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Abstract
In a joint effort involving scientists from academia, industry and regulatory agencies, ECETOC’s activities in Omics have led 
to conceptual proposals for: (1) A framework that assures data quality for reporting and inclusion of Omics data in regulatory 
assessments; and (2) an approach to robustly quantify these data, prior to interpretation for regulatory use. In continuation 
of these activities this workshop explored and identified areas of need to facilitate robust interpretation of such data in the 
context of deriving points of departure (POD) for risk assessment and determining an adverse change from normal varia-
tion. ECETOC was amongst the first to systematically explore the application of Omics methods, now incorporated into the 
group of methods known as New Approach Methodologies (NAMs), to regulatory toxicology. This support has been in the 
form of both projects (primarily with CEFIC/LRI) and workshops. Outputs have led to projects included in the workplan of 
the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) group of the Organisation for Eco-
nomic Co-operation and Development (OECD) and to the drafting of OECD Guidance Documents for Omics data reporting, 
with potentially more to follow on data transformation and interpretation. The current workshop was the last in a series of 
technical methods development workshops, with a sub-focus on the derivation of a POD from Omics data. Workshop pres-
entations demonstrated that Omics data developed within robust frameworks for both scientific data generation and analysis 
can be used to derive a POD. The issue of noise in the data was discussed as an important consideration for identifying robust 
Omics changes and deriving a POD. Such variability or “noise” can comprise technical or biological variation within a 
dataset and should clearly be distinguished from homeostatic responses. Adverse outcome pathways (AOPs) were considered 
a useful framework on which to assemble Omics methods, and a number of case examples were presented in illustration of 
this point. What is apparent is that high dimension data will always be subject to varying processing pipelines and hence 
interpretation, depending on the context they are used in. Yet, they can provide valuable input for regulatory toxicology, with 
the pre-condition being robust methods for the collection and processing of data together with a comprehensive description 
how the data were interpreted, and conclusions reached.
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Introduction

Transcriptomics data have long been suggested to be of 
added value in toxicology to complement in vivo and in vitro 
evaluations in the context of hazard characterization and 
risk assessment of chemicals. The main advantage of such 
evaluations lies in the large amount of biological informa-
tion generated, which provides a global overview of the 
altered gene expression levels in a given biological sample 
following chemical exposure. Thereafter, the challenge is to 
translate the generated biological information into biological 
knowledge that can be used for regulatory decision making. 
This paper summarizes the outcomes of an ECETOC work-
shop addressing the obstacles impeding the regulatory use 
of transcriptomic data.

At the start of this millennium, the first reports using 
microarrays were published, evolving from cDNA clones 
on nylon (Bertucci et al. 1999), to cDNA probes on glass, 
and finally oligonucleotide microarrays technologies. The 
latter format harnessed the knowledge of the whole genome 
published first in 2003 2003 (Cheung et al. 1999; Lander 
et al. 2001; Schena et al. 1998).

In the early development of these technologies, there 
were many anticipated applications to advance regulatory 
toxicology capability and capacity (Corton et  al. 1999; 
Nuwaysir et al. 1999). Three major advancements that were 
envisioned for Omics in regulatory toxicology included: (1) 
providing powerful replacements for traditional toxicologi-
cal testing by delivering more information on mechanisms 
and predicting outcomes; (2) improving the delineation and 
stratification of pathological outcomes (refinement) (Golub 
et al. 1999); and (3) reducing the duration of animal testing 
by using Omic changes indicative of the adverse outcome 
rather than waiting for the cellular and organ changes to 
manifest. For example, metabolomics and multiomics-based 
testing theoretically could reach the same conclusion as a rat 
2-year carcinogenicity study using only a short-term expo-
sure (Ellinger-Ziegelbauer et al. 2008).

Today other Omics technologies, particularly RNA 
sequencing, have largely replaced microarrays except for 
niche applications such as comprehensive functional arrays. 

Nonetheless, a repository of microarray data exists that will 
be of value for years to come. Metabolomics has undergone a 
similar revolution, moving from NMR-based technology to a 
data generation pipeline largely based on mass spectrometry 
techniques. For both transcriptomics and metabolomics, there 
have been parallel advances in bioinformatics analysis neces-
sary to process and interpret the large amounts of informa-
tion generated. Without this bioinformatic processing power, 
analysis of the data generated from these Omics technologies 
would be possible only at the most superficial level (Kane-
hisa and Bork 2003; Salter and Nilsson 2003). From these 
beginnings, other Omic methods were developed to examine 
cellular biomolecules in high-throughput format including 
proteomics, lipidomics, and variety of methods for DNA and 
RNA sub-types (e.g., modifications for epigenetics and small 
non-coding RNA) (Joyce and Palsson 2006). The latter meth-
ods are not discussed further in this report because, though 
important in research, they are the least developed for regula-
tory purposes. With further development, these other ‘omic 
molecular methods may find important future application in 
regulatory toxicology.

Omics are one member of a group of methods called 
New Approach Methodologies (NAM), which are in vivo 
or in vitro methods that essentially enhance the pace of 
work (provide data more quickly), contribute mechanistic 
understanding (European Chemicals Agency 2016; USEPA 
2018). Importantly NAMs can be used to refine, reduce and 
replace animal use. Innovations in technology and estab-
lishment of basic principles in study design have led to cost 
reductions and increased efficiencies in data processing. 
This provides the opportunity to apply these methods more 
widely in chemical risk assessment particularly to gener-
ate initial stratification and decision data within a tiered 
risk assessment strategy, where the testing required within 
each tier is informed by data from the previous tiers with 
in vivo use only occurring within the higher tiers. Build-
ing consensus to identify the optimal and acceptable meth-
ods for Omics applications in regulatory toxicology has 
been a focus of ECETOC collaborative work over the last 
7–8 years. The aim has been to gain a wider acceptance of 
‘omics methods and inclusion into the portfolio of meth-
ods that can be applied to chemical regulatory toxicology 
within a tiered testing framework that places a much greater 
emphasis on decreasing animal use (Ball et al. 2022). The 
workshop described here examined what has been achieved 
in the Omics technical space and looked forward to the use 
of Omics data to estimate toxicological points of departure 
(POD) that can be used in chemical assessments.
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Workshop background

The European Centre for Ecotoxicology and Toxicology of 
Chemicals (ECETOC) has a long involvement in facilitating 
the development of Omics methods both alone and with the 
CEFIC/LRI program. The work to start examining the pro-
cess of data transformation in Omics that led to the meeting 
reported here began in 2015, with a consideration of how to 
transform the data prior to interpretation from a Cefic Long-
range Research Initiative (CEFIC/LRI) project called Com-
bined Low-Dose Exposures to Anti-Androgenic Substances 
(EMSG56). This project was a pre–postnatal in vivo study 
in rats that generated in total 120 Agilent microarrays and is 
described in full in the Supplementary section. During the 
bioinformatic processing of these data it was realized that 
there were no internationally accepted methods for the data 
transformation from the raw data to the differential gene 
expression list (Buesen et al. 2017; Sauer et al. 2017). This 
provided the incentive for a series of workshops in 2015 and 
2016 that led to the development of the concept of an Opti-
mal Data Analysis Framework, which was published in 2017 
as the Reference Baseline analysis (Gant et al. 2017). A call 
for further development of this Reference Baseline analysis 
was made in the C4 CEFIC/LRI call (https://​cefic-​lri.​org/​
proje​cts/​c4-​trans​cript​omics-​bioin​forma​tics-​best-​pract​ices-​
in-​toxic​ogeno​mics-​for-​regul​atory-​appli​cation-​2/). This was 
taken forward by the University of Maastricht and renamed 
the Omics Data Analysis Framework (ODAF) (Verheijen 
et al. 2020). The outcome of this work and associated R 
code was published in 2022 (Verheijen et al. 2022). In 2016, 
ECETOC sponsored another workshop entitled ‘Applying 
Omics technologies in Chemical Risk Assessment’ (Sauer 
et al. 2017). This workshop led to the proposal to develop 
two reporting frameworks for Omics data, capturing tran-
scriptomics and metabolomics (Fig. 1). The two reporting 
frameworks were presented to the Extended Advisory Group 
on Molecular Screening and Toxicogenomics (EAGMST) 
group of the OECD by Timothy W. Gant and Miriam Jacobs 
(UK National Co-ordinator for Human Health to the OECD) 
in June 2016 using a Standard Project Submission Form. 
After further refinement, including input from the US Envi-
ronmental Protection Agency (US EPA) and Health Canada, 
the project was accepted onto the workplan in December 
2017 and led by the USA, Canada and the UK. During the 
EAGMST supported project, the TRF and MRF were har-
monized into a single OECD Omics Reporting Framework 
(OORF) document that contains; (1) toxicology Experiments 
reporting module (first data entry module) that summarizes 
either the animal or in vitro toxicology experimental work 
that was done, (2) Data Acquisition and Processing Report 
Modules (DAPRM) specific for particular transcriptom-
ics and metabolomics technologies; and (3) Data Analysis 

Reporting Modules (DARMs) harmonized where possible 
to facilitate reporting of any type of Omics data. From this 
work, a paper has been published describing the transcrip-
tomics and metabolomic reporting modules, together form-
ing the OORF (Fig. 1). (Harrill et al. 2021b; Viant et al. 
2019). The OORF was accepted by the EAGMST group.

This workshop built on the former initiatives and was 
designed specifically to explore the final hurdles that need 
to be overcome to gain further regulation acceptance of the 
application of the Omics methods in chemicals regulation, 
with a specific focus on the utility of points of departure 
(PODs) in Omics data.

The workshop was spread over two days with the first day 
being given to prepared presentations in two sections: (1) 
The regulatory perspective; and (2) presentation of the case 
studies and frameworks for the use and application of Omics 
data in chemicals regulation. The second day was spent in 
breakout groups discussing a series of questions presented 
in the Table 1.

Workshop presentations

The regulatory perspective

The regulatory section seeded the scientific perspective that 
was to follow and was provided by Tewes Tralau (German 
Federal Institute for Risk Assessment), George Kass (Euro-
pean Food Safety Authority), and Mounir Bouhifd (The 
European Chemicals Agency). These presentations specially 
addressed the question of regulatory requirements.

The goal of chemical regulation is protection of human 
and animal health in addition to environmental protection. 

Fig. 1   Progress from the initial concept to the Omics reporting frame-
work and optimal data analysis framework. Shown in yellow is the 
understanding and interpretation that has been outside this area of 
activity but recognised as an area requiring focus going forward

https://cefic-lri.org/projects/c4-transcriptomics-bioinformatics-best-practices-in-toxicogenomics-for-regulatory-application-2/
https://cefic-lri.org/projects/c4-transcriptomics-bioinformatics-best-practices-in-toxicogenomics-for-regulatory-application-2/
https://cefic-lri.org/projects/c4-transcriptomics-bioinformatics-best-practices-in-toxicogenomics-for-regulatory-application-2/
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To achieve these goals regulatory toxicology relies on hazard 
and risk assessments codified in science-based legal frame-
works. These frameworks support a scientifically defensible 
justification for the best possible level of health protection 
and do so in a transparent and legally sound way. Specifi-
cally, the conclusions from test methods must provide legal 
certainty, be based on internationally accepted methods e.g., 
OECD test guidelines and have earned the trust of regulators 
through prior use. For these reasons, regulatory methods 
have tended to focus on defined endpoints for adversity that 
often have parallels in human pathophysiology which are 
observed clinically (e.g., histopathological change, tumour 
formation) and hence have plausible translational relevance 
to humans and in most cases have a high certitude of adver-
sity. To manifest such endpoints a model system requires 
the capacity to largely replicate the entirety of biological, 
physiological and anatomic complexity of the human organ-
ism, hence the extensive use of whole organism mammalian 
model systems such as mice and rats in regulatory testing.

Animal-based model systems will respond in a dose-
dependent manner and with a specific apical endpoint (e.g., 
cell or organ-level pathological alteration) allowing both the 
identification of the nature of the hazard and a POD, allow-
ing for no-effect levels to be established and the develop-
ment of classification by hazard and regulation either by 
hazard or risk where the human exposure is known or can 
be modelled. The detailed molecular pathways that connect 
the exposure to the outcome is relevant only in the case that 
there is a need to understand whether the toxicity observed, 
and occasionally the dose response, is relevant to humans. 
It is usually not necessary to understand all the molecular 
details of the pathway to understand human relevance but 
only those key elements that are important in connecting 
exposure to the apical outcome. It is from this recognition 
that the concept of the Mode of Action (MoA) for a spe-
cific chemical and Adverse Outcome Pathway (AOP) as a 
generic pathway arose as a means of mapping the Molecular 
Initiating Event (MIE), Key Biological Events (KE) and the 
causal connections between these events referred to as the 
Key Event Relationships (KERs).

A key challenge for the application of Omics methods in 
regulation is that Omics methods are highly dimensional. 
Highly dimensional means these methods generate data for 
hundreds or thousands of molecular endpoints; some of the 
molecular changes observed may be related to the toxicity 
while other changes may be associated with, or simply result 
from, the pathophysiology. Therefore, the required analyses 
and interpretation is more complex than for conventional 
toxicological tests. An often-applied method to understand 
these data have been the process of phenotypic anchoring 
(Moggs et al. 2004; Paules 2003), which matches Omics 
changes to pathological end points. These approaches can 
be useful for interpretation, but the latter is usually suffi-
cient on its own for the purpose of regulatory assessment, 
leaving ‘omics as optional. Omics studies may be required 
though to build endpoint understanding, with the aim to be 
able to predict rather than observe the apical endpoint. This 
is one of the seminal issues for the application of Omics 
methods in regulation. Unless there is clear agreement on 
their use or remit, theoretically all of these data might need 
to be explained for the purposes of regulation and relevance. 
Scientifically as well as practically, this would be challeng-
ing. An understanding is therefore clearly required on what 
Omics data are relevant for assessing the hazard and this 
is only likely possible within a adverse outcome pathway-
based approach.

Prior to this potential use of Omics, it must be dem-
onstrated that the methods are suitable for regulation and 
ensure that data generated are consistent, reliable, relevant 
and provide confidence in the conclusions drawn from 
the data. Consistency was an early technological issue 
associated with ‘wet’ procedures but this has somewhat 
diminished as an issue with increasing technical develop-
ment. This can be seen in the Cefic LRI EMSG56 data 
set mentioned above. Specifically, in Gant et al. (2017) 
Fig. 2, a clear batch effect can be seen in the second of the 
three data sets. Since the generation of these microarray 
data, technological improvements, not least of which is 
the wider use of sequencing technologies, have improved 
the ‘wet’ procedure variance. Some of the variance asso-
ciated with the ‘wet’ procedures can be addressed by 

Table 1   Questions considered by the breakout groups on Day 2

1 What is a relevant point of departure for different Omics approaches and how is this accurately determined?
2 Given that classical toxicological determination of adversity relies on clinical and pathological endpoints—how do we determine biological 

significance/adversity of an Omics response or ‘molecular mechanistic response’ (again, against a background of normal biological varia-
tion)?

3 What kind of experiment/data set would be necessary to identify non-adverse biological variation of controls? Would it be necessary to 
determine this for each individual experimental set-up i.e., equivalent to defining normal ‘baseline’ ranges for analytes on a blood clinical 
chemistry panel?

4 Would mapping basic cellular responses in terms of their Omics-profile (or ‘molecular mechanistic data’) be helpful to better determine a 
true response from normal biological variation? If yes, how one would ideally proceed with this?



2295Archives of Toxicology (2023) 97:2291–2302	

1 3

mathematical transformations that take the raw data to 
the list of findings for interpretation (e.g., the list of dif-
ferentially expressed genes). The strength, but also the 
weakness, of large data sets is that there are numerous 
mathematical transformations that can be applied, lead-
ing to different practitioners using different approaches. 
While this may be acceptable in research, it is problematic 
in a regulatory context where consistency and acceptance 
are key factors. The same arguments apply to reliability, 
which has improved due to technical advancements but 
still requires consistent approaches to achieve.

Omics methods tend now to be comprehensive in their 
molecular measurements so should by default capture 
those data which are relevant to the apical outcome. The 
issue is identifying the relevant data within the landscape. 
But confidence may be the most significant challenge. 
When there is the opportunity to apply different transfor-
mation methods or interpretations to a large data set, there 
is reduced confidence in the derived conclusion. This is not 
so much an issue when there is a binary apical outcome, 
but Omics methods do not produce binary outcomes. Dif-
ferent practitioners can process the wealth of data in dif-
ferent ways. For regulatory acceptance, therefore, there is 
a need to provide standardized methods for generating and 
using Omics data from its generation, reporting, transfor-
mation and finally interpretation. This is challenging for 
single apical endpoint studies; in the landscape of Omics 
it is even more challenging. This was summarized well in 
a figure presented by Carole Yauk (Fig. 2).

While the use of Omics in the regulatory assessment of 
hazard is challenging, particularly within the context of 
classification, there are good opportunities to use Omics 
methods in regulatory testing: (1) to better understand the 

pathway between exposure and apical endpoint and use 
this information to establish relevance of the model system 
for human exposure; (2) to identify hazard; (3) to group 
substances or provide a basis for read-across; and (4) in 
the future possibly establish protective points of departure 
below which no toxicological effects are expected.

Case studies

This session specifically focused on the challenges to be 
overcome to derive a path forward to facilitate the use of 
Omics POD data in regulatory submissions and the transfor-
mation of data from raw, to that required for interpretation. 
Presented first in this paper is the data transformation and 
second the work to derive PODs.

The omic data analysis framework for regulatory 
application (R‑ODAF)

This work was presented by Florian Caiment (Uni of Maas-
tricht), Dongying Li (US FDA) and Martin von Bergen 
(Helmholtz University). Caiment presented the R-ODAF 
that was supported under the CEFIC/LRI project C4 
described in the introduction. The method prescribes a 
series of steps to transform transcriptomic data generated 
by microarrays, RNA-Sequencing, and TempO-Seq (Tem-
plated Oligo-Sequencing) technologies, respectively, and 
recommends criteria for identifying Differentially Expressed 
Genes (DEGs). The R-ODAF method has been published 
(Verheijen et al. 2022) and the R code is available in GitHub 
(https://​github.​com/R-​ODAF/​Main). The point was made 
that this method addresses a need for a reference point and is 
not meant to be prescriptive for the method in which data are 
transformed, but to provide a baseline for comparison and 
a means of cross referencing between data sets. Li applied 
the platform-specific analysis methods from R-ODAF to data 
generated from microarray, RNA-Sequencing, and Temp-
O-Seq using identical samples with three biological repli-
cates per treatment (Li et al. 2021). The output showed that 
RNA-Sequencing had the highest discovery rate of DEGs 
and microarrays the lowest. There were some DEGs in com-
mon but also a lot that were unique to each method within 
the limitations and specificities of each technology (Fig. 3). 
What we can be sure of in this analysis is that the differences 
arose from the capability of each of the analysis methods and 
not from the data transformation processes (see Fig. 1) as the 
R-ODAF was applied to each and those genes that were in 
common should be regarded as having the most robust rela-
tionship to the perturbation for initial toxicological analysis.

Finishing this section, von Bergen returned to AOPs to 
illustrate how they can be used to elegantly combine mul-
tiomics platforms, and demonstrated the utility of using 

Fig. 2   Pathways to regulatory adoption derived from a diagram by 
Carole Yauk

https://github.com/R-ODAF/Main
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several Omics methods to measure multiple KEs in sequence 
within an AOP.

Deriving PODs from Omics data

The derivation of PODs from genomics data was covered by 
five speakers, Joshua Harrill (USEPA), Carole Yauk (Uni-
versity of Ottawa) and Scott Auerbach (National Institute 
of Environmental Health Sciences, USA) for transcriptom-
ics, and Mark Viant (University of Birmingham UK) and 
Ben Ravenzwaay (Environmental Sciences Consulting, 
Germany) for metabolomics. Using extensive in vitro or 
in vivo case studies all presenters showed that Omics can 
be used to derive human health protective PODs. Harrill 
demonstrated how concentration-responsive transcriptomic 
effects measured in a small battery of in vitro models such 
as MCF7 breast carcinoma cells, U-2 OS osteosarcoma 
cells and differentiated HepaRG liver cells could be used 
to obtain tPODs which were comparable to or more sensi-
tive than in vivo toxicity values for a majority of the several 
hundred chemicals evaluated. Concentration–response mod-
elling of gene expression signatures could also be used to 
identify putative molecular targets and Molecular Initiating 
Events for certain chemicals (Harrill et al. 2021a). Auer-
bach had a similar approach using transcriptomic data but 
using a pathway-based approach. This work used a BMD-
Express pathway package that is available from GitHub. 
The approach has been applied within a real-world setting 
to examine contamination of the Elk River by several sub-
stituted phenols. Transcriptomic data analysis suggested the 
potential for a high false discovery rate. One approach taken 
to address this was an in-silico analysis (resampling) of null 
data sets empirically estimating the false discovery rate. 
Yauk presented an analysis of 11 methods of selecting gene 

sets to derive transcriptomic PODs (Farmahin et al. 2017) 
for 6 chemicals using BMDExpress. The PODs for these 
diverse methods were generally within 3×, and all within 
10× above or below apical POD’s (Farmahin et al. 2017). 
Further analysis demonstrated similar transcriptomic PODs 
by RNA-Sequencing, microarray and qPCR (Webster et al. 
2015). Yauk also described a case study demonstrating how 
Omics can be used in a tiered-testing approach, where Tier 
1 would encompass cell based high-throughput screening, 
Tier 2 Omics from short-term animal studies and conven-
tional animal studies in Tier 3 (Gannon et al. 2019). A high 
concordance in predicted hazards from Tiers 1 and 2 were 
found in this study, highly aligned with Tier 3 outcomes, and 
with transcriptomic PODs correlated with the PODs derived 
from apical endpoint testing in Tier 3. ECETOC expanded 
on the simple tiered approach presented by Yauk with the 
inclusion of an in silico Tier 1 and the use of refined in vivo 
studies in the top Tier, which in this case was Tier 4, thus 
addressing reduction and refinement in addition to replace-
ment. Viant demonstrated the use of metabolomics identified 
plasma biomarkers for the assessment of the POD for triph-
enylphosphate in a 5-day rodent assay. He was further able 
to demonstrate an additional use of metabolomics data in the 
identification of novel metabolites of triphenylphosphate. 
Van Ravenzwaay demonstrated a similar analysis using 
metabolomics signatures from in vitro experiments over 
an extended concentration range. Using β-naphthoflavone 
(Fig. 4A and B), a liver metabolizing enzyme inducer and 
Arochlor 1254 (Fig. 4C and D), an aryl-hydrocarbon recep-
tor agonist examples, van Ravenzwaay was able to demon-
strate that by using dose response modelling with the prin-
cipal component 1 from the respective PCAs worked well 
for achieving a POD that could be used in regulatory assess-
ment. The POD was derived using a twofold standard devia-
tion from the control data. Interestingly, for Arochlor 1254 
a dose response could also be seen in PC2, however, only 
at low concentrations. Theoretically, this could be the result 
of an initial (biochemical) response related to the Molecular 
Initiating Event and could serve as a potential discrimina-
tor between adaptive and adverse outcomes. Although care 
must be taken to reduce the false discovery rate, all of the 
studies in this section of the workshop demonstrated the 
strong potential for the use of Omics POD in chemical risk 
assessment, suggesting their suitability in a tiered approach.

Case study in using transcriptomics PODs in pharmaceutical 
development

A case study of the use of transcriptomic PODS in pharma-
ceutical development was presented by Frank Sistare. Sistare 
described 10 liver gene signatures that were indicative of 
various intracellular nuclear receptor activation and carci-
nogenic processes that were used for the stratification of 

Fig. 3   Three Omics methods applied to the same samples with data 
transformation by the R-ODAF method—redrawn by copyright trans-
fer from (Li et al. 2021)
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internal drug candidates. Some of these have been recently 
published (Copple et al. 2021). These gene signatures are 
used for the refinement of conventional initial rat tolerabil-
ity studies, which is an important contribution to reduction 
and refinement. Analysis of the aryl hydrocarbon receptor 
(AHR) gene signature in liver with 713 drug candidates indi-
cated a statistical threshold (POD) of sevenfold for Cyp1A1 
and 1.8-fold for Cyp1A2. Higher thresholds were derived for 
substances that were indicative of lower and higher tumo-
rigenic concern (Qin et al. 2019). An important hypothesis 
was advanced that it is both the sustained activation of AHR 
and amplitude of the regulated genes that are important for 
carcinogenesis and that the transcriptional signatures and 
defined thresholds are useful for identifying this. The impor-
tant finding for this section of the workshop though is that 
transcriptional signatures and threshold amplitudes could 
be used in short term assays using tissue collected from a 
routine study that identified substances and their associated 
dose levels of concern (Rooney et al. 2018).

Output from the breakout groups

In framing the discussion for Day 2, the participants were 
reminded of the aims of the application of NAMs in chemi-
cal regulation, which are to overall protect public health 
by: (i) enhancing the pace of testing; (ii) ensuring data ade-
quacy; (iii) increasing decision relevance; (iv) addressing 
the need to replace, reduce and refine, with an emphasis here 
not to forget the reduce and refine that is often overlooked in 
the rush to replacement; and (v) focusing on high tier human 
and environmental endpoint assessments. There were three 
breakout groups and each group considered all questions.

Question 1: “What is a relevant point of departure for 
different omics approaches and how is this accurately 
determined?”

To address this question, delegates considered that the 
first criterion for selecting a POD from Omics was that it 
should be relevant for the regulatory endpoint.

Discerning noise from response is an important consider-
ation when selecting the measure used in the Omics analysis 

Fig. 4   Examples of deriving PODs using principal component 1 for 
dose response modelling as described above for β- napthflavone (A 
and B) and aroclor (C and D). The PCA plots are shown in A and C 

and thederived POD plots in B and D. The control samples are the 
orange points and the treatment the blue points inincreasing concen-
tration from triangles, squares, crosses, hexagons and stars
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for the derivation of the POD. A persistent issue with Omics 
data from poorly designed studies is noise and associated 
false discoveries, as highlighted by several speakers. This 
issue is magnified if the data has a low number of replicates, 
which is often the case, or is being used at the lower end of 
the magnitude scale for fold change where there is more 
variance in the measurement of the changes in expression 
whether for transcripts, proteins or metabolites. Omics data, 
because of its high density have the potential for re-use in 
and in this context could for example be used in further stud-
ies where historical controls are required to establish normal 
variance and to suppress noise in data sets. Related to this 
point there was a consensus that positive controls for the 
adverse endpoint could be of benefit to the POD derivation 
and could be taken from historical data.

It was also noted that it is unwise to identify a POD by 
extrapolation too far below the lowest dose level tested (Gay-
lor 2012). In this respect, the discussants emphasized that 
dose levels need to span the range from no response to a 
dose having a large effect size (Kavlock et al. 1996; Kuljus 
et al. 2006; Program 2018; Sewell et al. 2022; Slob 2014).

For molecular POD determination, there is no current 
consensus on best practices. It was acknowledged that dif-
ferences in sensitivities between Omics technologies assess-
ing transcripts, proteins or metabolites and potentially in 
the shape of the dose responses according to the considered 
pathway or biological process can be observed. Nonetheless, 
non-linear regressions and mapping of gene-level data to 
gene sets using software such as BMDExpress is one poten-
tial method. If using outcome data, such as pathways, there 
may be a need to consider the biological relevance of the 
pathway to the apical outcome.

Methods that do not use pathways, for example using 
individual genes or BMD distributions, have also been 
suggested, as well as methods that do not use the BMD 
approach. The participants noted that it is important to 
examine the relative merits of each of these methods to 
identify a consensus process.

Question 2: “How do we determine biological signifi-
cance/adversity of an omics response or ‘molecular 
mechanistic response’ (against a background of normal 
biological variation)?”.

Related to the question of what is a relevant POD in high 
dimensional omics data sets, the second question asked 
about biological significance of the molecular change under-
pinning the derived POD.

First, as classically used in toxicology, the treatment 
related nature of the molecular changes would need to be 
assessed to discriminate between the biological variability 
of the endpoints measured and the effects induced by the 
compound treatment. To expedite discussion in this work-
shop it was anticipated that monotonic dose responses of the 

treatment related molecular effects occurred. Moreover, the 
mechanistic linkage between the POD being considered and 
the adverse endpoint should be established. Consideration 
of the likely MoA could be used here in assessing relevance. 
This is particularly important when the adverse outcome 
may not be known for a particular substance; if identifying 
adversity in a molecular dataset is needed to derive a POD, 
there needs to be a plausible mechanistic linkage between 
the Omics POD and adverse outcome. It may also be nec-
essary to consider whether the POD reflects homeostatic 
capacity that would resolve or a tipping point that leads to 
adversity. As Omics data offer the advantage of many molec-
ular endpoints, it may be more expedient to consider more 
than one in determining adversity. This is consistent with 
the recommendations above to consider complex signatures, 
pathways or mathematical multivariate approaches. Finally, 
this breakout session considered that POD from traditional 
toxicity data could be useful to benchmark in vitro POD, 
though care will be necessary here to ensure that the Omics 
POD is causative.

Second, an alternative view is that identifying an adverse 
response from molecular data may not be needed for the 
regulatory goal of protecting human health. Determining 
adversity from molecular data requires prior qualitative 
(what) and quantitative (threshold value) knowledge about 
mechanisms and AOPs. Obtaining such knowledge is a long-
term endeavour requiring a high amount of biological under-
standing. It may be that human health protection is afforded 
by defining the POD as the point at which “concerted” 
molecular change occurs (Johnson et al. 2022). Phenotypic 
changes to a biological system at the level of cells, organs, 
or organisms are the result of underlying system-level con-
certed molecular change. Such concerted molecular change 
is central to the individual gene methods outlined in the first 
question above.

Question 3: “What kind of experiment/data set would 
be necessary to identify non-adverse biological varia-
tion of controls?”

This question also arose within the preceding questions 
and so provoked less discussion. To identify effects that 
are deemed non-adverse, there is a need to understand the 
normal variance in the Omics and biological systems. This 
could be noise if technical but also normal biological vari-
ability. In either case, these changes might be statistically 
significant but not associated with an adverse outcome. 
For this reason, there is a need to understand the biologi-
cal variability related to the system and its environment. 
These issues were also discussed in the previous questions; 
essentially, how stable is an Omics POD over time relative 
to its predicted adverse outcome and what ability does the 
organism have to overcome or adapt to this change without 
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adverse consequence. Some historical in vivo data obtained 
in laboratory animals could be used to address this question.

Question 4: “Would mapping basic cellular responses 
in terms of their Omics-profile (or ‘molecular mech-
anistic data’) be helpful to better determine a true 
response from normal biological variation?”.

The connectivity mapping approach was raised as a way 
forward of dealing with this question (Lamb 2007; Lamb 
et al. 2006; Zhang and Gant 2009). This method may have 
advantages for several reasons. It determines relationships by 
reference to historical data and can use a statistical approach 
to determine the noise level in the data (Shah et al. 2022; 
Zhang and Gant 2008). In a similar manner to the other 
questions in the breakout session, it was recommended that 
prototype chemicals be characterized in MoA framework-
based studies (dose /time concordance, reversibility) on tar-
get and non-target organs to gain a deeper understanding of 
the molecular basis of diverse adverse outcomes. In terms of 
using a pathway approach, the major issue with this method 
was identified in that it usually relies on a mathematical 
approach to consider whether a pathway is activated and 
does not consider rate limiting steps that need to be incor-
porated to make the most use of this approach.

An alternative view was that mapping (i.e., mechanistic 
knowledge) of Oomics data may not be necessary to identify 
a true biological response from background noise. In this 
case, understanding the molecular population at baseline 
and the range of normal variation within the population at 
baseline may be all that is needed. Such information could 
be gathered by establishing a community-wide database of 
molecular data from historical control samples and/or gen-
erating baseline molecular data from a variety of control 
sample types. Technical analysis of these control datasets 
might be used to establish the range of values present in a 
baseline control population. This information could then be 
used to establish methods to identify when a change at the 
molecular level is likely to be due to chemical exposure.

Discussion and conclusions

It has been more than 20 years since the development of 
Omics methodologies (Burge 2001). While these methods 
have found application internally in companies for triaging 
and in some limited respects in regulatory submissions to 
support mechanistic associations, there is still progress to be 
made in reaching a point of routine regulatory application 
to address the 3Rs of refinement, reduction, and replace-
ment of animals used in research. This is disappointing as 
these methods have so much to offer to the 3Rs and have 
the potential to generate more protective regulatory assess-
ments for human and environmental health. Lack of uptake 

has occurred despite substantial investment in projects to 
develop these methods in the US, Canada and the EU. An 
underpinning issue is data confidence, though some Omics-
based biomarkers have been approved such as MammaPrint® 
and GARDskin® (Glas et al. 2006; Knauer et al. 2010; Sen-
zagen 2022). This lack of Omics data use in regulatory 
practice was recognized by ECETOC in 2015 and led to 
the initiatives that developed the OORF and ODAF (Fig. 1) 
(Harrill et al. 2021b; Verheijen et al. 2022). Many of these 
methods have been taken to the international community 
through the OECD, and it is hoped in time will be incorpo-
rated into Guidance Documents and finally Test Guidelines 
that will assure the Mutual Acceptance of Data.

In this workshop, the progress over twenty years in 
genomics was highlighted with many of the participants 
having been in the field for all of the last two decades. The 
breakout sessions explored several key questions, and the 
results demonstrated significant progress made. However, 
there remain pressing experimental and bioinformatic issues 
that have hindered regulatory adoption; some of these issues 
are addressed through the development of the OORF and 
ODAF. These efforts by the OECD are advancing the use of 
Omics in regulatory testing either alone or as part of inte-
grated approaches to testing and assessment (IATAs). These 
initiatives aim to increase the transparency, robustness and 
reproducibility of omics data in general.

Of note though for future work is that these activities do 
not address the toxicological interpretation component. The 
importance of filling this gap was reflected in this workshop, 
with discussion about: (i) the potential need to understand 
the relationship of the whole Omics data set and individual 
components thereof to the adverse outcome; (ii) the influ-
ence of biological variability (also termed ‘noise’); and (iii) 
the discernment of changes that are causative and not simply 
a result of altered pathophysiology. This workshop discus-
sion identified necessary work to advance the interpretation 
of Omics data in particular as it relates to POD determina-
tion. The hope is that these recommendations will be subject 
to consideration within organizations including the OECD. 
This international consideration is needed to arrive at con-
sensus on the best approaches to application of Omics data 
in regulatory testing to build confidence in its use and capi-
talize on tools to address the 3Rs.

In conclusion, in 20 years the technical generation and 
bioinformatic processing of Omics data have progressed 
substantially, and promising applications to inform deci-
sion making have been demonstrated through a plethora of 
NAM projects and case studies. This workshop highlighted 
the significant advances made and articulates the issues 
that remain to be resolved to progress further. These key 
issues relate primarily to the biological and toxicological 
understanding/interpretation of Omics data sets, rather than 
the technical steps involved in generating or processing the 
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data. Addressing these issues would progress the inclusion 
of these protocols at least in the initial tiers of regulatory 
testing. There is now a need to refine and translate that 
knowledge into internationally accepted protocols that can 
be used in chemicals regulation. Achieving this has been 
and will continue to be the goal of ECETOC and its part-
ners, with an aim to first reduce and then replace animals in 
chemical testing.
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