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Abstract

Longitudinal analysis is a core aspect of many medical applications for understanding the 

relationship between an anatomical subject’s function and its trajectory of shape change over 

time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for 

analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial 

model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed 

to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional 

Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is 

represented by a univariate geodesic polynomial model on timestamps. At the population level, 

multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models 

for both anchor points and tangent vectors. As such, the trajectory of an individual subject’s 

shape changes over time can be modeled accurately with a reduced number of parameters, 

and population-level effects from multiple covariates on trajectories can be well captured. The 

implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further 

tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable 

effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical 

evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise 

and population levels, which is promising for future studies of the relationship between shape 

changes over time and the level of dysfunction severity on anatomical objects associated with 

disease.
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1 Introduction

Studying change over time is a core aspect of many medical applications. Trajectories of 

change are followed in studies of childhood development, aging, and disease development. 

This can involve sampling a cross-sectional population to estimate a possible time course. 

However, such cross-sectional studies may show large variability across the population 

and may not properly reflect the nature of longitudinal changes of individuals. On the 
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other hand, longitudinal studies involve following subjects over time, allowing to capture 

subject-wise trajectories as well as at the population level. Longitudinal study design comes 

with data challenges such as staggered time points, missing time points, and subjects with 

different number of observations. Dedicated modeling schemes are needed to correctly 

account for the correlated measurement within subjects. These models are known as mixed-

effects or hierarchical models and have shown great promise for modeling derived measure 

in medical imaging studies [1,17].

Several models have been explored for longitudinal analysis of higher dimension data 

[3,4,11,13,16,18]. Two main directions have been followed. First, dedicated methods with 

a specific data representation in mind such as diffeomorphisms on images or shapes. 

Image or shape change is represented as continuous diffeomorphic deformations at the 

subject and population level. The second methodological direction are intrinsic Riemannian 

models which may be adapted to new data representations from a variety of manifold 

representations. These models require the definition of a few key manifold specific 

operations, to be discussed in Section 2, in order to be applied to new data types. In 

this work, we favor this second approach due to the potential for extension to new data 

representations and thus a variety of clinical problems.

In this paper we propose to extend the hierarchical multi-geodesic model in [11] by applying 

polynomial expansion at both subject-wise and population levels, with the aim of modeling 

shape trajectories associated to changes in related covariates, such as sex, cognitive scores, 

or disease severity. Our development of polynomial regression allows for more flexibility 

in data-matching than the traditional geodesic model, while still enabling the choice of 

geodesic as a polynomial of degree 1. The polynomial expansions at different model levels 

are inherently compatible with the hierarchical modeling framework where subjects may 

have a different number of observations. Due to the non-Euclidean nature of the shape space, 

a fast and efficient model estimation algorithm similar to the computation of the Fréchet 

mean is implemented. We validate our method on synthetic data as well as clinical data right 

ventricle shape change over the cardiac cycle as it relates to covariates such as dysfunction 

severity. This promises to meet a currently unmet need of clinical researchers to correlate 

geometry with function.

2 Methods

2.1 Shape Space and Geodesics

We define shape space as the pre-shape space of Kendall space [12] with rotations removed. 

As such, the final shapes are obtained by removing their translation, rotation, and similarity 

components through partial procrustes alignment. The shape space is formed as a hyper-

sphere and can be treated as a high dimensional Riemannian manifold M. Performing 

geodesic regressions in the shape space allows for efficient computation with proven 

Kendall-space equivalence as indicated in [8,15]. A geodesic on M is a zero-acceleration 

curve with the minimizing property that there is no curve shorter than a geodesic 

between any two points within a small neighborhood. Three geodesic-related operations 

are extensively used in this work: exponential map, log map, and parallel transport. An 

exponential map Exp(p, v) = q maps a shape p ∈ M to another shape q ∈ M in the direction 
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and magnitude of a tangent vector v. A log map Log(p, q) = v is the inverse of the exponential 

map in which two shapes p and q are given and the unique tangent vector that maps p to q is 

obtained. The Riemannian distance between the two shapes is then defined as the L2-norm 

of their log map d(p, q) = ∥ Log(p, q) ∥. The parallel transport operation ψp q(u) transports 

a tangent vector u ∈ T pM from p to q while maintaining angle and scale preservation 

properties. For rigorous and complete definitions, please see [2].

2.2 Hierarchical Geodesic Model for Manifold-valued Data

Geodesic regression is very similar to linear regression in Euclidean space, with analogies 

of the anchor point to the intercept and tangent vector to the slope. In a similar way, 

multilevel models could be constructed in a “geodesic” way by following the framework 

of hierarchical linear models [19]. In this study, we further extend geodesic regressions 

in [11] to higher order polynomial versions at both the subject-specific trajectory level 

and the population level for better adaptability in the modeling of longitudinal data with 

covariate induced variability. Unlike the Riemannian polynomial described in [9,10] where 

the polynomial is defined in a differential manner with covariant derivatives, our polynomial 

expansions are applied to the tangent vectors under the geodesic regression model in an 

algebraic form, making them straightforward and consistent to fit into different levels of the 

hierarchical model. Thus, geodesic polynomial regression in this study refers to expanding 

the composition of tangent vectors in their hyper-tangent space with polynomials of different 

orders.

Subject-wise Level Model—We first perform geodesic polynomial regression at the 

subject-wise level (level 1). The nth order polynomial model on subject-specific trajectory Y k

is formulated as

Y k = Exp ak, ∑
p = 1

n
bkptp (1)

where ak is the anchor point of subject-specific trajectory k, b kp is the tangent vector of the 

pth polynomial term and t is the independent time variable. Given the input observations yk, 

ak and b kp’s are estimated by least squares geodesic regression

ak, b k = argmin
ak, bk

∑
i = 1

Nobs

d2 yki, Exp ak, ∑
p = 1

n
bkptki

p
(2)

where bk bk  is the combined representation of all b kp bkp , yki and tki are the ith observation 

and corresponding time variable in yk. Note that due to the number of free parameters in the 

regressing polynomial, Nobs ≥ n + 1 is required to avoid singularity in the solution.

Population Level Model—At population level (level 2), let the subject trajectories be 

associated with a set of m covariates η = η1, η2, …, ηm , the final form of the hierarchical 

geodesic polynomial model can be written as
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Y = Exp Exp f(η), ∑
p = 1

n
gp(η)tp , ϵ (3)

where f(η) and gp(η) are the models for the anchor point and the basis tangent vector of 

polynomial order p respectively. Technically speaking, the two models do not necessarily 

share the same set of covariates to allow for more flexible regression. However, in most 

cases, the same set of covariates would be used for both models if there is no compelling 

indication that a specific covariate is solely associated with one of the models. We promote 

both the anchor point model and the tangent vector model with quadratic expansion on the 

covariates. The aim is to associate each model with higher order terms of the covariates as 

well as cross terms to accurately model their combined effects on subject trajectories.

Anchor Point Model—The anchor point model with quadratic expansion on m covariates 

is written as

f(η) = Exp β 0, ∑
i = 1

m
β iηi + β iiηi

2 + ∑
i = 1

m − 1
∑

j = i + 1

m
β ijηiηj (4)

where β 0 ∈ M is a base anchor point and β i, β ii, β ij ∈ Tβ0M are basis vectors of the anchor 

point polynomial. These coefficients can be estimated from the results of subject-specific 

trajectory regression as

β = argmin
β

∑
k = 1

Ns

d2 f ηk , ak (5)

where ηk and ak are the covariates and regressed anchor point of subject k, Ns is the total 

number of input subject trajectories and β is the combined representation of β 0, β i, β ii, β ij in 

the anchor point model.

Tangent Vector Model—Recall that the bk is the combined representation of the n tangent 

vector bases of different orders from the level 1 regression. Thus, there are n corresponding 

tangent vector models at the population level G(η) = g1(η), g2(η), …, gn(η) . Each tangent 

vector model with quadratic expansion on m associated covariates can be formulated as

g η = ψβ0 f(η) gβ0(η) (6)

gβ0(η) = γ 0 + ∑
i = 1

m
γ iηi + γ iiηi

2 + ∑
i = 1

m − 1
∑

j = i + 1

m
γ ijηiηj (7)

where g ∈ Tf(η)M and gβ0 ∈ Tβ0M are the tangent vectors at f(η) and β 0 respectively, γ 0, γ i, 

γ ii, γ ij ∈ Tβ0M are bases of the tangent vector polynomial at β 0. Note that the subscript 

referring to the order of the polynomial model p is omitted here for readability purposes. 

From the above formulation, the final tangent vector basis is obtained by calculating a 

Han et al. Page 4

Inf Process Med Imaging. Author manuscript; available in PMC 2023 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tangent vector at β 0 from the polynomial model and then transporting it to the corresponding 

anchor point f(η) by a parallel transport function ψβ0 f(η) defined on M. This is due to the 

consideration that subject-specific tangent vectors must be comparable with each other to 

perform regression in a consistent manner. Therefore, we need to transport all of them to the 

same tangent vector space Tβ0M for the regression calculation, as well as to transport them to 

their corresponding anchor point f(η) in the forward calculation. Due to the existence of the 

parallel transport functions and the fact that regressed subject-specific anchor points ak do 

not necessarily lie on f(η), the actual tangent vector bk being used for regression calculation 

is obtained as

bk = ψf ηk β0 ψak f ηk b k (8)

so that all bk ∈ Tβ0M. Stop-over transport avoids arbitrary rotation from direct transport 

ψak β0, explained in [11]. Regression on the basis tangent vector of a specific polynomial 

order is then formulated as

γ = argmin
γ

∑
k = 1

Ns

gβ0 ηk − bk
2

(9)

where γ is the combined representation of γ 0, γ i, γ ii, and γ ij.

Iterative Optimization Scheme—Since our shape space is constructed as a Riemannian 

manifold and thus not Euclidean, there exists no closed-form solution for such geodesic 

polynomial regressions on subject-wise trajectory and anchor point model. Similar to the 

calculation of Fréchet mean, we employ an iterative solution scheme for obtaining the 

optimal parameters in Eq. (2) and Eq. (5). The algorithm 1 illustrates how the parameters are 

updated over iterations. Note that the function Least Squares Polynomial Fitting depends on 

ω0, which means that all points in y are transformed to the hyper-tangent space at ω0 using a 

log map for calculating new parameters ωnew.

R2 and Hypothesis Testing—At subject-wise level, the R2 is calculated using the 

Fréchet variance[14], intrinsically defined by

var yi = min
y ∈ M

1
N ∑

i = 1

N
d y, yi

2
(10)
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Algorithm 1:

Iterative solution scheme

var ϵi = min
y ∈ M

1
N ∑

i = 1

N
d y i, yi

2
(11)

R2 = 1 − var ϵi

var yi
(12)

where y is the Fréchet mean, y i is the regressed point i, and ϵi is the error between y i

and observation point yi. To test statistical significance of fitting a geodesic polynomial 

model with respect to time, hypothesis test is conducted against the null hypothesis H0: t is 

irrelevant to change in shape using the permutation approach described in [6,7].
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3 Results and Discussion

3.1 Test on Low Dimensional Synthetic Data

In order to validate as well as to visualize our hierarchical geodesic polynomial model, we 

first test our implementation on points on the unit sphere. Points on the sphere represent 

shapes with only one 3D point and the sphere is the corresponding shape space. On the left 

of Fig. 1 shows the result from fitting four input points (red) with geodesic model (green) 

and 3rd order geodesic polynomial model (blue) respectively. The four input points have 

integer times steps ranging from 0 to 3. The 3rd order geodesic polynomial is able to fit the 

input points almost perfectly, whereas as the linear geodesic model can only fit the inputs in 

a least square sense, which is similar to the case in Euclidean space.

The right of Fig. 1 shows regression results from fitting three input trajectories with a 

hierarchical geodesic polynomial model. Each input trajectory contains three points with 

integer timestamps ranging from 0 to 2. The three input trajectories represent trajectories 

with integer covariate values ranging from 0 to 2 respectively. A quadratic model is used 

at both the subject-specific and the population level. The green points on the left of Fig. 1 

also show the changes in anchor points from fitting a quadratic model, with covariate values 

ranging from 0 to 2 with an interval of 0.25. The blue points demonstrate the changes in 

regressed trajectories for covariates ranging from 0 to 2 with an interval of 0.5. Given the 

three input trajectories, our hierarchical geodesic polynomial model is capable of fitting the 

inputs perfectly with a quadratic model at both subject-wise level and population level.

3.2 Analysis of 4D Pediatric Right Ventricular Data

The shape of the right ventricle (RV) is known to influence the function of the tricuspid 

valve, but precise shape-based characterization of the RV in Hypoplastic left heart syndrome 

(HLHS) has not been described. The 4D trajectories of 94 pediatric RVs are acquired 

from 3D echocardiogram-based speckle tracking, and then transfered into the TOMTEC 

imaging system for the computation of the 3D models of the RV chamber. Each acquisition 

contains approximately one cardiac cycle, with 10 to 30 captured frames. Due to some 

incomplete cardiac cycle acquisitions as well as the fact that some obtained cardiac cycles 

do not perfectly repeat themselves from the end to the start point, the data is divided into 

two subsets, the systolic and diastolic phases. Since lengths of individual cardiac cycles 

can be different, we standardize trajectories for each systolic and diastolic phase with 

equally-spaced 50 frames in each trajectory [5]. As such, we finally obtain 58 systolic and 

36 diastolic trajectories for hierarchical geodesic regression analysis. To evaluate the impact 

our polynomial model, we compare to the geodesic model [11], as to our knowledge it is the 

only longitudinal shape model that incorporates multiple covariates.

Subject-wise Model—We first fit a polynomial model to subject-specific trajectories with 

the left of Fig. 2 showing the resulting error from fitting models to a representative single 

subject trajectory. As the order of polynomial model increases, the regression error decreases 

significantly from 7.65 × 10−3 (1st order) to 3.82×10−5 (5th order) with a 99.5% reduction 

(unitless because shapes are normalized to unit size). Fig. 3 shows that the trajectory from 

a higher order polynomial regression exhibits more nonlinearity than the geodesic model, as 
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expected. Though not obvious, it is observed that the maximum distance point shifts from 

the left to the right side of the shape in the polynomial model, whereas the most distant point 

remains the same point in the geodesic model throughout time. The right of Fig. 2 shows 

the ranges and the mean values of the R2 across the systole population, which indicates that 

trajectories of shape change over time better matches observed data with models of higher 

order.

Anchor Point Model—As more samples are desirable for regression analysis, we first test 

our anchor point model on all end systolic and end diastolic shapes in both systolic and 

diastolic trajectories. Two covariates from the demographics are chosen for level 2 models: 

tricuspid regurgitation severity (TRS) and right ventricle function (RVF) take on values 

shown in Table 1.

We fit both geodesic linear models and quadratic polynomial models to the end systolic 

and end diastolic shapes, with the RVF and/or TRS as covariates. Table 2 shows regression 

errors. It can be seen that (i) quadratic models lead to smaller errors than geodesic models, 

and (ii) model fitting with respect to TRS leads to smaller errors than the ones with respect 

to RVF, which indicates the shape changes are better aligned with changes in TRS, and 

(iii) regressions using both covariates outperform those using single covariate, in terms of 

model fitting, which is expected as more independent covariates are taken into account. 

From visual observations of the shape changes, similar to the results from fitting polynomial 

model to subject specific trajectories, the higher order polynomial model fitting including 

covariates yield more nonlinear changes in the end systolic and end diastolic shapes. While 

RV shape changes with respect to RVF is smoother, shape changes associated with TRS 

shows more local variability over time, leading to an obvious compressed edge between the 

RV top region and the septal wall at the most severe level of tricuspid regurgitation.

It is also observed that changes in shape with respect to the same covariates from 

multivariate regression are more prominent. Fig. 4 and 5 show that the multivariate 

regressions yield more observable changes in shapes as the covariate-specific changes of 

the shape are co-captured by different covariates separately.

Fig. 6 shows the full spectrum of how the shape of the RV changes with respect to different 

values of the covariates at end diastole. Due to the sparsity and large variability in the input 

data set, extrapolating RV shape to extreme values of both covariates leads to a non-feasible 

real world shape as no such combination appeared in the input data set.

3.3 Future Work

There are a few aspects that can be further extended to our current work. First, the current 

parallel transport of tangent vectors is computed along the geodesic between the start and 

end points. Meanwhile at the population level, it is also possible that the directions of the 

tangent vectors are dependent on the anchor points’ trajectories, in which parallel transport 

should be computed along a certain path on the Riemannian manifold (e.g. the regressed 

anchor point’s trajectory in the single covariate case). In the case with multiple covariates, 

the choice of the path requires further study. Second, if scale is a key factor to consider in 

the shape model, it is also feasible to append a scale factor to the existing model, which is 
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regarded as an additional entry in shape space, and the solution process would be almost 

identical to the other entries in the anchor point or tangent vector. As we collect more data, 

we will also investigate modeling growth or pathology models of HLHS over a larger time 

period (i.e. years) instead of the cardiac cycle.

4 Conclusions

In comparison with previous geodesic models, polynomial regression leads to more accurate 

and flexible data-matching results at both subject-wise and population levels. Population-

level regression with respect to multiple covariates leads to clearer separation between 

covariate effects on the shapes as indicated from validation on 4D right ventricular data. 

The regressed model is able to yield results that are consistent with qualitative clinical 

evaluations.

Given the sparsity and large variability in the input right ventricular data set, extrapolating 

shapes outside of the input covariate combination range may lead to irregular reconstructed 

shapes, which is understandable. The proposed HPGM model can be further extended with 

higher order polynomial expansion on covariates as well as using other basis functions (eg. 

kernel functions) for better fitting on the input. Overall, the proposed HGPM can be used 

for multilevel analysis of longitudinal shape data, leading to interpretable results relating 

functions (covariates) with shape trajectories, thus being promising for a variety of relevant 

clinical research in the future.
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Fig. 1: 
Left) Results from fitting input points (red) with geodesic model (green) and 3rd order 

polynomial model (blue). Right) Fitting three input trajectories (red) with hierarchical 

geodesic polynomial model. Green points represent changes in anchor point location with 

respect to the covariate values ranging from 0 to 2, and the blue points show changes in 

regressed subject-specific trajectory with respect to the covariate values.
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Fig. 2: 
Left) Error in fitting a single subject trajectory with respect to the order of the polynomial 

model. Right) Means and ranges of R2 from fitting systole population with models of 

different orders.
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Fig. 3: 
A geodesic and a 5th order polynomial model on the systolic trajectory of a representative 

subject. Color indicates distance to the initial shape.
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Fig. 4: 
Univariate and multivariate geodesic polynomial regression results for end diastolic shapes 

at different RVF severities.
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Fig. 5: 
Univariate and multivariate geodesic polynomial regression results for end diastolic shapes 

at different levels of TRS.
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Fig. 6: 
Full spectrum of end diastolic shapes at various levels of RVF and TRS.
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Table 1:

Relationship between qualitative clinical assessments in the demographics to numerical values used in 

polynomial model fitting.

Covariate Value TRS RVF

0 Trivial Normal

1 Mild Low normal

1.5 Mild to moderate Low normal to mildly diminished

2 Moderate Mildly diminished

2.5 Moderate to severe Mildly to moderately diminished

3 Severe Moderately diminished

3.5 Moderately to severely diminished

4 Severely diminished
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Table 2:

Error from fitting multivariate polynomial model to anchor points.

Phase Covariates Linear model errors(1) Quadratic model errors(1)

End diastole

RVF 5.521 5.487

TRS 5.515 5.442

RVF & TRS 5.454 5.208

End systole

RVF 5.178 5.138

TRS 5.147 5.062

RVF & TRS 5.102 4.840
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