many cephalopods escape detection using camouflage'. This behaviour reliesona
visual assessment of the surroundings, on aninterpretation of visual-texture
statistics> *and on matching these statistics using millions of skin chromatophores
thatare controlled by motoneurons located in the brain>~. Analysis of cuttlefish

images proposed that camouflage patterns are low dimensional and categorizable
into three pattern classes, built from a small repertoire of components®™. Behavioural
experiments also indicated that, although camouflage requires vision, its execution
does not require feedback>2", suggesting that motion within skin-pattern spaceis
stereotyped and lacks the possibility of correction. Here, using quantitative
methods", we studied camouflage in the cuttlefish Sepia officinalis as behavioural
motion towards background matchingin skin-pattern space. An analysis of hundreds
ofthousands of images over natural and artificial backgrounds revealed that the space
of skin patterns is high-dimensional and that pattern matching is not stereotyped—
each search meanders through skin-pattern space, decelerating and accelerating
repeatedly before stabilizing. Chromatophores could be grouped into pattern
componentsonthe basis of their covariation during camouflaging. These components
varied in shapes and sizes, and overlay one another. However, their identities varied
even across transitions between identical skin-pattern pairs, indicating flexibility of
implementation and absence of stereotypy. Components could also be differentiated
by their sensitivity to spatial frequency. Finally, we compared camouflage to
blanching, a skin-lightening reaction to threatening stimuli. Pattern motion during
blanching was direct and fast, consistent with open-loop motion in low-dimensional
patternspace, in contrast to that observed during camouflage.

Cephalopod camouflage consists of matching the animal’s appearance
to that of its substrate and typically contains two-dimensional (2D) and
three-dimensional (3D) components. Although both components are
technically textural***, in this field the term ‘texture’ is often applied
only to 3D features, caused, for example, by the contraction of skin
papillae®”. We studied here the 2D features of camouflage and therefore
refer to them as skin patterns and to the process as pattern matching.
Pattern matching does not consist of a faithful reproduction of the
substrate’s appearance but, rather, of the visually initiated statistical
estimation and generation of that appearance®. These sophisticated
operations are carried out instinctively™ by the brain of animals that
diverged from us more than 550 million years ago'’, well before large
brains existed. The generation of 2D skin patterns relies ona motor sys-
tem that controls the expansion state of up to several million pigment
cells (chromatophores) embedded in the animal’s skin®, among other
specialized cell types?°. The expansion state of each chromatophore
dependsonaradial array of muscles controlling the size of a central pig-
mentsac®and, therefore, on the activity of one to afew motoneurons,

the dendrites and somata of which lie in the animal’s central brain®’.
The generation of a skin pattern therefore results from the appropri-
ate coordination and control of tens of thousands of motoneurons by
asystem that interprets complex visual scenes>*8,

We recently developed methods to track the instantaneous expan-
sion state of tens of thousands of chromatophores in the behaving
cuttlefish S. officinalis—a master of camouflage'. Here we improve on
thesetechniques and reportanew complementary analysis to describe
quantitatively the space, dynamics and reliability of camouflage
patterns and, through this, gaininsightsintoits control system. To this
end, objective measurements are critical because camouflage evolved
to exploit perceptual clustering by observers, so as to fool them?%,
Earlier efforts to categorize camouflage patterns suggested that they
belong toasmallnumber of classes® ™, a surprising result given the size
of this system. However, arecent study using artificial backgrounds
suggested that patterns, quantified as the differential expression of a
set of pattern components, do not readily cluster inalow-dimensional
projection®. Using natural and artificial 2D backgrounds (Methods
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Fig.1|Camouflage-patternspace.a, A path tocamouflage, fromstarting (s)
toending (e) skin patterns, could be direct and ballistic (dashed line) or
meandering, with successive accelerations and decelerations (grey). b, Two
examples of camouflage skin patterns, typically classified as disruptive (left)
and mottled (right). Insets: magnification of the area on the mantle indicated
byaredsquare.Bottominsets: high-resolution segmented images. Top insets:
lower-resolution wide-fieldimages. The apparatus and stimuliare shownin

and Extended Data Figs. 1and 2), we acquired a dense videographic
sampling of the animal’s generative pattern repertoire and analysed
motion within skin-pattern space (Fig. 1a).

Skin-patternspaceis high-dimensional

To quantitatively assess camouflage pattern space, we presented a
series of naturalimages to cuttlefish using printed fabric, filming cuttle-
fishskin atboth high and low resolution. Figure 1b shows the processed
high-resolution images of one cuttlefish on two backgrounds. These
images were acquired using an array of 17 high-resolution cameras,
synchronized with a single low-resolution camera for a global view
(Fig.1b (colourinsets)). Low-resolution and high-resolution image sets
were used to generate what we name skin-pattern-representation and
chromatophore-representation spaces, respectively. We gathered over
200,000 low-resolution cuttlefish images from 27 h of behavioural
videos of an animal on our background set (Extended Data Fig. 2b,c).
We then used a pretrained neural network to parameterize skin patterns
(Methods and Extended Data Figs. 1and 2). The skin-pattern space is
displayed in a 2D uniform manifold approximation and projection
(UMAP) embedding (Fig. 1c), and selected patterns corresponding to
differentregions of that space (i-viii) areillustrated in Fig. 1d. Whereas
patterns withineach window seemed of akind, their precise realizations
differed. The smallest variations were due to chromatophore flickering
(detected in high-resolution data; Supplementary Video 3) and small
local fluctuations. However, larger variations represented different
instantiations of askin pattern (Fig.1d). Having tested the explanatory
power of linear and nonlinear methods for dimensionality estima-
tion (Methods), we opted for a linear method—parallel analysis?>?°.
Parallel analysis reports the number of principal components (PCs)

Extended DataFigs.1and 2.Scale bars,10 mm (mainimages), 20 mm (top insets)
and 0.5 mm (bottominsets). A, anterior; P, posterior. ¢, Skin-pattern space
was visualized using a2D UMAP embedding of skin patterns produced by
onerepresentative animal of ten analysed. n=215,577 images. Naturalistic
and artificial backgrounds are shown in Extended Data Fig. 2b,c.d, Nine
representative images were taken from each of the eight regions of skin-
patternspaceinc.

with statistically significant explanatory power (versus a null distribu-
tion based on independently shuffled data). This approach indicated
59.4 +1.23 relevant dimensions (Extended Data Fig. 3a-e), although
parallel analysis often underestimates the true dimensionality of a
linear space above 20 dimensions® (Methods).

The apparent high dimensionality of camouflage patterns hinted
thatareasonably close relationship might exist between backgrounds
and skin patterns. As natural backgrounds themselves are difficult to
parametrize simply®®, we tested this hypothesisin several ways. In the
first, we used a set of 30 natural images (Extended Data Fig. 2a) and
measured the correlation between background and final skin pattern
along the PCs of skin-pattern space (Fig. 2a). They were significantly
correlated (PC1-3, P<107') in all of the animals tested. In the second,
we tested spatial frequency, asimple texture metric inimage analysis.
Using checkerboards as backgrounds® (Extended Data Fig. 2c), we
observed, as others had previously®'?, that a coarse sampling of spatial
frequencies (half-periods, 0.04-20 cm) led to only a few clusters of cor-
related skin patterns. Observing that this sampling of spatial frequen-
cieswastoosparse, weadded 16 checkerboard sizesinanintermediate
range (Fig. 2b). A clear trend then emerged, linking monotonically
background and skin-response spatial frequencies. Decomposition
of chromatophore space using Leiden clustering identified groupings
of chromatophores (components; Methods) of which the expansion
was positively or negatively related to background spatial frequency
(Fig.2c and Extended Data Fig. 4a-c). Sepia camouflage can therefore
smoothly and predictably transition from one patternto another, when
challenged withappropriate sets of backgrounds. This sensitivity was
expressed differently over individual pattern components, resulting in
anelaboraterelationship between visual stimulus and skin patterning.
We examined other metrics of pattern matching, as well as low-level
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Fig.2|Therelationship between camouflage and natural or checkerboard
backgrounds. a, The correlation between camouflage patterns and natural
background images in skin-patternspace (stimuliNO-N29; n=3 animals,
>8trials per stimulus; Methods). PC1 (accounting for17.5 + 0.8% of the variance)
shows significant stimulus-response correlation (Pearson’sr=0.62,0.64, 0.54;
P<107?).Inthe three analysed animals, the first 3 (animal S205), 3 (animal S206)
and 2 (animal S207) PCs are significantly correlated (35.8 + 5.1% variance,
Pearson’sr=0.56 +0.05, P<107%). b, Skin patterns evoked by checkerboards of
different spatial frequencies (square sizes, 0.04-20 cm, only 0.08-10 cm
shown) revealamonotonic gradient ofintermediate responses. PC1shows a
statistically significant stimulus-response relationship within the shaded
region (0.31-1.25 cm; linear regression r>= 0.50 + 0.04, P< 0.0001; n =3 animals,
4-8trials per stimulus). Inthe three analysed animals, the first 4 (animal 1),

2 (animal 2) and 4 (animal 3) of the top 50 PCs are statistically significant
(*=0.40+0.03,P<0.0001). The error bars show the 95% confidenceintervals.
¢, Four clusters of co-varying chromatophores (components), of which the state
depends positively (red) or negatively (blue) (P< 0.05) onthe stimulus, inone
representative animal of three analysed.n=4-8 trials per stimulus. Each point
represents the mean steady-state response sampledat25Hzover46s. Top,
clusterlocations. Bottom, correlations between the mean chromatophore area
and checkerboard period.

image statistics (including Fourier, Weibull*°, contrast and skewness)
and their combinations. None (spatial frequency included) matched
the predictive power of a high-dimensional visual texture parameteri-
zation (Extended Data Fig. 4d-f).

Transitions are tortuous and intermittent

We examined the paths taken through skin-pattern space when an
animal changed camouflageinresponse to changes betweenthree back-
grounds (N13,N26,N29; Extended DataFig. 2b). Background changes
occurred every 5-10 min (Methods). In some trials, the animal lay still
duringbackground changes (Supplementary Videos1and 2). In other
trials, the background change induced the animal to swim to a new
position, while adopting a new camouflage. Camouflage-trajectory
durations were equally distributed in the two conditions (Extended
DataFig.3d,e).

Three trajectories through skin-pattern space (pattern transitions),
taken from the same animal in response to the same background
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Fig.3|Dynamics of camouflage transitions. a, Exploratory trajectories
(lengths,40-126 s) in skin-patternspace (PC1,15.2%; PC2,13.1%) inresponse to
thesamebackground switches (N13toN29). The starsrepresent the three
background textures (N13 (orange), N26 (green) and N29 (red)). b, Speed
profile of pattern change (colour) of one trajectory (length: 220 s) inresponse
to background switch from N26 to N29. ¢, Test of two motion-direction models
(update and memory) for motionin skin-patternspace. The dark green vectors
pointtothe end goal from the starting point; the light green vectors point to
the end goal from eachintermediate slow point; the blue vectors show the
actual motiondirection when exiting each slow point. Datasupport the update
model: the distribution of ais significantly biased to O (Rayleigh test, P<107),
but not that for 8 (Rayleigh test, P> 0.01). n = 85 trajectories, 3animalson3
backgrounds (N13,N26 and N29).d, The number of transitions (steps) between
slow points per trial (grey) and the dwell time at slow points (red) increase as
the skin patternbecomes more similar to the background. n =868 slow points
from 85trajectoriesin3animals. Dataare mean + s.e.m. The xaxis shows the
distance (in top two PCs) from the skin pattern at each slow point to the
background pattern (bins of 285 arbitrary units (a.u.)). e, The correlation (corr.)
between skinand background patternsincreases as the number of transitions
(steps) between slow pointsincreases (Methods). Ordinate plots change (A) in
correlation between the skinand background compared with at behaviour
onset.n=85trajectories, 3animals.

change, are shown as projections into the PC1-2 plane (Fig. 3a)—
they were tortuous and differed across trials, typical of our results.
The instantaneous velocity of pattern change (Methods) also var-
ied along each path (Fig. 3b and Extended Data Fig. 5). In regions of
greatest tortuosity (but not only there), the speed of pattern change
decreased, to pick up again until a next deceleration, before eventu-
ally converging to a stable camouflage. The direction of motion at
the exit of each low-velocity region pointed towards the final cam-
ouflage pattern (Fig. 3¢ (left); Rayleigh test, P=1.1 x 107*, n = 85 tri-
als, 3 animals, 3 backgrounds; Methods), rather thanin a direction
parallel to the direct path linking the starting and final camouflage
patterns (Fig. 3c (right)). This indicates that the animal updated its
heading onits course through pattern space. The number of succes-
sive low-velocity regionsincreased as the animal skin approached its
target pattern (Fig. 3d (grey)), as did the dwell timein each such region
(Fig.3d (red)). These results suggested that the path to acamouflage
contained successive error-correction steps, as confirmed by direct
measurements (Fig. 3e).
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Fig.4|Organization and reorganization of chromatophore groupings
during pattern transitions. a, Speed profile of atransition (background: N13
toN29) inchromatophore space (PC1-2:15.6%, 9.8%) contained five slow points
(blue, top). Groupings of chromatophores (coloured, bottom) that changed
together (pattern components) during transitions between these points (1of 3
analysed animals). b, Chromatophores (chrom.) in pattern components shrank
(toprow) or expanded transiently (bottom) during the transitionina. The pink
shading shows the time of motion between slow points. ¢, Interdigitated groups
of 1,736 (red) and 3,903 (blue) chromatophores, located in left half of the dorsal
square, show differentactivity (right; average inb, top). The heat maps show
thesize of individual chromatophores (rows, z-scored). d, The correlation of
activity between pattern components is not linked to their physical separation
(Pearson’s s ,5=—0.043, P=4.34 x 107%; 3 animals; Wasserstein distance;
Extended DataFig. 7c-e). e, The variance explained (200 PCs) by the datasetin
which PCs are defined. Decomp., same dataset; nearest, the most similar
transition; all, all transitions, downsampled; static, activity at static patterns;

Variable composition of camouflage patterns

We next used high-resolution imaging to identify large pattern com-
ponents™® that might reflect the higher levels of a hypothesized control
hierarchy in the chromatophore system. Using Leiden community
detection (Methods and Extended DataFig. 6) over the pattern-motion
segments of a camouflage change (that is, in between low-velocity
regions), we identified clusters of co-varying chromatophores (Fig. 4a,b
(colour coded)). The identified components were neither trivial nor
did they match manually annotated components identified from static
images>'®. The two componentsin Fig.4c (red and blue, left) overlapped
within the central square but differed from one another in their activi-
ties (Fig. 4c (right)), indicating that a seemingly singular feature—the
dorsalsquare, characteristic of many disruptive patterns—is composed
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shuffled, randomized groupings.n=21,18 and 21 trajectories (traj.) from
3animals, 3 backgrounds (N13,N26 and N29).f, Trajectories (the samePCs asina)
andimages for two similar transitions (teal, 87.2 s; pink, 87.1s; backgrounds are
thesameasina).g, Chromatophores (n=1,123) that co-varied in the pink trial
(purplecluster, g1, left) splitinto many clustersin the teal trial. Chromatophores
(n=1,532) that co-varied in the teal trial (teal cluster, g2, right) splitin the pink
trial. The heat maps show the size of individual chromatophores (rows, z-scored).
h, Pattern-componentreorganization. Groupings are based on activityin the
pink (left) and teal (right) trialsin fand g. The line thicknessis proportional to
number of shared chromatophores. i, The fractions of chromatophores that
grouped consistently across pairs of trials. The meanintersection over union
(IoU) of chromatophore groupings decreases as the distance between the
transition pairsincreases (n=32.3+0.5,31.2+0.9,33.2 + 0.4 clusters; 44,32,
30 transitions; animals and backgrounds are asdescribed in e; Extended Data
Fig.7f,g). Thelines show shuffled groupings.

ofinterspersed subcomponents, each capable of independent control.
Generally, the degree of pairwise correlationbetween components was
independent of their spatial overlap (Fig. 4d; Pearson’s ry, g,s = —0.043,
P=4.34x107%, 3 animals). Individual components could be tight and
clumpy, or loose and distributed. Our pattern decomposition had high
explanatory power only if the components had been derived fromthe
same trajectories (Fig. 4e). Performance declined when components
were extracted from different trajectories or patterns (Fig. 4e and
Extended Data Fig. 6), hinting that each trajectory in chromatophore
space (thatis, eachrealization of acamouflage) uses adifferent arrange-
ment of components.

We examined these arrangements in more detail by tracking, at the
chromatophoreresolution, two camouflage-pattern trajectories from
the same animal, initiated after the same background switch (from
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Fig. 5| Transitionto and from theblanched state.a, Chromatophore-space
trajectories from camouflages (disruptive (D), background N29; mottled (M),
background N13) toblanched (B) in response to approaching visual stimuli
(sepia219is shown throughout, exceptinc,kandl; otheranimals are shownin
Extended DataFigs. 8-10). The solid and dashed lines show the motion to and
fromtheblanched state, respectively. b, The outwards and return paths of all
trajectories (n=17,sepia219). Note the slower returns. The colour shows the
speed of pattern change. ¢, Blanching (blanch) trajectories are straighter
(lower mean curvature, 75-PC space) than camouflage (camo.) transitions
(Student’s t-test, camo. versus blanch, 3 animals each, P=0.0017).d, Whole-
mantle, ‘disruptive’ camouflage. Scale bar,10 mm. e, Chromatophore
segmentationinacroppedregion (indicated by the yellow box ind) at the trial
start, at maximumblanching and at the trial end, with corresponding marginal
histograms (red). D and M, camouflage at trial onset asina. Note that traces of
thestartand end patterns canbe seen at the blanch timepoint. f, Hierarchical
clustering of whole-mantle patterns during (top) and after (bottom) blanching
reveals conserved subtrees (colours). The open circles show the trialsine

N13 to N29) and that looked similar to the naked eye (top and bottom
image rows). These trajectories have neighbouring starting and end-
ing points and occupy overlapping regions in chromatophore space
(pink and teal) (Fig. 4f). Aset of about 1,100 chromatophores, defined
by their covariation in the pink trajectory, formed one component
(Fig.4g (topleft, purple)). The same chromatophores, analysed again
but over the teal trajectory (right), now defined over 15 components.
This analysis was repeated with a different chromatophore set, this
time chosen from the teal trajectory (Fig. 4g (bottom right, cyan)).
Herealso, thiscomponent splitinto smaller ones in the other trajectory
(left). The intricacy of this reorganization is summarized in Fig. 4h, in
whichtheleft and right margins represent the components generated
by analysing one or the other trajectory. Subsets of chromatophores
that belonged to one component joined a different component a few
moments later, even (as here) when the camouflage changes were
not distinguishable by eye. Across pairs of trajectories, the fraction

126 | Nature | Vol 619 | 6 July 2023

Return

IFEmEn
S

(1]
4

D trial M trial

©
S
Start ®

Blanch

Mean curvature

o

o

N
End

Camo. Blanch

Chromatophore
(ranked by onset)

First mm ™ Last

0 m— 1
Area (normalized) Rank

100 Camo
Blanch

-

0

Cluster by trial/
all trials ratio

0 0+t—

Explained variance, top 200 &
principal components (%)

(D (black); M (blue); n =17 trials, cophenetic correlation = 0.26; P=0.015,
Mantel test). g, Chromatophore size over time (single trial), ordered by the time
of recruitment during return from blanching. Scale bar, 4 s. h, Chromatophores
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of chromatophores classified as belonging to the same components
decreased as the distance between trajectories increased (Fig. 4i and
Extended DataFig.7; Pearson’s r; g5, = —0.619, P= 0.0; 3 animals). Thus,
camouflage-pattern components are not stable entities and can be
defined only over specific segments of activity.

Pattern trajectories during blanching

Cephalopods often turn pale (blanch'®*') when they perceive a threat.
These changes appear to be for conspicuous ‘deimatic’ display rather
than camouflage, because they converge to similar patterns whatever
the background (Supplementary Video 4). We therefore used blanch-
ingas acomparison for pattern-change dynamics during camouflage.
Figure 5a shows 3 out of 17 blanching responses to a looming visual
stimulus (Methods) in one animal displaying two different initial cam-
ouflages (Extended DataFig. 8).In this PC projection of chromatophore



space, the three trajectories converged from their starting states to the
same neighbourhood of chromatophore space, a blanched deimatic
pattern (B), before typically returningto their initial camouflage (blue
and green trajectories) or (only once in these 17 trials) to a different
one (red). The blanching motion was fast; recovery was slower (Fig. 5b
and Extended Data Fig. 8b) with gradual deceleration. We compared
the curvature of camouflage and blanching trajectories in 2-200 PC
dimensions; blanching paths were always more direct than those taken
incamouflage, and required fewer dimensions to account for the same
variance (Fig. 5c and Extended Data Fig. 9).

Inthe experimentinFig. 5a,b, the animal returned to the neighbour-
hood of its pre-blanching state in 16 out of 17 trials, suggesting that
information about its initial state remained (Extended Data Fig. 8).
Indeed, although blanching trajectories converged towards the same
state, they remained separable near B—their point of convergence.
Thisisillustrated in a magnified view of the edge of the dorsal square
(Fig. 5d,e): in the blanched state, the edge of the square was detect-
able (withreduced contrast) inthe D (disruptive) trial, but notinthe M
(mottled) trial, consistent with their respective starting and ending pat-
terns. The predictability of the return pattern from the blanched state
isillustrated in the tanglegrams in Fig. 5f and Extended Data Fig. 8d,
based on the correlations between blanched and ending patterns.
The rapid chromatophore shrinking (blanching) followed by slower
expansionisshowninFig.5g, in which chromatophores are ordered by
expansion onset. By mapping the ranked chromatophores back onto
the mantle, we observed that they formed reliable non-random patterns
(Fig.5h), confirmed as reliable components by community-detection
clustering (Fig. 5i,j and Extended Data Fig.10). The contrast between the
repeatability of skin-pattern restoration after blanching (Fig. 5k,I) and
the variability of camouflage pattern composition (Fig. 4f-i) supports
the hypothesis that camouflage and blanching are under differential
control.

Discussion

Our results paint acomplex picture of camouflage control. First, pos-
sibly consistent with the high resolution of chromatophore motor
control®*, skin-pattern space is high-dimensional—the same back-
grounds led to many different instantiations of a given skin pattern
that are difficult to distinguish by eye. Second, camouflage smoothly
covaries with ranges of natural or artificial visual textures. Skin pat-
terns were composed of components, or chromatophore clusters,
independently recruited®, and displaying different sensitivities and
responses. The Sepia visual system must therefore represent visual
texturesinsome detail, probably in the optic lobes®, and the animal’s
camouflage strategy is adapted to matching high-dimensional back-
ground targets. Third, the paths (inskin-patternspace) taken during a
camouflage change are tortuous, intermittent—consisting of alternat-
ing pattern motion and relative stability—and not stereotyped. The
number of pauses and their durationincreased as convergence neared.
The correlation between skin and background patterns increased as
the number of pattern-motion steps increased. At each intermittent
motion onset, pattern motion aimed towards the target camouflage,
reflecting knowledge of the animal’s instantaneous staterather than the
memorization of its initial motion direction at the onset of the behav-
iour. Together these results suggest that camouflage relies on feedback
during the approach to an adaptive pattern, more akin to correction
of hand reaching movements in primates®*** or of tongue reachingin
rodents® than to ballistic motion towards amemorized target. Fourth,
trajectories between camouflagesinvolve pattern components defined
by chromatophore co-variation; these components could be large or
small, tight or loose, suggesting amultiscale control system. However,
different trajectories between similar pairs of camouflages invoked
different (in numbers and composition) pattern components, sug-
gesting control flexibility. Owing to such flexibility, describing body

pattern as the combination of around 30 fixed pattern components**
may underestimate the complexity and dimensionality of camouflage
patternspace. Identifying the smallest consistent components of cam-
ouflage patterns was not possible and will probably require very large
datasets. Fifth, blanching evoked by threats to camouflaging animals
retained a trace (at chromatophore resolution) of the initial camou-
flage. The animal usually returned to its initial state after withdrawal
ofthe threat, through paths decomposableinto reliable components.
This suggests that blanching co-occurs with camouflage. Blanching
represents the shrinking of chromatophores caused by the relaxation
ofthe chromatophore muscles. By contrast, the return to acamouflage
patternrequires the differential expansion of chromatophores by the
contraction of those same muscles. Thus, blanching could be gener-
ated by atransientand general inhibition of the chromatophore motor
drive, downstream of the camouflage control level; however, because
recovery from blanching reveals components with different dynamics,
this putative inhibition probably acts upstream of the motoneurons (at
anintermediate level of chromatophore control) rather than directly
onthem.

In conclusion, camouflage in Sepia appears to be both very flex-
ible and to follow non-stereotypical paths when analysed at cellular
resolution. The dynamics of its output suggest the use of feedback to
converge onto achosen camouflage. Regarding where such feedback
could originate from, afirst possibility is proprioceptorsinoraround
each chromatophore. Evidence for such proprioceptors around cepha-
lopod chromatophores s lacking’. A second possibility is that cuttlefish
use visionto assess the match between theirimmediate skin-patterning
output and the background, for example, during each low-velocity
segment in pattern-space motion. This could be tested by masking
the animal’s skin during camouflaging. A third possibility is efference
copy of the motor command to the chromatophore array. This would
require the existence of appropriate motor collaterals (not described
to date), some calibration of the copy and some form of integrator,
such that the copy accurately represents the true generated output.
Our results will inform mechanistic studies required to understand
this remarkable system.
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Methods

Experimental animals

Allresearch and animal care procedures were carried outin accordance
with the institutional guidelines that are in compliance with national
and international laws and policies (DIRECTIVE 2010/63/EU; German
animal welfare act; FELASA guidelines). The study was approved by the
appropriate animal welfare authority (E. Simon, Regierungsprasidium
Darmstadt) under approval number V54-19¢20/15-F126/1025. European
cuttlefish S. officinalis were hatched from eggs collected in the English
Channeland the North Atlantic and reared inaseawater systemat 20 °C.
The closed system contains 4,000 | of artificial seawater (ASW; Instant
Ocean) with asalinity of 3.3% and pH of 8-8.5. Water quality was tested
weekly and adjusted as required. Trace elements and amino acids were
supplied weekly. Marine LED lights above each tank providedal2 h-12 h
light-dark cycle with gradual on- and off-sets at 07:00 and 19:00. The
animals were fed live food (either Hemimysis spp. or small Palaemonetes
spp.) ad libitum twice per day. Experimental animals of unknown sex,
4 to 10 months after hatching, ranging from 42 to 90 mm in mantle
length, were selected for healthy appearance and calmbehaviour. The
animals were housed togetherin120 I glass tanks with aconstant water
through-flow resulting in five complete water exchanges per hour.
Enrichment consisted of natural fine-grained sand substrate, seaweed
(Caulerpa prolifera), rocks of different sizes, and various natural and
man-made 3D objects.

Data acquisition

Experiments were performedina700 mm x 700 mm x 135 mm live-in
filming tank in a separate 800 | system with its own water exchange,
filtration and environmental enrichment (Extended Data Fig.1a—c). At
least 2 days before experiments, animals were moved from their home
aquariuminto the filming tank for acclimatization; they remained there
throughout the days or weeks of filming. During experiments, ablack
frame was placed into the middle of the arena, restricting animals toa
400 mm x 400 mm area, keeping tank enrichment temporarily out of
sight. During filming, an acrylic lid was placed onto the water surface
to remove optical distortions caused by water ripples, and the arena
was lit by four LED strip lights with diffusers, mounted 15 cm above
the acryliclid (SAW4 white, 698 cmlength, Polytec), providing anillu-
minance of 3,400 Ix measured at the lid centre). Background images
were presented to the animal as prints on a 400-mm-wide fabric roll
(210 gm™,75d.p.i.), moved over the arena floor gently with a manual
crank. For experiments with natural backgrounds, a2-mm-thick trans-
parent acrylic sheet was placed on top of the fabric to provide extra
stability for some of the animals. Thisincreased the chance of capturing
in-focus high-resolution frames during pattern transition.

We presented a set of 30 natural images with diverse visual statis-
tics in at least five random orders (private collection; Extended Data
Fig. 2a). Three background images were selected for further experi-
ments (Extended Data Fig. 2b) on the basis of reliably eliciting distinct
camouflage patterns in multiple animals. Checkerboard backgrounds
were logarithmic series in three ranges of square sizes, one coarsely
sampled from 0.04 to 20 cm, and two with denser sampling, from
0.63to0 2.5 cmand from 0.18 to 0.63 cm (Extended Data Fig. 2c). The
coarse series was repeatedly presented in two random orders, and the
finer series in one random order each. In three animals, these frozen
random sequences were additionally broken in a portion of the trials
by skipping through the fabric roll. The four sets of frozen random
series (and their respective reverses) were not presented in a defined
order. The evoked behaviours were comparable, and therefore com-
bined for analysis.

For experiments with looming visual stimuli, the effective size of
the arena was reduced to 150 x 400 mm by inserting a transparent
plexiglass wall. An LCD monitor (Dell U2412M, size 52 x 32.5 cm, 50 x 22
cmyvisible to the animal, 60 Hz refresh rate) was suspended along the

long arena edge at 40° from horizontal and maintained at a constant
luminance (300 cd m™).

Visual stimuli were (1) manual presentations of the experimenter’s
hand approaching the animal at approximately 45°, stopping 20 cm
away from the animal with fingers outstretched (hand looms); or
(2) single presentations of a dark expanding circle on the monitor, sub-
tending avisual angle of about 1.5° at onset, before expanding to simulate
an object approaching at constant speed, according to the equation:
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where r(¢) is the radius of the circle on the screen, d is the distance
between screen and animal, 6(¢) is the angular size, [is the half-width
of an approaching object and vis the approach velocity. Stimuli were
generated using PsychoPy*® and presented at six different values of l/v
correspondingto collisiontimes 0f2.3,5.7,9.2,17.0,25.0 and 34.4 s. The
spotwas located onthe screen directly above the animal at a constant
x-coordinate, with the y-coordinate varied to match the position of
the animal’s head, approximately 45° from its zenith. The minimum
interstimulus interval was 2 min, and the background was changed
after 1-5 stimuli. Sessions contained either one or both stimulus types;
in sessions with hand looms only, the monitor was removed. In the
first30 min of session 1for each animal, several stimuli of different //v
values and hand looms were presented to find a stimulus that elicited
vigorous blanching behaviour for a given animal; subsequently, this
stimulus was over-represented in the stimulus order.

For high-resolution filming, 17 calibrated cameras (Basler ace
acA4112-30uc) were arranged in a planar array, each recording a
3,000 x 3,000 pixel video at 25 fps. A camera’s field of view was
52.4 mm x 52.4 mm (17.4 pm per pixel, 1 chromatophore occupy-
ing 54 pixels on average), with approximately 20% (20.1+2.0)
of pixels overlapping in neighbouring cameras. An additional
low-magnification camera was mounted next to, and synchronized
with, the high-resolution array, with a low-resolution field of view of
360 x 360 mm (119.8 um per pixel, 1 pixel containing 2.4 chromato-
phores on average). All of the cameras were mounted onto a 2D rail
system moved by stepper motors. To deal with high bandwidths, all
video datawere directly hardware-encoded to h264 formatinreal-time
during the experiment. For this purpose, we used three computers
running Ubuntu (v.18.04), each equipped with two graphics cards
(NVIDIA Quadro M4000) providing a maximum number of eight
encoding streams on each computer. We developed PylonRecorder2?,
amulti-threaded C++acquisition software. Each instance of this soft-
ware was used to retrieve the signal from one camera through USB3,
encode it to h264 through libnvenc/FFmpeg and write it to one dedi-
cated solid-statedrive. A fourth computer equipped with a PCAN-USB
interface (PEAK-System) running PylonRecorder2 with an additional
plugin®® was used to control and monitor the entire experiment. An
Arduino Mega 2560 equipped with a CAN bus shield was used as a
central hardware trigger source for all of the cameras®. A tracking
camera was placed outside the array to view the entire experimen-
tal arena. After calibrating the tracking camera to rail positions, the
experimenter could position the camera array over the animal as it
moved by selecting it in the tracking view.

Skin-patternrepresentation from low-resolution data
Low-resolution imaging data were processed to generate a repre-
sentation of the skin pattern (Extended Data Fig. 1d). In this study,
‘skin-patternrepresentation’ refers to 2D visual textures™'**?, Cuttlefish
canproduce different 2D textures through chromatophore activity, and
alsoalter their 3D appearance through postural motion and contraction
of papillae”. These 3D alterations have effects on camouflage and alter
the 2D visual patterning of the cuttlefish skin. These were detected by
and incorporated into our low-resolution analysis.
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Segmentation and alignment. For each frame, the cuttlefish was seg-
mented from the background with the Detectron2 platform* using a
pretrained baseline model (COCO Instance Segmentation with Mask
R-CNN, R50-FPN, 3x), fine-tuned with a cuttlefish training dataset. The
cuttlefish images were then aligned by one of two ways: (1) aligning
the long axis of an ellipse fitted to the cuttlefish segmentation mask,
withthe anterior-posterior orientation determined by amodel similar
to the one above, but trained from a different baseline (COCO Person
Keypoint Detection Keypoint R-CNN, R50-FPN, 3x); or (2) maximiz-
ing image cross-correlation from one frame to another. Erroneously
segmented frames were detected with a threshold on the area of the
segmentation masks at 2 s.d. As a result, about 3% of all frames were
removed from the subsequent analyses.

Texture representation. The texture representation used in our low-
resolution imaging (Figs. 1-3) was the max-pooled fifth layer activa-
tions (conv5_1) of the VGG-19 neural network with weights pretrained
with the ImageNet dataset in an object-recognition task, accessed
through the Keras platform*. The choice of layer and model was
informed by findings from psychophysics experiments on visual tex-
tures synthesized using Gram matrices of different layers of the model*,
and more broadly by the visual texture literature***, To our knowledge,
thismethod hasnot been previously used to study cuttlefish camouflage.

The inputs to the neural network were preprocessed as follows:
cuttlefish images were converted into 8-bit greyscale and histogram-
equalized using OpenCV 4 (ref. 46). The background, as detected
in the segmentation step, was replaced by middle grey. The images
were cropped and/or padded into a square such that the cuttlefish
body length was half of the image length. The cuttlefish body length
was estimated for each video by taking the mean lengths of the fitted
ellipses from 5-10 randomly selected frames. Finally, the images
were downscaled to 224 x 224 px, and zero-centred using the VGG-19/
ImageNet-compliant input preprocessing function in Keras.

The max-pooled representation used in this study is a vector of
length 512, where each element is the maximum value of one of 512
feature maps (each of size 14 x 14). The Gram matrix representation
mentioned above*** isavector of length 262,144, vectorized from the
Gram matrix of size 512 x 512 (symmetric), where each element is the
scalar product between apair of the 512 feature maps (each vectorized
toavector of length196). The pairwise Euclidean distances of arandom
sample of 300 data points computed in the max-pooled representation
space showed high correlation with the same computed in the Gram
matrix space, despite being summarized by relatively few parameters.
(Extended DataFig. 3a)

The 512-dimensional pattern representation was further compared
using the Portilla-Simoncelli* visual texture model (Extended Data
Figs. 3e and 4d,e). Inputs to the Portilla-Simoncelli model were pre-
processed similarly, with the only differences being (1) the 224 x 224
images were padded up to 256 x 256 and (2) zero-centring was not
performed. Using the standard configuration of 4 scales and orienta-
tions respectively and aneighbourhoodsize of 7 px, this representation
consists of about 800 unique parameters.

This skin-patternrepresentation canbeinterpreted asametric that
captures textural information using 512 variables derived objectively
fromthe visual world. It was used to construct the UMAP visualization,
estimate the dimensionality of camouflage pattern space and study
camouflage pattern dynamics.

Data selection. Full-length videos were subsampled every 10 frames
to generate the entire skin-pattern space of an animal (Fig. 1c), and
every 100 frames to identify the time windows of skin pattern transi-
tions*® (Figs. 3 and 4). Transition periods were identified at timepoints
at which (1) there was a jump between the 2-4 clusters (k-means) in
the estimated pattern space (see below); or (2) the speed of change in
patternrepresentation exceeded 1s.d. Before and after each selected

timepoint of pattern transition, the period between the times when the
speed of pattern change exceeded and then returned to the baseline
(mean) was designated as a chunk of pattern transition. Two consecu-
tive chunks were mergedinto oneif the interval between them was less
than 20 sand did not contain abackground switch. Afteridentification
using subsampled data, transition periods were processed at the full
frame rate (25 Hz). To study static camouflage matching (Fig. 2), the
last 30-60 s (depending on the animal) of each stimulus trial (5-10 min
each) were considered to be stabilized camouflage response (Extended
DataFig. 3d), and were processed for subsequent analyses.

Visualization of skin-pattern space. Skin-pattern space was visualized
using a UMAP model (min_dist=0.8, n_neighbours=100)*%, which em-
beds the 512-dimensional pattern representation into two dimensions
nonlinearly. The UMAP model was trained withageometry-preserving
sample 0f20,000 data points selected using the geosketch algorithm
on the top PCs accounting for 80% of dataset variance*. Misoriented
frames wereidentified witha preliminary round of clustering and with-
held during the training, but later embedded (Fig. 1c). Visual inspec-
tion found the above processing to be robust against the occasional
upstream misorientation. For visualization, 3 x 3 grid points were laid
onto each of the selected regions in the 2D UMAP space, the nearest
datapoint with adistance of <0.1 was selected and the corresponding
skin pattern was plotted (Fig. 1d).

Skin-pattern space analysis

Dimensionality. To estimate the dimensionality of skin-patternspace,
we followed a previously proposed pipeline?. We first standardized
features by removing mean and scaling to unit variance. We obtained an
upper-bound dimensionality estimate using parallel analysis—alinear
method that was found to be the most accurate among the tested linear
methods for bothlinearly and nonlinearly embedded simulated data.
We next fitted alinear (principal component analysis (PCA), 90% vari-
ance cut-off) and anonlinear (Joint Autoencoder) model, respectively,
tothe datawith the same number of latent dimensions as determined
by parallel analysisin the previous step. For the Joint Autoencoder, we
increased the size of the dense layer from 36 to0 240, and the number of
training epochs from1,000t02,000 toreflect theincrease inthe num-
ber of input features (from 96 to 512). We found that anonlinear model
(variance explained, 60.0 + 0.58) did not perform significantly better
than alinear model (variance explained, 74.0 + 0.65), suggesting that
skin-patternspaceinour datawaslargely linear (Extended Data Fig. 3a).
We therefore chose parallel analysis, a linear method, to estimate the
dimensionality of skin-pattern space. In brief, parallel analysis reports
the number of PCs with statistically significant explanatory power com-
pared with anull distribution defined by a parallel PCA in which the data
points of each feature are independently shuffled. It should be noted
that parallel analysis tends to underestimate the true dimensionality
of alinear space above 20, although to alesser extent than nonlinear
methods. The above analysis was performed using 20,000 randomly
sampled data points (frames) from each animal, as the estimation tends
to stabilize beyond that sample size (Extended DataFig. 3c).

Pattern matching. Pattern matching was studied using two stimu-
lus sets: natural images and checkerboard series. To study visual
features of natural image backgrounds (Fig. 2a and Extended Data
Fig. 4d-f), the backgrounds were sampled by random selections of
patches corresponding to animal size (>6 patches) near the animal
from low-resolutionimaging data. The background patches were then
masked by the contour of the animal, processed through the same VGG-
19 network for the pattern representation and further used to extract
low-level statistical visual features.

Four parameters were derived from Fourier statistics®. The image
was transformed to a power spectrum by fast Fourier transform (FFT).
The 2D power spectrum was radially averaged and fitted with aline in



log-log scale. FFT-a and FFT-3 were the slope and intercept, respec-
tively, of the fitted line. The third FFT parameter was the peak of the
residual of the 1D power spectrum from the 1/f* fit. The fourth para-
meter, FFT-iso, was calculated as the ratio of the contour at 60% of the
energy to afitted isotropic ellipse in the 2D power spectrum. From
the 2D power spectrum, the spatial autocorrelation was computed by
inverse FFT (Wiener-Khinchintheorem). The Auto-freq parameter was
the frequency at 50% of maximal auto-correlation. Two Weibull para-
meters, CE (contrast energy) and SC (spatial coherence), represent the
width and the shape of the Weibull fits for the local contrast histogram,
derived from multiple filters with different spatial scales*®. The kurtosis
and skewness of the contrast-value distribution were measured after
using a first-order difference-of-Gaussians filter (size = 5) to extract
contrast values.

Tolink visual statistics to an animal’s camouflage pattern, we calcu-
lated the correlation between animal patterns and background images
(Fig. 2a and Extended Data Fig. 4e). To enable the direct comparison
between the body patterns and backgrounds, the 512-dimensional
patternrepresentations of both body patterns and backgrounds (755
pairs from 3 animals) were first transformed by PCA. The first 50 PCs
were then used for canonical correlation analysis toidentify the linear
combination of PCs best able to correlate body patterns and back-
grounds. The Pearson correlation was calculated for each PCbetween
body patterns and backgrounds, by animal. Second, different general
linear models were trained to predict the camouflage patterns using
individual or combinations of the visual statistics described above
(Extended DataFig.4d). For each animal, we performed threefold cross
validation (2/3 training, 1/3 test) on animal-background image pairs.
Forthetraining set, 13 general linear models were fitted separately on
two visual texture representations (VGG-19 and Portilla & Simoncelli
texture model), nine low-level image features, the combination of
these nine features and downsized images. Model prediction residu-
als were calculated using the test dataset. The relative reduction of
such residuals from the residual by the null model (fitted only using
the intercept) were calculated as deviance reduction. The averaged
deviance reduction, computed from 1,000 repetitions of fitting and
cross-validation, was used to compare the performance of different
visual features in predicting the animal’s responses. Similarly, for the
checkerboard dataset (Fig. 2b), the skin-pattern representation was
firsttransformed by PCA on all animals collectively (50 components).
Then linear regression was performed on each of the PCs per animal.

Dynamics. The speed of skin-pattern change was calculated as the
time derivative (d¢=0.04 s (Figs.3and 4) and d¢ = 0.4 s (Extended Data
Fig.3d-f)) of the Euclidean distance of the first 200 PCs in skin-pattern
space, smoothed with a2 s window.

To compare the dynamics associated with animal locomotion and
background transition (Extended Data Fig. 3d-f), the speed profiles
were aligned (¢ = 0) to the peakin motion speed (where the background
remained unchanged), or the troughin background correlation (corre-
sponding toabackground transition, which were occasionally followed
by motion of the animal). The aligned speed profiles were resampled at
1sintervals. Periods during which the background remained unchanged
were identified as ones where the frame-to-frame image correlation
remained above 0.9 for at least 10 s. Motion epochs were detected
during these constant-background periods by thresholding the 2D
speed of the centre-of-mass of the cuttlefish mask at 2 s.d. above the
mean. A background transition is defined as a period between two
constant-background periods of different background identities.
The background identity of each constant-background period was
determined by the following procedure: first, 4 patches of the first
frame around (but not containing) the animal were combined into a
composite. Then, the third-layer (conv3_1) activation of the VGG-19
model (see above) of each composite was max-pooled and then classi-
fied (k-means, 3 classes, with manual cluster sorting). The motion- and

background transition-triggered speed profiles were built for each
animal. We measured the duration of skin-pattern change starting at
the time at which the motion speed (in pattern space) exceeded 10%
of the peak motion speed above the baseline.

To characterize the dynamics of skin pattern change during camou-
flage transitions (Figs. 3 and 4), low-velocity regions of each trajectory
wereidentified as local minimaafter 2 s window smoothing. Before and
after each slow point, that is, during deceleration (from local speed
maximum to local minimum) and acceleration (from speed local mini-
mum to local maximum), the speed quartiles were used to separate fast
(Fig. 4b (red)) from slow phases. The duration of each slow phase was
defined as the dwell time at that slow point (Fig. 3d). Each step between
the fast and slow phases along the trajectory was considered astep in
camouflage refinement. In skin-pattern space, the distance from skin
patterntobackground pattern was measuredin the top two PCs. For the
histogram of steps per trial (Fig. 3d), the distance to the background at
slow points was used as the distance for each step. The histogram was
plotted for eachtrajectory and averaged across all trajectories (n = 85,
from 3 animals). The dwell time was bin-averaged (bin = 55) along the
distance (Fig.3d (red curve)). For Fig. 3¢, two motion-direction models
were distinguished by measuring two angles, aand 8, as ananimal’s skin
pattern moved from a starting pattern (start), through intermediate
slow points towards an eventual steady-state pattern (goal). a is the
anglebetweenthe vector connecting pointn —1to pointn,and the vec-
tor connecting pointn - 1to the goal. Bis the angle between the vector
connecting pointn - 1to point n, and connecting the start to the goal.
Inthe memory model, the animal follows the initial direction fromthe
starttothegoal, resultinginboth a and  values of near 0. Inthe update
model, the animal updates the direction that it must move toreach the
goal in every step, resulting in a values of near 0, but not 8. The angle
was measured as the arctan of the cross product and dot product of the
two vectorsinthetop two PCs. InFig.3e, we calculated after each step
(thatis, ateach local minimum of pattern motion velocity) the correla-
tion between the skin pattern at that time and the background, in the
space defined by PCs1-50. The difference between this instantaneous
correlation and that measured at behaviour onset was then averaged
across all of the trials analysed above.

Chromatophore segmentation and tracking

High-resolution imaging data were processed to extract chromato-
phore population activity using a computational pipeline!* that was
modified toaccommodate camera-array data, designed to filmlarger
animals (Extended DataFig. le).

Dataselection. Wefilteredimages over all the cameras with a difference-
of-Gaussians (DoG) filter that was tuned to detect chromatophore-
size features (2 and 1s.d.). The sum of all pixels over all cameras was
taken as a focus statistic. We placed a dataset-specific threshold on
this statistic to select aseries of in-focus time periods (chunks) for the
different experiments:

Checkerboard datasets (Fig.2): as described above, thelast 30-60 s of
each 5-10 mintrial was selected as the stabilized camouflage response
for subsequent analyses. All chunks were confirmed visually for lack
of animallocomotion.

Pattern transition datasets (Figs. 3 and 4): analysis of low-resolution
video (above) revealed pattern transition timepoints. The subset of
these transitions that were also in focus of the high-resolution camera
array (-50%,) were taken for chromatophore analysis.

Threatening stimulus datasets (Fig. 5): all trials in which animals
displayed a decrease in mean chromatophore size to less than 90% of
themeanstartingsizeinthefirst2 s of the trialand remainedinfocus,
were used to calculate the Spearman R for blanching time versus return
speed. For all of the other analyses, we discarded low-vigour blanching
responses in which the mean chromatophore size during blanching
remained above 50% of the mean starting size.
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Panorama construction. For the first timepoint in every chunk, we
next determined which cameras in the array contained a view of the
cuttlefish. We constructed arough panoramaview over all camerasin
thearray using our extrinsic camera calibration. Thisimage was filtered
using the same DoG filter as introduced above, and smoothed with a
Gaussianfilter (s.d., 25 pixels). We then thresholded thisimage, taking
the largest contour as a cuttlefish mask. Images containing mask pixels
were taken as the relevant cameras for that chunk.

Depending on the animal’s size and position relative to the array,
1-7 cameras were typically relevant for a given chunk in our datasets.
For these cameras, and taking the first image in every chunk, we next
used parallax-tolerant nonlinear stitching® to form asingle panorama
view. Prominent greyscaleimage features were detected using SURF*,
and features were matched across cameras with overlapping field of
views. An affine transform was estimated from these matched feature
points, and outliers were removed using the M-estimator SAmple Con-
sensus (MSAC) algorithm®®. Noisy image pairs containing few (10-150
depending onthe dataset) matched features were removed. We refined
ourinitial cameraextrinsic parameters using these matched features.
We performed bundle adjustment using the Levenberg-Marquardt
algorithm®**, optimizing the similarity transform between all sets of
cameras. Finally, robust elastic warping® was performed to remove
parallax effects. We saved the nonlinear transformations mapping
each camera’simage into the resulting panorama.

Chromatophore segmentation. In parallel with the above panorama
construction, we segmented chromatophores onthe relevant cameras
(see above) over all of the images within usable chunks. In this study, we
refer to the pigmented chromatophore proper as ‘chromatophore’,and
‘chromatophore size’ as the size of the pigment cell that we track. We
trained convolutional neural networks (U-Net¥) to perform semantic
segmentation, classifying a cuttlefish’s dark chromatophores. We used
the prediction score as a probabilistic readout of the expansion state,
allowing for sub-pixel resolution and improved signal-to-noise ratio.
Atour imaging resolution, light chromatophores' were not detected
reliably enough for robust segmentation. Classifiers were trained on
64 x 64 cropped images of cuttlefish skin, manually labelled using a
custom GUI (pyQt). To increase classifier robustness, we used image
augmentation®®, randomly rotating, reflecting, scaling brightness,
Gaussian blurring and applying piecewise affine transformations.

Aligning segmented panorama within a chunk. To track chromato-
phore expansion states, we modified our strategy™ of fixing their pixel
locations over theimages in a dataset. We did thisin two steps, removing
animaland breathing movements to register allimages within a chunk,
followed by alignment over chunks, described below. For every framein
achunk, we used our nonlinear transformations, calculated above (see
the ‘Panorama construction’ section), to form panoramas of segmented
images. During panorama construction, images were sequentially
mapped into aunified reference frame®. Notably, during this process,
we updated the panorama only at pixel locations where no image had
yetbeen mapped to. Overlapping fields of view were thus not averaged
together. This method helped us deal with errors in panoramamapping
coming from slight animal movements. On the first panoramaimage of
achunk, weselected arandom set of chromatophores distributed over
the animal for tracking. For subsequent frames we used Lukas-Kanade
optical flow and moving-least-squares interpolation* to track animal
movements and align allimages to the firstimage of a chunk.

Stitching over chunks. We mapped all chunks, separated in time by
intervals as long as several days, intoacommon reference frame. We call
this process ‘stitching’. Coarse-to-fine grid alignment was performed
asdescribed previously™, with four changes to increase accuracy. First,
we stitched together the first segmented panorama image from each
chunk, rather than the average segmented image over a chunk. Second,

weused al28 x 128 pixel grid for coarse alignment, rather than 256 x 256
pixels. Third, weintroduced amanual refinement step, in which poorly
matched coarse grid points and images in cases in which registration
failed were removed using a custom GUI (pyQt). Finally, grid alignment
was followed by an additional alignment step: we used the SyN algo-
rithm® (sigma_diff = 7, radius = 32) to register image pairs precisely,
with a scale space of three levels (50, 25 and 5 pixels). The image with
the lowest average reprojection error before manual refinement was
selected as the dataset reference frame.

Chromatophore extraction. To extract chromatophore expansion
states (areas) over time throughout a dataset, we mapped the first
segmented panorama from all chunks into the dataset reference frame,
and averaged theresultingimage. We then applied the watershed trans-
formation to this average aligned frame to determine chromatophore
regions. The chromatophore expansion state was determined by map-
ping segmented panoramaimages froma chunk’s reference frame into
the dataset’scommon reference frame, and calculating the sum within
every chromatophore region.

Imaging artefacts due to compression during video recording
occurred about every 250 frames. Around such artefacts, detectable
as periodic sharp peaks in PCA speed, 10 frames were removed and
remainedblank. For analyses concerning sequence of activation of indi-
vidual chromatophores (Fig.5), these artefacts were instead removed
with a median filter with als window. A mask was constructed on the
average aligned frame with DoG filtering to remove chromatophores
with low probability of detection due to imprecise alignment. These
chromatophores were generally located around papillae. This also
removed regions at the curved edges of the mantle, resulting in the
tracking of 76%, 75% and 70% of the pixels on the mantle in Fig. 2, and
78%,75% and 79% in Fig. 4. In Fig. 5, arectangular mask was used to
restrict the analysis to the dorsal part of the mantle (Extended Data
Fig.10), of which 98%, 92% and 69% (in sepia218, sepia219, sepia221,
respectively) of pixels remained after DoG filtering.

Pipelineimplementation

The chromatophore-tracking pipeline wasimplemented using OIST’s
Deigo and Saion HPC systems. Deigo performed all steps except for
chromatophore segmentation, processing jobs in parallel on single
nodes with up to 128 cores and 512 GB RAM per node. Chromato-
phore segmentation was performed on Saion GPU nodes using up to
32 GPUs (Nvidia V100 and P100s). Datasets for which the animal was
small enough to fit in a single camera view were processed without
panorama construction on CPU nodes of MPIBR’s computing cluster
(24-32 cores, 192-512 GBRAM per node). Datamanagement and paral-
lel computation was performed as described previously™.

Chromatophore space analysis

Dynamics. Speed in chromatophore space (Fig. 5 and Extended
Data Figs. 5 and 8) was calculated as the time derivative (dt = 0.04 s)
of Euclidean distance in 200 PCs, and was then smoothed by a2s
window.

Component analysis. Tens of thousands of chromatophores (60,884;
s.d., 679) were grouped into 32 + 3 pattern components on the basis of
their covariation during pattern changes. Chromatophore areas over
time during pattern transitions were transformed by PCA. The top 50
PCswere then used to define co-varying chromatophores as connected
nodes (n_neighbors =10). The Leiden algorithm (resolution = 2 (Figs.2
and 4) and 0.5 (Fig. 5)) was used to detect non-overlapping communi-
ties from the network of chromatophores® (scanpy package®'). These
communities of chromatophores were taken as pattern components.
Components of which the mean expansion state was significantly
changed (>1s.d.) during the whole or specific phases of the pattern
transition were considered to be active components (Fig. 4a).



To compare the degree of pairwise correlation of chromatophore
activity between pattern components and their physical separation,
multiple metrics were used to measure how two pattern components
areinterdigitated in space. We measured spatial overlap after spatial
binning (Extended Data Fig. 7a,b), pairwise distance (Extended Data
Fig. 7c) and Wasserstein distance (Fig. 4d and Extended Data Fig. 7d).
To estimate how well community-based clustering could capture over-
all chromatophore activity (Fig. 4e), we substituted chromatophore
activity for the mean activity of all chromatophores within a pattern
component. This simplified chromatophore state matrix was then
transformed by the same PCA model previously fit to the original
chromatophore state matrix. Percentages of explained variance were
compared between simplified and original trajectories in the same
space defined by the first 200 PCs. To compare different component
clusterings on the basis of the covariation in different pattern transi-
tions (Fig. 4i), we paired components sharing the largest proportions
of chromatophores among all possible pairs. For all transition pairs,
the mean intersection over union of chromatophore groupings (also
known as the Jaccard index®?) was used as a similarity metric between
different partitions. We tested the following additional metrics of
clustering similarity: Wallace coefficient® and adjusted rand index®*
(Extended DataFig. 7f,g).Inall cases, the clustering similarity metrics
were plotted against the distance between transitions pairs, which was
defined by the mean pairwise distance between two transitions: for two
trajectories of length Mand N, we calculated the average of the M x N
matrix of distances. This distance was normalized by the s.d. of all the
dataset of each animal.

For checkerboard datasets (Fig. 2¢c), log-linear regression was done
on the mean area of the chromatophores in a given component over
stimulus square sizes ranging from 0.1625t0 2.5 cm.

For threatening stimuli datasets (Fig. 5i and Extended Data Fig. 10),
clustering was performed on the fast phase of the outwards and return
trajectories. The fast phase was defined as the time when the instan-
taneous mean chromatophore speed (smoothed witha4 s Hanntime
window) was above 10% of the peak speed in the respective outwards
andreturntrajectories. Chromatophore areatime-series were centred
using only these fast phases before performing PCA and community
detection (using the top 50 PCs). Such trimming was performed to
isolate the behaviours of interest (pattern changes) in response to
threatening stimuli, and thus exclude timepoints when the animal was
set on astatic pattern.

To compare chromatophore components between camouflage
and blanching datasets (Fig. 5k-I), clustering was performed on all
trials (all trials), and also for each individual trial (by trial). Explained
variance for each trial and condition was computed as above, and
the ratio obtained by dividing the by-trial-explained variance by the
all-trial-explained variance. The shuffled dataset was generated by
shuffling chromatophore-to-component assignment after by-trial
clustering. We used all trials for blanching datasets (see the ‘Data selec-
tion’ section above) (sepia2l8, n =11; sepia2l9, n =17; sepia22l,n=4).
For camouflage datasets, we selected trajectories that were close in PC
space; they were selected by hierarchical clustering (Ward’s linkage),
performed on the pairwise Hausdorff distances (in the first two PCs)
between all pairs of camouflage trajectories. We selected the largest
trial cluster after cutting the hierarchy at a cophenetic distance of
d=100 (sepia2l3, n=7; sepia2l8, n = 8; sepia2l9, n = 10). Analysis was
performed across a range of resolution parameter values (0.25to 4,
with 0.25 steps) to check for the robustness of the results across dif-
ferent scales of component decompositions (Extended Data Fig. 9a).
For Fig. 5k, the resolution parameter for each dataset was chosen to
match the number of components extracted onindividual trajectories.

Experiments with threatening visual stimuli. Tocompute correlations
betweenstart, blanched and end pattern, we first took a10-frame (0.4 s)
average of each chromatophore area around each event timepoint per

trial. Hierarchical clustering was performed using correlation distance
and complete linkage, and tanglegrams plotted with the R package
dendextend, using the ‘step2side’ algorithm for untangling®.

To identify component recruitment sequences, we first used
median-filtered normalized (minimum-maximum) chromatophore
areatimeseriesand, for each trial, selected chromatophores thathad a
minimumsizeincrease of 0.15during the returnto camouflage. Times of
chromatophorerecruitment during thereturntrajectory were obtained
after smoothing witha1lsHann time window and trial-wise minimum-
maximum normalization. The time of recruitment was defined as the
time of upwards crossing of a 0.1threshold. Choosing the time of peak
speedyielded similar results. Times of recruitments were then ranked
using the average method to resolve identical ranks.

The density of recruitment ranks was analysed by histogram binning
over trials (50 equally sized bins). The distribution over trials was plot-
ted similarly by first computing, for each chromatophore, their mean
rank over all of the trials. The s.d. of the bin density was computed as:

o= Z,- p,-p)

forallchromatophores i, with p,the probability that achromatophore
withanormally distributed rank N(u;, 0)) falls into that bin, where ;and
o;arethe observed meanrank ands.d., respectively. A Kruskal-Wallis
test was performed on component-wise chromatophore-averaged
mean ranks. Post hoc multiple hierarchical permutation tests were
performed with the Python package Hierarch® using 100 permutations,
10 bootstrap samples and Benjamini-Hochberg correction.

Quantification of tortuosity. To compute curvature along pattern
trajectories, we reparameterized trajectories by their arclength. This
enabled us to measure curvature homogeneously along the trajecto-
ries, independently of their speed. We first applied PCA (2-200 PCs
tested; Extended Data Fig. 9b) on individual trials and then used the
CubicSpline function (sciPy) to fit piecewise cubic polynomials to
thetrajectory coordinates along each principal component, using ar-
clength astheindependent variable. We theninterpolated along these
trajectoriessuch that they were traversed at unit speed. The curvature
ateach pointnalongthese trajectories was computedas||T,+1-T,l,
where T is the local tangent vector. For threatening visual stimulus
datasets, reparameterization and curvature were computed only over
the fast phases (see the ‘Component analysis’ section) to include only
dynamicsinresponse to the stimuli.

Statistics and reproducibility

Unless stated otherwise, data are mean + s.e.m. Box plots show the
medianand upper and lower quartiles, with whiskers extending to 1.5
the interquartile range and outliers are shown as individual points.
Experiments were repeated independently several times with similar
results. The numbers of repetitions were as follows:

Skin-pattern space analysis (Fig.1and Extended Data Fig.3a—-c) was
carried out in 12 animals, 6 of which (each with at least 20 analysable
trials of swift background change) were included in the analysis of
background change (Extended Data Fig. 3d-f). Sample sizes were not
predetermined, but chosen based on experience with similar experi-
ments and on animal availability. Natural-image experiments (Fig. 2a
and Extended Data Fig. 4d-f) were carried out in 3 animals with 8 to
12 repetitions each. Checkerboard experiments with dense sampling
(Fig. 2b,c and Extended Data Fig. 4a-c) were carried out in 3 animals
with 4 to 14 repetitions per stimulusin each animal. Three animals (14,
30and 29 repetitions, respectively, for 6 types of background changes)
with high-quality high-resolution data were included in the analyses
of chromatophore space (Figs. 3-4 and Extended Data Figs. 5-7). For
eachanimal, experiments were conducted in two to three experimental
sessions on separate days. Threatening visual stimulation (moving
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hand orloomingimage display) experiments (Fig. 5 and Extended Data
Figs. 8-10) were carried out with 4 animals in1to 4 experimental ses-
sions onseparate days, yielding 11,22,19 and 9 trials with high-quality
high-resolution data. All filming experiments were repeated by two to
three experimenters, on different days, with the same animals, with
comparable results.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Dataare available from the corresponding authors onrequest. A small
datasetis provided with the analysis code for demonstration purposes.
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Extended DataFig.2| Camouflage-inducing background stimuli. random ordering of checkerboard stimuliusedin Fig.2. Top row: coarser
a.30naturalimages used in Fig. 2a. b. Subset of 3 naturalimages tested on sampling of spatial frequencies. Bottom two rows: denser sampling of spatial
animalsinFigs.1,3 and 4:large pebbles, small pebbles, limestone. Numbers frequencies. BothshowninFig.2b.
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Extended DataFig. 3 | Changesinskin patternassociated withbackground
change or animal movement. a. Correlation between pairwise distances of a
random subset (n =300) of skin patterns in the 512-D max-pooled texture space
andinthe Gram matrix space. Pearson’sr(44,848) = 0.850, p <4.94e-324, same
animalasin Fig.1.b. Skin pattern variance explained (mean + 95% confidence
interval) by principal component analysis (PCA) and Joint Autoencoder (JAE),
at59.4 +1.2latentdimensions. (**: p < 0.01, two-sided paired t-test, 12 animals,
Methods). c. Effect of number of frames on estimated dimensionality using PCA
(90% variance threshold) and Parallel Analysis (PA), mean+95% C.1., 4 animals.
d.Dimensionality estimation using PA (see Methods). Solid line: data; dashed
line: shuffled data; mean +95% C.lI.,12 animals. All datasets are downsampled
t020,000 frames. e. Dimensionality estimated using PCA (90% variance
threshold) and PA, using the VGG19 or Portilla-Simoncelli (PS) texture model.
(mean+95%C.L.,****: p< 0.0001, two-sided paired t-test, 12 animals).
Alldatasets are downsampled to 20,000 frames. f. Speed of change (blue) of

skin-patternaligned to onset of animal body motion (mean+95% C.1.), during
times when the backgroundis unchanged (backgroundimage correlation
ingrey).10 animals, 299 trials. g. Speed of change (red) of skin pattern aligned
toonset of background-stimulus change (mean +95% C.1.). Time of background
change shown by backgroundimage correlation (grey). Y-axes standardized
asind.10animals, 474 trials. h. Time taken for skin pattern to return to steady
state after self-initiated lomotion (d) and or background change (e). Difference
isnotstatistically-significant (p > 0.05, two-sided Mann-Whitney-Wilcoxon
test,10 animals). i. Four trials (rows) illustrating clear changes in skin pattern
(patterndisplacement >1.5s.d.) after background change at t = 0.j. Two examples
(rows) of clear changes in skin pattern (pattern displacement >1.5s.d.) during
animal physical motion, starting at t = 0. Red dot: current position; green dots:
previous positions (=red dots on earlier frames); white line: animal movement
trajectory.
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Extended DataFig.4|Camouflage pattern components and stimulus
dependence. a-b. Twoillustrative clusters of co-varying chromatophores
(components) demonstrating stimulus-dependent activity (4-8 trials per

stimulus) from two animals not shownin Fig. 2c. Top: cluster locations; bottom:

correlations between checkerboard period and mean total chromatophore
area.Blue: negative, red: positive correlation (p < 0.05). c. All clusters with

p <0.05, foranimal showninFig.2c, plottedasina,b.d.Separate GLMs to
predict camouflage pattern based on: Texture: VGG-19 texture representation,
as used in this study, Text(PS): Portilla-Simoncelli (PS) texture representation,
All9feat.:the combination of nine low-level visual features, individual features
of background images (Methods), and images: theimages themselves.
Camouflage patterns are best predicted by the texture of backgrounds, with

0.625 cm
D

1.250 cm

thegreatestreductionindeviance. The prediction performance was
comparable butsignificantly lower when using PS texture (paired t-test,
p=2.3e-90, 6.5e-226, 8.2e-20; error bars denote s.d., see Methods) and using
the combination of all nine visual features has comparable but significantly
lower performance (paired t-test, p =4.2e-285,2.2e-195, 4.7e-127). e. Top:
Correlation between animal’s skin pattern and textures + ten image statistics
of backgroundimages. Bottom: P-values (log scale) of these correlations
(Methods). f.Representative frames along the diagonal of Fig. 2a showing
responses to natural backgrounds. Numbers show correlation coefficient
betweenbackground and skin patterns. g. Representative framesalong the
diagonal of Fig.2b showing responses to checkerboard backgrounds.
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Extended DataFig. 5| Dynamics of transitionsbetween camouflage
patterns. a. Spatial distribution of pattern-change speed (left) plotted in PC1-2
of patternspace, averaged from 61 individual trajectories in one animal (right).
Backgroundimagesused inthis figure are those in Extended Data Fig. 2b.

b. Spatial distribution of pattern-change speed averaged from randomly selected
halfof trajectories (left) and the rest (right). Pearson correlation =0.696
between two half-distributions. c. Pattern-change speed vs. time plot for one
trajectory, illustrating the variationsinspeed of patternchangein pattern
space (pattern, LR) and inchromatophore space (chrom., HR). d. Averaged
speed of changein patternspace and in chromatophore space triggered from
(att=0)speed troughs measured in chromatophore space (N =60 trajectories,
3animals, shading =s.e.m.). e. Correlation coefficient of speed measuredin
patternvs.chromatophorespace (N = 60 trajectories, 3animals). f. Correlation
between pairwise distances of subset (n = 523,324, 261) of skin patternsin the

patternspace and inthe chromatophore space (Pearson’s r(427,856) = 0.66,
p=0.0).g. Variationsin time of speed of pattern change in chromatophore
space (two different trajectories, same animal). To allow comparisons across
trajectories, the minimal speed within each trajectory was subtracted.
Note thelarge speed variations. h. Distributions of pattern-change speed in
chromatophore space are multimodal (all trajectories, three animals). Three
datasets (animals: sepia219, sepia218, sepia213) rejected the unimodal test
withp=0.016,0.008,0.005.i. Pattern-change speed distributionsinhare
splitand plotted separately for O <t < 54s (il1) and t > 54s (i2) after background
switch (t =0).t=54schosen as the average duration of fast pattern changes
(see Extended Data Fig. 3f). All distributions rejected the unimodal test
withp <0.05.j. Autocorrelation of speed vs. time (line: mean; shading:s.d.),
from 72 trajectoriesinthree animals. Note absence of periodicity in the
autocorrelationindicating absence of regularity in speed variations.
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clustering resolutions. Clustering was based on trial-specific activity. (N=21,
18, 21 trials for sepia213, sepia218, sepia219).f. Absence of correlation between
Wassersteindistance and group activity correlation (Mean +s.e.m. of Pearson’sr;

asinFig.4d) at different clustering resolutions. g. Mean loU (Intersection
over Union of chromatophore groupings) at different clustering resolutions

(Meanz+s.e.m.). Higher clustering resolution does not result in higher clustering

stability. h. Correlation coefficient of the distance between trajectories and
mean loU (Mean +s.e.m. of Pearson’sr; asin Fig. 4i), at different clustering
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Extended DataFig.7|Spatial distribution and stability of pattern
components. a. Examples of measurement of spatial overlap between pattern
components (greenand red; overlap inyellow): each columnstands for a
correlation coefficient of spatial density using a different bin size. Upper row:
components showing high spatial overlap; lower row: components showing
low spatial overlap. b. For pairs of pattern components, correlation of activity
and spatial overlap do not correlate (N =435 component pairs defined insingle
trajectories between camouflage patterns). Purple dot: pairin upperrowina;
black dot: pairinlower rowina. c. Absence of correlation between the pairwise
distance between patterncomponents (measured as averaged physical
distance between pairs of chromatophores) and the correlation of their mean
activitiesduring repeated transitions. Nindicates the number of repeated
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trials (trajectories) included in each analysis (Same N values for d-e). High
dotdensity near 20 mmis explained by the half-width of the animals and the
left-right symmetry of the pattern component pairs. d. Measurements as
inc, using Wasserstein distance as ametric for distance between pattern
components. e.Relationship between the dissimilarity of two transitions
(measured as pairwise distance in 200 PCs, Methods) and the proportion
of chromatophores that remainin the same component across those two
transitions. f. Comparison asin e, using Wallace distance as a metric for
clustering similarity. Distance was normalized by the s.d. of all dataset of
each animal.Pearson’sr=-0.382,p =2.9e-100.g. Comparisonasine, using
Adjusted-Rand-Index as ametric for clustering similarity. Pearson’sr=-0.436,
p=4.3e-133.
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Extended DataFig. 8| Transitions and correlationsbetween camouflage
andblanching patterns. a. Trajectories corresponding to all blanching trials
(evoked by threatening stimulus) in three animals (sepia218: n =22, sepia219:
n=19,sepia221:n=6), projected inthe space defined by their first three
principal components. Trajectories are coloured by trial number, and the rare
trials showing different start and end patterns are highlighted in magenta.
Solid lines: outward trajectories towards blanched state; dashed lines: return
to camouflage patterns.b.Sameasinabutshowninonly their two first PCs and
splitattheir peak blanching point to separate blanching and return trajectories.
Colourrepresents theinstantaneous speedin space defined by the first200
PCs (scaleasinFig.5b).c. The correlation between the starting (or ending)
patternofatrialand the blanched patternreached inanother trial predicts the
correlation between the starting (or ending) patterns of both trials (both
pattern correlations are positively correlated). This suggests that blanched
patternscarry information about the starting (and ending) camouflage pattern
of asametrial. Inaddition (datanot shown), the mean correlation coefficient
(z-scored) between starting and blanching patterns of the sametrial is
significantly higher than the mean correlation coefficient between starting

Trial #

and blanching patterns of different trials, suggesting that blanching patterns
depend on the camouflage pattern preceding blanching (meants.e.m.:
1.29£0.16 vs.-0.00 + 0.06, P = 0.013, two-sided paired t-test, N = 3 animals).
Thisisalso true for blanching and end patterns (0.91+0.19vs-0.51+0.06,
P=0.0081, twosided paired t-test, N =3 animals). d. Aligned tanglegrams to
visualize hierarchical clustering performed onstart, blanching and end
patternsat chromatophoreresolution (mean of 10 frames per chunk) for two
animals, showing that similarities that exist between patterns during
camouflage are conserved during blanching (left; sepia218, start-to-blanch
copheneticcorr.=0.63,P=0.0046, Mantel test, blanch-to-end cophenetic
corr.=0.80, P =2e-04, Mantel test, right; sepia219, start-to-blanch cophenetic
corr.=0.26,P =0.0047, Mantel test; blanch-to-end cophenetic corr.= 0.26,

P =0.015, Mantel test). Colours denote common subtreesineach dendrogram
pair; numerical leaf labels denote trial ID. e. Heatmap of pairwise correlation
coefficient betweenall frames of all strong blanching trials for sepia219 (n=17
trials). Trials are sorted by pairwise correlation coefficient between their
respective startand end patterns.
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Extended DataFig. 9 | Pattern-change trajectories are more tortuous

for camouflage than for blanching transitions. a. Meanratio (+s.e.m.) of
explained variance when using sets of components obtained from Leiden
community detection over arange of resolution parameter values. Theratio is
between values obtained by using data fromindividual trials and those obtained
fromalltrials. This ratiois computed over 6 different datasets (camo: mean of
N =3 camouflaging animals, blanch: mean of N = 3 blanching animals). b. Mean
curvature (+s.e.m.) over all trials for all four datasets using 2 to 200 principal
components (camo: mean of N = 3animals, blanch: mean of N = 3 animals).
c.Proportion ofexplained variance as a function of the number of principal
components for looming and camouflage datasets. Markers point to the number

of componentsto explain 70% of the variance of the datasetsillustrating the
simpler dynamics during blanching (two-sided t-test: camo (N = 3 animals) vs.
blanch (N =3 animals), p=0.0004). All datasets were homogeneously
downsampledto15,000 frames. d-e. Top: example traces of curvature computed
alongarc-lengthreparameterized trajectories (see Methods). Bottom: example
trajectoriesin PC1-3space, colour-coded by curvature. f. Dimensionality
estimated in pattern space using Parallel Analysis (PA). *: p < 0.05, two-sided
t-test, N=3and 3 animals. g. Mean curvature computed along arclength
reparameterized trajectories inskin patternspace projected to the top 50 PCs.
Two-sided t-test,camovs. blanch (N=3and 3 animals), p = 0.0247.



Article

a _  sepia218 d g j m
oJrial 2 ) Trial 2
—_ 0.08
g
o
12 ol T
08 : > o0 =i
17kl < [ 0 17500
olrial 5 25 g Trial 5
0.08
L
o ot
: 0
0o 17500 0 16000
sepia219
b 0Trial 16 Trial 16 n
0.15
2 0 ;
ok [ oT, - 14000
olrial 21 80154 18
00 14000
Trial 6

22k

33k

Extended DataFig.10 | Returnfrom blanching to camouflage:identification
of pattern components. a-c. Heatmaps of chromatophore size (normalized
min-to-max expansionin colour scale) during blanching trials (looming stimulus)
inthree animals (a-c). Chromatophore size was min-max normalized for each
chromatophore across all trials,and chromatophores are ranked by time of
threshold-crossing during the return from blanching. Only chromatophores
whose size change was significant (Methods) are displayed. Horizontal scale bars:

2sec.d-f.Mantle of cuttlefishina-c, with chromatophores colour-coded by rank

ofrecruitment time during thereturn phaseinthe trialsin a-c. g-i. Components
identified from Leiden community detection plotted on the mean pattern of
eachanimal. g: sepia218;19,313 chromatophores; 6 components. h: sepia219;
15,468 chromatophores; 6 components. i: sepia221;37,238 chromatophores;

Mean rank

7 components. j-l. Chromatophore rank distribution by component shown
ing-i (for the two trialsin a-c). m-0. Chromatophore mean-rank distribution

by component from g-i (from all trials). Shading: bin s.d. (see Methods).

m: sepia2l8; n=11trials. n:sepia219; n =17 trials. 0: sepia221; n = 4 trials.
Kruskal-Wallis test on the component chromatophore-averaged mean rank
indicates thatatleastonedistributionissignificantly different (sepia218:H=38.1,
P=3.5x107,sepia219: H=67.3,P=3.7x10"5, sepia221: H=18.5,P=0.005). Post-
hoc multiple hierarchical permutation tests on the full nested datasets for each
pair of componentsindicate that most component distributions are significantly
different (sepia218: all pairs P < 0.005; sepia219: all pairs P = 0.001; sepia221:
P=0.12,0.16 forcomponents1vs 6,2 vs 3respectively, other pairs P < 0.005).
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Sample size

Data exclusions

Replication

Randomization

Blinding

Behaviou

Sample sizes was not predetermined. Data were collected over days to weeks from each animal, from 15 animals. Sample sizes were chosen
based on previous experience with these experiments, within the limit of available animals.

Data selection is detailed under Texture representation from overview camera data > IIl. Data selection, and Chromatophore segmentation
and tracking > I. Data selection. In brief, video segments relevant to individual behaviours studied were extracted from continuous recordings
using a set of selection criteria, including a focus statistic that excludes data with motion blur.

All experiments were repeated by 2-3 experimenters independently on different days with the same animals, leading to comparable results.

Randomization was not relevant to our study. Animals were allocated based on availability, healthy appearance, and calm behaviour. No
comparisons were made between groups.

Blinding was not relevant to our study. Animals were allocated based on availability, healthy appearance, and calm behaviour. No

comparisons were made between groups. Texture representation and chromatophore tracking were automated without information from
the stimulus (background masked, and in the case of threatening stimulus, not present).
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Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.
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Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? ] Yes [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

MXXXOXKX &
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Dual use research of concern

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

)
Q
g
C
=
()
©
O
5‘:
o
=
—
™
©
O
=
)
Q
wn
C
3
=
Q
>
<




Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals European cuttlefish Sepia officinalis were hatched from eggs collected in the English Channel and the North Atlantic, and reared in a
closed seawater system. Animals of both sexes, 3-8 months old, were used in this study.

Wild animals This study did not involve wild animals.
Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight This study was approved by the animal welfare authority (Dr. Vet. Med. E. Simon. Regierungsprasidium Darmstadt, Germany) under
approval number V54-19¢20/15-F126/1025.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health
|:| National security
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|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoofds
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.




Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.
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|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.




Normalization template original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both
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Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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