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Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a very high sensitivity 

in detecting breast cancer, but it often leads to unnecessary biopsies and patient workup. In this 

paper, we used an artificial intelligence (AI) system to improve the overall accuracy of breast 

cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal 

test set (N = 3,936 exams), our system achieved an area under the receiver operating characteristic 

curve (AUROC) of 0.92 (95% CI: 0.92–0.93). In a retrospective reader study, there was no 

statistically significant difference between 5 board-certified breast radiologists and the AI system 

(mean ΔAUROC + 0.04 in favor of the AI system). Radiologists’ performance improved when 

their predictions were averaged with AI’s predictions (mean ΔAUPRC [area under the precision-

recall curve] +0.07). Those hybrid predictions also increase interreader agreement (Fleiss’ kappa 
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Δ + 0.21 (0.16–0.26)). We demonstrated the generalizability of the AI system using multiple data 

sets from Poland and the US. In subgroup analysis, we observed consistent results across different 

cancer subtypes and patient demographics. Using the decision curve analysis, we showed that 

the AI system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. 

This would lead to avoiding benign biopsies in up to 20% of all BI-RADS category 4 patients. 

Finally, we performed an error analysis, investigating situations where AI predictions were mostly 

incorrect. This exploratory work creates a foundation for deployment and prospective analysis of 

AI-based models for breast MRI.

One Sentence Summary:

We developed and evaluated an AI system for predicting breast cancer in MRI that matches the 

performance of board-certified radiologists and has the potential to prevent unnecessary biopsies.

INTRODUCTION

Breast MRI is a highly accurate modality in detecting breast cancer with reported sensitivity 

of over 80% (1, 2). Traditionally, its use in screening was limited to high-risk patients. 

Newer evidence supports the role of screening MRI in intermediate-risk and average-risk 

women (1, 3, 4). Diagnostic MRI is also useful for additional indications such as problem-

solving and patients with newly diagnosed breast cancer (5, 6). As the number of patients 

undergoing breast MRI continues to increase, it is important to maintain high specificity and 

positive predictive value to minimize unnecessary biopsies and follow-up recommendations. 

In the studies of screening MRI for intermediate- and average-risk women, the positive 

predictive value of a biopsy recommendation ranged from 19.6 to 35.7 percent (7). This 

translates to 2–4 benign biopsies performed for every malignant biopsy. There is a need 

to develop well-tested tools to improve the performance of MRI and increase quality 

of care. Furthermore, current tools and diagnostic algorithms are rarely personalized. 

Therefore, there is a need to develop tools that take into consideration clinicians’ or patients’ 

preferences, for example when deciding on whether to biopsy or not.

Artificial intelligence has had an enormous impact on medical research, including breast 

imaging. It has been shown to improve breast cancer detection rates in full-field 

mammography, digital breast tomosynthesis, breast ultrasound, and breast MRI (8–16). 

While published studies on AI for breast imaging usually demonstrate good classification 

performance, few measure potential clinical impact. Moreover, evaluation of external and 

heterogeneous data sets is critical to validate how AI systems may perform in different 

populations. Providing extensive, patient-oriented results is necessary to gain the trust of 

practitioners. Furthermore, it builds evidence that enables the translation of results into 

prospective studies and ultimately, clinical practice.

In our paper, we describe an AI system used to predict the probability of breast 

cancer in patients undergoing DCE-MRI. We extensively evaluate its performance on 

internal and international external data sets using both traditional metrics for diagnostic 

accuracy (area under the receiver operating characteristic curve [AUROC], area under the 

precision-recall curve [AUPRC], sensitivity, specificity, positive predictive value [PPV] and 
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negative predictive value [NPV]), as well as methods evaluating clinical utility impact on 

decision making, such as decision curve analysis. We compare AI system’s performance 

to radiologists in a retrospective reader study. We explore how the system performs in 

various patient subgroups and examine cases where the AI system failed to produce correct 

diagnoses. Finally, we analyze a specific clinical scenario — personalizing the management 

of BI-RADS 4 patients — leading to reduction in unnecessary biopsies.

RESULTS

Patient data.

Our internal data set used for model training and evaluation includes 21,537 bilateral DCE-

MRI studies (N=13,463 patients) who underwent a breast MRI between 2008 and 2020 at 

one of the NYU Langone Health breast imaging sites. All studies have been performed 

with either 1.5T magnet or 3T magnet MRI scanners (Table S3). Data included patients 

reporting for high-risk screening, preoperative planning, routine surveillance, follow-up 

after suspicious findings in previous studies, and workup of equivocal findings reported in 

mammography or ultrasound. We excluded patients after bilateral mastectomy, patients after 

neoadjuvant chemotherapy, and patients with MRI performed to assess implant integrity. 

T1-weighted fat-saturated pre-contrast and at least two post-contrast series were required for 

the study to be included in the data set. The entire data set was initially split into training, 

validation and test subsets with a 60–15-25 ratio. Additional filtering and manual evaluation 

was performed to ensure consistency of the data set and ground truth labels (see Methods). 

In addition to DCE-MRI studies, we collected associated radiology and pathology reports, 

and patients demographic data (Tables 1, 2).

We validate our model performance on three international external data sets. The first data 

set was collected at the Jagiellonian University Hospital (Kraków, Poland) between 2019–

2021 and contains 397 DCE-MRI studies. The remaining two data sets are as follows: 922 

MRI studies from Duke University (18, 19) and 131 studies from the TCGA-BRCA data set 

(20). Characteristics and processing of all data sets are described in Methods, and the MRI 

scanner breakdown is in Table S3.

Primary model performance.

The AI system’s output is a prediction of the breast-level probability of malignancy. That is, 

for each of the patient’s breasts, the system produces a number in a range between 0 and 1. 

The AI system achieved 0.924 AUROC (95% CI: 0.915–0.933) and 0.720 AUPRC (0.689–

0.751) when classifying breast cancer studies in the internal test set (Figure 2). Partial 

AUROC (pAUC) at 90% sensitivity was 0.765 (0.738–0.793) and 0.817 (0.801–0.833) at 

90% specificity.

On the Jagiellonian University test set, our system achieved 0.788 AUROC (0.750–0.832) 

and 0.591 AUPRC (0.514–0.672). On the Duke University data set, the AI system reached 

0.969 AUROC (0.960–0.976) and 0.977 AUPRC (0.971–0.982), and on the TCGA-BRCA 

data set 0.966 AUROC (0.942–0.985), 0.973 AUPRC (0.954–0.988).
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In our retrospective reader study, five (5) radiologists interpreted 100 cases sampled from 

the NYU Langone test set. All radiologists were board-certified and had between 2 and 

12 years of experience interpreting breast MRI exams. Readers achieved an average 

performance of 0.890 AUROC (range: 0.850–0.948) and 0.758 AUPRC (range: 0.712–

0.868). The AI model standalone performance on the reader study subset was 0.924 (0.880–

0.962) AUROC and 0.784 (0.656–0.887) AUPRC. This was better than the average reader 

performance by 0.035, but the difference between AI and radiologists was not statistically 

significant (Obuchowski-Rockette model, 95% CI AUC difference: 0.09, −0.02; p=0.19). In 

a head-to-head comparison between the AI system’s and radiologists’ AUROC, the AI was 

significantly better than two of the readers (#1 and #2). ROC curves for all readers are 

presented in Fig. S1 and numerical results are in Table S1.

We evaluated the performance of hybrid models by averaging radiologists’ and AI system’s 

predictions. On average, an equally weighted hybrid improves AUROC by 0.05 and AUPRC 

by 0.07. We demonstrate benefits were seen in all readers when using averaging AI’s and 

radiologists’ predictions (Fig. S2). When changing weights of the hybrid, we found that 

using AI predictions, even with a very small weight (e.g. 5–10% weight), significantly 

improves the overall outcome. This weight could be treated as an operating point and be 

set specifically for different readers, as the optimal operating point (that maximizes the 

performance) varies between radiologists (Fig. S3).

Subgroup analyses.

We conducted analyses on a wide range of patient subgroups in the test set, dividing them 

with respect to demographic data, imaging features, and other characteristics of patients, 

studies and cancers. This was to establish if the model is biased in any of the evaluated 

categories and investigate if some groups are more likely to benefit more from the model. 

Results are presented in Figure 3, full numerical values are in Table S2 and select ROC/PR 

curves are in Figures S4 and S5.

There were no noticable differences in the AI system’s performance between patients with 

various histological cancer subtypes, even when comparing more common cancers (e.g. 

invasive ductal carcinoma) with less common malignancies (e.g. invasive lobular carcinoma, 

ΔAUC: 1.5; two-sided DeLong’s test p=0.15). When considering patient demographics, the 

results indicate that the AI system appears to be unbiased, even when the subgroup was 

not as commonly represented in the training set, e.g. Black women (N=802 patients in the 

training set; test set AUROC 0.91 [0.87–0.95]) versus White women (N=9,819 in the training 

set; test set AUROC 0.93 [0.91–0.94]). AUC difference between those two groups was not 

statistically significant (p=0.33).

There is a slight trend of performance deteriorating in women with more significant 

background parenchymal enhancement (BPE). BPE is defined as the enhancement of 

the normal breast tissue in DCE-MRI, and often confounds the interpretation of this 

exam. The system was performing best in women with minimal BPE (AUROC 0.94 

[0.92–0.96]) and gradually worsening in women with higher BPEs (marked: 0.87 [0.82–

0.91]). AUC difference was statistically significant between minimal and marked BPE 
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(ΔAUC: 2.5; p=0.01), mild and marked BPE ΔAUC: 2.1; p=0.03) and minimal and moderate 

BPE (ΔAUC: 2.2; p=0.03).

Personalized management of BI-RADS 3 and BI-RADS 4 patients.

To create a diagnostic decision making application that allows for better concordance with 

patient preferences, we explore the possibility of using the AI model predictions as an aid in 

downgrading patients with BI-RADS category 4 to BI-RADS category 3, enabling them to 

opt out of a breast biopsy. This analysis is conducted in two ways, both using the full test set 

and original BI-RADS of the studies as reported initially by radiologists. First, we directly 

compare trade-offs between correctly avoided biopsies and missed cancers at various 

decision thresholds used to binarize probabilities of malignancy. This trade-off is an equally 

weighted comparison between the number of successfully opted-out patients (patients who 

avoided unnecessary biopsy) and missed cancers. In a second, more advanced approach, we 

use decision curve analysis methodology to incorporate patients’ and clinicians’ preferences 

into decision-making and explore whether using the model can be clinically beneficial 

or harmful. At an operating point that leads to avoiding benign biopsies in 5.4% of all 

non-malignant BI-RADS

4 cases, no cancers would be missed. At a different operating point, if 22.9% non-malignant 

BI-RADS 4 patients avoided a biopsy, 10 (2.3% of all cancers in BI-RADS 4 cases) cancers 

would be missed. Increasing the threshold causes the model to successfully opt-out more 

patients, but also to miss more cancers (Figure S6). We investigated several cases that would 

be missed following this approach, and discovered that most missed cancers were ductal 

carcinomas in situ. They were usually described on the initial radiology report as “clumped 

nonmass enhancements”, sometimes associated with post-biopsy clips.

Similarly, patients with BI-RADS category 3 could potentially be downgraded to BI-RADS 

category 2, subsequently leading to their return to routine screening instead of short-term 

follow-up MRI after 6 or 12 months. As patients with BI-RADS category 3 rarely end 

up being diagnosed with a breast cancer, our model allows to correctly downgrade 235 

BI-RADS 3 patients (73.2% of all non-malignant BI-RADS 3 cases) to BI-RADS 2, missing 

three cancer cases).

Using decision curve analysis (DCA) methodology (21), we evaluate clinical usefulness 

of our AI system at various decision thresholds. Unlike the technique described above 

(trade-off at various operating points), this approach is more informative as it takes into 

account the value of missed cancers versus the value of unnecessary interventions. The 

clinical decision we evaluated was whether the AI system’s predictions can select low-risk 

BI-RADS 4 patients and opt them out from undergoing a biopsy (effectively downgrading 

these patients to BI-RADS 3). Default practice is to biopsy all BI-RADS 4 patients, but this 

leads to an unreasonable number of false positive biopsies. With DCA we show that using 

AI’s predictions to opt-out low-risk patients is almost always better than performing biopsies 

for all patients.

Our results show that using the AI system in BI-RADS 4 patients offers net reduction 

in interventions even in low decision thresholds. If a decision threshold is at 5%, our 
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approach offers a net reduction of 156 breast biopsies per 1,000 patients. In higher decision 

thresholds, benefits are even greater, up to approximately 200 net breast biopsies avoided per 

1,000 patients at 10% threshold. We do not evaluate even higher decision thresholds, as we 

believe they are rarely clinically relevant (e.g. in older patients with very strong preferences) 

and do not reliably represent most patients’ or clinicians’ preferences. In sub-2% decision 

thresholds there is no net benefit in using our system, but these patients are not a subject of 

interest in this analysis and should always undergo a biopsy.

Averaging predictions improves interreader variability.

When considering positive versus negative studies (positive defined as assigned a probability 

of malignancy greater than 2% [i.e., a likelihood of malignancy that guides radiologists to 

rate a study as BI-RADS 4A]), mean agreement between readers was moderate for both 

breast-level (κ: 0.56 [95% CI: 0.50–0.63]) and exam-level (κ: 0.55 [0.46–0.64]) decisions. 

When averaged with AI predictions, interreader agreement improved to substantial, with 

a mean breast-level κ of 0.77 (0.72–0.82). The mean improvement in κ agreement was 

0.21 (0.17–0.26). Similarly, intraclass correlation coefficient (ICC) improved from 0.663 

(0.6–0.72) for readers only to 0.881 (0.85–0.90) for equally weighted hybrids between 

radiologists and AI.

Reader study error analysis.

Finally, we performed an error analysis of our system’s predictions using the reader 

study subset. We compared predictions of malignancy made by AI to predictions made 

by radiologists and investigated cases if there were major discrepancies. In a significant 

majority, AI system predictions matched those of radiologists. AI system behaved correctly 

when it predicted studies with cancer by giving them a high probability of malignancy, as 

well as when it correctly identified negative studies by giving them a very low probability. 

Moreover, in some benign cases AI’s predictions were much lower than radiologists, further 

demonstrating potential to avoid unnecessary biopsies. Having said that, we identified a few 

situations where our model gave unreasonably small probability of malignancy in cancer 

cases. We were not able to indicate a reason for this behavior, which shows a need for 

future research on AI uncertainty and explainability. Details of error analysis can be found in 

Supplementary Materials (section 9).

DISCUSSION

In our study, we showed that our AI system reaches a very high standalone performance, 

equivalent to breast radiologists, and that it has a significant potential to personalize patient 

management, reducing the number of unnecessary biopsies in BI-RADS 4 patients.

Our study is the first to report performance on both internal and external MRI data sets (22). 

These data sets vary in terms of ground truth definition, as well as patient demographics, 

inclusion criteria, indication for the examination, acquisition protocols, and more. Because 

of this, drawing conclusions about the system’s performance “in-distribution” from the 

external data sets only may not be representative. On the other hand, this analysis should 

be good indication of the performance in data sampled from distributions not seen before 
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by the model. For instance, our network had near-perfect performance on data sets that 

included only cancer cases (Duke University and TCGA-BRCA). On the other hand, our 

system yielded weaker results using the Jagiellonian University data set. We hypothesize 

that this difference is mostly a result of dissimilarity in either ground truth definition or data 

variability. Specifically, the Polish dataset includes all study indications, meanwhile our test 

set was heavily filtered (see Methods) to unify the patient population and reduce label noise.

A recent meta-analysis identified eight studies on the use of AI in MRI (22), all of them with 

very limited test sets. In that meta-analysis, an average AUC of included studies was 0.868 

(95% CI: 0.850–0.886). While our study demonstrated that our AI system has higher AUC, a 

direct comparison to these studies is not possible as the exact definitions of the task and the 

test sets are different.

Previously, a few breast imaging studies explored the potential to downgrade BI-RADS 4 

patients using predictive models, including AI-based algorithms. Works by Wang et al. (23), 

Zhao et al. (24) and Xiao et al. (25) assessed a commercially available AI tool for breast 

ultrasound to downgrade category 4A cases to category 3. In the Wang et al., out of 43 

category 4A studies, 14 were correctly downgraded. In the Xiao et al. study, 23 out of 42 

category 4A lesions (40 benign and 2 malignant) were correctly downgraded.

Our study also evaluates clinical utility by following a decision curve analysis (DCA) 

methodology. DCA indirectly incorporates patient and doctors preferences and calculates 

a “net benefit” of a new strategy (e.g. only biopsying patients who have high AI-based 

risk) compared to the default (e.g. biopsy all). DCA does not explicitly ask doctors/patients 

about their preferences, but rather calculates the net benefit across a range of threshold 

probabilities. These probabilities represent the trade-off of preferences, considering concerns 

about both cancer and biopsy. While DCA is a relatively new methodology, it has been 

encouraged by medical journals and adopted in several publications (26–28). In our analysis, 

we saw benefits in using the AI system to avoid unnecessary biopsies compared to 

performing them in all BI-RADS 4 patients. These benefits were consistent in all clinically 

relevant threshold probability values. We encourage the readers to refer to Vickers et al. for a 

thorough analysis on how to interpret DCA results (29).

We acknowledge a few limitations of this study. First of all, our reader study design 

and averaging radiologists predictions with AI system outputs might not capture how the 

system will affect radiologists decision-making, once implemented in hospital systems. A 

multireader, multicase study, in which an AI system would be used as a concurrent or second 

read tool that complies with regulatory guidelines, would be of value. Second, our decision 

curve analysis gives valuable information about clinical utility, but in the future a more 

extensive, cost-effective analysis should be performed to estimate monetary benefits and 

acceptable costs of the AI system. Third, we did not investigate whether our system learned 

to use minor clues in images, such as a biopsy clip marker artifact, to affect its decisions. 

Finally, our system does not provide clear explanations of its decision making. Even though 

we make the process of AI development transparent, predictions given by the system do not 

point to a specific part of the image or patient characteristic that influenced the prediction.
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In conclusion, our model achieves a level of diagnostic accuracy equivalent to breast 

imaging experts for predicting the presence of breast cancer in DCE-MRI studies. We 

showed this high performance generalizes well to other populations through evaluation 

on international, external data sets. Combining AI system’s predictions with radiologists 

decisions further improves classification accuracy. Clinically, our model can help 

personalize patient management, leading to a reduced number of unnecessary workup and 

biopsies, and is better than a biopsy-all strategy in BI-RADS 4 patients.

MATERIALS AND METHODS

Study Design

Ethical approval.—This is a retrospective study that was approved by the Institutional 

Review Board (ID #s18–00712). Informed consent requirement was waived. The study 

follows the guidelines of the Declaration of Helsinki of 1975 with its later revisions.

NYU Langone Health data set.—The data set consists of 21,537 DCE-MRI studies 

from 13,463 patients who underwent DCE-MRI at NYU Langone Health between 2008 and 

2020. The data was randomly split into training, validation and test sets with 60%, 15% and 

25% of the data, respectively. This split was made on a patient-level, so that data from one 

patient can be in only one subset.

Ground truth.—All data have breast-level labels that describe the presence or absence of 

benign or malignant findings in either the left and right breast. All benign and malignant 

labels in our data set are pathology-proven, based on specimen analysis from either a breast 

biopsy or surgery. We searched and matched all pathology reports dated 120 days before or 

after the day of examination.

Filtering the data set.—To maximize the accuracy of our truthing, and to remove 

potentially confounding subgroups, we performed additional filtering of our data set. In 

the full data set, we excluded studies where we were not able to reliably determine a 

cancer label or there were technical issues with data extraction or data consistency. We also 

added a set of rules specific to the test set to further remove the label noise. We excluded 

patients with a history of bilateral mastectomy (N=165) and patients after neoadjuvant 

chemotherapy (N=105). We do not intend to use our software in those sub-populations, 

though we encourage future researchers to take this into consideration. Additionally, we 

excluded patients with breast implants (N=370). We also manually reviewed cases where: (1) 
a study was initially labeled as negative, but was assigned BI-RADS 1, 2 or 3; (2) a study 

was labeled as malignant, but was assigned BI-RADS 1 or 2; (3) a study was labeled as 

malignant, but was assigned BI-RADS 0, 3 or 6. In situation (1), we added a 1 year negative 

follow-up requirement. Negative follow-up means that in a year after the MRI study date: 

(1) there are no pathology reports associated with the patient; (2) there is at least one breast 

imaging study (mammography, MRI) with BI-RADS category 1, 2 or 3; (3) there are no 

breast imaging studies with BI-RADS category 0, 4, 5 or 6. In situation (2), we excluded 

those cases as it is a clear mistake to label a study as both malignant and BI-RADS 1 or 2. In 

situation (3), we manually reviewed all cases (N=433) and verified correctness of the labels. 
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If necessary, studies had their labels fixed or were excluded. A flowchart with details about 

overall data set and test set specific filtering, please refer to our data report (30).

External data sets—To prove generalizability of our model in a different population, we 

collected data sets from multiple institutions in the United States and Poland. All external 

data underwent the same preprocessing pipeline as the NYU Langone data set. That is, they 

were resampled, reoriented to the LPS (left-posterior-superior) orientation and saved in an 

appropriate file format.

Jagiellonian University (“JU Hospital”).—This data set has been acquired at the 

Jagiellonian University Hospital, which is the highest-volume hospital in southern Poland. 

Breast cancer diagnosis and treatment is overseen by the JU Hospital Breast Unit, which is 

an accredited, multidisciplinary team specialized in breast cancer. Images in the JU Hospital 

data set were anonymized on by JU Hospital before being transferred to NYU Langone 

Health.

Labeling and anonymization was performed by a board-certified breast radiologist, and the 

labels are pathology-proven, similar to our internal data set. 99% of studies have been 

acquired on a 1.5T Siemens MAGNETOM Sola between December 2019 and August 2021. 

Indications for a scan varied, but the largest group was patients undergoing a follow-up after 

ambiguous findings in other modalities.

After obtaining the data set, we semi-automatically identified pre- and post-contrast 

sequences in all studies and converted them to the NIfTI format. Then, we performed a 

manual visual review of saved images to confirm accuracy of pre-/post-contrast assignment 

and found any studies that did not have fat-saturated series. From the original data set, we 

excluded 5 studies that did not contain fat-saturated images, 3 unilateral studies, and one 

study that did not have consistent image size in pre- and post-contrast series. Ultimately, 397 

studies were included with 248 benign and 149 malignant studies.

Duke University.—The Duke Breast Cancer MRI data set (“Duke data set”) is publicly 

available through The Cancer Imaging Archive (TCIA). It contains 922 studies (N=922
patients) with invasive breast cancer, scanned on either 1.5T or 3T machines. Authors of 

this data set also provide detection labels, clinical features and imaging features. Detection 

labels are available for all studies and are shared in a tabular form describing coordinates of 

3D cuboid bounding boxes. Images in the Duke data set are stored in the DICOM format 

and were preprocessed with the same pipeline as NYU Langone data set. That is, they 

were resampled and reoriented to the LPS orientation. We identified pre- and post-contrast 

sequences, as required by our model, and performed inference to generate predictions. 

Because our model makes breast-level predictions, we converted bounding box labels to 

breast-level labels. New labels were produced based on the middle point of bounding boxes. 

For example, if the central point of a bounding box is located on the left anatomical side of 

the patient, a label for left breast is generated.

As described in Saha et al. (19), the images were annotated by eight fellowship-trained 

breast radiologists with 1–22 years of post-fellowship experience.
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We excluded the following studies from the Duke data set: Breast_MRI_065, 

Breast_MRI_120, Breast_MRI_127, Breast_MRI_134, Breast_MRI_232, 

Breast_MRI_279, Breast_MRI_465, Breast_MRI_514, Breast_MRI_574, 

Breast_MRI_596, Breast_MRI_700 and Breast_MRI_767. The reason for the 

exclusion was either size mismatch between pre- and post-contrast sequences, or an inability 

to automatically determine which sequences were pre- or post-contrast. Ultimately, 910 

studies were included from the Duke data set. As the Duke data set is all-malignant, 

interpretation of its results should be limited to patients with invasive breast cancer.

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA).—This is a 

data set publicly available as a part of The Cancer Imaging Archive (TCIA) (31), similar to 

the Duke University data set. Originally, this data set included 164 studies from 139 patients 

and contains images, clinical data, biomedical data and DICOM Structured Reporting files. 

The data in its original form is not suitable for AI evaluation, which is why we developed 

a pipeline for generating AI-ready TCGA-BRCA data with labels (Supplementary Materials 

5). After processing, the data set contains 131 studies.

AI system

Inputs and outputs.—Let x ∈ ℝC, Z, X, Y  denote an input. Z, X, Y are the spatial 

dimensions of a MRI volume, and C channels are different MRI sequences, i.e. pre- and 

post-contrast series. The neural network generates four probability estimates: y lb, y lm, yrb, 

yrm ∈ [0, 1] that indicate the predicted probability of the presence of benign and malignant 

lesions in each of the patient’s breast (i.e. b and m represent benign and malignant findings, 

and l and r represent left and right breasts, respectively.). Probabilities of benign findings 

(y lb, yrb) are used only as a multi-task learning regularization method. Throughout the study 

we only evaluate predicted probabilities of malignant findings (y lm, yrm).

Architecture.—On a high level, our models are deep residual neural networks with 3D 

convolutions to detect spatiotemporal features (32). Specifically, we use a 3D-ResNet18 

backbone with a max pooling layer before linear classifier.

In our experiments, we found that models with pre-trained backbones perform better 

compared to models trained from scratch. We used weights from models pre-trained on 

the Kinetics-400 data set, which is an action recognition in videos data set (33). Even though 

Kinetics-400 is not a medical data set, transfer learning was successful to our downstream 

task. This is in line with other results suggesting that medical imaging can benefit from 

large-scale non-medical data sets for transfer learning (34, 35).

Data augmentation during training.—We experimented with various geometrical, 

intensity-based and MRI-specific augmentations (36). Ultimately, in our experiments we 

found that affine transformation gave the most consistently beneficial results. For all models, 

during training, we randomly (p=0.5) flipped images “horizontally”, i.e. in the left-right 

anatomical axis. Note that when the volume was flipped, labels were flipped as well, i.e. 

ylb yrb while yrb ylb and ylm yrm while yrm ylm.
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Note that the affine augmentations applied were not based on the tensor sizes, but rather 

on the real-life dimensions. To convert into anatomical dimensions, we calculated affine 

matrices for each study that define relationships between pixel and real life sizes. To 

compute an affine matrix, we used image spacing, origin and direction cosines values that 

were collected from DICOM metadata. Those matrices were necessary to initially resample 

to the same pixel spacing and reorient all images to the LPS (left-posterior-superior) 

orientation, which is a standard orientation in DICOM convention. That means that pixels 

in the matrix follow the anatomical order and go from right towards left, from anterior 

towards posterior and from inferior towards superior. Resampling was performed using 

linear interpolation.

Subtraction images.—During our experiments, we attempted to improve the 

performance by using subtraction images. They were generated by a simple 

matrix subtraction between post-contrast and pre-contrast volumes, such that 

Xsubtractioni = Xposti − Xpre, where Xpost is one of i post-contrast volumes and Xpre is the pre-

contrast volume. We did not clip lower range values to zero, which is sometimes done by 

radiological software to improve visibility. Ultimately, we did not find subtraction images 

provided superior performance over regular T1-weighted sequences. We hypothesize that the 

neural network, when provided with pre- and post-contrast images, is able to learn patterns 

related to the contrast enhancement.

Training details.—In our study, reported performance for the “best model” is using 

an ensemble of top 20 models. All models were trained with the Adam optimizer (37), 

and top models for the ensemble were selected after hyperparameter tuning with random 

search (38), as described below. AUROC for malignant labels was the target metric in the 

hyperparameter search. We tuned the following parameters:

• scaling ∈ [5%, 25%], symmetrically along each axis,

• rotation ∈ [5 deg, 30 deg], symmetrically along each axis,

• translation ∈ [5 mm, 20 mm], symmetrically along each axis,

• dropout - 25% chance on the fully connected layer (yes or no),

• label smoothing (39, 40) α∈ [0, 0.1],

• stochastic depth rate (41) ∈ [0, 0.1],

• weight decay ∈ [1e−6, 1e−4],

• learning rate ∈ [7e−7, 2e−5],

• number of warmup epochs ∈ [2, 6],

• choice of the learning rate scheduler (10x reduction after α epochs versus cosine 

annealing) and scheduler policies.

Models were trained with mixed precision using NVIDIA Apex open source library. 

Network architecture included group normalization (42) instead of batch normalization (43), 

as large volume size dramatically reduces the number of samples in a mini-batch. We found 
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that group normalization with 16 groups was performing best in our experiments. We used 

Neptune.ai and Weights&Biases for tracking, evaluating and visualizing experimental results 

(44, 45).

Test time augmentations.—During test time, we transformed all data samples 10 times 

(test time augmentation, TTA), and averaged inference results from all TTA samples. 

This approach has been shown to improve accuracy and robustness of AI models. The 

optimal TTA policy was found on a validation set after running a random search for TTA 

hyperparameters: number of TTA rounds ∈ [1, 10], affine scaling ∈ [10%, 20%], rotation ∈
[10 deg, 20 deg], translation ∈ [10 mm, 20 mm], using gamma transformations or blurring. 

On our validation set, we found that the best performing TTA policy was the one that 

implemented 10 rounds of TTA, random horizontal flips, and affine transformations of 

10% scaling factor, 10 degree rotation and 10 pixel translation. However, we also note that 

differences between various TTA policies were usually indistinguishable. For single models 

(i.e. not full ensemble), we noticed an improvement of ≈ 0.005 AUC ROC and ≈ 0.01 AUC 

PR on our validation set.

Reader study.—We designed a retrospective reader study to compare the standalone 

clinical performance of our model with radiologists. This study had a single-arm design 

(readers interpreting MRI studies only). We recruited 5 board-certified breast radiology 

attendings to participate in the study. We randomly selected 100 studies from the primary 

test set as a reader study set for readers to interpret. Following the common practice in 

reader studies, our data set has been enriched with malignant and non-malignant biopsied 

cases. Specifically, there were 40 malignant, 40 benign, and 20 negative studies in the reader 

study set. Readers were informed that the population of the study does not represent typical 

distribution of patients undergoing breast MRI, but they had no knowledge about the specific 

split. Readers were also blinded to any confidential information, prior studies or indications 

for the examination. Radiologists had access to all available MRI sequences, and were not 

limited to T1-weighted fat-saturated series that are used as inputs for the AI system.

Readers were provided with a workstation preloaded with studies. All studies used in the 

reader study have been pseudonymized and stored in a DICOMweb server (46) 1 separate 

from clinical PACS servers. Radiologists had access to the workstation and a data collection 

tool where they reported their predictions. Before joining the study, recruited readers had to 

familiarize themselves with study instructions as well as the DICOM viewer (47) used in the 

study. Radiologists had to provide the following predictions:

• A probability of malignancy (POM) for the whole study, in a range between 0 

and 100.

• A POM for the left breast, in a range between 0 and 100.

• A POM for the right breast, in a range between 0 and 100.

• A “forced BI-RADS” for the study. This means they could only use BI-RADS 

categories 1, 2, 3, 4A, 4B, 4C or 5. BI-RADS categories 0 or 6 were not 

1 https://github.com/dcmjs-org/dicomweb-server 
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available. If the study was classified as BI-RADS 4, radiologists had to specify a 

subcategory (4A, 4B or 4C).

Readers were advised to use BI-RADS likelihood of cancer ranges as a guideline when 

assigning POM values. This means that if a reader believes that the study is probably benign 

(BI-RADS 3), they should assign a POM value in the (0, 2] interval, etc.

Statistical analysis.—To measure model performance, we used receiver operating 

characteristic (ROC) and precision-recall (PR) and calculated areas under the curve (AUC) 

for both (AUC ROC and AUC PR). We also report sensitivity and specificity. Areas under 

curves were calculated with a non-parametic (trapezoidal) method. We further evaluate 

specific clinical scenarios using partial AUC (48, 49) statistic, as implemented in the 

pROC R package (50). All results, where appropriate, are reported with 95% confidence 

intervals using bootstrapping (51). When evaluating standalone AI performance versus 

reader performance, we used a single-treatment random-reader random-case model, based 

on the Obuchowski-Rockette model (52, 53). This method takes into account variability 

both between readers, and between cases. We used the model based on descriptions by 

Chakraborty (54) and implementation from the RJafroc (55) R package (the “1T-RRRC” 

model). Null hypothesis for significance testing was that the average breast-level AUC of the 

AI model equals the average AUC of radiologists. In subgroup analyses, for comparisons of 

AUCs of two curves, we performed a two-sided DeLong’s test (56).

For decision curve analysis, we used R packages rmda and dcurves to generate the curves, 

calculate net benefit and net interventions avoided. We established a range of reasonable 

threshold probabilities for evaluated subgroups (BI-RADS 4 and 3), and also reported a wide 

range of threshold probabilities on a full population.

The standardized net benefit (sNB; a.k.a. relative utility) for the opt-out policy (here: 

downgrading BI-RADS 4 to BI-RADS 3) can be defined as:

sNB(α) = TNR(α) − prevalence
1 − prevalence

1 − α
α FNR(α)

where prevalence is disease prevalence, α is decision threshold, TNR is a true negative rate 

and FNR is a false negative rate.

To avoid overestimating the net benefit (57), we bootstrapped the results with N=2,000 

replicates and reported decision curves with 95% confidence intervals, as suggested by Kerr 

et al. (58).

For measuring interreader variability, we used Fleiss’ kappa (59), specifically with 

Randolph’s free-marginal modification (60) for agreement between positive and negative 

cases. We also used intraclass correlation coefficient (ICC) for measuring consistency in 

scoring probability of malignancy. Both Fleiss’ kappa and ICC were calculated on exam-

level and breast-level for readers. ICC estimates are based on single measures with a 

two-way random-effects model, i.e. ICC(2,1) (61).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of the study.
In this work we train and evaluate an AI system based on deep neural networks that predict 

the probability of breast cancer in DCE-MRI studies. Our system takes one pre-contrast and 

two post-contrast T1-weighted fat saturated sequences as inputs and returns a probability 

of malignancy for each breast. We use a large NYU Langone data set for model training, 

validation and testing. Additionally, we obtained and processed three international data 

sets from Duke University (USA), Jagiellonian University (Poland) and TCGA-BRCA 

data set. We use these external data sets for the evaluation of system performance on 

out-of-distribution data. Besides traditional standalone evaluation, we look into performance 

in key patient subgroups, and we compare model accuracy to board-certified radiologists. 

Finally, we show that using predictions from our AI system can successfully personalize 

management of BI-RADS 4 patients and increase clinical utility by avoiding unnecessary 

biopsies.
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Figure 2: AI system performance on all test sets.
Figures show receiver operator characteristic curves (ROC, top row), ROC curves with 

partial area under the curve (pAUC, bottom row), and precision-recall curves (PRC, bottom 

row) for all test sets. In the bottom row, green rectangles represent pAUC for 90–100% 

specificity and blue rectangles represent pAUC for 90–100% sensitivity. ROC and PR curves 

are presented with 95% confidence intervals calculated with bootstrapping (N=2,000).
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Figure 3: System performance in key subgroups on the internal test set.
Plots present metric breast-level values with 95% confidence intervals. A decision threshold 

was selected such that the AI system’s sensitivity closely matches average reader sensitivity. 

CIs were calculated with bootstrap (N=2,000 replicates). Full numerical values for each 

subgroup are available in Table S2. BI-RADS categories 1, 2 and 3 are aggregated because 

there were no malignant cases in BI-RADS 1 and 2 categories, thus AUROC would not be 

defined in those subgroups. On the right, a number of malignant (red) and non-malignant 

(green) studies are presented.

Witowski et al. Page 20

Sci Transl Med. Author manuscript; available in PMC 2023 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Decision curve analysis supports using the AI system to decide on whether to perform 
biopsy in low-risk BI-RADS 4 patients.
a, standardized net benefit values are higher when decisions are made based on the AI 

system’s predictions (red curve) compared to default biopsy-all approach (grey line at 

x = 0) across all relevant decision thresholds (black curve is a biopsy-none approach). Net 

benefit curve is presented with 95% bootstrapped confidence intervals (N=2,000 replicates). 

b, shows net interventions avoided per 1,000 BI-RADS 4 patients. Reductions are highest 

when decision threshold is above 3%.
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Table 1:
NYU Langone data set breakdown including demographic data and imaging 
characteristics.

Values are N (%) unless specified otherwise. Background parenchymal enhancement (BPE) and the amount of 

fibroglandular tissue (FGT) are reported according to the American College of Radiology BI-RADS Atlas 5th 

edition (17). Studies which had missing BI-RADS, BPE and FGT categories are omitted in this table.

Training set Validation set Test set Total

Studies 14,198 3,403 3,936 21,537

Patients 8,679 2,142 2,642 13,463

Age, mean years (SD) 54.56±13.2 54.30±13.0 55.23±12.7 54.64±13.1

Race

 White 9,819 (69.2) 2,317 (68.1) 2,738 (69.6) 14,874 (69.1)

 Black 802 (5.6) 205 (6.0) 244 (6.2) 1,251 (5.8)

 Asian 548 (3.9) 182 (5.3) 163 (4.1) 893 (4.1)

 Other/Unknown 3,005 (21.2) 696 (20.5) 781 (19.8) 4,482 (20.8)

Label†

 Malignant 2,337 (16.5) 582 (17.1) 861 (21.9) 3,780 (17.6)

 Benign 3,380 (23.8) 804 (23.6) 1,148 (29.2) 5,332 (24.8)

 Negative 10,040 (70.7) 2,397 (70.4) 2,491 (63.3) 14,928 (69.3)

BI-RADS category

 BI-RADS 0 446 (3.1) 103 (3.0) 102 (2.6) 651 (3.0)

 BI-RADS 1 2,213 (15.6) 469 (13.8) 596 (15.1) 3,278 (15.2)

 BI-RADS 2 5,818 (41.0) 1,416 (41.6) 1,378 (35.0) 8,612 (40.0)

 BI-RADS 3 1,292 (9.1) 331 (9.7) 333 (8.5) 1,956 (9.1)

 BI-RADS 4 2,601 (18.3) 667 (19.6) 956 (24.3) 4,224 (19.6)

 BI-RADS 5 94 (0.7) 27 (0.8) 40 (1.0) 161 (0.7)

 BI-RADS 6 1,205 (8.5) 298 (8.8) 385 (9.8) 1,888 (8.8)

Background parenchymal enhancement

 Minimal/mild 8,933 (62.9) 2,117 (62.2) 2,498 (63.5) 13,548 (62.9)

 Moderate/marked 3,309 (23.3) 858 (25.2) 1,068 (27.1) 5,235 (24.3)

Fibroglandular tissue

 A/B (Fatty/scattered) 4,664 (32.8) 1,094 (32.1) 1,304 (33.1) 7,062 (32.8)

 C/D (Heterogeneous/extreme) 7,295 (51.4) 1,796 (52.8) 2,178 (55.3) 11,269 (52.3)

†
Because malignant and benign labels are not mutually exclusive, the total number of malignant, benign and negative studies can be greater than 

100%. Breast-level label statistics are presented in Table S4.
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Table 2:
Histological and molecular cancer subtypes.

One patient and one study can have multiple findings.

Training set Validation set Test set Total

Histological type

Ductal carcinoma in situ 1,485 389 570 2,444

Invasive ductal carcinoma 1,404 347 523 2,274

Metastatic carcinoma 417 82 138 637

Adenocarcinoma 272 55 106 433

Invasive lobular carcinoma 263 55 87 405

Invasive mammary carcinoma 86 18 33 137

Papillary carcinoma 51 11 5 67

Other/Unknown 33 8 12 53

Lymphoma (B-cell/lymphocytic) 2 2 3 7

Molecular type

 Luminal (HR+)

Luminal A 911 222 326 1,459

Luminal B 237 62 78 377

Luminal, unknown† 539 141 202 882

 Non-luminal (HR−)

Triple negative 177 36 63 276

HER2-enriched 56 19 21 96

Non-luminal, unknown† 147 38 55 240

Unknown 270 64 116 450

†
Because many studies in our data set had missing information about HER2 receptor status and/or Ki-67 status, they only have partial luminal/

non-luminal classification. For example, if cancer was classified as ER+/PR+ but the information about HER-2 status was missing, it is considered 
“luminal, unknown”. Values are N (% of all malignant cases), reported on a study level. HR, hormone receptor; ER, estrogen receptor; PR, 
progesterone receptor; HER2, human epidermal growth factor receptor 2.
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