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1  |  BA SIC MECHANISMS OF AUTOPHAGY

Autophagy is an evolutionarily conserved, intracellular degradation 
system of cytoplasmic components using lysosomes. Autophagy 
transports substrates to lysosomes in several ways. The most com-
mon type of autophagy is macroautophagy (simply referred to as 
autophagy), which utilizes de novo-generated autophagosomes for 
lysosomal transport.1,2 The most distinguished feature of autoph-
agy is that it degrades almost all components of the cytoplasm, in-
cluding not only biomolecules, such as proteins, nucleic acids, and 
lipids, but also all types of organelles and invading microbes. The 
degradation process of autophagy is often selective, which makes 
this system a central player in cellular homeostasis. We first briefly 
summarize the key players in autophagosome formation and selec-
tive autophagy.

1.1  |  Core autophagy machinery

Using budding yeast as a model system, many autophagy-related 
(ATG) genes/proteins have been identified as essential for au-
tophagosome formation. They can be divided into six functional 
groups that are conserved in mammals.1 The six groups in mammals 
are as follows: (1) ULK kinase complex consisting of autophagy-
initiating Ser/Thr kinase ULK1 or ULK2, FIP200/RB1CC1, ATG13, 
and ATG101; (2) Class III phosphatidylinositol 3-kinase complex 
I (PI3KC3C1) consisting of VPS34/PIK3C3 (catalytic subunit), 
PIK3R4, BECN1, ATG14, and NRBF2; (3) lipid scramblase ATG9A; 
(4) lipid transporting ATG2–WIPI complex; (5) ATG12–ATG5 conju-
gation system that builds up the ATG12–ATG5–ATG16L1 complex; 
and (6) the ATG8 (LC3 family and GABARAP family) lipidation sys-
tem (Figure 1A). Autophagy initiation is mainly regulated by mTOR 
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Abstract
Autophagy is a lysosomal degradation system of cytoplasmic components that con-
tributes to cellular homeostasis through the turnover of various biomolecules and 
organelles, often in a selective manner. Autophagy is closely related to cancer, but 
its roles in cancer are complicated. It works as either a promoter or suppressor, de-
pending on the stage and type of cancer. In this review, we briefly summarize the 
basic mechanisms of autophagy and describe the complicated roles of autophagy in 
cancer. Moreover, we summarize the clinical trials of autophagy inhibitors targeting 
cancer and the development of more specific autophagy inhibitors for future clinical 
application.
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complex I (mTORC1). In yeast, autophagosome formation proceeds 
at the pre-autophagosomal structure, which is organized by liquid–
liquid phase separation (LLPS) of the Atg1 complex (yeast counter-
part of ULK complex) on the vacuolar membrane.3 TORC1 inhibits 
LLPS of the Atg1 complex by directly phosphorylating Atg13 and 
thereby inhibits autophagy initiation. In mammals, the ULK complex 
undergoes LLPS to form autophagosome formation sites on the en-
doplasmic reticulum (ER), which is triggered by calcium transients at 
the outer surface of the ER membrane.4 mTORC1 inhibits autophagy 
by phosphorylating various autophagy-related factors, including 
ULK1 and ATG13,5 but its relationship with the LLPS of the ULK 
complex remains unknown.4

The mechanism of nucleation of isolation membranes (also 
known as phagophores) has not been clarified, but ATG9A-containing 
vesicles and COPII vesicles are believed to be involved in this pro-
cess.1 PI3KC3C1 produces phosphatidylinositol 3-phosphate (PI3P) 
at the initial autophagic membranes to recruit the ATG2–WIPI com-
plex.6 ATG2 then mediates the expansion of isolation membranes 
by transporting phospholipids from the ER with the help of the lipid 
scrambling activity of ATG9A.7 Phospholipid synthesis at the ER has 
been proposed to contribute to this process.7,8 The ATG12 and ATG8 
systems are then recruited to function at the later steps of these ini-
tial events.6 ATG8 is conjugated with phosphatidylethanolamine by 
consecutive enzymatic reactions similar to those in ubiquitination, 

F I G U R E  1  Basic mechanisms of autophagy. (A) Core autophagy machinery mediating autophagosome formation. The ULK complex 
initiates autophagy by promoting nucleation of isolation membranes. PI3KC3C1 produces PI3P and recruits ATG2–WIPI, which promotes 
the expansion of isolation membranes by transferring lipids from the endoplasmic reticulum (ER) with the help of ATG9A. ATG12–ATG5–
ATG16L1 promotes ATG8 lipidation by functioning as the E3 enzyme, resulting in the decoration of isolation membranes with lipidated 
ATG8. (B) Basic mechanism of substrate recognition during selective autophagy. Selective substrates are tethered to isolation membranes 
via lipidated ATG8 and selective autophagy receptors (SARs), promoting their sequestration into autophagosomes. SARs are classified into 
two types. One is ubiquitin-independent and directly recognizes substrates (often possessing transmembrane domains in the case of SARs 
for organelles) and the other is ubiquitin-dependent and recognizes polyubiquitin chains attached to substrates. Both types possess LC3-
interacting region (LIR)/Atg8-family interacting motif (AIM) to bind ATG8.
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which involves ATG4 (cysteine protease that processes ATG8 pre-
cursors and deconjugates lipidated ATG8), ATG7 (E1 enzyme), ATG3 
(E2 enzyme), and the ATG12–ATG5–ATG16L1 complex (E3 enzyme) 
(Figure  1A).1 The ATG12−ATG5−Atg16L1 complex is recruited to 
the autophagosome formation site by PI3P-bound WIPI2, which is 
considered to promote lipidation of ATG8 at isolation membranes.9 
Although the molecular functions of lipidated ATG8 in selective au-
tophagy have been established as described below, those in auto-
phagosome formation are still controversial. Despite the essential 
role of lipidated ATG8s in isolation membrane expansion in yeast,1,10 
they are not essential for isolation membrane expansion in mammals 
and are proposed to function at the sealing of isolation membranes 
into autophagosomes, fusion of autophagosomes with lysosomes, 
and degradation of inner autophagosomal membranes upon fusion 
with lysosomes.2

1.2  |  Selective autophagy

The selectivity of autophagy is generally mediated by lipidated ATG8 
and selective autophagy receptors (SARs) (Figure  1B). Lipidated 
ATG8 is the only known protein that decorates the concave surface 
of isolation membranes, which can function as a scaffold for rec-
ognizing selective autophagy substrates. Although some substrates 
are directly recognized by lipidated ATG8, substrate recognition is 
usually mediated by SARs, which interact with lipidated ATG8 using 
LC3-interacting region (LIR)/Atg8-family interacting motif (AIM) and, 
at the same time, interact with the selective substrates, thereby link 
them to isolation membranes for selective sequestration into au-
tophagosomes.11,12 SARs recognize the substrates either directly or 
via polyubiquitin chains attached to the substrates. The former type 
includes organelle-anchored transmembrane proteins, such as NIX/
BNIP3L, BNIP3, and FUNDC1 at the mitochondria and FAM134B/
RETREG1, RTN3, and TEX264 at the ER, which tether each orga-
nelle to isolation membranes for selective sequestration.2 The latter 
type includes p62/SQSTM1, NBR1, optineurin, TAX1BP1, NDP52/
CALCOCO2, and TOLLIP, which mediate selective autophagy of var-
ious targets decorated with polyubiquitin chains, including protein 
aggregates, mitochondria, and invasive microbes.2 Some SARs of the 
latter type possess FIP200 interacting region (FIR) and recruit the 
autophagy-initiating ULK complex, thereby promoting autophago-
some formation in the proximity of selective substrates. Recently, 
p62 was shown to undergo LLPS to form p62 bodies together with 
polyubiquitin chains, which recruit the ULK complex to promote au-
tophagosome formation to sequester themselves.13,14

2  |  AUTOPHAGY AND C ANCER

Since autophagy is a critical regulator of cellular metabolism, it is 
expected to be closely related to cancer. Mutations in ATG genes 
have been reported in human gastric cancers, liver cancers, and neck 
squamous cell carcinomas,15-17 confirming the idea that autophagy 

is directly involved in human cancer. Here we briefly summarize the 
current knowledge on the various roles of autophagy in different 
types and stages of cancers. A recent review has discussed the rela-
tionship between autophagy and antitumor immunity.18

2.1  |  Various roles of autophagy in cancer

The first report on the relationship between autophagy and cancer 
mentioned that BECN1 expression and autophagy activity were re-
duced in breast cancer.19 Consistently, BECN1 heterozygous disrup-
tion in mice resulted in autophagy reduction and a high frequency of 
tumorigenesis.20,21 Following these findings, tumor formation was 
reported in systemic ATG5 mosaic knockout mice and liver-specific 
ATG7 knockout mice.22,23 The findings of these reports helped es-
tablish that autophagy has a role in suppressing tumorigenesis.

While somatic loss of autophagy is associated with tumorigen-
esis, the loss of autophagy suppresses tumor growth in cells ex-
pressing oncogenes, such as KRAS mutants and MMTV-PyMT.24-30 
Furthermore, even when ATG is deleted from tumors once formed, 
tumor growth is suppressed.31 These observations have established 
the concept that autophagy plays a promotive role in cancer growth 
after cells become cancerous, possibly by supplying building blocks 
such as amino acids and nucleosides. In the metastatic stage, the 
role of autophagy becomes complicated. A transplantable MMTV-
PyMT tumor model enabling tamoxifen-inducible deletion of ATGs 
revealed that autophagy has a suppressive role in breast cancer me-
tastasis.32 In contrast, autophagy was proposed to promote metas-
tasis by enhancing resistance to anoikis.33 Thus, autophagy has both 
inhibitory and promotive roles in cancer metastasis.

Although the concept that autophagy, in general, suppresses tu-
morigenesis and promotes tumor growth has been established, there 
exist some conflicting reports. Liver tumors formed by ATG5 defi-
ciency are benign.23 Furthermore, the frequency of ATG gene muta-
tions is not very high in liver cancer.34 Further studies are required 
to determine whether mutations in ATG proteins are actually asso-
ciated with tumorigenesis in human cancer. Furthermore, the role of 
autophagy in tumor growth promotion may not hold in some con-
texts. For example, the deletion of ATGs from KRAS-induced cancer 
cell lines did not result in a significant growth defect.35 Furthermore, 
autophagy promotes tumor growth in pancreatic ductal adenocar-
cinoma (PDAC) but suppresses it under PTEN deficiency.29,36 In 
any case, autophagy might have various roles in different types and 
stages of cancer; therefore, individual studies are required.

2.2  |  Cancer-associated regulation of 
autophagic activity

Findings in mouse models suggest that autophagy deficiency is as-
sociated with tumorigenesis, while complete deficiency prevents 
malignant progression.23 This may reflect the importance of dy-
namic changes in autophagic activity in actual cancer pathogenesis. 
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In support of this perspective, there are many reports on cancer-
associated regulatory mechanisms for autophagy. The most es-
tablished regulator of autophagy is mTORC1. mTORC1 directly 
phosphorylates the ULK complex, which is essential for initiating 
autophagy (Figure  2A).5 Besides autophagy, mTORC1 regulates 
the synthesis of, for instance, proteins, lipids, and nucleotides to 
promote cell proliferation.37 mTORC1 is known to be activated in 
cancer cells; therefore, mTORC1 inhibitors are used as antican-
cer drugs. mTORC1 is tethered to lysosomes by small GTPases 

RAGA/B-RAGC/D and then is allosterically activated by the small 
GTPase RHEB.37 GTP-binding RAGA/B and GDP-binding RAGC/D 
form a heterodimer to activate mTORC1. The nucleotide-binding 
state of RAGA/B proteins is regulated downstream of amino acid 
sensors via GATOR1, whereas the nucleotide-binding state of 
RHEB is regulated via TSC in the downstream of various cellular 
environments, such as growth factors and oxygen (Figure 2A).37 
The two groups of GTPases have distinct roles in mTORC1 regula-
tion, and both positive signals are required for mTORC1 activation. 

F I G U R E  2  Autophagy and cancer. (A) Cancer-associated regulation pathways of autophagic activity. The activity of mTORC1 is directly 
involved in the regulation of autophagy, and its activity is disrupted in many types of cancers. Independent of mTORC1, the PP2A complex 
regulates autophagy by dephosphorylating the ULK complex. Transcriptional regulation of autophagy by TP53 and MiT-TFE family proteins 
is disrupted in cancer cells. (B) Role of autophagic degradation of the p62 body in cancer. The p62 body is an LLPS-related structure 
containing polyubiquitinated proteins, p62, and NBR1. In autophagy-deficient cells, the p62 body accumulates and may trigger cancer 
pathogenesis. In liver cells, accumulated p62 bodies sequestrate and inactivate KEAP1, leading to tumorigenesis through NRF2 activation. In 
MMTV-PyMT–driven breast cancer, accumulated NBR1 in the p62 body induces metastasis via an unknown pathway.
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mTORC1 plays important roles in the cancer-associated regulation 
of autophagic activity.

TP53 is one of the best characterized tumor-suppressor genes, 
which encodes a transcription factor. Wild-type TP53 promotes 
autophagy by regulating transcription of the proteins involving 
mTORC1 signaling, such as TSC2 and AMPK, as well as autoph-
agy genes such as ULK1, ULK2, and ATG7.38 Wild-type TP53 may 
suppress tumors by activating autophagy in response to stresses 
received from the environment, such as starvation or DNA dam-
age. However, some cancer-associated TP53 mutants lose their 
autophagy-promoting ability.38 Since most of the mutations re-
strict the localization of TP53 in the cytoplasm, autophagy induc-
tion by TP53 may be transactivation-dependent. Consistently, the 
R175H and R273H mutants have been shown to reduce trans-
activation of BECN1, ATG12, TSC2, and AMPK. Taken together, 
tumor-suppressive autophagy regulation by TP53 is disrupted under 
cancer-associated mutations.

In PDAC, MiT-TFE family transcription factors may regulate 
autophagy. MiT-TFE family proteins activate the transcription of 
genes with CLEAR sequences in their promoters, including ATG and 
lysosomal genes (Figure  2A).39 MiT-TFE family proteins are phos-
phorylated by mTORC1 and remain in the cytoplasm, and when 
mTORC1 is inactivated, they translocate to the nucleus. One of the 
transcription targets of MiT-TFE family proteins is RAGD, a regu-
lator of mTORC1.37 MiT-TFE protein levels are elevated in renal 
cell carcinoma, melanoma, and PDAC cells, and those cells exhibit 
RAGD-mediated mTORC1 activation.40 Furthermore, in PDAC, MiT-
TFE family proteins accumulate and translocate to the nucleus inde-
pendent of mTORC1 activity.41 For the mechanism, it is known that 
IPO8 induces nuclear translocation of MiT-TFE family proteins in an 
mTORC1-independent manner (Figure 2A).41 These reports suggest 
that autophagy is promoted in PDAC by the MiT-TFE family despite 
the activation of mTORC1.

Protein phosphatase PP2A/PPP2CA, a tumor suppressor, 
is also involved in mTORC1-independent autophagy induction 
in PDAC.42 PP2A is responsible for the dephosphorylation of 
the ULK complex, which is required for autophagy initiation. In 
PDAC cell lines, the PP2A complex has higher phosphatase activ-
ity for the ULK complex. Phosphatase activity of the PP2A com-
plex is suppressed by binding to the inhibitory protein Alpha4/
IGBP1. Importantly, upon starvation, the PP2A complex is disso-
ciated from Alpha4 and is activated independently of mTORC1 
(Figure 2A). Correlatively, starvation conditions induce autophagy 
at higher levels than pharmacological mTORC1 inhibition. These 
observations support the idea that PP2A activates autophagy in 
an mTORC1-independent manner.

2.3  |  Mechanisms for autophagy-related cancer 
pathogenesis

We have discussed the various roles and regulations of autophagy 
in the stages of cancer. More detailed mechanisms for cancer 

pathogenesis and autophagy have also been extensively stud-
ied. p62-mediated signaling is the best characterized mechanism 
for autophagy-related tumorigenesis.43 p62 forms LLPS-related 
structures in the cell through its self-interactions and binding to 
polyubiquitin chains, which are called p62 bodies.44 In autophagy-
deficient cells, p62 is accumulated and phosphorylated.45 
Phosphorylated p62 at S349 binds to the cytoplasmic E3 ubiquitin 
ligase KEAP1, which is responsible for ubiquitination of the tran-
scription factor NRF2 for proteasomal degradation (Figure  2B). 
Phosphorylated p62 sequestrates KEAP1 into the p62 body and 
inactivates it, resulting in the activation of NRF2 by preventing 
its proteasomal degradation.22 Activated NRF2 contributes to cell 
survival and proliferation by promoting the transcription of genes 
involved in the oxidative stress response and in glucose and glu-
tamine metabolism, leading to tumorigenesis.46 p62 accumulation 
is an essential step of this pathway because intracellular ubiquitin-
positive aggregates and the sizes of liver tumors in autophagy-
deficient mice are reduced by the simultaneous deletion of p62.23 
Therefore, autophagy suppresses tumorigenesis via constitutive 
degradation of p62 in the liver.

Selective autophagy is also thought to be involved in the me-
tastasis phase. NBR1, a homolog of p62, interacts with p62 and 
polyubiquitin chains and is included in the p62 body.47,48 In a trans-
plantable MMTV-PyMT-induced breast cancer model, autophagy 
deficiency caused NBR1 accumulation that promoted metastasis 
(Figure 2B).32,49 Consistently, the metastasis promoted by autoph-
agy deficiency was significantly suppressed by the simultaneous de-
letion of NBR1.32 However, the mechanism is largely unknown and 
requires further assessment. Accordingly, degradation of the p62 
body by selective autophagy plays an important role in tumorigene-
sis and metastasis.

As described above, autophagy has a promotive role in tumor 
growth. One of the reasons is that autophagy provides cells with 
degradation products, such as amino acids, as nutrients. In general, 
cancer cells show increased bioenergetic and biosynthetic demand. 
Furthermore, developed cancer shows hypoxia that is caused by 
an imbalance between oxygen delivery and oxygen consumption. 
Autophagy may supply nutrients to cancers by releasing degrada-
tion products to the cytoplasm.50 Consistently, autophagic activity 
is increased by mTORC1 inhibition during hypoxia (Figure  2A).51 
Furthermore, in autophagy-deficient, KRAS-transformed tumor 
cells, levels of TCA metabolites and mitochondrial respiration are not 
maintained during starvation.28 Taken together, cancer cells seem to 
rely on autophagy for nutrients during the proliferation step. This 
condition is often referred to as “autophagy addiction.”28 Notably, 
it has been reported that autophagy is dispensable for KRAS-driven 
tumor growth, suggesting that it depends on the type and stage of 
cancer.35

In summary, autophagy changes its role as the cancer progresses. 
Therefore, pharmacological modulation of autophagic activity at 
the right time could be a new therapeutic strategy against cancer. 
Currently, drug development to achieve this is underway at the clin-
ical level, with information provided below.



2704  |    HAMA et al.

3  |  C ANCER TRE ATMENT BY DE VELOPING 
AUTOPHAGY INHIBITORS

3.1  |  Current status of the application of autophagy 
inhibitors in clinical trials

The development of autophagy inhibitors has been an important 
step in obtaining powerful tools for the mechanistic study of au-
tophagy and for the advancement of novel therapeutic agents 
targeting autophagy. The discoveries of representative autophagy 

inhibitors, such as 3-methyladenine52 and Wortmannin,53 a PI3K in-
hibitors, and Bafilomycin A1,54 a vacuolar H + -ATPases (V-ATPases) 
inhibitor, have accumulated a large body of knowledge on the rela-
tionship between autophagy and cancer. However, these inhibitors 
have significant side effects that cannot be ignored, making their ap-
plication in clinical trials difficult. The only exception is chloroquine 
(CQ) and its analog hydroxychloroquine (HCQ), which have been 
used in most current clinical trials (Table 1), although it was reported 
that the anti-tumor growth effect of chloroquine might be unrelated 
to its inhibitory effect on autophagy.35

TA B L E  1  Phase II clinical trials of autophagy inhibition for cancer therapy

Conditions Interventions
Number 
enrolled Comment NCT number Reference

Hepatocellular cancer Sorafenib HCQ 68 Response rate increased from 2% to 
25%.

NCT03037437 62

Non-small cell lung cancer 
advanced non-small cell 
lung cancer recurrent 
non-small cell lung cancer

Paclitaxel 
Carboplatin 
HCQ 
Bevacizumab

32 The objective response rate (ORR) and 
total clinical benefit rate were 47% 
and 68%, respectively.

NCT01649947 61

Colorectal cancer Vorinostat 
Regorafenib 
HCQ

44 Showed good tolerability and 
improved anti-tumor immunity

NCT02316340 58

Rectal cancer colon 
cancer metastasis 
adenocarcinoma

HCQ Oxaliplatin 
Leucovorin 
5-fluorouracil 
Bevacizumab

50 The ORR was 68% with an 11% 
complete response (CR) rate.

NCT01206530 63

Pancreatic cancer Gemcitabine 
Abraxane HCQ

104 Evans grade histopathologic response 
was statistically improved 
(p = 0.00016).

NCT01978184 59

Metastatic clear cell renal cell 
carcinoma

HCQ RAD001 40 Disease control [stable disease + partial 
response (PR)] occurred in 22 of 33 
(67%) evaluable patients.

NCT01510119 60

Prostate cancer HCQ 64 Minimal toxicity and some activity in 
prostate-specific antigen (PSA) 
progression after local treatment

NCT00726596 64

Carcinoma, intraductal, 
noninfiltrating DCIS 
ductal carcinoma in situ

CQ Standard Dose 
(500 mg/week) 
CQ Low dose 
(250 mg/week) 
Procedure: 
Breast Biopsy

12 PCNA proliferation index of DCIS 
lesions was reduced compared to 
untreated controls (p = 0.001).

NCT01023477 65

Advanced BRAF mutant 
melanoma

HCQ Trametinib 
2 mg daily 
dabrafenib 
150 mg orally 
twice a day

50 Showed high tolerability and response 
rate (RR), but failed to meet 
success criteria for 1-year PFS rate.

NCT02257424 66

Advanced adenocarcinoma 
metastatic 
adenocarcinoma

HCQ Abraxane 
Gemcitabine

119 Overall survival at 12 months, the 
primary endpoint, was not 
improved.

NCT01506973 67

Brain and central nervous 
system tumors

HCQ TMZ RT 92 RT and TMZ combined with HCQ 
(600 mg/d, dose-limiting toxicity) 
did not consistently achieve 
autophagy inhibition, nor was 
significant improvement in overall 
survival observed.

NCT00486603 68

Abbreviations: CQ, chloroquine; HCQ, hydroxychloroquine; RAD001, Everolimus; RT, Radiation; TMZ, temozolomide.
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In the cytoplasm, CQ exists in a nonprotonated state that allows 
it to diffuse freely across the plasma membrane and organelle mem-
brane, while in acidic compartments, such as lysosomes, it is pro-
tonated, significantly inhibiting its diffusion into the cytoplasm. The 
intralysosomal enrichment of CQ due to its lysosomotropic proper-
ties is thought to cause osmotic pressure and membrane damage in 
lysosomes, which can, in turn, inhibit the degradation of autophagic 
substrates in lysosomes.55,56 CQ is already being widely used as an 
antimalarial agent, and its tolerability is known to be high, making 
its application in clinical trials feasible.57 CQ and HCQ have shown 
efficacy against cancers of various tissues in phase II clinical trials 
(Table 1). Several phase II clinical trials have shown that CQ/HCQ, 
in combination with conventional chemotherapy, such as sorafenib, 
FOLFOX, and bevacizumab (Avastin), amplifies anticancer activi-
ty.58-63 In some tumor tissues, such as prostate cancer and ductal 
carcinoma, CQ/HCQ alone has improved symptoms, indicating 
the importance of antiautophagy therapy in cancer treatment.64,65 
However, for highly malignant tumors, such as advanced BRAF-
mutant melanoma and advanced adenocarcinoma, the enhancement 
of anticancer activity by HCQ has been reported to be partial.66,67 
Furthermore, for brain and central nervous system tumors, autoph-
agy inhibition requires high doses of HCQ, and 600 mg/day of HCQ 
with no dose-limiting toxicity likely does not provide sufficient auto-
phagy inhibition. No significant improvement in overall survival has 
been observed.68 This raises the challenge of developing molecules 
that inhibit autophagy more potently and with less toxicity than 
HCQ in some tumor tissues.

3.2  |  Development of inhibitors targeting 
autophagy-related proteins

The results of clinical trials involving CQ/HCQ have demonstrated 
the importance of antiautophagy therapy. Since mid-2010s, sev-
eral molecules that inhibit autophagy directly with high speci-
ficity have been developed, and they target autophagy-related 
enzymes such as ULK1/ULK2, VPS34, ATG7, and ATG4A/ATG4B 
(Table  2).69-84 In the 2020s, molecules that inhibit the protein–
protein interaction (PPI) of autophagy-related proteins have 
been developed as highly specific autophagy inhibitors, including 
SUPR4B1W that targets ATG4B-LC3 PPI, which was identified 
by scanning unnatural protease-resistant mRNA display85; sta-
ple peptides that target ATG5-ATG16L1 PPI, which was designed 
from the crystal structure of the ATG5–ATG16L1 complex86; and 
a compound that inhibits BECN1–ATG14 PPI without affecting the 
Beclin1–UVRAG interaction.87 The development of these more 
specific autophagy inhibitors is important for developing more ef-
fective and less adverse antitumor drugs. However, they are not 
yet undergoing clinical trials.
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TA B L E  2  Inhibitors targeting autophagy-related factors.

Targeted ATG Compound IC50 Reference

ULK1/ULK2 SBI-0206965 108 nM/711 nM 69

MRT67307 45 nM/38 nM 70

MRT68921 2.9 nM/1.1 nM

Compound 6 8 nM/− 71

ULK-100 1.6 nM/2.6 nM 72

ULK-101 8.3 nM/30 nM

VPS34 SAR405 1.2 nM 73

VPS34-IN1 25 nM 74

PIK-III 18 nM 75

Compound 31 2 nM 76

SB02024 14 nM 77

ATG7 Compound 18 48 nM 78

Compound 19 52 nM

Compound 37 62 nM

Atg4A/Atg4B NSC185058 −/50 μM 79

Tioconazol 1.3 μM/1.8 μM 80

LV320 35.5 μM/24.5 μM 81

S130 7.11 μM/3.24 μM 82

FMK-9a −/80 nM 83

UAMC-2526 −/− 84

ATG4B-LC3 
PPI

SUPR4B1W 120 nM (KD) 85

ATG5-
ATG16L1 
PPI

Peptide 10 12 nM (KD) 86

Beclin1-
ATG14L 
PPI

Cmpound 19 33.9 uM 87

Note: (−): not applicable, not available.
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