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Abstract

The use of omic modalities to dissect the molecular underpinnings of common diseases and 

traits has become pervasive. Yet, multi-omic traits can be genetically predicted, enabling highly 

cost-effective and powerful analyses for studies which do not have multi-omics1. Here, we 

utilised a large cohort (INTERVAL2; N=50,000 participants) with extensive multi-omic data for 

plasma proteomics (SomaScan, N=3,175; Olink, N=4,822), plasma metabolomics (Metabolon 

HD4, N=8,153), serum metabolomics (Nightingale, N=37,359), and whole blood Illumina 

RNA sequencing (N=4,136). We used machine learning to train genetic scores for 17,227 

molecular traits, including 10,521 which reached Bonferroni-adjusted significance. We evaluated 

genetic score performances in external validation across European, Asian and African American 

ancestries. We demonstrated the utility of these multi-omic genetic scores by quantifying the 

genetic control of biological pathways and by generating a synthetic multi-omic dataset of UK 

Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series 

of biological insights regarding genetic mechanisms in metabolism and canonical pathway 

associations with disease, e.g. JAK-STAT signalling and coronary atherosclerosis. Finally, we 

developed a portal (OmicsPred.org) to facilitate public access to all genetic scores and validation 

results as well as to serve as a platform for future extensions and enhancements of multi-omic 

genetic scores.

Introduction

Multi-omic analysis has become a powerful approach to predict disease and dissect its 

underlying biology. However, the collection of transcriptomic, proteomic, metabolomic 

and other modalities is an extremely expensive and time-consuming process. Because of 

these barriers, large-scale population cohorts typically generate multi-omic data for only 

a subset of participants (or not at all), which consequently reduces statistical power and 

creates inequities for studies without ample resources, particularly in underrepresented 

demographics.

Genetic prediction of complex human traits can have both analytic validity and potential 

clinical utility4-7. Genetic prediction has been extended to omics data, e.g. whole blood8 and 

multi-tissue transcriptomics9 as well as plasma proteomics10. Genetically-predicted traits 

can elucidate the molecular aetiology of common diseases, incorporating both directionality 

(the germline genome is fixed over the life course) and the power of large-scale genotyped 

biobanks to overcome prediction noise11,12.

Genetic scores which predict, expand and thereby democratize multi-omics data are of 

intense interest. Genetic prediction in this area has historically focused on gene expression, 

drawing on heterogeneous sources for training data with limited sample sizes. With many 

cohorts now performing multi-omics at scale, there is a unique opportunity to greatly expand 

and enhance these genetic scores. Given robust external validation, the reliability of multi-
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omic genetic scores can be quantified and extended to analyses assessing transferability 

across ancestries, thus facilitating equitable tools for molecular investigation in diverse 

populations. This approach both facilitates integrative cross-cohort, multi-omic analyses and 

enables efficient generation of synthetic multi-omic data for studies with only genetic data.

Here, we utilise the INTERVAL study2, a cohort of UK blood donors with extensive 

multi-omic profiling, to train genetic prediction models. We externally validated these 

genetic scores in seven external studies, comprising European, East Asian, South Asian 

and African American ancestries. We then demonstrate the use of genetically-predicted 

molecular data, including coverage of biological pathways and the identification of multi-

omic predictors of diseases and traits in the UK Biobank. Finally, we construct an 

open resource (OmicsPred.org) which makes all genetic scores, validations and biomarker 

analyses freely available to the wider community.

Results

Development of genetic scores

We developed genetic scores for blood RNA transcripts, proteins, and metabolites (Extended 

Data Fig. 1). We utilised INTERVAL which collected participant serum or plasma on 

which assays from five omics platforms were performed: SomaScan v3 (SomaLogic Inc., 

Boulder, Colorado, US), an aptamer-based multiplex protein assay; Olink Target (Olink 

Proteomics Inc., Uppsala, Sweden), an antibody-based proximity extension assay for 

proteins; Metabolon HD4 (Metabolon Inc., Durham, US), an untargeted mass spectrometry 

metabolomics platform; Nightingale (Nightingale Health Plc., Helsinki, Finland), a proton 

nuclear magnetic resonance (NMR) spectroscopy platform; and whole blood RNA 

sequencing via the Illumina NovaSeq 6000 (Illumina Inc., San Diego, California, US) 

(Methods). INTERVAL participants were genotyped on the Affymetrix Biobank Axiom 

array and imputed using a combined 1000 Genomes Phase 3-UK10K reference panel 

(Methods). After quality control, 10,572,788 genetic variants were available.

To train genetic scores, we utilised Bayesian ridge regression (BR) as it has been shown 

to be a powerful and robust approach for genetic prediction7 which is also computationally 

scalable to the number of traits analysed here (Methods), thus controlling carbon footprint13. 

We confirmed generalisability across multiple platforms, assessing the impact of different 

variant filtering strategies (Methods; Supplementary Fig. 1-4, Extended Data Fig. 2). 

Overall, we found the best performing approach was BR with genome-wide variant selection 

using p-value < 5×10−8 (Supplementary Fig. 1-4, Extended Data Fig. 2).

We developed genetic scores for 17,227 biomolecular traits from the five platforms, 

including 726 metabolites (Metabolon HD4), 141 metabolic traits (Nightingale), 308 

proteins measured by Olink, 2,384 proteins measured by SomaScan, and 13,668 genes 

from Illumina RNAseq (Ensembl gene-level counts) (Methods). Across all platforms, we 

found wide variation in the predictive value (R2 between genetically predicted and directly 

measured biomolecular trait) and the number of variants in the genetic scores in internal 

validation (Extended Data Fig. 3, Supplementary Fig. 5).
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We found 10,522 biomolecular traits could be genetically predicted at Bonferroni-adjusted 

significance (correcting for all genetic scores tested), including those for SomaScan (1,052 

traits), Olink (206), Metabolon (379), Nightingale (137) and RNAseq (8,748). Of these, 

5,816 and 409 genetic scores had R2 > 0.1 and R2 > 0.5, respectively (Fig. 1 and 

Supplementary Tables 1-5)

Genetic scores comprised one to 1,862 genetic variants, with 58% including variants from a 

single LD block, 40% spanning 2-5 LD blocks and 2% spanning 5 or more LD blocks14. As 

expected for gene and protein scores, the contribution from genetic variants in cis exceeded 

that in trans. For 89% of these omics traits, cis signals (within 1Mb of the transcription start 

site) contributed most to the genetic score R2 with the remaining dominated by trans signals. 

We also compared the gain in R2 of a genetic score to the top single variant (the one with 

greatest weight) for omic traits in internal validation and found that genetic scores had a 

median R2 that was 3.1-fold higher than the top variant. As expected, R2 gain (1.7-fold) was 

smaller for scores with 5 variants or less.

Validation in European ancestries

We performed external validation of SomaScan proteins in the FENLAND study15; Olink 

proteins in the Northern Swedish Population Health Study (NSPHS)16 and the Orkney 

Complex Disease Study (ORCADES)17; Metabolon metabolites in ORCADES; Nightingale 

metabolic traits in UK Biobank (UKB)3, Viking Health Study Shetland (VIKING)18 and 

ORCADES studies (Extended Data Fig. 1 and Extended Data Table 1). For Metabolon 

and RNAseq, we performed further validation in withheld sets of INTERVAL (Methods). 

Overall, we found performance of most genetic scores were consistent between internal and 

external validation in European ancestries (Fig. 2, Extended Data Fig. 4 and Supplementary 

Fig. 6-10). As expected, we found that genetic scores with high variant missingness rates 

had attenuated power (Extended Data Fig. 5).

SomaScan quantified 3,622 plasma proteins in INTERVAL, of which 2,384 proteins had 

at least one significant genetic variant that could be used for genetic score development 

(Methods; Extended Data Fig. 3). Internal validation found SomaScan genetic scores 

had median R2 = 0.04 (IQR = 0.08). Most SomaScan genetic scores (89%; N=2,129) 

could be tested for external validation in the FENLAND study15. Overall, there was high 

consistency between internal and external R performance (Fig. 2). We metricised validation 

performance using the slope (λ) of the line of best fit between internal and external R2. 

For FENLAND, λ was 0.99. Of the 2,129 externally tested SomaScan genetic scores, we 

found 45 proteins (2%) with a majority of their variance explained (R2 0.50) by the genetic 

score, including several with R2 0.70 involved in innate and adaptive immune responses 

(CLEC12A, SIGLEC9, FCGR2A, FCGR2B and LILRB5). 369 SomaScan proteins (17%) 

could be genetically predicted with R2 > 0.10 in external validation.

Olink proteomics in INTERVAL quantified levels of 368 plasma proteins from four panels 

(Inflammation, Cardiovascular 2, Cardiovascular 3, Neurology), of which 308 unique 

proteins qualified for genetic score development (Methods). Internal validation found that 

Olink genetic scores had median R2 = 0.06 (IQR = 0.12). We were able to test 302 and 301 

genetic scores in external European ancestry cohorts, NSPHS (λ = 1.03) and ORCADES (λ 
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= 0.70) respectively (Methods; Fig. 2). In both external validation cohorts, we found four 

proteins (FCGR2B, IL6R, MDGA1, SIRPA) with a majority of their variance explained (R2 

> 0.50) by the genetic score (Fig. 2). As compared to SomaScan, a larger proportion of 

Olink proteins in NSPHS (N=117; 39%) and ORCADES (N=87; 29%) could be genetically 

predicted with R2 > 0.10. Overall, we found consistency between validations in NSPHS and 

ORCADES (Supplementary Fig. 11).

Metabolon HD4 quantifies >900 plasma metabolites and was used here in two phases 

of the INTERVAL study (Methods). Phase 1 (N=8,153) was used for development and 

internal validation of Metabolon genetic scores and phase 2 (N=8,114) was used for external 

validation (no individuals overlapping between phases). We conducted further external 

validation in ORCADES. Internal validation found that Metabolon genetic scores had 

median R2 = 0.02 (IQR = 0.05). A total of 726 Metabolon metabolites had significant 

genetic variants with which to construct genetic scores in INTERVAL, of which 527 and 455 

metabolites (399 overlapping) could be externally validated in the phase 2 set (λ = 0.84) 

and ORCADES (λ = 0.73), respectively (Fig. 2). We again found broad consistency between 

the two external validation sets (Supplementary Fig. 11). There were no Metabolon genetic 

scores with R2 > 0.50 in either the phase 2 set or ORCADES; however, 6 metabolites had 

R2 > 0.3 in both the phase 2 set and ORCADES (4 metabolites overlapping). Of metabolites 

that could be externally validated, 10% and 13% (N=50 and N=59) achieved R2 > 0.10 in 

the phase 2 set and ORCADES, respectively. The top performing genetic scores included 

ethylmalonate (phase 2 set R2 = 0.43; ORCADES R2 = 0.33), N-acetylcitrulline (both 

phase 2 set and ORCADES R2 = 0.38) and androsterone sulfate (phase 2 set R2 = 0.35; 

ORCADES R2 = 0.17).

Nightingale NMR was used to quantify 230 serum metabolic biomarkers from 45,928 

INTERVAL participants. Our analyses focused on directly measured (non-derived) 

metabolic biomarkers, and genetic scores for 141 Nightingale biomarkers were developed 

using INTERVAL (Methods). Internal validation found Nightingale genetic scores had 

median R2 = 0.07 (IQR = 0.03). Genetic scores were externally validated in UKB, 

ORCADES and VIKING with λ values of 0.62, 0.70 and 0.49, respectively (Fig. 2). Overall, 

genetic scores for Nightingale explained somewhat less variation in directly measured traits 

compared to other platforms (Fig. 2, Extended Data Fig. 4). Across UKB, ORCADES and 

VIKING, 27 Nightingale metabolic biomarkers had an R2 > 0.10 in at least one external 

validation cohort, with no biomarkers having R2 > 0.30. However, Nightingale genetic 

scores performed consistently across cohorts, with the same mean R2 for all 141 Nightingale 

biomarkers of 0.06 across the three external cohorts. The most predictive genetic scores 

were related to low-density lipoprotein (LDL), e.g. concentrations of cholesteryl esters in 

small LDL, cholesterol in small LDL, cholesteryl esters in medium LDL, cholesterol in 

medium LDL and LDL cholesterol (Supplementary Table 2).

Whole blood RNAseq from 4,778 individuals in INTERVAL was performed using Illumina 

NovaSeq (Methods). While 4,136 individuals were used to develop and test genetic scores, 

598 individuals were kept as a withheld set for validation. INTERVAL RNAseq data allowed 

for the construction of genetic scores using both cis and trans eQTLs for 13,668 genes, 

of which 12,958 (95%) could be assessed in the withheld validation set (Fig. 2). Internal 
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validation found that RNAseq genetic scores had median R2 = 0.06 (IQR = 0.13). Overall, 

we found strong correlation of R2 between the internal and withheld validation sets (λ = 

0.84). There were 141 genes with R2 > 0.50 in the withheld validation set, and 798 genes 

with R2 > 0.30. The most predictive genes were those involved in proteolysis (RNPEP; R2 = 

0.71), solute cotransport (SLC12A7; R2 = 0.72), RNA helicase activity (DDX11; R2 = 0.71) 

and spliceosome function (U2AF1; R2 = 0.72).

Transferability of genetic scores

To assess the performance of the genetic scores developed in the predominantly-European 

INTERVAL cohort in non-European ancestries, we utilised the Singapore Multi-Ethnic 

Cohort (MEC)19 and the Jackson Heart Study (JHS)20. MEC data comprised individuals of 

Chinese, Indian and Malay populations with matched genotypes, plasma Nightingale NMR 

and plasma SomaScan, and the JHS comprised African Americans with matched genotypes 

and plasma SomaScan (Extended Data Table 1; Methods).

Overall, we found that genetic scores developed in INTERVAL could predict Nightingale 

and SomaScan trait levels in Asian and African American ancestries, but as expected their 

performances were significantly reduced when compared to European ancestries (Fig. 3 and 

Extended Data Fig. 6). For Nightingale, genetic score performance in external validation 

generally declined from European ancestries (λ=0.62 in UKB) to MEC Chinese (λ=0.41) 

to MEC Indian (λ=0.35) to MEC Malay (λ=0.15) ancestries (Fig. 2, 3a and Supplementary 

Fig. 12). However, of the 138 genetic scores statistically significant (nominal p-value < 0.05) 

in the UKB validation, nearly all were significantly predictive in Chinese (133), Indian (132) 

and Malay (134) ancestries (Supplementary Table 2). Genetic scores for LDL subclasses 

displayed some of the most variable cross-ancestry R2 (Fig. 3b). The most consistently 

transferrable Nightingale genetic scores were levels of triglycerides, either in total or the 

triglycerides in LDL, large LDL or medium HDL, and the degree of phosphatidylcholines 

(Fig. 3b)

Transferability of SomaScan genetic scores was substantially greater than Nightingale (Fig. 

3c). The λ for SomaScan in European ancestries (FENLAND) was 0.99 as compared 

to 0.75, 0.68, 0.66 and 0.51 in MEC Indian, MEC Malay, MEC Chinese and JHS 

African American ancestries, respectively (Fig. 2, 3c and Supplementary Fig. 13). There 

were 1,309 genetic scores statistically significant in FENLAND external validation, which 

decreased to 935, 893, 806 and 451 in MEC Indian, MEC Malay, MEC Chinese and 

JHS African American ancestries, respectively (Supplementary Table 4). The SomaScan 

genetic scores that attenuated most in non-European ancestries were those for CD177 (a 

cell-surface protein on neutrophils and Treg's) and LEPR (leptin receptor) (Fig. 3d). The 

most transferable SomaScan genetic scores included SIGLEC9 (which mediates sialic-acid 

binding to cells), SIRPA (a cell surface receptor for CD47 involved in signal transduction) 

and ACP1 (an acid and protein tyrosine phosphatase), with all internal and external 

validation R2 > 0.50 (Fig. 3d). Given MEC's longitudinal sampling, we further assessed 

the longitudinal stability of Nightingale and SomaScan genetic scores across ancestries, 

finding strong consistency of genetic score performance over a mean of 6.3 years (Methods 

and Extended Data Fig. 7).
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Genetic control of biological pathways

Multi-omic genetic scores may be used to probe the relevance of a biological pathway to 

a particular trait or disease. To assess coverage of biological pathways by the proteomic 

genetic scores we present here, we applied genetic scores for SomaScan and Olink to assess 

the extent to which pathways are genetically controlled (Methods). Here, we considered 

all genetic scores with R2 > 0.01 in internal validation (2,205 unique proteins) and jointly 

mapped the SomaScan and Olink scores onto data curated from Reactome21 (Fig. 4a, 

Extended Data Fig. 8).

We found wide variation amongst the 27 super-pathways with some super-pathways under 

relatively little genetic control (e.g. chromatic organisation, or transport of small molecules) 

and others under substantially greater genetic control (e.g. digestion and absorption, or 

extracellular matrix organisation) (Fig. 4a). Approximately 18% of proteins in the digestion 

and absorption super-pathway had internal validation R2 > 0.10, and ~4% with R2 > 0.30. 

For the lowest-level pathway annotation (N=1,717) of the 27 super-pathways, we found 

that a majority (N=1,169, 68%) were covered by at least one SomaScan or Olink genetic 

score with an internal validation R2 > 0.01 (Extended Data Fig. 8). For both the digestion 

and absorption and the extracellular matrix organisation super-pathways, 25% and 42%, 

respectively, of lowest-level pathway annotations were covered by at least one SomaScan or 

Olink genetic score with internal R2 > 0.30.

Phenome-wide association analysis

We next generated genetically-predicted Metabolon, Nightingale, Olink, SomaScan and 

whole blood RNAseq data for the UK Biobank (Methods). Using these predicted multi-

omics data of UKB, we performed a phenome-wide association study using PheCodes22 

(ICD-9 and ICD-10 based diagnosis codes collapsed into hierarchical clinical disease 

groups; Methods). For simplicity and to maximize the number of qualified PheCodes, we 

focused the analysis on UKB individuals of white British ancestry. Multiple testing was 

controlled using Benjamini-Hochberg FDR of 5% (Methods).

At an FDR 5%, we identified 18,404 associations between genetic scores for the multi-omic 

traits and 18 categories of PheCodes (Fig. 4b). These associations comprised 1,668 for 

Metabolon HD4, 2,854 for Nightingale NMR, 740 for Olink, 5,501 for SomaScan and 7,641 

for RNAseq (Supplementary Tables 6-7). Circulatory system diseases, endocrine/metabolic 

and digestive diseases yielded the largest number of associations across platforms (Fig. 4b).

PheWAS detected many known blood biomarkers as well as intriguing associations. For 

example, total cholesterol was significantly associated with myocardial infarction (HR 

= 1.13 per s.d., FDR-corrected p-value = 1×10−61). Interleukin-6 (IL-6) pathways have 

been shown to have a causal association with coronary artery disease23, and notably, IL-6 

receptor genetic scores in SomaScan and Olink had R2 > 0.50 in both internal and external 

validation, showing high genetic predictability. Genetically predicted levels of IL-6 receptor 

in both Olink and SomaScan were significantly associated with myocardial infarction (HR 

= 0.97 per s.d., FDR-corrected p-value = 2×10−4; HR = 0.97 per s.d., FDR-corrected 

p-value = 4×10−4, respectively). Microseminoprotein-beta has been identified as a biomarker 
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for prostate cancer24 and PheWAS findings support this association (HR = 0.87 per s.d., 

FDR-corrected p-value = 3×10−49). Genetically predicted Sex Hormone-Binding Globulin 

(SHBG) protein was associated with type 2 diabetes (HR = 0.98 per s.d., FDR-corrected 

p-value = 0.03), consistent with previous observational and genetic analyses25. Similarly, 

we found associations for insulin signaling pathway related proteins, e.g. insulin receptor 

(INSR) and insulin-like growth factor 1 receptor (IGF1R), with type 2 diabetes26; ABO27 

with type 2 diabetes; IL-6 with asthma28; and HLA-DQA1/DQB1 with celiac disease29 

(Supplementary Table 6).

Our results validate those of a recent study identifying putative causal plasma protein 

mediators between polygenic risk and incident cardiometabolic disease4, including six novel 

putatively causal associations for coronary artery disease (Supplementary Table 6). Amongst 

the strongest signals, we found intriguing associations including chronic pericarditis (N=266 

cases) with genetically-predicted gene expression of phospholipase NAPEPLD (HR = 0.88 

per s.d., FDR-corrected p-value < 1×10−307) and rhesus isoimmunization in pregnancy 

(N=302 cases) with genetically-predicted protein levels of ICAM4 (HR = 0.19 per s.d., 

FDR-corrected p-value = 3×10−93). ICAM4 is critical to the Landsteiner-Weiner blood 

system, which is genetically independent of the rhesus factor (Rh) blood group system. 

Despite the ICAM4 locus showing no significant association with rhesus isoimmunization 

in pregnancy (PheWeb30), our ICAM4 results demonstrate that genetic prediction of plasma 

proteins can identify biologically plausible candidate associations.

Biological insights

Here, we highlight a series of five findings which inform putative genetic mechanisms 

and pathophysiology with multi-omic genetic scores. The first three of which investigate 

metabolic mechanisms of relatively simple genetic scores for Metabolon traits, and the latter 

two comprise the integration of genetic scores across multiple omics to uncover pathway 

insights into disease biology.

The genetic score for histidine (Metabolon) consisted of three variants, two of which 

(rs61937878, rs117991621) are in the coding region of HAL, which encodes the enzymatic 

catalyst for the first reaction in histidine catabolism. We found that rs61937878 is also the 

sole variant in the genetic score for gamma-glutamylhistidine. Gamma-glutamylhistidine can 

be formed from the condensation of histidine and glutamate, thus we hypothesise that this 

genetic variant in HAL changes levels of gamma-glutamylhistidine by modulating histidine 

availability.

The 2-methylbutyrylcamitine (Metabolon) genetic score contained five variants, including 

rs11753995 which is located within SLC22A1, encoding a transmembrane transporter of 

2-methylbutyrylcarnitine and other acyl-carnitines31. Notably, two variants (rs200800380 

and rs274555) in this genetic score are located in SLC22A4 and SLC22A5, respectively, 

which are involved in carnitine transport32. The 2-methylbutyrylcarnitine genetic score 

also harbours an intronic variant (rs4128783) which maps to the gene encoding Acyl-CoA 

Dehydrogenase Short/Branched Chain (ACADSB). ACADSB catalyses the dehydrogenation 

of 2-methylbutyryl-CoA. Because 2-methylbutyrylcarnitine is produced by transferring the 

acyl chain from 2-methylbutyryl-CoA to carnitine, these genetic variants (rs200800380, 
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rs274555 and rs4128783) may influence levels of 2-methylbutyrylcarnitine by modulating 

the availability of substrates.

The genetic score for DSGEGDFXAEGGGVR (Metabolon) contained a single variant 

(rs567455090) intronic to SLC9A1. Notably, SLC9A1 is a transmembrane exchanger of 

Na+/H+ which regulates the pH and volume of platelets and plays a significant role in their 

activation33. Activated platelets secrete α-granules of thrombin precursor (prothombin) and 

fibrinogen. DSGEGDFXAEGGGVR is a peptide derived from the cleavage of fibrinogen by 

thrombin34; thus, rs567455090 may modulate the function and activation of platelets which, 

in turn, change levels of DSGEGDFXAEGGGVR.

Our PheWAS in UK Biobank identified a series of gene transcripts and proteins in the 

JAK-STAT signalling pathway as associated with coronary artery disease risk (Fig. 5a-b). 

JAK-STAT regulates cellular proliferation, differentiation, and apoptosis and also plays a 

role in modulating inflammation. SomaScan levels of AKT2 and CTF1 and transcript levels 

of STAT1 were associated with increased risk of CAD, consistent with the anti-atherogenic 

effects of targeting these genes in murine hypocholesterolemia models35-37. Transcript 

levels of PIM1 and CISH1, which inhibit the JAK-STAT pathway38,39, were associated 

with decreased CAD risk. We further found that levels of IL-6 (Olink) and the IL-6R 

(Olink and SomaScan) were associated with CAD. Consistent with our findings, circulating 

IL-6 is a well-established biomarker of CAD and IL-6/IL-6R signalling has been shown 

to have a putative causal effect on CAD23. Our PheWAS supports the investigation of 

inhibitors of JAK-STAT, which are clinically approved for chronic inflammatory disorders, 

as repositioning candidates against CAD40.

We also identified transcripts and proteins involved in Wnt signalling (Fig. 5c-e) as 

associated with hypothyroidism. Notably, there is a well-established crosstalk between 

Wnt and thyroid hormone signalling: thyroid hormone nuclear receptors can modulate the 

expression, stability and localisation of proteins of the Wnt pathway whereas the latter 

modulates thyroid hormone activity by regulating expression of deiodinases41, enzymes that 

regulate thyroid hormones. Furthermore, Wnt signalling is active in thyroid cells42 and is 

thought to contribute to thyroid homeostasis43. In this regard, pharmacological activation 

of Wnt has been shown to impair thyroid development in zebrafish44 and a risk allele for 

congenital hypothyroidism has been identified within enhancer regions of two Wnt pathway 

genes45. We also found the genetic score for USP25 (SomaScan) was associated with 

decreased risk of hypothyroidism. USP25 is a deubiquitinating enzyme that can activate Wnt 

by stabilising TNKS146. USP25 also modulates inflammatory responses47, contributes to 

metabolic adaptation to hypoxia48 and inhibits degradation of abnormal proteins49. Notably, 

we found USP25 was also associated with a wide range of diseases, including psoriasis, 

type 1 diabetes, sicca syndrome, bronchiectasis, polymyalgia rheumatica, nasal polyps, and 

systemic sclerosis, making USP25 an intriguing biomarker and potential therapeutic target.

The OmicsPred Portal

We developed an online portal (OmicsPred.org) to facilitate open dissemination of the 

genetic scores, detailed validation results and visualisations. OmicsPred also serves as an 

online updatable resource, which allows future expansion and deepening of the omics 
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platforms, multi-ancestry transferability, newly developed and more powerful genetic scores, 

as well as results from its applications (Extended Data Fig. 9).

The portal presents genetic scores of multi-omic traits by platform, in which users can 

access summary statistics of the training and validation cohorts as well as download the 

corresponding model files for genetic scores (i.e. variants and weights). Users can visualise 

validation results by selected performance metrics (e.g. R2 or Spearman's rho) and cohort(s), 

together with detailed trait and validation information. Users can easily search the portal 

to find multi-omic traits of interest, either by name or related descriptions. OmicsPred also 

hosts descriptions and summary results from applications of the genetic scores (e.g. the 

PheWAS above). OmicsPred also serves as a central resource to which users can submit their 

multi-omic genetic scores so they can be openly distributed to the community.

Discussion

Here, we developed genetic scores for >17,000 multi-omic traits across five platforms 

covering proteomics, metabolomics and transcriptomics. The relative predictive values and 

robustness of the genetic scores were assessed in external validations of European, Asian 

and African American ancestries; longitudinal stabilities of the genetic score performances 

were established across ancestries; and the utility of the multi-omic genetic scores was 

demonstrated by elucidating the relative genetic control of biological pathways and by 

identifying disease associations from a phenome-wide scan of predicted multi-omic data 

in UK Biobank. Finally, we developed an open resource OmicsPred (OmicsPred.org) to 

publicly disseminate and continuously enhance the value of multi-omic genetic scores.

While the utility of predicted transcriptomic data for cohorts with genome-wide genotype 

data has been demonstrated1, our work substantially extends these foundations using a large 

multi-omic cohort, quantifying both intra- and inter-ancestry reliability of proteomic and 

metabolomic genetic scores across multiple platforms. We generated a predicted multi-omic 

dataset for UK Biobank and showed that PheWAS can uncover many known and novel omic 

associations with disease. In turn, this raises the question of what is a meaningful predictive 

value for a genetic score - for which, given each user's own particular application, there is 

no simple answer. Given that the increase in sample size required to detect an association for 

a noisy explanatory variable can be estimated by n/R (where n is the sample size required 

if no measurement error exists and R is the reliability coefficient)11, even genetic scores of 

apparently low predictive value may be powerful enough to detect true associations at the 

sample sizes of current and forthcoming biobanks. This suggests that large biobanks could 

reliably and efficiently test trait-disease associations using genetically-predicted multi-omic 

data, before committing to (frequently expensive) data generation.

Our study has limitations. While blood is a key tissue of broad utility, it is likely a 

correlate and not the main site of causal biomolecular functions. Genetic score validity 

was generally consistent across cohorts; however, performance was affected by technical 

factors (e.g. serum versus plasma, batch variations, fasting versus non-fasting samples 

and genetic variant missingness), participant demographics, genetic factors (e.g. allele 

frequency and linkage disequilibrium differences) and environmental factors (e.g. dietary 
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differences). Genetic scores may also pick up differences in molecular traits shared by 

multiple platforms (e.g. Olink and SomaScan). Despite genetic scores for most shared 

proteins being consistently predictive across platforms, large differences can be due to 

technical factors (e.g. binding affinity) (Methods) as assessed in a recent study15. The 

attenuated performance of polygenic scores across ancestries is well-known50 and our 

analysis also found this in multi-omics data. Multi-omics for non-European ancestries 

will become more common, and we see a key role for OmicsPred in facilitating robust 

genetic scores which enable multi-omic prediction in diverse populations. Given genetic 

prediction and its methodology is a rapidly evolving field, we further acknowledge that there 

are many highly sophisticated machine learning approaches, which may improve genetic 

score performance and/or transferability. We selected Bayesian ridge because it has been 

shown to perform well relative to other genetic score approaches in both a previous study7 

and a benchmark carried out here. Additionally, Bayesian ridge has been shown to scale 

well to large numbers of traits, thus improving computational efficiency and consistency 

with green computing7,13. Optimal variant selection thresholds may also vary across traits. 

Finally, while OmicsPred provides an important initial step towards better understanding 

of the distributions of clinically or therapeutically important biomarkers under high genetic 

control, more research is needed to understand to what extent genetic scores for multi-omic 

traits may one day have clinical utility.

Future avenues for research include the expansion of OmicsPred to additional platforms 

and/or cohorts, multi-ancestry training for improved prediction, and causal inference. In 

summary, we have developed, validated and applied multi-omic genetic scores for >17,000 

traits and made them publicly accessible via the new OmicsPred resource (OmicsPred.org), 

facilitating the generation and application of multi-omics data at scale for the wider 

community.

Methods

INTERVAL cohort and data quality control

The INTERVAL study2 is a randomised trial of ~50,000 healthy blood donors, who were 

recruited at 25 centres of England’s National Health Service Blood and Transplant (NHSBT) 

and aged 18 years or older at recruitment. This trial aimed to study the safety of varying 

frequency of blood donation, and all the participants completed an online questionnaire 

when joining the study about their demographic and lifestyle, such as age, sex, weight, 

height, alcohol intake, smoking habits, and diet, etc. This trial is registered with ISRCTN, 

number ISRCTN24760606. All participants have given informed consent and this study was 

approved by the National Research Ethics Service (11/EE/0538).

In total, 48,813 INTERVAL samples were genotyped using the Affymetrix UK Biobank 

Axiom array in ten batches, which assays approximately 830,000 variants. The variants 

were phased using SHAPEIT3 and imputed on a combined 1000 Genomes Phase 3-UK10K 

reference panel. Affymetrix implemented standard QC procedures during the genotype 

calling pipeline, excluding samples with poor signal intensity (dish QC < 0.82) and samples 

with low call rate (< 97%) based on ~20,000 high quality probesets. Variants were excluded 

if they had low call rate (< 95%), had more than three clusters (indicative of off-target 
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measurement), had cluster statistics (Fisher’s linear discriminant, heterozygous cluster 

strength, homozygote ratio offset) indicative of poor quality genotyping or were complicated 

multi-allelic variants that couldn’t easily be called. Then within-batch sample and variant 

QC was performed, where non-best probesets were excluded to leave a single probeset per 

variant. As visual inspection of cluster plots had identified that some variants, particularly 

rare variants, had minor allele homozygotes incorrectly called due to the presence of an 

extreme intensity outlier, we failed variants from a batch if: 1) the variant had fewer than 

ten called minor allele homozygotes; 2) the cluster plot contained at least one sample with 

an intensity at least twice as far from the origin as the next most extreme sample; 3) the 

outlying sample (s) had an extreme polar angle (< 15 or > 75 degree) in the direction 

of the minor allele. We excluded duplicate samples and samples that were clearly not of 

European ancestry using a set of high-quality autosomal variants, defined as those with: 

MAF > 0.05, HWE p-value > 1x106, and r2 ≤ 0.2 between pairs of variants. Duplicate 

samples were defined as those with π ≥ 0.9 using the PLINK v1.9 Method-of-Moments 

identity-by-descent approach51 and non-Europeans were defined as those with scores on 

genetic PC1 or genetic PC2 < 0 following a PCA including INTERVAL samples with 1000 

Genomes major ancestry populations52. More details on the genotyping and sample quality 

control for INTERVAL data can be found in the previous study53. After quality control 

steps, it finally results in 10,572,788 variants for 43,059 samples. The number of valid 

samples in each platform for genetic score construction (Extended Data Table 1) excluded 

samples that did not pass the QC.

Using the aptamer-based SomaScan assay (version 3), this study profiled plasma proteins 

of 3,562 participants in two batches (n=2,731 and n=831), of which 3,175 samples 

remained for analysis after quality control. The detailed steps for measurements and 

quality controls of the protein levels using the SomaScan array in INTERVAL have been 

previously described4,54. In summary, the relative concentration of 3,622 proteins (or 

protein complexes) targeted by 4,034 modified aptamers (SOMAmer reagents, referred to 

as SOMAmers) on the array were measured from 150-μl aliquots of plasma at SomaLogic 

Inc. (Boulder Colorado, US). Quality control was performed at the sample and SOMAmer 

levels by Somalogic, which uses the control aptamers and calibrator samples to correct 

for systematic variability in hybridization, within-run and between-run technical variability. 

For this study, we did not exclude protein aptamers with greater than 20% coefficient of 

variation in either batch, but excluded these aptamers targeting non-human proteins. We 

also excluded aptamers that, since the original quantification in INTERVAL, had been (1) 

deprecated by SomaLogic; (2) found to be measuring the fusion construct rather than the 

target protein; or (3) measuring a common contaminant4, which finally filtered the data 

to 3,793 high quality aptamers targeting 3,442 proteins. Within each batch, the relative 

protein abundances were natural log-transformed, and then adjusted for age, sex, the first 

three genetic principal components and duration between blood draw and sample processing 

(binary, 1 day vs >1 day). The protein residuals from this linear regression were finally 

rank-inverse normalized and used as phenotype values for their GWAS, which has been 

previously reported in detail54. These normalized phenotype values were further adjusted for 

batch effect and the first 10 genetic principal components, which were used as the phenotype 

values for the genetic score model training and internal validation (Supplementary Table 8).
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Using Olink proximity extension assays55, the INTERNAL study measured plasma protein 

abundance of ~5,000 samples on four Olink panels: Inflammation-1 (INF-1), Cardiovascular 
II (CVD-2), Cardiovascular III (CVD-3), and Neurology (NEUR) panel, each of which 

includes 92 proteins. For the INF-1, CVD-2 and CVD-3 panels, samples were assayed in 

two equal batches and their protein levels were pre-processed and quality controlled by 

Olink using NPX Manager software. Protein levels were then regressed on age, sex, sample 

measurement plate, time from blood draw to sample processing (number of days), season 

(categorical: spring, summer, autumn, winter), and inverse rank normal transformed. Details 

of quality control and GWAS for proteins on these three panels were given in the previous 

work56. Due to timing and funding differences, the NEUR panel was treated separately 

from other 3 panels for QC purposes. In detail, samples were assayed in one large batch, 

and trait levels were also processed by the NPX software and final measurements were 

presented as NPX values on a log2 scale (i.e. a one unit increase represents a doubling 

of protein level). We removed 187 measurements flagged by Olink as potentially having 

technical issues and 147 samples of potentially non-European origin as determined by 

principal component analyses, which left 4,811 measurements proceeding to standard QC 

assessments. We also checked for missing measurements and measurements below the 

limit of detection. No missing measurements were found. 8 out of 92 proteins had values 

below the limit of detection (LOD), of which 4 (HAGH, BDNF, GDNF, CSF3) had more 

than 5% of measurements below the LOD so were not taken forward for further analyses. 

No participant had more than 4% of protein measurements below LOD, and we did not 

observe over-representation of particular proteins below LOD for specific participants. 

Protein measurements were then adjusted for age, sex, season when blood sample drawn 

(spring, summer, fall and winter) and the first 10 genetic PCs, residuals of which were 

further inverse normal rank transformed for their association analyses. We ran association 

tests using SNPTEST (v.2.5.2), with method “expected”, filtering out variants with a minor 

allele count (MAC) < 10 for analyses. It was noted that there are a small number of shared 

proteins across the four Olink panels (detailed numbers of proteins and participants per 

panel after QC were given in Supplementary Table 9). To avoid duplication in genetic score 

construction, these shared proteins were merged by averaging their protein levels on each 

sample across panels, and taken as a unique protein. All the genetic variants identified 

in GWASs for the same protein across multiple panels were combined (if different) for 

its genetic score development. The normalized proteins levels of 308 unique proteins 

were adjusted for the first ten genetic principal components (if not adjusted previously), 

which were used as phenotype values for genetic score model construction and testing in 

INTERVAL.

The DiscoveryHD4® platform (Metabolon, Inc., Durham, USA) was used to measure 

plasma metabolites of INTERVAL participants. Four sub-cohorts of 4,316 4,637, 3,333 

and 4,802 participants were created through random sampling from the INTERVAL study 

and metabolites were measured within the four sub-cohorts (or batches) separately at two 

time phases of the study (two batches at each phase). Samples of the first two batches 

were used as training data for GWAS and genetic score development of metabolite traits 

in the platform, and samples of the other two batches were held out for external validation 

purpose. The two subsets of INTERVAL data were put through the same quality control 
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process as described below before performing training or validation. No significant technical 

variability was found between batches and hence batches within a subset (i.e. phase 1 or 

2) were merged prior to the QC and genetic analysis including batch as a covariate to 

adjust for any residual batch effects. In the first step, samples with missing values for 

each of the ion-counts for a specific metabolite fragment (‘OrigScale’) were identified. 

These sample specific metabolite values were set to missing within the scaled and imputed 

data ('ScaledImpData'), which contains for each metabolite the values within the OrigScale 

median normalised for run day (median set to 1 for run-day batch). Metabolites were then 

excluded if measured in only one batch or in less than 100 samples. Metabolite values 

were then winsorized to 5 standard deviation from the mean where the values exceeded 

mean +/−5 × standard deviation of the metabolite. Each metabolite was then log (natural) 

transformed prior to calculating the residuals adjusted for age, sex, Metabolon batch, 

INTERVAL recruitment centre, plate number, appointment month, the lag time between 

the blood donation appointment and sample processing, and the first 5 genetic principal 

components. Prior to the genetic analysis, these residuals were standardised to a mean 

of 0 and standard deviation of 1. GWASs were then performed for each trait using the 

standardised trait values on samples of the first two batches, details of which were described 

in the previous study57. Finally, the standardised metabolites levels of the two INTERVAL 

subsets (batches 1+2 and batches 3+4) were further adjusted for the first 10 genetic principal 

components, and then used for genetic scores training and external validation respectively.

The Nightingale Health NMR platform was used to assay baseline serum samples of 

45,928 INTERVAL participants and quantified 230 analytes in total, which are largely 

lipoprotein subfractions and ratios, lipids and low molecular weight metabolites. This study 

only focused on the 141 directly measured analytes and excluded those derived from 

other analytes. Apart from the missing values for low abundance analytes, the dataset also 

included zero values for some analytes, which were recoded as missing in our analysis. In 

addition, those analyte values of participants that had abnormally high/low values of more 

than 10 SD from the analyte mean across all participants were set as missing too. We further 

excluded participants with >30% analyte missingness and duplicate samples. Participants 

that failed genetic QC (see above) or did not have relevant phenotype data available were 

also removed, which resulted in 37,359 participants remaining in the analysis. Values of 

each analyte were log (natural) transformed and adjusted for age, sex, recruitment centre, 

processing duration, month of donation, appointment time, missing appointment time (Yes 

or No) and the first 10 genetic principal components. The residuals were then inverse normal 

rank transformed, which were finally used to perform GWAS of these traits and their genetic 

score development. Details of quality control and GWAS for these traits can be found in the 

previous study58.

RNA sequencing was performed on the NovaSeq 6000 system (S4 flow cell, Xp workflow; 

Illumina) with 75 bp paired-end sequencing reads (reverse stranded) in INTERVAL, which 

were aligned to the GRCh38 human reference genome (Ensembl GTF annotation v99) 

using STAR (v2.7.3.a)59 and obtained the gene count matrix using featureCounts (v2.0.0)60. 

This in total resulted in raw gene-level count data of 60,676 genes (ENSEMBL gene IDs) 

across 4,778 individuals with 2.03–95.55 million uniquely mapped reads (median: ~24 

million). Poor-quality samples with RNA integrity number (RIN) < 4 or read depth < 10 
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million uniquely mapped reads were removed. Sample swaps and cross-contamination were 

assessed using match bam to VCF (MBV) method from QTLtools v1.3.161, which identified 

and corrected 10 pairs of mislabelled samples; samples with no clear indication of their 

matching genotype data were also removed. Genes were retained based on > 0.5 counts 

per million (CPM) expression threshold in ≥1% of the samples. The filtered count values 

were converted to trimmed mean of M-values (TMM)-normalized transcript per million 

mapped reads (FPKM) values62. Next, the normalised log2-FPKM values for each gene 

were ranked-based inverse normal transformed across samples. We further excluded globin 

genes, rRNA genes, and pseudogenes. After filtering, a total of 4,732 samples and 19,835 

genes were retained for further eQTL analysis. Prior to eQTL mapping, the probabilistic 

estimation of expression residuals (PEER) method63 was used to find and correct for latent 

batch effects and other unknown confounders in the gene expression data. To estimate PEER 

factors independent of the effects of known variables, a set of 22 covariates of interest 

was included in the analysis. These were age, sex, BMI, and blood cell traits (N=19), 

including: (1) Basophil percentage (of white cell count); (2) Eosinophil percentage(of 

white cell count); (3) Lymphocyte percentage (of white blood cell count; (4) Monocyte 

percentage (of white blood cell count); (5) Neutrophil percentage (of white blood cell 

count); (6) White blood cell (leukocyte) count (reported); (7) Immature reticulocyte fraction; 

(8) Haematocrit (volume percentage of blood occupied by red cells); (9) Reticulocyte 

percentage (of red cell and reticulocyte count); (10) Haemoglobin concentration; (11) 

Mean corpuscular haemoglobin; (12) Mean corpuscular haemoglobin concentration; (13) 

Mean corpuscular (red cell) volume; (14) Red blood cell (erythrocyte) count (reported); 

(15) Red cell distribution width; (16) Mean platelet volume; (17) Plateletcrit; (18) Platelet 

distribution width; (19) Platelet count. The eQTL mapping was performed on genome-wide 

variants using TensorQTL v1.0.664 adjusting for age, sex, BMI, the above-mentioned blood 

cells traits (N=19), the top 10 genetic principal components, RIN, sequencing batch, RNA 

concentration, season (based on month of blood draw), and PEER factors (N=20). The 

normalised gene-level values were also adjusted for the same set of covariates used in the 

eQTL mapping for their genetic score training and validation. Note that we held out the last 

two batches of samples for external validation purpose and the first four were used for eQTL 

mapping and genetic score training/intemal validation.

Correlation and PCA analysis

This analysis included all the traits qualified for genetic score development at each platform 

and all the training samples in INTERVAL. The same quality control steps and covariate 

adjustments as genetic score development were applied before analysis. The adjusted trait 

levels were used to calculate Pearson's correlation r (using scipy v1.5.4 in Python v3.6.8) 

between traits (Supplementary Fig. 14-18) and perform principal component analysis (PCA) 

in each platform (Supplementary Fig. 19-23), in which the probabilistic PCA method was 

used to impute missing trait values and perform the PCA analysis at each platform (using 

pcaMethods v1.86.0 in R v4.1.3)65. We then considered traits in each platform as vertices 

of an undirected graph and vertices were connected via edges if traits were correlated with 

r > 0.9. Thus, subgraphs in this graph were used to identify groups of highly correlated 

traits in each of the platforms. In total, we identified 2,225, 299, 700, 29, 13,663 (in total 
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16,916 groups out of 17,227 traits) highly correlated groups of traits in SomaScan, Olink, 

Metabolon, Nightingale and RNAseq, respectively (Supplementary Table 10).

External validation cohorts

The FENLAND study profiled the plasma proteins of 12,084 participants using the aptamer-

based SomaScan assay (version 4), in which 8994 participants were genotyped using the 

same the Affymetrix UK Biobank Axiom array as INTERVAL15. The later subset of 

Fenland participants was used for the genetic score model validation in our study. As 

FENLAND and INTERVAL applied two different versions of the SomaScan array (versions 

3 and 4), we matched aptamers (or SOMAmers) between the two studies by using their 

unique SomaScan IDs, which resulted in 2129 matched results. The detailed QC steps for 

protein measurements, genotype imputation and QC for genotype data in the FENLAND 

study were described in the previous study66. The Fenland study was approved by the 

National Health Service (NHS) Health Research Authority Research Ethics Committee 

(NRES Committee – East of England Cambridge Central, ref. 04/Q0108/19), and all 

participants provided written informed consent. Both the Orkney Complex Disease Study 

(ORCADES)17 and Northern Sweden Population Health Study (NSPHS)16 have measured 

plasma protein levels of their participants on the four Olink panels that were used in 

INTERVAL, and whole genome sequenced or genotyped participants (Supplementary Table 

11). Thus, participants of the two studies were used to validate genetic score models of 

Olink proteins considered in our study, where gene names of proteins were used to match 

proteins between studies. For those proteins that appeared in two or more Olink panels, their 

validation measurements were averaged across panels for the protein. Detailed imputation 

and QC steps for protein abundance measurements and genetic data in the two studies were 

described in the previous studies67,68. Protein levels in ORCADES were adjusted for age, 

sex, plate, plate row, and plate column, sampling year and season, top 10 genetic principal 

components and kinship using a linear additive model. Similarly, protein levels in NSPHS 

were adjusted for age, age2, sex, plate number, plate row, plate column, the first 10 genetic 

principal components. The model residuals after adjustment in both cohorts were inverse 

rank normalised before used for validation analyses. The ORCADES study was approved 

by the South East Scotland Research Ethics Committee, NHS Lothian (reference: 12/SS/

0151) and the NSPHS study was approved by the local ethics committee at the University 

of Uppsala (Regionala Etikprövningsnämnden, Uppsala, Dnr. 2005:325 with approval of 

extended project period on 2016-03-09). All participants gave their written informed consent 

in both studies.

In ORCADES, the same platform Metabolon HD4 as INTERVAL was used to measure 

1,143 blood metabolites of 1,046 participants in June 2018. Metabolite measurements were 

normalised by Metabolon in terms of raw area counts and rescaled to set the median 

equal to 1. There were 221,102 metabolite values below the limit of detection (18.5%), 

which were set to zero after the following quality control steps. In the quality control, we 

firstly removed 521 metabolite values which exceeded 10 standard deviations from their 

respective means (0.04%). At most, a single participant carried no more than 30 such 

outliers (2.6% of all metabolites), and all individuals were therefore included in the analysis. 

Next, we identified 94 metabolites of which fewer than 100 participants exceeded the 
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limit of detection (8.2%). These poorly measured metabolites were excluded, leaving 1,049 

metabolites measured in 1,046 individuals for analysis. Metabolite levels were adjusted for 

age, sex, BMI, genotyping array, season of venepuncture, year of venepuncture, sample 

volume available, sample volume extracted, plate, row, column and top 20 genetic principal 

components, where genotyping array indicates whether the individual was genotyped using 

the Illumina Human Hap 300v2, Illumina Omni Express, or Illumina Omni 1 arrays; sample 

volume available is the volume of the blood sample delivered to Metabolon; sample volume 

extracted is the volume of the blood sample used to measure the metabolite abundance; and 

plate/column/row refer to the plate box number and sample well position (row and column), 

and model residuals were then inverse rank normalized before used for the validation 

analysis. A total of 1,007 participants had complete covariates. We used COMP identifier in 

the platform to match metabolites between INTERVAL and ORCADES, which resulted in 

455 overlapped metabolites.

The UK Biobank, ORCADES and the VIKING health study18 were used as external cohorts 

to validate genetic scores of Nightingale traits, and traits identifiers provided in the platform 

were used to successfully match all 141 traits between these studies and INTERVAL. 

Quality control for these traits in UK Biobank has been described previously in details69, 

and levels of these traits were adjusted for sex age, BMI, use of lipid lowering medication, 

top 10 genetic PCs and technical variance following the protocol of the previous study69 and 

only genetically defined European participants3 were included in the validation analyses.

In ORCADES, 2,055 participants had 249 blood metabolites measured in December 2020 

using the same Nightingale NMR platform as INTERVAL. In total, 2070 samples were 

measured, with 15 participants having multiple measurements; for these participants, the 

mean value was used. We removed 22 participants who did not have any valid metabolite 

measurements. For the remaining 2,033 participants, the vast majority had zero missing 

metabolite values (1,938; 95%), and a small subset had up to 4% missing metabolite values 

(95; 5%). Conversely, the highest sample missing rate per metabolite was 87 participants 

(4%). Each metabolite was adjusted by the following covariates in a linear model: age, 

sex, BMI, season of venepuncture, year of venepuncture, genotyping array and top 20 

genetic principal components, where genotyping array indicates whether the individual was 

genotyped using Illumina Human Hap 300v2, Illumina Omni Express, or Illumina Omni 

1 arrays. Model residuals were then inverse rank normalised and used for the validation 

analysis. A total of 1,884 individuals had complete covariates.

In the VIKING study, 2,104 participants (no duplicates) had 249 blood metabolites 

measured in December 2020 using the Nightingale NMR platform. We removed 37 

participants who did not have any valid metabolite measurements. For the remaining 2,067 

participants, the vast majority had zero missing metabolite values (1,911; 92%), and a small 

subset had up to 4% missing metabolite values (156; 8%). Conversely, the highest sample 

missing rate per metabolite was 150 participants (7%). Each metabolite was adjusted by 

the following covariates in a linear model: age, sex, BMI, season of venepuncture, year 

of venepuncture and the top 20 genetic principal components. Model residuals were then 

inverse rank normalised and used for the validation analysis. A total of 2,046 individuals 

had complete covariates. Detailed descriptions on the genetic data and its quality control in 
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VIKING were provided in the previous study18. The study was approved by Research Ethics 

Committees in Orkney, Aberdeen (North of Scotland REC), and South East Scotland REC, 

NHS Lothian (reference: 12/SS/0151). All participants gave written informed consent.

The Multi-Ethnic Cohort (MEC) recruited three major Asian ethnic groups represented 

in Singapore: Chinese, Malays and Indians, between 2004 and 2010 to better understand 

how genes and lifestyle influence health and diseases differently in persons of different 

ethnicities19. Between 2011 and 2016, the participants were further invited for a follow-

up. Analyses on the MEC study were approved by the National University Institutional 

Review Board (NUS-IRB: LN-18-059 and NUS-IRB-2021-812) and Singapore Population 

Health Studies Scientific Committee. Whole genome-sequencing was performed on 2,902 

MEC participants as Phase I of the Singapore National Precision Medicine Programme 

(https://npm.a-star.edu.sg/)70. Samples were whole-genome sequenced to an average of 15X 

coverage. Read alignment was performed with BWA-MEM v0.7.17 and variant discovery 

and genotyping were performed with GATK v4.0.6.0. Site-level filtering includes only 

retaining VQSR-PASS and non-STAR allele variants. At the sample level, samples with call 

rate < 95%, BAM cross-contamination rate > 2%, or BAM error rate > 1.5%; at the genotype 

call level, genotypes with DP < 5 or GQ < 20 or AB > 0.8 (heterozygotes calls), were set 

to NULL. Finally, samples with abnormal ploidy were excluded. To determine the genetic 

ancestry of samples, we first performed the principal component analysis on the variant 

panel of verifyBamID271 (1000G, phase 3), and the obtained top 15 genetic PCs and their 

associated explained variance were used to perform k-means clustering (k=3). An ancestry 

label (Chinese, Malay, or Indian) was then assigned to each sample based on the major 

self-reported ethnicity of each cluster. Both SomaScan (version 4) and Nightingale NMR 

platforms were used to assay baseline and revisit blood samples of participants in MEC. 

For quality control of Nightingale data, participants with >10% missing metabolic biomarker 

values were excluded from subsequent analyses. For participants with biomarker values 

lower than detection level, we replaced values of 0 with a value equivalent to 0.9 multiplied 

by the non-zero minimum value of that measurement. For quality control of SomaScan data, 

protein levels were first normalized to remove hybridization variation within a run. This was 

followed by median normalization across calibrator control samples to remove other assay 

biases within the run. Overall scaling and calibration were then performed on a per-plate 

basis to remove overall intensity differences between runs with calibrator controls. Finally, 

median normalization to a reference was performed on the individual samples with QC 

controls. During these standardization steps, multiple scaling factors were generated for each 

sample/aptamer at each step. The final number of samples in each ethnic groups used in 

our validation were given in Extended Data Table 1. For both SomaScan and Nightingale 

traits, natural log-transformation was applied before adjusting for age, sex, T2D status, and 

BMI (Nightingale traits only) and first 10 genetic principal components. Residuals from the 

regression were inverse-normalised for correlation analyses with genetic scores trained in 

INTERVAL.

The Jackson Heart Study (JHS) is a community-based longitudinal cohort study begun in 

2000 of 5,306 self-identified Black individuals from the Jackson, Mississippi metropolitan 

statistical area20,72. The participants included in our validation of genetic scores for 

SomaScan proteins are samples collected at Visit 1 between 2000 and 2004 from 1,852 
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individuals with whole genome sequencing and proteomic profiling (SomaScan) performed, 

quality controls of which were detailed in the previous studies20,73,74. SomaScan IDs were 

used to match shared proteins between JHS and INTERVAL, which identified 820 proteins 

in total. Protein levels were adjusted for age, sex and the first 10 principal components of 

genetic ancestry in JHS, before they were used for evaluating the performance of genetic 

scores. This study was approved by the JHS Publications and Presentations Subcommittee 

and the TOPMed Multi-Omics Working group.

In summary, we performed quality controls in each external cohort to ensure the quality 

of the omic data used for validation and adjusted trait levels for covariates to minimize 

potential validation bias across cohorts, which include age, sex, genetic PCs, and other 

cohort-, platform-specific environmental and technical factors (Supplementary Table 11). 

Note that using Nightingale traits in ORCADES as examples, we found that the control for 

family structure (e.g. adjustment for kinship) had very minor impact on the validation results 

(Supplementary Fig. 24), thus we did not consider the control for this factor as essential in 

the external validation.

Polygenic scoring method

A genetic score is most commonly constructed as a weighted sum of genetic variants carried 

by an individual, where the genetic variants are selected and their weights quantified via 

univariate analysis in a corresponding genome-wide association study75,76:

PGSı = ∑
j ∈ S

βj × xij (1)

where S is the set of variants, referring to single nucleotide polymorphisms (SNPs) in this 

study, that are identified in the variant selection step described below; βj is the effect size of 

the SNP j that is obtained through the univariate statistical association tests in the GWAS; xij

is the genotype dosage of SNP j of the individual i. As the variant set S is derived through 

a LD thinning and p-value thresholding process, this method is often named as the P+T. 

However, P+T relies on hard cut-off thresholds to remove LD correlations among variants 

and select associated variants. It is often challenging to balance between keeping predictive 

variants and removing redundant and uninformative variants that can limit the prediction 

precision. Also, due to the inherent linear assumption of the univariate analysis in P+T, this 

method leaves no modelling considerations for joint effects between variants. To alleviate 

these limitations, various machine learning based methods, such as Bayesian ridge (BR), 

elastic net (EN)77 and LDpred78, have been utilized to construct genetic scores for a wide 

range of traits and diseases7. In particular, BR and EN have been shown to outperform other 

methods when developing scores for predicting biomolecular traits, such as blood cell traits 

and gene expression7,9, which are similar to the type of traits considered in this study. We 

adopted the BR method for the genetic score construction of all the biomolecular traits as 

BR is more efficient to run in practice (see details below).

Bayesian ridge is a multivariate linear model which assumes that the genetic variants have 

linear additive effects on the genetic score of the trait7,79. In addition, BR also assumes that 
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the genetic score of a trait follows a Gaussian distribution, and the prior for effect sizes of 

variants is also given by a spherical Gaussian:

p(PGS ∣ x, β, α) ∼ N PGS ∣ ∑
j ∈ S

xjβj, α−1 (3)

p(β ∣ λ) ∼ N(β ∣ 0, λ−1) (4)

where S is the set of input variants, α and λ are coefficients of the model and subject to 

two Gamma distribution: Gamma(α1, α2) and Gamma(λ1, λ2). These two prior Gamma 

distributions can be set via a validation step.

Genetic score training and evaluation

The explained variance (R2) and Spearman’s rank correlation coefficient (Rho) were used to 

measure the performance of constructed genetic scores in the INTERVAL training samples 

and external cohorts (or INTERVAL withheld subset), where R2 scores were calculated 

using the squared Pearson correlation coefficient (r). Python (v3.6.8) package scipy v1.5.4 

was used to derive Rho and r scores, where statistical significance was calculated using 

two-sided t-test for r and using two-sided Mann-Whitney U test for Rho. We adopted a 

similar strategy for sample partition when training and evaluating genetic scores within 

the training samples as previous studies7,9 that utilised learning-based methods to construct 

genetic scores for molecular traits. The training samples of a trait were randomly and 

equally partitioned to five subsets, from which any four subsets are used as true-training 

data to learn a genetic score model of the trait, and test the model’s performance on 

the remaining 20% of samples (Extended Data Fig. 1). Given a genetic scoring method 

and a trait, we obtained five different genetic score models of the trait and the mean of 

their performance measurements in the corresponding testing samples in INTERVAL was 

reported (internal validation). Note that, due to the high similarities between the five genetic 

score models trained for most traits, only one model was randomly selected from the five 

and evaluated in the external cohorts (or INTERVAL withheld set for Metabolon).

When training genetic score models using BR method, we need to select two appropriate 

prior gamma distributions, i.e. α1, α2, λ1 and λ2. To do so, a grid search across a set of 

optional hyperparameters are often performed, however, this searching process is resource 

and timeintensive, which makes it challenging to run for tens of thousands of multi-omic 

traits. To address this problem, we randomly selected subsets of SomaScan, Olink and 

Metabolon traits (20 each), on which we trained and internally validated genetic scores on 

any α1, α2, λ1 and λ2 taken from {0, 10−10, 10−5, 10−3, 10−1, 10, 103 105, 1010}. The 

results suggested that using non-informative priors80 (α1, α2, λ1 and λ2 ∈ {0, 10−10, 10−5, 

10−3}) performed as good as that of using the best-performing hyperparameters selected 

through extensive search (Supplementary Fig. 25-28). We further externally validated the 

performance of genetic scores developed using non-informative priors (α1, α2, λ1 and λ2 

= 10−5) and the best-performing priors selected in internal validation for each of the 20 

Metabolon traits on INTERVAL withheld set, which showed they have nearly identical R2 
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performance (Supplementary Fig. 28b). Therefore, we adopted the non-informative priors 

(α1, α2, λ1 and λ2 = 10−5) in BR for genetic score development of all other traits. We 

further note that our approach also minimises the risk of collider bias, for example by 

using BR to re-estimate the weights for all genetic variants passing univariate genome-wide 

significance, then performing external validation using only minimal covariates (sex, age 

and genetic PCs).

Variant selection and method comparison

Selecting a proper set of variants and feeding into a polygenic scoring method are a key 

step for effective genetic score construction. To do so and further confirm the superiority 

of BR method, we looked at the performance of BR and P+T on a variety of variant 

selection schemes for the traits in three platforms (SomaScan, Olink and Metabolon), where 

Python (v3.6.8) packages scikit-learn v0.21.2, pandas v1.1.5 and numpy v1.19.5 were used 

to implement BR for genetic score training.

To ensure the generalizability of genetic score models when applied to other cohorts, a 

variant filtering step was first performed for all the traits considered, which applied a MAF 

threshold of 0.5% and excluded all multi-allelic variants as well as ambiguous variants 

(i.e. A/T, G/C) in INTERVAL. To remove LD dependencies among variants, a follow-up 

LD thinning step was carried out at an r2 threshold of 0.8 on all the variants for both BR 

and P+T methods using indep-pairwise in Plink v2.051. The remaining variants were then 

filtered at given p-value thresholds (from their GWAS summary statistics conducted on the 

INTERVAL training data) for a trait in different platforms as inputs of BR and P+T. To 

identify an appropriate variant selection scheme for the use of all the biomolecular traits, 

we attempted the following four p-value thresholding schemes for protein traits in Olink 

and SomaScan platforms: (1) p-value < 5 × 10−8 on all the variants; (2) p-value <5 × 10−8 

on variants in the cis region only (within 1MB of the corresponding gene’s transcription 

start site); (3) all the cis variants only; (4) all the cis variants and p-value < 1 × 10−3 on 

the trans variants; and the two different p-value thresholds on the genome-wide variants for 

metabolite traits in the Metabolon platform (as they do not distinguish cis and trans regions): 

(1) p-value < 5 × 10−8; (2) p-value < 1 × 10−3.

Then, we compared the performance of BR and P+T on these variant sets in the internal 

validation (Supplementary Fig. 1-3). Regarding the proteomic traits (SomaScan and Olink), 

the two variant selection schemes: (1) p-value < 5×10−8 on genome-wide variants and (2) 

all the cis variants and p-value < 1×10−3 on the trans variants, were shown to be the best 

performing schemes with either of the methods; BR method largely outperformed P+T 

across the two variant selection schemes. Meanwhile, it was noted that the two selection 

schemes led to greatly different performance, with the latter scheme achieving an unrealistic 

mean R2 of ~0.74 across all the proteins (only ~0.09 for the former scheme). Similarly, for 

the metabolomic traits (Metabolon), the applied two variant selection schemes significantly 

differ in their performance in internal validation, and BR was also shown to be a better 

performing method.

To further identify the optimal variant selection scheme for BR, we also looked at the 

performance of genetic score models trained with the two identified (for proteins) or all 
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the two applied (for metabolites) schemes using BR method for Olink traits and Metabolon 

traits (Fig. 2 and Supplementary Fig. 4) in external cohorts (NSPHS and ORCADES) or 

withheld INTERVAL data. Despite the second scheme (all the cis variants and p-value < 

1×10−3 on the trans variants for proteins, or p-value < 1×10−3 on genome-wide variants 

for metabolites) showed outstanding performance in internal validation, its performance saw 

a dramatic decline in external validation for almost every trait validated (Supplementary 

Fig. 4). It indicates this variant selection scheme caused an overfitting problem in genetic 

score training, which is consistent with previous findings when using overly lenient p-value 

thresholds for variant selection7.

The performance of BR (variant set with p-value threshold of 5×10−3) was further 

benchmarked alongside P+T (p-value thresholds of 5×10−3 and 1×10−3) and LDpred281 

for a random subset of 20 Metabolon traits in the INTERVAL withheld set. We used the 

LDpred2-auto model to train genetic scores, where R (v3.6.1) package bigsnpr v1.10.8 

was used to implement LDpred2-auto, and summary statistics from GWAS in the training 

samples and the recommended Hapmap3 variant set were used as model inputs. All the 

INTERVAL samples, excluding those withheld for independent validation, were used to 

obtain the variant-variant correlation matrix for LDpred2. Our results showed that BR 

outperformed P+T. While LDpred2 showed similar R2 as BR for most traits, some were 

substantially attenuated in the withheld set (Extended Data Fig. 2). Additionally, our 

benchmark results showed BR, P+T and LDpred2-auto have an average running time 

of 3.1 seconds (2 CPU cores), 2.9 seconds (2 CPU cores) and 51 minutes (20 CPU 

cores) per trait respectively on the Cambridge Service for Data-Driven Discovery platform 

(www.hpc.cam.ac.uk), showing that BR performed well in both performance and scalability.

These results suggested that the BR method with the variant selection scheme of p-value < 

5×10−8 on genome-wide variants was the optional method (of those tested) for genetic score 

development of these biomolecular traits, thus we applied this approach to all other traits for 

their genetic score development in this study. We noted that the optimal variant set had been 

selected using a much larger p-value threshold in the previous study7, which could be due to 

there is an order of magnitude difference in training sample size and greater polygenicity of 

the traits as compared to the current study.

Longitudinal stability of genetic scores

Within MEC, 1,739 individuals were measured at both baseline and revisit with mean 

length of follow-up 6.31 years (SD 1.45 years). This allowed longitudinal assessment of the 

stability of genetic scores for SomaScan (N = 403 Chinese, 356 Indian and 353 Malay) and 

Nightingale (N = 721 Chinese, 376 Indian and 363 Malay) platforms. For SomaScan traits, 

we found strong consistency between the predictive capacity of genetic scores between 

baseline and revisit samples (Pearson r = 0.99 for Chinese, 0.98 for Indian and 0.98 

for Malay populations), and little difference in longitudinal stability between ancestries 

(Extended Data Fig. 7d-f). For Nightingale traits, despite variation in the predictive capacity 

of genetic scores between baseline and revisit samples, the longitudinal stability was still 

largely consistent between Indian and Malay ancestries (Pearson r = 0.60 for Chinese, 0.84 

for Indian and 0.85 for Malay populations; Extended Data Fig. 7a-c).
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Genetic score cross-platform performance

SomaScan and Olink used two different technologies for protein level measurement. The 

two platforms measured many proteins in common, among which there are 169 unique 

proteins whose genetic scores we have validated. To check the impact of technologies on 

genetic prediction, we looked at how the genetic scores trained on one platform can predict 

protein levels from the other platform on the INTERVAL training samples (Supplementary 

Fig. 29). We confirmed that performance of these overlapped genetic scores trained in the 

other platform was generally consistent with that of the scores trained in their original 

platform. However, we did observe, in some cases, the genetic scores trained in the two 

platforms can lead to very different predictions, for which we found that they are mainly 

due to the differences in what the two platforms are actually quantifying. For example, 

among the 169 proteins, there are 11 proteins in SomaScan that had a R2 > 0.3 in 

internal validation, in which 10 proteins also achieved a R2 > 0.3 but the remaining protein 

(CHI3L1) received a poor R2 < 0.1 when predicting with Olink genetic scores. We found 

that the remaining protein received the lowest Pearson’s r score among the 11 proteins 

between their actual protein levels measured in the two platforms. In INTERVAL, there 

were ~700 participants (depending on the protein) who were assayed by both SomaScan 

and Olink, which allowed us to calculate the correlations between the actual protein levels 

measured by the two platforms for the same protein. These results suggested, despite great 

consistency, genetic scores of the same protein trained in the two platforms can represent 

distinct aspects of protein biology of prediction and integration of diverse proteomic 

techniques may enable to develop better genetic scores for these proteins82. Similarly, 

we have also investigated the predictive performance of our Nightingale genetic scores 

on the biochemistry assay data in UK Biobank for overlapping biomarkers. We found the 

performances of these INTERVAL-trained genetic scores were largely robust with respect to 

measurement technology (Supplementary Fig. 30).

Pathway coverage analysis of proteins

In this analysis, SomaScan and Olink proteins were combined based on their Uniprot ID, 

where duplicate proteins were removed if identified. We only kept proteins with R2 > 0.01 

in internal validation, resulting in a total of 2,205 unique proteins for the analysis. We used 

pathway data of Homo sapiens curated at Reactome21 and conducted analyses to uncover the 

coverage of these proteins in the pathways. In detail, this analysis looked at the percentages 

of these proteins in annotated physical entities of each super-pathway, and the percentages 

of the lowest-level pathways these proteins covered among all the lowest-level pathways of 

each super-pathway. Where at least one protein in this study were included in entities of a 

lowest-level pathway, we considered this pathway is covered by proteins of this study.

Phenome-wide association analysis in UKB

We included biomolecular traits with R2 > 0.01 in internal validation in this analysis (11,576 

traits in total) and considered only participants of European ancestry in UKB (the White 

British subset). We used the version 3 of imputed and quality controlled genotype data 

for UKB, which were detailed in the previous study3. Using version 1.2 of the PheWAS 

Catalog22, we extracted the curated phenotype definitions of all phecodes. Each phecode is 
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provided as a set of WHO International Classification of Diseases (ICD) diagnosis codes in 

versions 9 (ICD-9) and 10 (ICD-10) of the ontology to define individuals with the phenotype 

of interest, and a set of related phecodes that should be excluded from the control cohort of 

unaffected individuals. To define cases for each phecode, we searched for the presence of 

any of the constituent ICD-9/10 codes in linked health records (including in-patient Hospital 

Episode Statistics data, cases of invasive cancer defined in the cancer registry, and primary 

and secondary cause of death information from the death registry), and converted the earliest 

coded date to the age of phenotype onset. Individuals without any codes for the phenotype 

of interest were recorded as controls, and censored according to the maximum follow-up 

of the health linkage data (January 31, 2020) or the date of death whichever came first. To 

define the cohort for testing molecular genetic score associations with the age-of-onset of 

each phenotype, we used the set of events and censored individuals described above and 

removed any individuals with related phenotypes (based on definitions from the PheWAS 

Catalog), restricting analyses to be sex-specific (e.g. ovarian and prostate cancer) where 

requires. To ensure a well-powered study we restricted the PheWAS analysis to phenotypes 

with at least 200 cases in the 409,703 European ancestry individuals whose reported sex 

match the genetically inferred sex from the UKB quality controlled genotype data3, resulting 

in a set of 1,123 phecodes included in the final analysis. The association of the genetic 

score for biomolecular traits with the onset of each phenotype was assessed by using a 

Cox proportional hazards model with age-as-timescale, stratified by sex and adjusted for 

genotyping array and 10 PCs of genetic ancestry. The association between genetic scores 

and each phecode is reported in terms of its effect size (Hazard ratio) and corresponding 

significance (p-value), and significant results were defined as Benjamini/Hochberg FDR-

corrected p-value < 0.05 for all the tested traits (two-sided Wald test). Statistical analyses 

were performed in Python (v3.6.8) and the Cox model was implemented using the lifelines 

v0.26.0 package83.

Carbon impact and offsetting

We used GreenAlgorithms v.1.084 to estimate that the main computational work in this study 

had a carbon impact of at least 1,004 kg of CO2 emissions (CO2e), corresponding to 94 tree-

years. As a commitment to the reduction of carbon emissions associated with computation 

in research, we consequently funded planting of 45 trees through a local Australian charity, 

which across their lifetime will sequester a combined estimated ~12,000 kg of CO2e, or 12 

times the amount of CO2e generated by this study.
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Extended Data

Extended Data Figure 1: Schematic framework for the development and validation of multi-omic 
genetic scores.
This figure presents the overall study design for the development of genetic scores for multi-

omic traits across five platforms (Nightingale, Metabolon, Olink, SomaScan and RNAseq) 

using INTERVAL data as well as their validation in seven external cohorts of multiple 

ancestries (European, Asian-Chinese, Asian-Malay, Asian-Indian and African American).
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Extended Data Figure 2: R2 performance comparison between Bayesian ridge, LDpred2, P+T 
for Metabolon traits in external validation (INTERVAL withheld set).
This figure compares the R2 performance between BR (on the set of genome-wide variants 

with p-value < 5×10−8; x-axis) and LDpred2 (Hapmap3 variant set), and between BR and 

P+T (variant sets of two p-value thresholds: 5×10−8 and 1×10−3) for 20 randomly selected 

Metabolon traits in external validation (INTERVAL withheld set; Methods). P-values in the 

GWAS for omic traits were derived by t-test in linear regression and all tests were two-sided.
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Extended Data Figure 3: Distribution of the number of variants in the genetic scores and the 
correlations between performance (R2) of genetic scores and the number of variants comprising 
the score.
The density plots show the distribution of the number of variants comprising the genetic 

scores at each platform. The scatter plots show the change of R2 score in the internal 

validation by the number of variants in the genetic score model.
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Extended Data Figure 4: Validation of genetic scores in external European cohorts.
The scatter plots compare the spearman correlation scores between internal validation and 

external validation with a European cohort on each platform, in which points are coloured by 

the variant missingness rate in the external cohort and the blue line shows the linear models 

fitting the data points. This analysis included all the developed genetic scores in this study.
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Extended Data Figure 5: Validation performance change of genetic scores by their variant 
missing rates in external cohorts of different ancestries.
External validation results in European cohorts were merged in each platform to increase 

the statistical power in this analysis, which include NSPHS and ORCADES validations for 

Olink, and ORCADES and VIKINGS validations for Nightingale. Note that INTERVAL 

withheld subset validations and UKB validation for Nightingale traits were excluded in 

this analysis due to there is no or nearly no variant missingness in these external cohorts. 

Validation results in each platform were ranked by their variant missing rate of genetic score 

models in the external cohort and grouped into tertiles, where variant missing rate is the 

number of variants missing in the validation cohort / the total number of variants in the 

genetic score. This figure presents the mean and standard error (SE) of R2 performance 

change of genetic scores between internal and external validation across tertiles of validation 

results. The analysis included validation results of 2,129 SomaScan, 603 Olink, 455 

Metabolon and 423 Nightingale traits (traits can be overlapped for the same platform across 

multiple validation cohorts) for European (EUR); 2,047 SomaScan and 139 Nightingale 

traits for Chinese (CN), Indian (IN) and Malay (MA); 820 SomaScan traits for African 

American (AF).

Xu et al. Page 30

Nature. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6: Performance (R2) of genetic scores for Nightingale (a) and SomaScan 
(b) in external cohorts of various ancestries relative to R2 in internal validation (INTERVAL).
Transferability was only tested if the genetic score had a significant (two-sided t-test; 

Bonferroni corrected p-value < 0.05 for all the 17,227 omic traits tested) association with 

the directly measured molecular trait in internal validation (n = 1631, 7471, 964, 635 and 

827 for Metabolon, Nightingale, Olink, SomaScan and RNAseq traits respectively). This 

resulted in 137, 136 Nightingale metabolic traits for UKB (n = 98,245 participants) and 

MEC (Chinese, n = 1,067; Indian, n = 654; Malay, n = 634) respectively and 949, 1052, 

378 SomaScan proteins for FENLAND (n = 8,832), MEC (Chinese, n = 645; Indian, n = 

564; Malay, n = 563) and JHS (n = 1,852). Violin plots show distributions of the ratio of R2 

values. Black points show mean values and error bars are standard errors.
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Extended Data Figure 7: Performance (R2) of genetic scores between longitudinal samples and 
across ancestries in the MEC cohort.
Paired samples include a baseline and a revisit sample from each individual run on 

SomaScan and Nightingale for MEC Chinese (N=403 and 721 individuals), MEC Indian 

(N= 356 and 376) and MEC Malay (N=353 and 363). Blue lines denote linear models fitted 

to each set of data points and the shaded areas represent 95% confidence intervals where 

applicable. There is no Nightingale genetic scores with a R2 > 0.15 in both internal and 

MEC validation, so (a, b, c) only show R2 in the range of [0, 0.15] for clarity. The sub-box 

plots at the right bottom of (d, e, f) show the validation results of these traits with baseline 

validation performance (R2) between 0 and 0.025 in each ancestry.
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Extended Data Figure 8: Coverage analysis for blood proteins in the lowest-level pathways.
This analysis looked at all the lowest-level pathways of super-pathways curated at 

Reactome. Where at least one protein genetic score are included in the entities of a lowest-

level pathway, we consider this pathway is covered by proteins of this study. This figure 

shows the percentage of the lowest-level pathways a group of proteins (by R2 in internal 

validation) covered among all the lowest-level pathways of each super-pathway.
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Extended Data Figure 9: Key features of OmicsPred portal for accessing genetic scores of 
multi-omic traits.
a, Organization of genetic scores on the portal. b, Example of how biomolecular traits 

and their genetic score-related information can be explored. c, Example of how summary 

statistics of training and validation cohorts are presented. d, Example of how validation 

results and genetic score models can be downloaded. e, Example of how validation results 

and trait-related information can be visualized.
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Extended Data Table 1:
Demographic statistics of training and validation 
samples for genetic score construction of blood 
biomolecular traits by platform.

The table shows the mean ± standard deviation of age and BMI for participants in each 

cohort or cohort subset.

Platform Cohort Ancestry #Traits #Samples %Men Age (years) BMI
(kg/m2)

Training and Internal Validation

Metabolon

INTERVAL European

726 8,153 51.0% 43.9 ± 14.1 26.4 ± 4.6

Nightingale 141 37,359 51.0% 43.7 ± 14.1 26.4 ± 4.6

Olink 308 4,822 59.3% 59.0 ± 6.7 26.5 ± 4.1

SomaScan 2,384 3,175 50.8% 43.6 ± 14.2 26.3 ± 4.7

Illumina 
RNAseq 13,668 4,136 56.4% 54.6 ± 11.6 26.6 ± 4.4

External Validation

Metabolon

INTERVAL 
withheld subset European

527 8,114 49.4% 47.9 ± 13.8 26.5 ± 4.6

ORCADES 455 1,007 43.9% 54.0 ± 15.3 27.7 ± 4.9

Nightingale

UKB

European

141 98,245 45.8% 56.5 ± 8.1 27.4 ± 4.8

ORCADES 141 1,884 40.0% 53.9 ± 15.0 27.8 ± 5.0

VIKING 141 2,046 39.9% 49.8 ± 15.2 27.4 ± 4.9

MEC

Chinese 139 1,067 47.2% 52.1 ± 9.9 23.5 ± 3.8

Indian 139 654 43.7% 44.5 ± 11.6 26.4 ± 5.1

Malay 139 634 42.9% 44.9 ± 11.1 26.9 ± 5.1

Olink
NSPHS

European
302 872 47.6% 49.6 ± 20.2 26.7 ± 4.8

ORCADES 301 1,052 44.1% 53.8 ± 15.7 27.7 ± 4.9

SomaScan

FENLAND European 2,129 8,832 47.1% 48.8 ± 7.4 26.9 ± 4.8

MEC

Chinese 2,047 645 46.0% 51.9 ± 10.9 23.5 ± 3.9

Indian 2,047 564 45.0% 44.0 ± 12.0 26.3 ± 5.3

Malay 2,047 563 43.9% 44.4 ± 11.3 26.9 ± 5.2

JHS African 
American 820 1,852 39.0% 55.7 ± 12.8 31.6 ± 7.3

Illumina 
RNAseq

INTERVAL 
withheld subset European 12,958 598 49.5% 45.0 ± 13.1 26.8 ± 4.8

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

All the genetic score models trained in this study and GWAS summary statics 

used to develop genetic scores are publicly accessible through the OmicsPred portal 

(www.omicspred.org; accession codes OPGS000001-OPGS017227). INTERVAL study data 

from this paper are available to bona fide researchers from helpdesk@intervalstudy.org.uk 

and information, including the data access policy, are available at http://www.donorhealth-

btru.nihr.ac.uk/project/bioresource.

Code availability

The original codes used to train the genetic scores with INTERVAL data, internally 

validate these scores, and benchmark the performance of different genetic score construction 

methods are available at https://github.com/xuyu-cam/atlas_genetic_scores_omic_traits.
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Figure 1: Performance of multi-omic genetic scores in internal validation.
The variance explained in the measured biomolecular trait (R2) by the genetic score is 

assessed in the internal validation set of INTERVAL (Methods). Pie charts reflect the 

number of genetic scores in a particular R2 range.
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Figure 2: External validation of genetic scores in cohorts of European ancestry.
Comparisons of R2 in internal validation and external validation for each omic platform, 

for genetic scores with Bonferroni-adjusted p-value < 0.05 in internal validation (two-sided 

t-test; correcting for 17,227 omic traits). Data points coloured by variant missingness rate in 

the external cohort. Blue lines show fitted linear models and λ are model slopes. Concentric 

circles show number of genetic scores in different ranges of R2 in internal validation (inner 

ring) and external validation (outer ring).
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Figure 3: Transferability of genetic scores to Asian and African American ancestries.
a, c, Performance comparison between internal validation and external validation in non-

European ancestries for (a) Nightingale and (c) SomaScan genetic scores. Transferability 

was tested for genetic scores with Bonferroni-adjusted p-value < 0.05 in internal validation 

(two-sided t-test; correcting for 17,227 omic traits). Data points are coloured by variant 

missingness rate in the external cohort. b, d, R2 of genetic scores for (b) Nightingale 

and (d) SomaScan with the five most variable or five most consistent for prediction in 

multi-ancestry validation, as quantified by mean absolute difference in R2 for genetic scores 

with Nightingale R2 > 0.05, SomaScan R2 > 0.30 in internal validation.
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Figure 4: Applications of genetic scores of multi-omic traits.
a, Genetic control of Reactome super-pathways using SomaScan and Olink genetic scores 

of varying R2 in internal validation (Methods). b, Phenome-wide association study in UK 

Biobank. Stacked barplots show the number of detected significant associations by PheCode 

category of disease and omic platform (two-sided Wald test and FDR-corrected p-value < 

0.05 for 11,576 tested traits). c, Strength of associations by category of disease and omic 

platform. Association with the lowest p-value for each disease category is labelled.
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Figure 5: JAK/STAT and Wnt signalling pathways.
a, c, Pathway diagrams for (a) JAK/STAT and (c) Wnt signalling. Nodes coloured based 

on hazard ratio (HR) of the genetic score for (a) coronary artery disease (CAD) and (c) 

hypothyroidism. Nodes are white if there is not a corresponding genetic score. The most 

significant HR across omic platforms is used at each node. Nodes are bold if the genetic 

score had FDR-adjusted p-value < 0.05 (two-sided Wald test and correcting for 11,576 tested 

traits). b, d, Forest plots of FDR-significant HRs for (b) CAD (n = 28,854 cases and 390,159 

controls) and (d) hypothyroidism (n = 21,871 cases and 404,440 controls) for genetic scores 

in (b) JAK/STAT or (d) Wnt signalling. e, Forest plot of HRs and 95% confidence intervals 

for the genetic score of USP25 (SomaScan) across multiple diseases.
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