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Abstract
Osteoclasts (OCs) and regulatory CD4+ T cells (CD4+Tregs) are important components 
in the tumor microenvironment (TME) of osteosarcoma. In this study, we collected six 
osteosarcoma samples from our previous study (GSE162454). We also integrated a 
public database (GSE152048), which included single cell sequencing data of 11 os-
teosarcoma patients. We obtained 138,192 cells and then successfully identified OCs 
and CD4+Tregs. Based on the interaction gene set between OCs and CD4+Tregs, pa-
tients from GSE21257 were distinguished into two clusters by consensus clustering 
analysis. Both the tumor immune microenvironment and survival prognosis between 
the two clusters were significantly different. Subsequently, five model genes were 
identified by protein–protein interaction network based on differentially upregulated 
genes of cluster 2. Quantitative RT-PCR was used to detect their expression in human 
osteoblast and osteosarcoma cells. A prognostic model was successfully established 
using these five genes. Kaplan–Meier survival analysis found that patients in the 
high-risk group had worse survival (p = 0.029). Therefore, our study first found that 
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1  |  INTRODUC TION

Osteosarcoma, the most prevalent bone-derived tumor, typically 
affects adolescents and young children.1 Worldwide, three to 
four per million people are diagnosed with OS each year.2 Since 
the evolution of systematic chemotherapy, the 5-year survival 
rate of OS patients with localized disease has improved to 70%.3 
However, the overall survival rate has not improved significantly 
in the last 30 years.4 Tumor microenvironment heterogeneity, 
chemotherapy resistance, and tumor immune escape are import-
ant causes for the poor prognosis.5 Therefore, it is of great signif-
icance to identify patients with high-risk characteristics of poor 
survival outcomes.

Tumor microenvironment is a highly specialized, complex, and 
dynamic environment. The TME is composed of different cellu-
lar components and other physicochemical factors.6,7 Frequent 
cell cross-talk among them help OS cells remold TME, providing 
fertile soil for OS proliferation and metastasis.7–9 Osteoclasts and 
CD4+Tregs are important components of OS TME. Osteoclasts are 
the only cells performing the function of osteolysis. Studies have 
shown that paratumor osteolysis is conducive to the development of 
OS.8 In addition, OCs play a key role in immunomodulatory effect.10 
Ibáñez et al. confirmed that OCs had antigen-presenting functions 
and could induce CD4+Tregs.11,12 Regulatory CD4+ T cells are im-
munosuppressive cells that assist tumor cells in immune escape in 
a variety of cancers.13 However, studies on whether the interaction 
between OCs and CD4+Tregs changes the TME and survival prog-
nosis are lacking.

We identified an IGS at the single-cell level between OCs and 
CD4+Tregs. Consensus clustering analysis was used to identify 
clusters with different expression modes of IGS in a GEO cohort. 
The differences between these two clusters in tumor immunofil-
tration, biological pathways, and survival prognosis were explored. 
Subsequently, differential analysis was carried out to obtain dif-
ferentially upregulated genes of cluster 2. Five model genes were 
screened by LASSO regression analysis. Then a risk prognosis model 
was constructed. We found that the model genes were connected 
to poor prognosis. The prognosis model showed robust predictive 
performance in KM survival analysis and ROC curve analysis. In ad-
dition, we constructed a nomogram to facilitate the use of the risk-
prognosis model.

2  |  MATERIAL S AND METHODS

2.1  |  Data sources

Figure S1 illustrates the workflow of this study. A part of scRNA-seq 
data was obtained from our previous study (GSE162454).7 In order to 
obtain more samples, we integrated a public database (GSE152048), 
which included single-cell sequencing data from 11 OS patients.9 The 
above two data sources of OS scRNA-seq were utilized to identify the 
IGS. Bulk RNA sequencing datasets were derived from the GEO data-
base (GSE21257),14 which was used to construct the risk model and 
evaluate the prediction accuracy of the risk prognosis model.

2.2  |  Single-cell RNA-seq analysis

We used the “Seurat” package (version 4.0.5)15 for scRNA-seq data 
analysis and the “merge” function to integrate OS data. To obtain 
high-quality scRNA-seq data, we applied the following filtering con-
ditions for each cell: nFeature_RNA >300, nFeature_RNA <4500, 
and percent.mt <10%.

Next, the “NormalizeData” function of the R package “Seurat” was 
used to normalize the scRNA-seq data. The “FindVariableFeatures” 
function was then used to identify the top 2000 highly variable 
genes from the standardized scRNA-seq data. We utilized the 
“RunPCA” function for PCA, thus achieving the purpose of mapping 
higher-dimensional data to lower-dimensional space and preserving 
the characteristics of more original data points with fewer data di-
mensions. We then used the “harmony” package (version 0.1.0) to 
remove batch effects.16

In addition, the “FindNeighbors” and “FindClusters” functions 
in the “Seurat” package were used for cell clustering analysis. The 
parameters: dim = 1:30, resolution = 0.2. Natural killer/T cells were 
defined using the marker genes CD2, CD3D, CD3E, CD3G, GNLY, 
NKG7, KLRD1, and KLRB1;17,18 OCs were defined using ACP5, CTSK, 
and ATP6V0D2.19 As we did not study other cells further, we defined 
them as “other cells”. In addition, the marker genes CD4, TNFRSF18, 
LAYN, CCR8, FOXP3, BATF, RTKN2, IKZF2, CTLA4, and CTLA4 were 
used to define CD4+Tregs.20

Finally, data were visualized using the “DimPlot” function and the 
“pheatmap” package (version 1.0.12).
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cell–cell communication between OCs and CD4+Tregs significantly alters TME and is 
connected to poor prognosis of OS. The model we constructed can accurately predict 
prognosis for osteosarcoma patients.
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2.3  |  Cell–cell communication analysis

We assessed intercellular communication between OCs and 
CD4+Tregs in TME using CellPhoneDB (version 2.0.0).21 Interaction 
gene sets with p < 0.05 were filtered to evaluate the relationship be-
tween the different cell clusters.

2.4  |  Consensus clustering analysis

Based on the expression level of IGS, the “ConsensusClusterPlus” 
R package (version 1.56.0) was used to identify clusters of the 
GSE21257 dataset. Principal component analysis was used to show 
the distribution of the two coagulation clusters, and it was visual-
ized with the “ggplot2” and “scatterplot3d” packages. The overall 
survival of the two clusters was compared using a KM survival plot, 
and p = 0.038 indicated statistical significance.

The “ggalluvial” R package (version 0.12.5) was used to create a 
Sankey diagram to assess the clinical value of clusters. We investi-
gated the relationship between clusters and clinical characteristics, 
such as age, status, histological subtype, grade, and metastases. 
Using the “pheatmap” R package (version 1.0.12), we created a heat-
map of IGS expression patterns that differ in clusters.

2.5  |  Gene set variation analysis and specific 
immune landscape

To understand the distinct biological functions of the various clus-
ters, we undertook GSVA using the “GSVA” R package (version 
1.40.1).22 For the GSVA analysis, the msigdb.v7.2 symbols gene sets 
(https://www.gsea-msigdb.org/gsea/msigdb) were utilized.23,24 The 
Wilcoxon test was applied for statistical analysis, and p < 0.05 was 
set as the cut-off criterion.

To explore how the immune landscape differed between the two 
clusters, we first used the GEO expression data to quantify the in-
filtration levels of 22 immune cells using the CIBERSORT algorithm 
for each sample. Then the immune score, stromal score, and the 
ESTIMATE score were calculated by using the “estimate” package 
(version 1.0.13).25 Moreover, we compared the differences in gene 
expression level between the various clusters for the T cell stimula-
tors and MHCs to confirm the immune characteristics.

The “pRophetic” package (version 0.5) was used to predict chemo-
therapeutic response by gene expression level in clinical patients.26 
We used an “pRophetic” package to predict the semi-inhibited con-
centration of common chemotherapy agents. The effectiveness of 
these drugs in different clusters was further compared.

2.6  |  Hub gene selection

Using the “Limma” package (version 3.48.1), DEGs were identified 
based on OS patients’ expression levels.27 The DEG selection criteria 

were as follows: log2FC >0.5, p < 0.05. Using STRING, an online 
search tool for the PPI networks functional enrichment analysis,28 
a PPI network was constructed with a minimum interaction score 
of 0.7. Cytoscape software was used for visualizing PPI networks.29 
Two topological algorithms, including Degree and MNC, were used 
to extract hub genes using a plug-in called cytoHubba.30

Subsequently, the LASSO regression model was used to screen 
out the top 100 core genes in PPI to construct a risk prognosis 
model: Risk score = Ʃ (Coefi × Expi),31 where Coefi is the LASSO re-
gression coefficient of the model gene, and Expi is the expression 
quantity of the corresponding gene. Based on each patient's model 
gene expression, the risk score for each patient was calculated. 
The median score was taken as the threshold for separating the 
high-risk and low-risk groups. Furthermore, univariate Cox regres-
sion analysis was used to explore the role of model genes in the 
survival prognosis. At the same time, we used GCSALite, an online 
Web analysis tool that integrates cancer genome data from The 
Cancer Genome Atlas and normal tissue data from GTEx, to ver-
ify whether the model gene has the same effect in pan-cancer.32 
Differential analysis of 14 cancers with more than 10 pairs of 
paired tumor tissue and normal tissue was carried out using the 
t-test. The p values were adjusted by FDR; retention significance 
(FDR <0.05) and FC in genes (FC >2) were retained for graphic 
visualization. In addition, KM survival plots were plotted using the 
log-rank test and retaining p < 0.05 genes in the pan-cancer sur-
vival analyses for 33 cancers.

2.7  |  Cell culture and qRT-PCR assay

The human osteoblast (hFOB1.19) and human osteosarcoma cell 
(HOS) was derived from Fuheng Cell Center (Shanghai Fuheng Cell 
Center). The HOS were cultured in DMEM (Gibco) presupplemented 
with 1% penicillin and streptomycin (Gibco) and 10% FBS (Gibco) at 
37°C and 5% CO2. hFOB1.19 cells were cultured in hFOB1.19 spe-
cific culture medium (Procell) at 33.5°C and 5% CO2.

Total RNA was extracted using the RNA Fast 200 Kit (Feijie 
Biotechnology). Complementary DNA was produced by reverse 
transcription of RNA using a cDNA synthesis kit (Takara). On a 
StepOnePlus Real-Time PCR System (ABI7500FAST; Applied 
Biosystems), SYBR Green (Roche) was utilized for qRT-PCR. After 
10 min of PCR at 95°C, 40 cycles of 10 s at 95°C and 1 min at 60°C 
were carried out. The internal reference gene was GADPH. The 
2−ΔΔCt method was used to calculate the relative expression levels of 
the five model genes in hFOB1.19 and HOS. Table S1 illustrates the 
qRT-PCR primer sequences.

2.8  |  Verification of the model for 
predictive efficacy

The “pROC” package (version 1.18.0) was used to plot the time-
dependent ROC, and the AUC values for 1, 3, and 5 years were 
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calculated to test the predictive power of the model.33 We un-
dertook KM survival analyses using log-rank test for these two 
groups. In addition, the “rms” package (version 6.3-0) was used 
to construct a nomogram for predicting patient outcome based 
on clinical manifestations. Then the accuracy of the nomogram 
prediction was evaluated using calibration charts. In addition, the 
patients’ clinical factors were scored using the “rms” package, vis-
ualized by nomogram, and the consistency of the nomogram was 
evaluated using a calibration plot. Finally, univariable and multi-
variable Cox regression analyses were used to evaluate whether 
the risk prognostic model could be used as an independent prog-
nostic factor for OS.

3  |  RESULTS

3.1  |  Identification of OCs and CD4+Tregs

We integrated 17 OS samples to obtain the gene expression pro-
files of 138,192 cells (Figure  S2). We used 2000 genes with the 
highest relative variability for PCA. Then we removed low-quality 
genes, reduced dimensions, and removed batch effects. The OCs 
and NK/T cells were defined according to the expression of spe-
cific marker genes (Figure  1A). Subsequently, NK/T cells were 
presented by different patients (Figure S3) and a total of five cell 
clusters including CD4+Tregs were identified (Figure 1B,C). Cell–
cell communication analysis was used to obtain IGS between OCs 
and NK/T cell subsets (Figure 1D). There were 56 ligand receptor 
pairs between OCs and CD4+Tregs (Figure 1E), which are shown 
on a heatmap (Figure  1F). We removed the ligand receptor pair 
that contained the complex and duplicate genes and 25 IGS re-
mained (Table S2).

3.2  |  Identification of subtypes in OS

By using consensus clustering analysis, patients in the GSE21257 
cohort were divided into two clusters (Figure 2A). Principal com-
ponent analysis showed that all patients could be roughly divided 
into two groups, further supporting the presence of two signifi-
cantly different subtypes (Figure  2B). The KM survival analysis 
showed that cluster 1 had a better survival prognosis than clus-
ter 2 (log-rank test, p = 0.038; Figure  2C). We also investigated 
the connection between clinical characteristics like age, survival 
status, metastasis, postchemotherapy necrosis rate, and patho-
logical typing. The results showed that patients of cluster 2 ac-
counted for a higher proportion of metastatic patients (χ2-test, 
p = 0.0004; Figure  2D). The heatmap showed the expression of 
IGS in the two clusters (Figure 2E). These results indicated that 
patients in cluster 2 had higher metastatic outcome and poorer 
survival prognosis. Therefore, we speculated that OCs and 
CD4+Tregs might influence tumor development through some 
underlying mechanism.

3.3  |  Tumor microenvironment

We further investigated the differences in pathway enrichment and 
tumor immune microenvironment between the two clusters. Results 
of GSVA showed that cluster 2 was enriched in mediating tumor me-
tastasis, proliferation, angiogenesis, and T cell exhaustion. Cluster 
2 enrichment was low in mediating the INF signaling pathway, cell 
apoptosis, T cell activation response, and immune response to tumor 
cells (Figure 3A).

CIBERSORT showed that cluster 1 was characterized by high in-
filtration of CD8+ T cells, whereas cluster 2 was characterized by high 
infiltration of M0 type macrophages and neutrophils (Wilcoxon test, 
p < 0.05; Figure 3B). Furthermore, the ESTIMATE algorithm showed 
that immune score, stromal score, and ESTIMATE score of cluster 
1 were substantially higher than cluster 2 (Wilcoxon test, p < 0.05; 
Figure 3C). Genes related to T cell stimulators and MHC were highly 
expressed in cluster 1 (Wilcoxon test, p < 0.05; Figure  3D,E). The 
above results indicated that TME in cluster 2 had worse immune in-
filtration. In addition, we used the “pRRophetic” R package to assess 
the response of each patient to 138 kinds of chemotherapy agents 
for GSE21257. The IC50 differences between cluster 1 and cluster 
2 were compared by Wilcoxon test, and 40 statistically significant 
drugs were finally obtained (Figure 3F). Among the classic chemo-
therapy drugs for OS, the IC50 of doxorubicin in cluster 2 was lower 
(Wilcoxon test, p = 0.009), suggesting that cluster 2 has a better 
therapeutic effect on doxorubicin. Methotrexate tended to be lower 
in cluster 1, and cisplatin tended to be more sensitive in cluster 2 
pairs (Figure 3G).

3.4  |  Construction of a risk-based prognostic model

Because of the poor prognosis in cluster 2, it is particularly signifi-
cant to identify differential genes in cluster 2 and construct accurate 
prognostic models. Therefore, 330 differential upregulated genes in 
cluster 2 were selected with p < 0.05 and log2 FC >0.5 (Figure 4A). 
The PPI network based on cluster 2 differentially upregulated genes 
was obtained using the STRING database (Figure 4B). We unexpect-
edly found that the genes obtained by the MNC and DEGREE al-
gorithms were consistent. Thus, these genes can be considered as 
hub genes (Figure 4C). Next, we used LASSO regression analysis to 
select the optimal prognostic biomarkers from 100 hub genes. The 
“glmnet” package was used for 1000 times cross-validation, and five 
genes corresponding to the minimum lambda (DDX27, CCT6A, PNN, 
DTL, and RPS15) were selected to establish the subsequent model 
(Figure 4D,E).

To explore the prediction potential of the model for OS sur-
vival, we undertook univariate Cox regression analysis in the 
GSE21257 dataset. The results showed that genes DDX27 
(HR = 2.026, p = 0.008), CCT6A (HR = 2.198, p = 0.007), PNN 
(HR = 1.744, p = 0.028), and PRS15 (HR = 3.898, p < 0.001) were 
all injury factors (Figure 5A). We undertook KM survival analysis 
and found that patients in the high-risk group had worse survival 
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F I G U R E  1  Cell–cell communication analysis of osteoclasts (OCs) and regulatory CD4+ T cells (CD4+ Tregs). (A) UMAP showing the 
identification and marker genes of natural killer (NK)/T cells and OCs. Different colors indicate different cells. (B) UMAP showing the NK/T 
cell subtype. Different colors indicate different cells. (C) Heatmap showing the expression of marker genes in NK/T cell subtypes. The higher 
the expression, the redder the color. (D) Intercellular communication between OCs and NK/T cell subtypes. The more frequent the cross-
talk between the two cells, the more line segments there are between them. (E) Intercellular communication and number of interaction 
gene sets between OCs and T cell isoforms. (F) Heatmap showing intercellular communication between OCs and T cell subtypes; the more 
frequent the cross-talk between two cells, the redder the color.
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rate in the GSE21257 dataset (log-rank test, p = 0.029; Figure 5B). 
Furthermore, each patient was given a risk score based on the ex-
pression level of the model gene. Patients were divided into high- 
and low-risk groups based on the median risk score. We found that 
there were more deaths in the high-risk group (Figure  5C). The 
results of qRT-PCR showed that the five model genes were ex-
pressed in hFOB1.19 and HOS. DDX27, CCT6A, PNN, and RPS15 
were significantly highly expressed in HOS (Figure 5D). We then 
used the GCSALite online database to analyze the role of model 
genes in pan-cancer. Interestingly, the results showed that the 
model genes were highly expressed in 14 cancer types (t-test, 
FC >2, p < 0.05; Figure 5E). In the pan-cancer analysis, the model 
genes had a statistically significant effect on prognosis in 16 types 
of cancer (Figure 5F). These results indicated that the prognostic 
model based these five genes could effectively predict prognosis.

3.5  |  Validation of model

In order to verify the predictive accuracy of the model, ROC was 
plotted, and the predicted AUC values were 0.673, 0.810, and 0.762 
in 1, 3, and 5 years, respectively (Figure 6A). We constructed a nomo-
gram to quantify clinical factors to predict 1-, 3-, and 5-year survival 
rates (Figure 6B). We then plotted a calibration plot to evaluate the 
predictive performance of the nomogram, and the results showed 
that the working curve predicted by the nomogram was close to the 
standard curve (Figure 6C). Univariate and multivariate Cox regres-
sion analyses showed that the grade and risk prognosis model could 
be used as independent prognostic factors (Figure 6D,E). The above 
results indicate that the predictive efficacy of the prognosis model 
we constructed was robust and powerful, which could accurately 
stratify patients and predict the prognosis.

4  |  DISCUSSION

Recent research has gradually revealed the important role of TME in 
the development, metastasis, drug resistance, and other biological 
behaviors of OS.7–10,34 However, the effect of intercellular interac-
tion between OCs and CD4+Tregs in the TME on the survival of OS 
patients remains unknown. Therefore, based on our previous study, 
this research comprehensively analyzed the potential value of IGS 
between OCs and CD4+Tregs in predicting prognosis.

The scRNA-seq technique is the most advanced method to deci-
pher the heterogeneity and complexity of TME.35,36 Bulk RNA-seq 
technology has advantages in the measurement of gene expression 
pattern, subtype expression, and prognosis assessment.37 Fewer 

scholars have combined the scRNA-seq technology and bulk RNA-
seq technology to identify the IGS of intracellular interactions 
and established clinical prognostic models.38 In the present study, 
scRNA-seq was used to identify OCs and CD4+Tregs, and 56 IGS 
were obtained. We then used bulk RNA sequencing data to ob-
tain two clusters with different IGS expression patterns based on 
the GSE21257 queue. Five model genes (DDX27, CCT6A, PNN, DTL, 
RPS15) related to prognosis were finally obtained by LASSO re-
gression analysis and a risk prognosis model was successfully con-
structed. ROC analysis results showed that the AUC values in the 
1-, 3- and 5-years were 0.673, 0.810 and 0.762, respectively, sug-
gesting that our model had a good performance in predicting the 
survival and prognosis. In addition, the calibration plot showed that 
the working curves of Nomograph predicting the survival rate of 1, 
3 and 5 years are all close to the ideal standard curve. In brief, our 
study constructed a robust model that can accurately predict the 
outcomes for patients, and is expected to be an effective tool in clin-
ical practice.

In addition, we found that these five model genes were harm-
ful factors in the prognosis by univariate COX regression analysis. 
The results of qRT-PCR showed that the five model genes were 
expressed in hFOB1.19 and HOS. DDX27, CCT6A, PNN, and RPS15 
were significantly highly expressed in HOS. Research has shown 
that overexpression of PNN can enhance the vitality of OS cells, 
improve their ability of proliferation, adhesion, and invasion, and 
inhibit apoptosis.39 Jiang et al.40 found that CCT6A in Ewing sar-
coma is closely related to prognosis. In addition, CCT6A has been 
shown to have cancer-promoting effects in a variety of cancers.41,42 
DDX27 is a member of the DEAD-box helicase family. Tang et al.43 
confirmed in vivo and in vitro experiments that DDX27 can promote 
tumor proliferation, invasion, and metastasis, thus leading to poor 
prognosis of patients. Research has also shown that DTL can degrade 
programmed cell death 4 (PDCD4) and promote the proliferation 
and migration of cancer cells.44 It has been confirmed that downreg-
ulated DTL can inhibit tumor progression.45 RPS15 is the encoding 
gene of 40S ribosomal protein S15, which plays an important role in 
the progression of cancer.46 The RPS15 mutation makes chronic lym-
phocytic leukemia more aggressive.47 In summary, our five model 
genes are associated with occurrence, development, metastasis, and 
poor prognosis of cancer.

Osteoclasts are differentiated from mononuclear macro-
phages and can perform the function of antigen presentation in-
dependently.11 Osteoclasts attract CD8+ T cells and CD4+ T cells 
around them by secreting T cell chemokines.11,48,49 Osteoclasts 
can process soluble antigens, express MHC, and secrete T cell 
stimulators, which then induce CD4+ Treg proliferation and activa-
tion.11,48,50 In addition, OCs form a local immunosuppressive TME 

F I G U R E  2  Identification of subtypes in osteosarcoma. (A) Two groups of clusters with different expression patterns were obtained. 
(B) Two clusters were verified by principal component (PC) analysis. Blue represents cluster 1, red represents cluster 2. (C) Kaplan–Meier 
analysis showing the survival prognosis of two clusters. (D) Sankey diagram showing the connection between clinical characteristics like 
age, survival status, metastasis, postchemotherapy necrosis rate, and pathological typing and these two clusters. (E) Heatmap showing the 
expression of interaction gene sets in the two clusters. p < 0.05 was considered statistically significant.
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F I G U R E  3  Physiological characteristics of the two clusters of osteosarcoma subtypes. (A) Heatmap showing the differences in 
enrichment in different gene sets between the two clusters. The deeper the red, the higher the enrichment. (B) Violin diagram showing the 
infiltration of 22 immune cells in two clusters. (C) Scatter plots shows immune score, stromal score, and ESTIMATE score of two clusters. (D) 
Boxplot showing the expression of human leukocyte antigen genes in two clusters. (E) Boxplot showing the expression of T-cell stimulating 
factor genes in two clusters. (F) Heatmap showing 40 statistically significant drugs between cluster 1 and cluster 2. (G) Boxplot showing IC50 
values of two clusters against classic osteosarcoma chemotherapy drugs. *p < 0.05, **p < 0.01, ***p < 0.001.

F I G U R E  4  Hub gene selection and prognostic model construction. (A) Volcano map showing differentially expressed genes in cluster 
2, with red dots representing differentially upregulated genes. (B) Protein–protein interaction (PPI) network of cluster 2's differentially 
upregulated genes. (C) Top 100 core genes in PPI obtained by Degree and MNC topological algorithms. (D, E) LASSO regression analysis 
selected the optimal prognostic biomarkers from 100 hub genes.
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by expressing interleukin-10 in cells involved in inflammation and 
immunosuppression.11 CD4+ Tregs are the main immunosuppres-
sive cells in TME and play a key role in tumor immune escape by ex-
pressing cosuppressive molecules or secreting immunosuppressive 
cytokines.13,51 This study found that that CD8+ T cells were highly 
enriched in cluster 1 patients, and M0 macrophages were highly 
enriched in cluster 2 patients. CD8+ T cells play a crucial role in di-
rectly killing tumor cells and are an important cellular component 
of the immune system for immune surveillance.52 In addition, the 
immune score, stromal score, and ESTIMATE score of cluster 2 were 

considerably lower than those of cluster 1, indicating a lower degree 
of immune infiltration in the TME of cluster 2 patients. The MHC is 
located in the short arm of chromosome 6 and involved in the body's 
immune surveillance. It is related to adaptive T cell immunity and is 
an important component of innate immunity.53,54 Our results show 
that cluster 2 patients had lower expression levels of MHC genes 
and T-cell stimulating factor genes. Thus, it is reasonable to specu-
late that the function and infiltration of immune cells was inhibited 
by cell interaction between OCs and CD4+ Tregs, which leads to 
poor prognosis.

F I G U R E  5  Clinical implications of model genes and prognostic model. (A) Effects of five model genes on survival of patients with 
osteosarcoma were analyzed by univariate Cox regression risk analysis. (B) Survival analysis between cluster 1 and cluster 2. (C) Top panel, 
distribution of risk scores. Middle panel, each patient's survival status. Bottom panel, heatmap showing the expression of the five model 
genes. (D) Quantitative RT-PCR detected the expression level of the five model genes in hFOB1.19 (OB) and HOS. (E) Expression of the 
five model genes in pan-cancer. The deeper the red, the higher the expression in pan-cancer; the larger the dot, the smaller the p value. (F) 
Survival analysis of the five model genes in pan-cancer showing that higher expression level (red) was associated with worse survival. The 
larger the point, the smaller the p value. *p < 0.05, **p < 0.01, ***p < 0.001. FC, fold change; NS, no statistically significant.
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Despite the promising findings of our study, there are some lim-
itations. Our findings need to be further validated in cell and animal 
studies. Additionally, the sample size of this study is insufficient, 
which could bring bias to the results.

In conclusion, we established an efficient and accurate prognos-
tic model to help clinicians evaluate the prognosis of patients with 
OS. In addition, our study revealed the effect of cell interactions be-
tween OCs and CD4+ Tregs on immune infiltration of osteosarcoma 

TME and related signaling pathways, which could be beneficial for 
related experimental studies.
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F I G U R E  6  Validation of model to predict the prognosis of patients with osteosarcoma. (A) Area under the receiver operating 
characteristic curve (AUC) analysis of the prognostic model. (B) Nomogram to predict patient prognosis based on prognostic model and 
clinical manifestations. (C) A calibration plot evaluating the consistency of the nomogram. OS, overall survival. (D, E) Univariate and 
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