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Abstract

Nonionic surfactants are often used as general reagents for cell lysis enabling protein extraction, 

stabilization, and purification under non-denaturing conditions for downstream analysis in 

structural biology. However, the presence of surfactants in the sample matrix often has a 

deleterious effect on electrospray ionization (ESI)-mass spectrometry (MS) analysis of proteins 

and complexes. Here, we report a nonionic, cleavable surfactant, n-decyl-disulfide-β-D-maltoside 

(DSSM), for top-down proteomics. DSSM was designed to mimic the properties of one of 

the most common surfactants used in structural biology, n-dodecyl-β-D-maltoside (DDM) but 

contains a disulfide bond that allows for facile cleavage and surfactant removal before or during 

MS analysis. We have shown that DSSM is compatible with direct electrospray ionization 

(ESI)-MS analysis and reversed-phase liquid chromatography (RPLC)-MS analysis of proteins 

and protein complexes. We have demonstrated that DSSM can facilitate top-down proteomic 

characterization of membrane proteins such as a model ion channel protein and a G protein-

coupled receptor as well as endogenous proteins from cell lysates for the determination of 
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sequence variations and posttranslational modifications (PTMs). Conceivably, DSSM could serve 

as a general replacement for DDM in proteomics experiments and structural biology studies.

Graphical Abstract

Nonionic surfactants are versatile tools for the solubilization and purification of proteins 

from cells and are critical reagents used in structural biology.1,2 One of the most popular 

nonionic surfactants for extracting proteins from their native environment and stabilizing 

them for downstream biophysical techniques such as crystallography and cryogenic electron 

microscopy is n-dodecyl-β-D-maltoside (DDM).3

However, the presence of surfactants, even mild ones like DDM, often has a deleterious 

effect on top-down proteomics for protein sequencing to identify posttranslational 

modifications (PTMs) and sequence variations.4–6 Surfactant-related signal suppression 

is generally caused by the higher ionization efficiency and signal-to-noise ratio of 

the low molecular weight species. Moreover, the presence of surfactant can negatively 

impact common front-end protein separation techniques such as reversed-phase liquid 

chromatography (RPLC), which could cause potential problems in reproducibility and 

robustness.5,6

One approach to overcome the incompatibility of the surfactants for downstream proteomic 

analysis is to insert a cleavable bond (e.g., acid7–9 or light-labile10,11) that allows for 

controlled degradation of the molecule into innocuous byproducts before MS analysis. 

Cleavable surfactants commonly used for proteomics contain denaturing, anionic head 

groups, such as sulfate, that preclude their use for applications where non-denaturing 

conditions are desirable.12,13 Thus, there is an urgent need for cleavable surfactants that 

can aid in traditional biochemical preparation methods under non-denaturing conditions yet 

are still amenable for downstream proteomic applications. Here, we demonstrate for the first 

time the use of n-decyl-disulfide-β-D-maltoside (DSSM), a nonionic, cleavable surfactant, 

for top-down proteomics (Figure 1).

DSSM was originally developed to mimic the properties of DDM while providing a platform 

for high-throughput detergent exchange for biophysical assays.14 The nonionic maltose head 
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group resembles DDM, but the addition of the disulfide bond between the sugar and the 

hydrophobic decyl tail imparts cleavable properties. After synthesis and characterization of 

DSSM (Figure S1-2), we evaluated its compatibility with electrospray-ionization (ESI)- MS 

analysis for intact proteins.

The compatibility of DSSM with direct ESI-MS analysis was evaluated using carbonic 

anhydrase (29.1 kDa) in denaturing conditions. The surfactant was degraded with 5 

equivalence of TCEP (tris(2-carboxyethyl)phosphine) at 4 °C for 2 h (Figure S3). Insoluble 

degradation products, which commonly pose an issue for acid-cleavable surfactants like 

RapiGest,8 were not observed after DSSM degradation and centrifugation (Figure S4). We 

observe no difference in signal between the control sample and that with DSSM after 

degradation (Figure 2).

In contrast, even at the relatively low concentration of 2× CMC (0.02%), DDM is the 

dominant species suppressing intact-mass analysis of carbonic anhydrase (Figure 2 middle 

panel). When a large excess of DSSM was used (20× CMC), a species corresponding to the 

maltose head group was observed as the dominant peak (Figure S5). No deleterious effects 

were observed from the inclusion of TCEP. Nonetheless, this is a critical consideration for 

experiments using a redox reaction to degrade the surfactant.

Next, we tested if ion activation (i.e. collision-induced dissociation [CID]) could be used to 

dissociate the surfactant from the proteins and protein complexes for ESI-MS analysis under 

non-denaturing conditions13 (Figure S6). MS analysis of carbonic anhydrase (29.1 kDa) 

ammonium acetate with and without DSSM at a concentration of 2× CMC (critical micelle 

concentration) yielded spectra with significant signal suppression from DSSM monomers at 

lower collisional activation (2–10 V) (Figure S6). When higher collisional activation (20–30 

V) was applied, quality MS spectra were observed with a similar charge state distribution 

to the sample in ammonium acetate alone (Figure S6). Similar results were observed for 

carbonic anhydrase in DDM at 2× CMC (Figure S7).

For the tetramer forming complex, alcohol dehydrogenase (147.5 kDa), quality spectra 

could be obtained at a low collisional voltage (10 V) with and without DSSM at 2× CMC 

(Figure S8). Therefore, we further tested DSSM at a higher concentration (5× CMC) using 

collisional activation energies of 20–30 V to achieve direct ESI-MS analysis (Figure S6). 

Alternative activation methods, such as surface-induced dissociation (SID),15 ultraviolet 

photodissociation (UVPD), 16,17 infrared laser activation (IRMPD),18 may be implemented 

to remove DSSM in the gas phase for direct ESI-MS analysis.13,18,19

To evaluate the surfactant’s compatibility with RPLC-MS, we analyzed a mixture of 

standard proteins (ribonuclease A, myoglobin, and carbonic anhydrase) with and without 

DSSM or DDM. DSSM did not influence the separation or the signal intensity of the 

standard proteins even at 20x CMC (Figure S9). The improved compatibility with RPLC-

MS compared to direct ESI-MS analysis results from the fact that the maltose head group 

after the degradation of DSSM elutes in the void volume before the proteins during LC 

separation (Figure S10). Similarly, the addition of TCEP did not appear to have a deleterious 

effect. DDM, on the other hand, led to significant signal suppression in the chromatogram 
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and mass spectra (Figure S9). This demonstrates the promise of DSSM as a general 

replacement for nonionic surfactants like DDM for RPLC-MS applications.

We further assessed DSSM’s compatibility with RPLC-MS to study membrane proteins, 

an important class of drug targets that are generally difficult to study using top-down 

proteomics owing to their inherent insolubility outside the plasma membrane and low 

abundance.1,20,21 We performed DSSM-aided membrane proteomic analysis on a model 

ion channel protein, a pH-gated potassium channel (KcsA). After removing incompatible 

buffer components (salts, detergent, etc.) using a chloroform:methanol:water precipitation,22 

KcsA was solubilized in the DSSM (2× CMC). The surfactant was degraded with TCEP (in 

water or 50% isopropanol) and RPLC-MS/MS was performed using CID for fragmentation 

(Figure 3A-C). Using MASH Explorer23 for peak assignment and validation, we observed 

good sequence coverage on an LC-MS time scale with 27b ions and 29y ions representing 

36% residue cleavage. Many of the bond cleavages were found in the transmembrane 

domains (TMD), in line with previous studies that characterized the fragmentation trends 

of intact integral membrane proteins.24,25 Furthermore, we were able to successfully map a 

mutation (E71A) that prevents channel inactivation (Figure 3).26

Furthermore, we demonstrated that DSSM could enable the top-down analysis of 

bacteriorhodopsin,27,28 a commercially available GPCR. After bacteriorhodopsin was 

solubilized in DSSM and degraded using TCEP (in water or 50% isopropanol), RPLC-

MS/MS yielded 37b ions and 21y ions corresponding to 23% residue cleavage (Figure 

3D-F). A pyrrolidone carboxylic acid modification was localized to the N-terminus of the 

protein (Figure 3E)

Finally, DSSM was used to extract endogenous protein from mammalian cells using and 

directly analyzed using RPLC-MS/MS after surfactant degradation. Following TopPIC data 

analysis,29 we identified a total of 276 proteoforms30 from 206 protein groups over four 

LC-MS/MS experiments (Figure 4, Table S1). Additionally, PTMs such as phosphorylation, 

methylation, and trimethylation were successfully localized using CID (Table S1). Overall, 

we demonstrated DSSM is a valuable surfactant for cell lysis and enables proteoform 

identification using RPLC-MS/MS analysis.

In summary, we presented the first demonstration of n-Decyl-disulfide-β-D-maltoside 

(DSSM), a cleavable DDM mimic, for direct ESI-MS analysis of intact proteins and 

top-down proteomics. DSSM was generally compatible with ESI-MS as well as RPLC-

MS analysis circumventing the characteristic signal suppression typically observed for 

surfactants. We demonstrated that DSSM enables the top-down proteomic characterization 

of a model ion channel (KcsA), GPCR (bacteriorhodopsin), and endogenous proteins 

extracted from cell lysates. DSSM represents an important and versatile surfactant that 

can facilitate protein sample preparation under non-denaturing conditions for a myriad of 

proteomic and structural biology applications and acts as a general replacement for DDM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Comparison of the chemical structures of n-Dodecyl-β-D-maltoside (DDM) and n-

Decyl-disulfide-β-D-maltoside (DSSM). (B) Overview of using a DSSM for proteomics
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Figure 2. Compatibility of DSSM with ESI-MS of intact proteins.
MS spectra of carbonic anhydrase (left), carbonic anhydrase with DDM (2× CMC) (middle), 

and carbonic anhydrase in DSSM after degradation with TCEP (right).
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Figure 3. Top-down proteomics of DSSM solubilized membrane proteins.
Intact mass spectra, fragmentation map, and representative ions (with theoretical fits) for 

analysis of KcsA (A-C) and bacteriorhodopsin (D-F). Proteins were solubilized in DSSM 

and analyzed by LC-MS/MS after surfactant degradation.
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Figure 4. Top-down proteomics of endogenous proteins extracted from cell lysate using DSSM.
(A-D) Representative proteins were confidently identified from HEK whole cell or crude 

membrane lysate (A, B, and D from whole cell lysate and C from crude membrane lysate).
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