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Summary

We consider the problem of conditional independence testing: given a response Y  and covariates 

X, Z , we test the null hypothesis that Y ⫫X ∣ Z. The conditional randomization test was recently 

proposed as a way to use distributional information about X ∣ Z to exactly and nonasymptotically 

control Type-I error using any test statistic in any dimensionality without assuming anything about 

Y ∣ X, Z . This flexibility, in principle, allows one to derive powerful test statistics from complex 

prediction algorithms while maintaining statistical validity. Yet the direct use of such advanced 

test statistics in the conditional randomization test is prohibitively computationally expensive, 

especially with multiple testing, due to the requirement to recompute the test statistic many times 

on resampled data. We propose the distilled conditional randomization test, a novel approach 

to using state-of-the-art machine learning algorithms in the conditional randomization test while 

drastically reducing the number of times those algorithms need to be run, thereby taking advantage 

of their power and the conditional randomization test’s statistical guarantees without suffering 

the usual computational expense. In addition to distillation, we propose a number of other tricks, 

like screening and recycling computations, to further speed up the conditional randomization test 

without sacrificing its high power and exact validity. Indeed, we show in simulations that all our 

proposals combined lead to a test that has similar power to the most powerful existing conditional 

randomization test implementations, but requires orders of magnitude less computation, making it 
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a practical tool even for large datasets. We demonstrate these benefits on a breast cancer dataset by 

identifying biomarkers related to cancer stage.

Some key words:

Conditional independence test; Conditional randomization test; High-dimensional inference; 
Machine learning; Model-X

1. Introduction

1.1. Background

In our increasingly data-driven world, it has become the norm, in applications from 

genetics and health care to policy evaluation and e-commerce, to seek to understand the 

relationship between a response variable of interest and a high-dimensional set of potential 

explanatory variables or covariates. While accurately estimating this entire relationship 

would generally require a nearly infinite sample size, a less intractable, but still extremely 

useful question is to ask, for any given covariate, whether it actually contributes to the 

response variable’s high-dimensional conditional distribution. We address this problem by 

encoding a covariate’s relevance as its conditional dependence with the response, which 

can be defined without requiring any modelling assumptions. Denoting the response random 

variable by Y , a given covariate of interest by X, and a multidimensional set of further 

covariates by Z = Z1, …, Zp , the null hypothesis we seek to test is H0:Y ⫫X ∣ Z against the 

alternative H1:Y ⫫ X ∣ Z. Testing this hypothesis for just a single covariate is sometimes all 

that is needed, such as in an observational study investigating whether a particular treatment 

X  causes a change in a response Y  after controlling for a set of measured confounding 

variables Z . But in other applications no one covariate holds a priori precedence over 

another, and a researcher seeks any and all covariates that contribute to Y ‘s conditional 

distribution. This variable selection objective can also be achieved by testing H0 for each 

covariate in turn and plugging the resulting p-values into one of the many procedures 

from the extensive literature on multiple testing. In addition to the considerable statistical 

challenge of providing a valid and powerful test of H0, it is of paramount importance to also 

ensure that the test is computationally efficient, especially, as is often the case in modern 

applications, when either or both the sample size and dimension are large, and even more so 

when a variable selection objective requires the test to be run many times. Thus, the goal of 

this paper is to present a test for conditional independence that is provably valid, empirically 

powerful and computationally efficient when the distribution of X ∣ Z is known or can be 

well approximated.

Our work builds on the conditional randomization test, CRT, introduced by Candès et al. 

(2018). The CRT is a general framework for conditional independence testing that can use 

any test statistic one chooses, and exactly and nonasymptotically control the Type-I error 

regardless of the data dimensionality. The CRT’s guarantees assume nothing whatsoever 

about Y ∣ X, Z , but instead assumes X ∣ Z is known. This so-called model-X framework, 

in contrast to the canonical approach of assuming a strong model for Y ∣ X, Z , is perhaps 
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easiest to justify when a wealth of unlabelled data, i.e., pairs Xi, Zi  without corresponding 

Y i, is available, but has also been found to be quite robust even when X ∣ Z is estimated 

using only the labelled data.

In order to define the CRT, we first need notation for our data. For i ∈ 1, …, n , let 

Y i, Xi, Zi ∈ ℝp + 2 be independent and identically distributed copies of Y , X, Z , and denote 

the column vector of the Y i by y ∈ ℝn, the column vector of the Xi by x ∈ ℝn, and the matrix 

whose rows are the Zi by ℤ ∈ ℝn × p. The CRT is given by Algorithm 1, and its Type-I error 

guarantee follows.

Algorithm 1. The conditional randomization test.

Input: The distribution of x ∣ ℤ, data y, x, ℤ , test statistic function T , number of 

randomizations M.

For m = 1, 2, …, M: Sample x m  from the distribution of x ∣ ℤ, conditionally independently of 

x and y.

Output: CRT p-value 1
M + 1 1 + ∑m = 1

M 1 T y, x m , ℤ ⩾ T y, x, ℤ .

Theorem 1 (Candès et al. (2018)). The CRT p-value p y, x, ℤ  satisfies PH0 p y, x, ℤ ⩽ α ⩽ α
for all α ∈ 0, 1 .

For many common models of X ∣ Z, the conditionally independent sampling of x m  is 

straight-forward. And even in more complex models it is still often easy to sample x m

conditionally exchangeably with x and conditionally independently of y, for instance by 

conditioning on an inferred latent variable, which is sufficient for Theorem 1 to hold. 

Because Theorem 1 only relies on the exchangeability of the vectors x, x 1 , …, x M  under 

H0, it is entirely agnostic to the choice of test statistic T . This enables some very powerful 

choices, such as test statistics derived from modern machine learning algorithms, from 

Bayesian inference, though neither the prior nor model for Y ∣ X, Z  need be well-specified, 

or from highly domain-specific knowledge or intuition. Unfortunately, the most powerful 

statistics are often particularly expensive to compute and, as can be seen from Algorithm 1, 

T  must be applied M + 1 times in order to compute a single p-value. When testing all the 

covariates at once, this computational problem is compounded since, not only does each test 

require M + 1 applications of T , but M must be roughly of order p to ensure the p-values are 

sufficiently high resolution to make any discoveries with multiple-testing procedures such as 

Benjamini–Hochberg (Benjamini & Hochberg, 1995).

1.2. Our contribution

We resolve this computational challenge in § 2 by introducing a technique we call 

distillation that can still leverage any high-dimensional modelling or supervised learning 

algorithm, but presents dramatic computational savings by only requiring the expensive 

high-dimensional computation to be performed once, instead of M + 1 times. We call our 
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proposed method the distilled CRT, or dCRT, and we show how to further improve its 

computation in multiple-testing settings in § 3.

In this paper we will refer to the CRT implementation as originally proposed without 

distillation or HRT, holdout randomization test, speedup as the original CRT, or oCRT. We 

demonstrate in simulations in § 4 that there is little difference in power between the dCRT 

and its more expensive CRT counterpart, and what small differences exist can be explained 

by factors that are separate from distillation. Meanwhile, our proposals save orders of 

magnitude in computation over the oCRT even for medium-scale problems. We also show 

in simulations that the dCRT is comparably powerful to other state-of-the-art conditional 

independence tests, and is also robust to misspecification in the distribution of X.

The dCRT inherits several attractive properties of the CRT: it can be derandomized to 

an arbitrary extent through computation with increasing M and yields finite-sample valid 

p-values for all variables that can be used for downstream multiple-testing analyses with a 

variety of error metrics, including not only the false discovery rate, but also the familywise 

error rate and others.

1.3. Related work

Our work builds upon the CRT framework of Candès et al. (2018), with the goal of making 

it computationally tractable without sacrificing power. Our work is perhaps most similar 

in its goal to the HRT of Tansey et al. (2021), which uses data splitting to enable the 

use of complex modelling in the CRT with far less computation by doing all the complex 

modelling on the first part of the data and testing on the second part. A domain-specific 

version of the HRT was applied by Bates et al. (2020) to genetic trio studies by using 

causal terminology, learning a model on observational data and using it within the CRT on 

randomized experimental data; the power of a similar hybrid CRT approach was studied by 

Katsevich & Ramdas (2021). We show in § 4 that data splitting comes with a substantial 

power loss compared to the dCRT and oCRT. Tansey et al. (2021) addressed this with 

cross-fitting, but in doing so lost the guarantee on Type-I error control of the CRT and 

dCRT. Other works have extended the CRT (Bellot & van der Schaar, 2019; Berrett et al., 

2020) in ways that do not address its computational intractability. For the variable selection 

problem, model-X knockoffs (Candès et al., 2018) can simultaneously test conditional 

independence for each covariate, yielding a false discovery rate-controlling rejection set. 

Model-X knockoffs is inherently a multiple-testing method, with power to detect groups of 

nonnull variables without quantifying their individual significances. On the other hand, the 

dCRT is a single-testing method which can be paired with multiple-testing procedures if 

desired. We elaborate further on the comparison between dCRT and model-X knockoffs in 

the discussion.

We note a pair of methods, double machine learning (Chernozhukov et al., 2018) and 

the generalized covariance measure (Shah & Peters, 2018), that both test conditional 

independence under assumptions that nearly, but not quite due to moment conditions on Y , 

subsume ours, and whose test statistic resembles and can even be identical to certain special 

cases of the dCRT. However, their statistics only resemble a special case of the dCRT; the 
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dCRT framework includes many other statistics which deviate substantially from double 

machine learning/generalized covariance measure and can be more powerful in certain 

settings. Furthermore, the cut-offs for their test statistics are both based on asymptotic 

normality, while the dCRT is nonasymptotically exact regardless of the distribution of its test 

statistic; see the Supplementary Material.

1.4. Notation

Let I = ii, i2, …, ik ⊆ 1, …, n  and J = j1, j2, …, jℓ ⊆ 1, 2, …, p  be subsets of samples 

and variables, respectively, and consider a matrix A = a1, a2, …, ap ∈ ℝn × p with 

aj = A1j, A2j, …, Anj
T. We denote by AI, J the submatrix of A with rows in I and 

columns in J. We use the subscripts j, − J′ and • as shorthand for J = j , 1, …, p ∖ J′
and 1, …, p , respectively, and the same for the first index. For example, A• , − j

represents the matrix A with the jth column removed. For any two vectors aj

and aℓ, let aj ⊙ aℓ = A1jA1ℓ, A2jA2ℓ, …, AnjAnℓ
T denote their elementwise product, and for 

L = ℓ1 , ℓ2 , …, ℓk  let aj ⊙ AL = aj ⊙ aℓ1, …, aj ⊙ aℓk ; these will be used when fitting 

interaction effects.

2. The distilled conditional randomization test

2.1. Main idea

It is natural to derive CRT test statistics from machine learning methods with high predictive 

and estimation accuracy. Indeed, the original paper proposing the CRT (Candès et al., 

2018) used the test statistic ToCRT y, x, ℤ : = βx
lasso

, the absolute value of the fitted coefficient 

on x from the lasso (Tibshirani, 1996) of y on x, ℤ  with penalty parameter chosen by 

cross-validation. Although powerful and computationally much faster than many other 

machine learning algorithms, it is still expensive to repeatedly run the lasso on large datasets 

hundreds or more times just to compute a single CRT p-value, and many times more than 

that in multiple-testing scenarios when a CRT p-value for each covariate is needed.

Consider now the following alternative test statistic which captures the essence of our 

proposal. First fit a cross-validated lasso of y on only ℤ to obtain the p-dimensional 

coefficient vector βz
loco

. Then fit a least-squares regression of the residual y − ℤβz
loco

 on x

to obtain the scalar coefficient βx
loco

 and take its absolute value TdCRT y, x, ℤ : = βx
loco

 as the 

test statistic. Here, the superscript loco represents leave-one-covariate-out regression as x
is left out when regressing y solely on ℤ. We introduce this notation to distinguish the 

leave-one-covariate-out construction from the oCRT lasso statistics when needed, although 

in the remainder of the paper we will just use βx, βz  to represent βx
loco, βz

loco
 when there is 

no need to distinguish them from βx
lasso, βz

lasso
. It may seem as though little has changed from 

the preceding paragraph; we would expect ToCRT and TdCRT to have similar statistical properties 

and require nearly the same computation. Although the statistical properties of ToCRT and 

TdCRT are indeed very similar and they do require nearly the same time to compute once, 

they require dramatically different computation within the CRT. The key difference is that 
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the expensive p + 1 -dimensional lasso fit in ToCRT must be recomputed for each resample of 

x, while the expensive p-dimensional lasso fit in TdCRT must only be computed once, since 

that lasso does not depend on x and hence is identical for all its resamples. In the CRT, 

neither y nor ℤ change during the resampling procedure, and we take advantage of this by 

applying our expensive computation to only y and ℤ so it only has to be done once. All 

that is required for each resample’s computation of TdCRT is a univariate regression, whose 

computational expense is much lower than a p-dimensional lasso.

We can generalize this idea far beyond the lasso or linear regressions. The core proposal 

is to distil all the high-dimensional information in ℤ about y into a low-dimensional 

representation, without looking at x. Then the test statistic estimates a relationship between 

x and the leftover information in y by only looking at x, y and the distilled low-dimensional 

function of ℤ. Thus, all the computation on high-dimensional data, namely the distillation, 

only needs to be performed once, while the computation that is repeatedly applied to the 

resampled data is low-dimensional and hence relatively fast.

2.2. Formal presentation of dCRT

We now formalize the idea from the previous subsection in Algorithm 2.

Algorithm 2. The distilled conditional randomization test.

Input: The distribution of x ∣ ℤ, data y, x, ℤ , y-distillation-fitting function Dy, x-distillation 

function Dx, test statistic function T , number of randomizations M.

Distil ℤ’s information about y into dy = Dy y, ℤ  and about x into dx = Dx ℤ .

For m = 1, 2, …, M: Sample x m  from the distribution of x ∣ ℤ, conditionally independently of 

x and y.

Output: dCRT p-value 1
M + 1 1 + ∑m = 1

M 1 T y, x m , dy, dx ⩾ T y, x, dy, dx .

The key difference from the more general CRT in Algorithm 1 is that the test statistic 

function T  in Algorithm 2 only sees information about the high-dimensional ℤ through its 

y- and x-distillations dy and dx, which are both computed just once in the first line of the 

algorithm. The functions Dy and Dx should be chosen such that the distillation step produces 

dy and dx with dimension much less than p, so that T ’s inputs are low-dimensional. Then, 

since T  is the only repeatedly applied function and its computation does not suffer from 

the high-dimensionality of the original data, the dCRT’s computation will be dominated by 

the single application of Dy. For instance, in the dCRT example in § 2.1, dx is not used and 

Dy fits a lasso of y on ℤ and returns dy = ℤβz, while T y, x, dy = y − dy
Tx / ∥ x ∥2 requires 

negligible computation by comparison.

We emphasize that Dy can really be any regression algorithm and Theorem 1 still holds, 

since for any choice of Dy the dCRT is still a special case of the CRT. Thus, it can take 

advantage of the predictive power of state-of-the-art machine learning algorithms, precise 
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knowledge in the form of a Bayesian prior, or even imprecise domain expertise or intuition 

applied by trying many different regressions of y on ℤ and choosing whichever feels best as 

long as x is not factored into that decision. In the following we provide some suggestions 

and default choices.

2.3. d0CRT : Fast, powerful and intuitive

The most computationally efficient and intuitive class of dCRT procedures has both y- and 

x-distillations reduce ℤ to an output with a single column. We label this subclass of dCRT 

procedures as d0CRT because it represents the choice to maximally distil each row of ℤ down 

to a single scalar. Assuming T ’s computation generally increases with the dimension of its 

inputs, the d0CRT also represents a particularly computationally efficient class of dCRTs.

A natural approach to constructing a d0CRT, especially when Y  is continuous, is to have 

distillation take the form of conditional mean functions. That is, let Dx ℤ = E x ∣ ℤ  and 

have Dy fit an estimate of the analogous regression function for y, i.e., Dy y, ℤ ≈ E y ∣ ℤ . 

Then T  can be chosen as an empirical measure of dependence between the residuals y − dy

and x − dx, such as the square of the fitted coefficient when regressing the former on the 

latter. This approach is also easy to understand and implement since it just requires choosing 

Dy and T , with Dy just performing a possibly nonparametric regression, while T  can be 

thought of as computing a test statistic for testing the independence between two scalar 

random variables from a paired sample of size n: y − dy, x − dx . As both regression and 

bivariate independence testing are highly studied topics, users can easily draw from their 

statistical training, domain expertise and a rich literature in order to design an appropriate 

d0CRT for their particular problem. The following is a generic example we have found to be 

computationally efficient and powerful in our simulations.

Example 1 (Lasso-based d0CRT ). The fitted predictions from a cross-validated lasso of y on 

ℤ are dy = ℤβz, dx = E x ∣ ℤ  and T y, x, dy, dx = βx : =
y − dy

T x − dx

x − dx
2 .

More generally, the d0CRT's distillation need not be couched in terms of finding conditional 

means. For instance, an appealing analogue of Example 1 for binary Y  might fit βz by a 

cross-validated L1-penalized logistic regression of y on ℤ, and otherwise leave Dy and Dx

unchanged, and take T y, x, dy, dx  to be the absolute value of the fitted coefficient from a 

logistic regression of y on x − dx with offset dy.

2.4. dICRT: Accounting for interactions

Of the three functions applied in Algorithm 2, only T  takes both y and x as arguments, 

and hence the choice of T  is how a user can encode the kinds of nonnull relationships 

between Y  and X that are deemed plausible. But, because T  only sees ℤ through dy and 

dx, any plausible models for Y  must be expressed using only x, dy and dx. This means that 

the d0CRT has almost no capacity to model even first-order interactions between X and 

Z. For instance, suppose p = 3 and Zj N 0, 1  are independent and identically distributed, 
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X Z1 + N 0, 1  and Y Z2 + XZ3 + N 0, 1 . Then the best possible distillations of x and y are 

dx = ℤ1 and dy = ℤ2 + ℤ1 ⊙ ℤ3, making it impossible for T  to encode the true conditional mean 

of y, namely ℤ2 + x ⊙ ℤ3, from just x, dx and dy.

To address this limitation of the d0CRT, one can simply increase the dimension of dy and dx

to explicitly include possible columns of ℤ with which x might be expected to interact. But 

of course increasing the dimension of dy and dx tends to come at a computational cost, since 

their low dimensionality is exactly what makes the dCRT fast in the first place. Thus, one 

needs some sort of prior, domain knowledge or heuristic for choosing based on either the 

pair y, ℤ  or x, ℤ  a small subset of columns of ℤ that x might plausibly interact with. One 

option is to split the data into two independent parts and use one part in an unconstrained 

way to select columns of ℤ that are likely to interact with x, and then to leverage these 

selections in a dCRT run only on the other part. Here we propose an alternative that 

avoids sample splitting, based on the common statistical practice of only allowing for 

interactions between variables with strong main effects. This practice of enforcing hierarchy 

in interactions has a long history in applied and theoretical statistics under many different 

names (Nelder, 1977; Cox, 1984; Peixoto, 1987; Hamada & Wu, 1992; Chipman, 1996; 

Bien et al., 2013).

Our proposed method for incorporating interactions, which we call the dICRT, is to still 

have Dy distil ℤ into one column to best capture the relationship between y and ℤ, but 

then to additionally return a limited subset of columns of ℤ as further columns of dy

whose contributions to that fitted relationship are strongest. Then T  can be chosen as a 

test statistic that allows x to interact with those columns of ℤ contained in dy, while still 

prioritizing the main effect of x. As a generic example that we found to be powerful to detect 

hierarchical interactions without losing much power in the absence of interactions, consider 

the following.

Example 2 (Lasso-based dICRT ). The fitted predictions from a cross-validated lasso of 

y on ℤ concatenated with the columns of ℤ corresponding to the k largest entries of 

βz  are dy = ℤβz, ℤ • , top k : = dy, 1, dy, − 1 , dx = E x ∣ ℤ  and T y, x, dy, dx = βx, 1
2 + 1

k ∑j = 2
k + 1 βx, j

2
, where 

βx ∈ ℝk + 1 are the fitted coefficients from a least-squares fit of y − dy, 1  on x − dx  and 

x − dx ⊙ dy, − 1.

The normalization by 1/k of ∑j = 2
k + 1 βx, j

2
 encodes our hierarchical prioritization of the main 

effect βx, 1 over the interaction effects. For small k we still expect the computation to be 

dominated by Dy, but it also represents a statistical trade-off in how widely to search for 

interactions; we found the performance to be quite stable to k in our simulations, but set 

as a default k = ⌈2 log p ⌉. Note that k could also be chosen after looking at y, ℤ , and 

more generally one can construct many different types of dICRT. For instance, one can adapt 

Example 2 to binary Y  in an analogous way as was done for Example 1 by replacing linear 

regressions with logistic regressions and using dy, 1 as an offset in T . Or one could have Dy

and/or T  use the predictions and default variable importance measures from a random forest. 

We explore some of these options in simulations in § 4.
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2.5. Running the dCRT without resampling

Distillation provides massive computational savings within the CRT by only requiring a 

single evaluation of by far the most expensive function, Dy. But it still requires M + 1
evaluations of T , which can sometimes still contribute nontrivially to the computation time, 

and requires the user to choose the tuning parameter M which trades off computation and 

statistical power. It turns out that in certain cases the simplicity of T  in the dCRT can be 

leveraged to remove the resampling of x m  entirely and compute an exact p-value directly 

from the single function evaluation T y, x, dy, dx .

For intuition, suppose X ∣ Z N ZTγ, σ2 , and consider the d0CRT with T  as in Example 1,

T y, x, dy, dx =
y − dy

T x − dx

x − dx
2 .

Then, since the (d)CRT conditions on y and ℤ, and hence also dy and dx = ℤγ,

y − dy
T x − dx N 0, σ2 y − dy

2 . (1)

The denominator of T  makes things a bit more complicated, but the nature of the statistic 

does not change much if we replace the denominator by its expectation or, equivalently, 

since multiplying T  by a fixed constant has no effect on its resulting p-value, simply 

replace it by T ′ y, x, dy, dx = y − dy
T x − dx . We then get immediately that the exact p-value, 

i.e., the p-value that would result from taking the limit as M ∞, can be computed as 

2 1 − Φ T ′ y, x, dy, dx
σ y − dy

 without ever resampling x m  or recomputing T ′, where Φ is the 

standard normal cumulative distribution function.

The same principle can be applied to non-Gaussian X: since the distribution of x − dx ∣ ℤ
is known and the rows are independent, x − dx  can be elementwise transformed via scalar 

monotone functions to be an independent and identically distributed N 0, 1  given ℤ. For 

conditionally continuously distributed x − dx , this can be done via the probability inverse 

transform, while for distributions with atoms the atoms need to be carefully randomized, 

though just once; see the Supplementary Material for details.

As long as x − dx  is independent Gaussian or transformed to be, the same principle can also 

be applied to some more complex T  functions. For instance, in Example 2 we can again 

replace the random denominator, in this case the matrix inverse in the least-squares formula 

for βx, with its conditional expectation given ℤ and end up with a quadratic form in Gaussian 

random variables. Efficient algorithms for computing the quantiles of a quadratic form in 

Gaussian random variables exist (Duchesne & De Micheaux, 2010) and can be applied 

to again compute the exact dCRT p-value without any resampling; see the Supplementary 

Material for details.
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3. Variable selection and multiple testing via the dCRT

3.1. Outline

Conditional independence testing is often performed in the context of a variable selection 

problem. Given p covariates X1, …, Xp and a response Y , the goal is to discover the covariates 

Xj that are conditionally associated with the response, i.e., Y ⫫ Xj ∣ X−j. For a given j, we 

arrive at the problem formulation from the previous two sections by setting X = Xj and 

Z = X−j. This change of notation highlights the fact that the effects of all variables are 

of interest, rather than that of one special variable. Given a design matrix X ∈ ℝn × p and 

a response vector y, we propose to approach the variable selection problem by applying 

the dCRT to y, x, ℤ = y, X • , j, X • , − j  for each covariate j, followed by a multiple-testing 

procedure on the resulting p-values. Two common error rates to control are the familywise 

error rate and the false discovery rate. The former can be easily achieved based on the 

Bonferroni correction, which works under arbitrary p-value dependence. The latter is usually 

done via the Benjamini–Hochberg procedure. Even though the p-values are technically not 

positively dependent in the sense required for mathematical false discovery rate control 

(Benjamini & Yekutieli, 2001), the Benjamini–Hochberg procedure is known to be very 

robust to dependent p-values in all but adversarially constructed settings, as confirmed in our 

simulations.

Regardless of error rate, the straightforward application of the dCRT to the variable selection 

problem requires computing Dy a total of p times, once for each variable. These are entirely 

parallel computations, so for certain problem dimensionalities and parallel computing 

resources this is entirely feasible. However, in large-scale variable selection applications 

such as genome-wide association studies there may be too many covariates for the direct 

application of dCRT to each. In the following subsections we present two computational 

shortcuts that make variable selection via the dCRT feasible for large-scale applications.

3.2. Data-dependent screening of variables

A natural acceleration of the dCRT for variable selection is to first use the data to 

identify a preliminary subset S ⊆ 1, …, p  of promising covariates via a screening function 

S : X, y S. We can then compute (d)CRT p-values pj X, y , via Algorithm 1 or 2, for 

only j ∈ S while setting the p-values for all the other covariates to 1, yielding the screened 

p-values

pj
' X, y = pj X, y if j ∈ S X, y ,

1 if j ∉ S X, y . (2)

For instance, S could be the active set of a cross-validated lasso fit of y on all the covariates.

In general, a screening step like this applied before the (d)CRT breaks the exchangeability 

between the original and resampled test statistics which Theorem 1 relies on to guarantee 

p-value validity. Despite this failure of exchangeability, the screening can only inflate a 

p-value and thus does not affect its validity.
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Theorem 2. Let j be a null variable. For any screening rule S, the screened p-value pj
' X, y

obtained from (2) is stochastically larger than uniform.

Proof. By (2), for any u ∈ 0, 1 , P pj
' X, y ⩽ u ⩽ P pj X, y ⩽ u ⩽ u. □

Thus, with the small computational overhead of a single well-chosen screening function, 

we can expect to dramatically cut the computation time of using the (d)CRT for variable 

selection. Indeed, we found in our simulations that simple screenings substantially decreased 

computation time without affecting the power.

3.3. Recycling computation for L1-regularized M-estimators

In some cases, we may want to compute p-values for all variables under consideration, 

even if only a small fraction of these are statistically significant. For instance, these may be 

needed for downstream analysis tasks like calibration assessment or meta-analysis. In such 

cases we must look beyond the screening approach. In this section we present a way of 

recycling computation for L1-regularized M-estimators including the lasso. This reduces the 

number of Dy computations from p to A , where A is the active set of the lasso on X, y .

Let Dy be the cross-validated lasso with strictly convex and differentiable loss function ℓ. 

Variable selection via the dCRT based on this distillation function requires computing

β X • , − j, y; λ : = arg min
β ∈ ℝp − 1

∑
i = 1

n
ℓ Y i, Xi, − jβ + λ ∥ β ∥1 (3)

for each j = 1, …, p along a grid of regularization parameters. There is redundancy among 

these p lasso problems; they all differ from the the full lasso problem on X, y  by just one 

variable. We may therefore expect that we can save computation by somehow recycling 

computation across these lasso problems. The next lemma suggests a means to this end.

Lemma 1. Suppose the columns of X are in a general position and that the loss ℓ is 
differentiable and strictly convex. Then, for any λ > 0,

βj X, y; λ = 0   ⇒   β X • , − j, y; λ = β−j X, y; λ . (4)

In other words, Lemma 1 states that removing an inactive variable from the lasso does 

not change the fitted coefficient vector. This has important computational implications, 

potentially even outside the scope of this paper: it suggests that we can avoid refitting 

the lasso (3) for most variables j, instead recycling the lasso fit on the full design matrix. 

Of course, the parameter λ is usually tuned via cross-validation, which introduces extra 

complications. However, we claim that if λ is chosen in an appropriate data-dependent way, 

then an analogous result will still hold.

To make this precise, consider a grid of regularization parameters

λ 1 > λ 2 > ⋯ > λ G > 0 (5)
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and a corresponding set of cross-validation errors ℰ1, …, ℰG. Define a rule g to select the 

penalty parameter λ based on cross-validation errors ℰ1, …, ℰG to be sequential if these 

values are traversed in this order, and at some stopping time g, the algorithm terminates 

and chooses λ g  for some g ⩽ g. For example, for any integer Δ ⩾ 1, the following 

rule is sequential: g ≡ min g:ℰg ⩽ min ℰg + 1, …, ℰg + Δ , which is the first time along the 

regularization path that the cross-validation error is smaller than the following Δ steps, 

i.e., the first local minimum on the cross-validation path, and the sparsest of all such local 

minima. In this case the stopping time is g = g + Δ. The lasso with any sequential rule g has 

the property (4).

Theorem 3. Fix a grid of regularization parameters (5). Consider applying L1-regularized 

regression with loss ℓ on the whole data X, y , with λ selected by K-fold cross-validation 
and a sequential stopping rule g. Let g X, y  and g X, y  be the resulting grid point and 
stopping time, respectively. Letting 1, …, n = D1 ∪ ⋯ ∪ DK denote the split of the data into 

non-overlapping folds, define the active set

A = j ∈ 1, …, p :β j[X, y; λ g(X, y) ] ≠ 0 or β j XDk, • , y−Dk; λ(g) ≠ 0
  for some k, g ⩽ g(X, y) .  (6)

If the loss ℓ is differentiable and strictly convex, and the columns of X and X−Dk, •  are in 

general position for each k, then excluding nonactive variables j does not alter the fitted 
coefficients: for each j ∉ A,

g X • , − j, y = g X, y  and β X • , − j, y; λ g X • , − j, y = β−j X, y; λ g X, y (7)

Theorem 3 states that for each variable j not in the active set we need not rerun the lasso 

holding out variable j; we can instead fit the full lasso once and then read off the coefficient 

vector. This computational shortcut, summarized in the Supplementary Material, reduces 

the number of lasso applications required by the dCRT from p to A . Depending on the 

sparsity of the problem, this reduction can save several orders of magnitude of computation. 

It is known that, at most, the lasso solution has min p, n  nonzero entries (Tibshirani, 2013), 

though often it is much sparser.

4. Statistical performance of the dCRT

4.1. Implications of distillation for power

Our motivation for proposing the dCRT is computational; using distilled test statistics 

accelerates the CRT by orders of magnitude compared to the originally proposed lasso 

coefficient test statistic. In this section we discuss the statistical implications of this 

computational acceleration. While distillation is a flexible framework that can encompass 

a variety of test statistics, for concreteness in this section we narrow our focus to the d0CRT. 

Our goal is to carefully compare the d0CRT to its undistilled counterpart, the oCRT based on 

the absolute lasso coefficient. Our main conclusion is that, perhaps surprisingly, distillation 
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does not have much effect on the power of the CRT. We present the main reasoning behind 

this conclusion here and defer the details to the Supplementary Material.

To emphasize the exclusion of x from the lasso regression, let βz
loco

 be the fitted coefficients in 

the lasso regression of y on ℤ and let βx
loco = x − dx

T y − ℤβz
loco / x − dx

2 as in the definition 

of the d0CRT. By contrast, let βx
lasso, βz

lasso
 denote the fitted coefficients in the lasso regression 

of y on x and ℤ, so the oCRT is based on the test statistic βx
lasso

. Let us also assume in this 

section, as we did in § 2.5, that X ∣ Z N ZTγ, s2 . Finally, for intuition, suppose that Y ∣ X, Z

follows a Gaussian linear model with coefficients βx and βz.

The obvious difference between oCRT and dCRT is that the latter is based on a lasso 

regression excluding the variable of interest while the former is based on a lasso regression 

on all variables. Thus, βz
loco ≠ βz

lasso
, and so of course βx

boco ≠ βx
lasso

. However, there are two 

additional differences that must be accounted for in order to understand the relationship 

between the two methods. First of all, βx
lasso

 has a nonzero probability of being equal to 

zero, while βx
loco

 is almost surely nonzero. Secondly, βx
lasso

 does not necessarily have a null 

distribution centred on zero, whereas βx
loco

 does according to (1).

In the Supplementary Material we examine the impacts of these two properties of the oCRT. 

We find that the sparsity that βx
lasso

 inherits from the lasso can only hurt the power of the 

oCRT, and propose a simple alternative based on removing the soft threshold operator. 

Furthermore, we show that, depending on the distribution of X ∣ Z and on the locations and 

signs of the nonzero elements of βx, βz , the null distribution of βx
lasso

 can either be centred 

at the origin, or left or right of the origin. By using the absolute value of the potentially 

off-centre test statistic βx
lasso

, the oCRT gains or loses power to the extent that the null 

distribution is shifted to the right or left, respectively. This motivates us to propose a centred 

and non-soft-thresholded version of the oCRT test statistic.

Using numerical simulations, we found essentially no difference between the performance 

of the dCRT and the centred, non-soft-thresholded version of the oCRT. In other words, 

after accounting for the aforementioned two differences, the distillation step has little or no 

impact on the power of the CRT. This conclusion may seem surprising, since on first glance 

leaving x out appears to cause some of the signal, namely the contribution of x to y that 

can instead be explained by ℤ, to be regressed out. One may expect this effect to decrease 

the power of the dCRT. However, this is not the case because it is precisely the component 

of x that cannot be explained by ℤ that carries signal. Therefore, dropping x and regressing 

ℤ out of y first does not have much effect on the power of the dCRT. This intuition would 

be precise if βz
loco

 were obtained from unpenalized linear regression of y on ℤ. Indeed, it is 

a well-known property of linear regression that the coefficient of x can be obtained by first 

regressing ℤ out of x and y, and then regressing the residual of y onto that of x.
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4.2. Numerical comparisons of power, speed, robustness and stability

Going beyond the numerical simulations in the previous section, we designed an extensive 

simulation suite to systematically assess the power and other operating characteristics of 

dCRT, and compare it with several alternative methods. Preferring to compare the dCRT to 

existing methods, we chose to benchmark it against the originally proposed oCRT instead of 

the modified version considered above. We must keep in mind, however, that this choice also 

complicates the comparison for the aforementioned reasons. Furthermore, we suspect that 

the centring and soft-thresholding issues may impact the performance of knockoffs as well. 

Unlike for the CRT, however, it is harder to pull these aspects apart for knockoffs. The soft 

thresholding affects both the one-bit p-values and the ordering of the variables, so removing 

it may not result in a uniform improvement like it did for oCRT. Regarding centring, it is not 

obvious how to recentre the knockoffs null distribution because knockoffs does not really 

use a null distribution. We leave the study of these phenomena for knockoffs to future work, 

and in the meantime compare dCRT to published implementations of the latter.

In the interest of space we defer the details of our simulations to the Supplementary 

Material and present here a detailed summary of the takeaways. The main focus of our 

simulations is examining the performance of the dCRT through the d0CRT and dICRT given 

by Examples 1 and 2, respectively. Except where explicitly stated otherwise, we apply 

them in a resampling-free manner as per § 2.5 and, when simulating a variable selection 

task, with screening using the cross-validated lasso for selection as per § 3.2. For variable 

selection simulations, we take each of the p-value methods, i.e., oCRT, dCRT and HRT, 

and apply the Benjamini–Hochberg procedure when targeting false discovery rate control 

and the Bonferroni correction when targeting familywise error rate control. Source code for 

running the dCRT and reproducing our results, along with example scripts for illustration, 

can be found at https://github.com/moleibobliu/Distillation-CRT.

We compared the dCRT to the oCRT in a broader set of simulations than those referenced 

in § 4.1, including linear and logistic regression models and dICRT as well as d0CRT. We 

chose the smaller problem size of n = p = 300 to accommodate the computational burden of 

the oCRT. We found that distillation dramatically reduces CRT computation; both the d0CRT
and dICRT conferred computational savings of approximately 500 times over the oCRT. The 

relative powers of dCRT and oCRT were consistent with what we found in § 4.1, with 

dCRT sometimes more powerful and sometimes less powerful than the oCRT. The oCRT 

was more powerful when signals were equally spaced, while the dCRT was more powerful 

when signals were adjacent to each other. We suspect these differences to be caused mainly 

by the discussed soft thresholding and centring issues.

The dCRT is more powerful than the HRT. In both the aforementioned n = p = 300
simulations and a larger simulation with n = p = 800, the dCRT computation times were 

mostly within an order of magnitude of the HRT. But, across settings that included a range 

of n up to 1400, a range of p up to 3200, a range of signal magnitudes, a range of sparsities, 

a range of covariance structures for X and a range of models for Y ∣ X, both dCRT methods 

had consistently up to about 50 percentage points higher power than the HRT.
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When controlling false discovery rate, the relative performance of dCRT and knockoffs 

varies across simulation settings, similar to the relative performance of the dCRT and oCRT. 

The dCRT methods tend to have higher power than knockoffs when signal variables are 

adjacent, and lower power than knockoffs when the signal variables are equally spaced. The 

power comparison between dCRT and knockoffs is a subtle one, and we leave its further 

investigation for future work. In very sparse settings dCRT still has power, while knockoffs 

does not due to its reliance on the Selective SeqStep+ procedure (Barber & Candès, 2015). 

In such regimes, the familywise error rate may be more appropriate, and the dCRT can be 

used to control this error rate as well. The dCRT is more computationally expensive than 

knockoffs, but usually within an order of magnitude. Finally, the dCRT has substantially 

less algorithmic variability than knockoffs, as measured by the expected Jaccard similarity 

between two rejection sets obtained by rerunning the methods with different seeds.

The dICRT is stable to the choice of k and has slightly less power than the d0CRT in 

additive models, but can have substantially higher power in the presence of interactions. In a 

simulation with an additive model, the power of the dICRT was identical as k ranged from 2 

to 22, noting that the default value of k = 2 log p  would have been 13, while in a model with 

five true interactions, the power only varied from about 50% to about 40% over the same 

range of k. Throughout all our simulations in additive models we found the d0CRT to be 

slightly, but consistently, more powerful than the dICRT, but, in the presence of interactions 

obeying the hierarchy principle discussed in § 2.4, we found that the dICRT could be up to 

about 25 percentage points more powerful than the d0CRT.

The dCRT can leverage nonparametric machine learning algorithms for substantial power 

gains in highly nonlinear models. In a simulation in which X’s relationship with Y  was 

highly nonlinear and interacted with five Zj, our default lasso-based dICRT had about 20 

percentage points higher power than d0CRT, but a different, random-forest-based dICRT had 

far higher power than the lasso-based dICRT by as much as about 50 percentage points.

The dCRT is quite robust to misspecification of X’s distribution. When the distribution of 

X ∣ Z is Poisson even with a very small mean parameter, making it highly discrete and 

heavily skewed, but approximated by a Gaussian with matching mean and variance, both 

the d0CRT and dICRT maintain Type-I error control and high power. Furthermore, when the 

covariates are jointly Gaussian and the X ∣ Z distributions are estimated in-sample using any 

of three standard methods detailed in the Supplementary Material, the Type-I error of both 

dCRT methods always remains close to the nominal level.

The resampling-free versions of the dCRT are faster and just as powerful as the 

non-resampling-free dCRT except when X ∣ Z is highly discrete. The resampling-free 

modification sped up the d0CRT by 2.5 times in an n = p = 800 simulation and sped up 

the dICRT by 11 times in an n = p = 800 simulation, even after applying screening. When 

X ∣ Z is Gaussian, changing the form of the test statistics of the d0CRT and dICRT as 

proposed in paragraphs 2 and 4, respectively, of § 2.5, had a negligible effect on their power. 

When X ∣ Z is non-Gaussian and must be transformed to Gaussian, we found essentially no 

power loss for the resampling-free d0CRT and dICRT relative to their non-resampling-free 
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counterparts when X ∣ Z was Gamma-distributed with skew > 1 and excess kurtosis = 2, 

while there was up to about 40 percentage points power loss when X ∣ Z was binary, and 

hence required substantial exogenous randomization to be transformed to Gaussian, though 

the resampling-free dCRTs were still up to about 10 percent more powerful than the HRT.

Screening makes the dCRT faster without affecting its power. In a simulation with 

n = p = 800, screening reduced the computation time by a factor of about five for both d0CRT
and dICRT without perceptibly hurting power.

5. Identifying biomarkers for breast cancer

As a final demonstration of the effectiveness of the dCRT, we apply it to the dataset 

from Curtis et al. (2012), consisting of n = 1396 staged oestrogen-receptor-positive cases of 

breast cancer, each with expression level (mRNA) and copy number aberration measured 

for p = 164 genes, which was studied in Pereira et al. (2016). Our goal is to find genes on 

which the cancer stage depends, conditional on the remaining genes and all copy number 

aberrations, while controlling either the false discovery rate or familywise error rate at level 

0.1. Discovering such biomarkers for cancer can reveal new pathways and mechanisms for 

cancer progression; see Shen et al. (2019) for a recent application of model-X knockoffs to 

the same end.

After log-transforming the gene expressions, we adjusted them using the copy number 

aberration data with a linear model as in Solvang et al. (2011), Lahti et al. (2012) and Leday 

et al. (2013), and modelled the processed gene expressions jointly as multivariate Gaussian, 

similar to Shen et al. (2019). We applied the d0CRT, the dICRT, the oCRT, the HRT and 

model-X knockoffs, and compared the results. Each method was run 300 times. Table 1 

contains average runtimes in R (R Development Core Team, 2022) for all methods, showing 

that the dCRTs are quite fast compared to the oCRT. In particular, the oCRT takes over 7 

hours to run while the dCRTs take under a minute.

Figure 1 presents the distribution of the numbers of discoveries among the 300 repetitions 

for all the methods. Methods including dCRT, oCRT and HRT have stable outputs about the 

number of detected genes. In terms of false discovery rate control, d0CRT and dICRT detect 

exactly 5 genes in more than 80% of repetitions and ⩾ 5 genes at all times. Methods oCRT 

and HRT detect exactly 3 genes in more than 70% of repetitions and always have fewer 

discoveries than dCRT, while the knockoffs have 0 discoveries in about 45% of repetitions, 

but ⩾ 10 discoveries in the remaining times, which implies that knockoffs fail to produce 

stable output. Knockoffs’ instability and lack of power is due to the sparsity of discoverable 

genes. In terms of familywise error rate control, d0CRT and HRT have three discoveries in 

most runs, dICRT has four discoveries and oCRT has two.

When used to control the false discovery rate, it turns out that all five genes discovered by 

the dCRT, FBXW7, MAP3K13, HRAS, GPS2 and RUNX1, have been linked in independent 

research to cancer, suggesting the dCRT makes promising discoveries. In particular, FBXW7 
encodes a member of the F-box protein family, and its mutations are detected in ovarian and 

breast cancer cell lines (Kirzinger et al., 2019; Liu et al., 2019); MAP3K13 belongs to the 
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serine/threonine protein kinase family acting as a regulator for cancer (Han et al., 2016); 

HRAS belongs to the RAS oncogene family which is related to the transforming of genes of 

mammalian sarcoma retro-viruses, and defects in this gene have been implicated in a variety 

of cancers (Geyer et al., 2018); overexpression of GPS2 in mammalian cells may suppress 

signals mediated by RAS/MAPK and interfere with JNK activity, all of which are cancer 

related (Jarmalavicius et al., 2010; Huang et al., 2016); RUNX1 has been found to activate 

certain signalling pathways that promote tumor metastasis (Li et al., 2019).

6. Discussion

The HRT provided the first indication that a variant of the CRT could be computationally 

tractable, albeit at the cost of statistical performance. In this paper we demonstrate that 

leaving out variables instead of samples creates a procedure that is not quite as fast, though 

still a tiny fraction of the oCRT’s computational cost, but much more powerful. This 

brings the dCRT into the realm of fast and powerful model-X methods, where knockoffs is 

currently the methodology of choice. Knockoffs and dCRT have complementary strengths, 

which we discuss briefly below.

Model-X knockoffs address the variable selection problem, targeting false discovery rate 

control. They are computationally very efficient, requiring just one high-dimensional model 

fit. Furthermore, our simulations confirm that knockoffs are quite powerful in several 

settings. These advantages have led to the successful application of knockoffs to genome-

wide association studies (Sesia et al., 2019, 2020). By comparison, the dCRT still requires 

several high-dimensional model fits and is therefore more computationally costly. On the 

other hand, dCRT computation benefits from being embarrassingly parallelizable, so modern 

parallel computing resources can greatly reduce its runtime. As far as power goes, the 

relative performance of the two methods varies with simulation setting, see § 4 and the 

Supplementary Material; neither procedure uniformly dominates the other when controlling 

the false discovery rate.

Aside from these considerations, the dCRT provides a few important advantages over 

knockoffs. The first is that, unlike knockoffs, the dCRT provides p-values arbitrarily fine-

grained and essentially exact for each conditional independence hypothesis. In addition 

to providing an inter-pretable measure of significance, this decoupling of statistical 

significance quantification from downstream analyses such as multiple testing brings 

great versatility. Indeed, dCRT p-values can be used for single-hypothesis testing, multiple-

hypothesis testing with a variety of error rates, and any number of other tasks that take 

p-values as input. While the knockoffs framework has gradually been extended to handle 

analysis tasks beyond false discovery rate control, e.g., k-familywise error rate control by 

Janson & Su (2016) and simultaneous false discovery probability control by Katsevich & 

Ramdas (2020), such extensions require custom solutions and some are currently out of 

reach, such as single testing or familywise error rate control. Another advantage of the dCRT 

is that it has little or no variability across runs. On the other hand, knockoffs is a randomized 

procedure and this randomization can lead to variability in the performance of the procedure 

on a given dataset; see the Supplementary Material and Fig. 4 of Sesia et al. (2019).
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The dCRT is therefore a useful addition to the model-X methodology toolbox. Much 

work still remains to refine this new tool for better power and even faster computation. 

Indeed, many degrees of freedom in the construction of the dCRT test statistic remain to be 

explored. For example, should the statistic be based on the fitted coefficient of a variable or 

on the loss function? What is the best way to test groups of variables? The recent theoretical 

exploration of the CRT (Katsevich & Ramdas, 2021) may help guide the search for powerful 

test statistics. Another open question is whether there are efficient resampling-free dCRT 

variants for highly discrete covariates. Finally, the dependence structure of (d)CRT p-values 

is an important subject for further exploration. We may not always be able to plug-and-play 

(d)CRT p-values in multiple-testing procedures, since their dependency structure is currently 

unknown. In a related development, Bates et al. (2020) recently proposed a clever method of 

generating independent HRT p-values for groups of linearly structured covariates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Summary of the numbers of discoveries over 300 repetitions, with false discovery rate 

and familywise error rate control, in the breast cancer application. The area of each black 

point is proportional to the frequency that the corresponding method makes this number of 

discoveries in the 300 repetitions. The dCRT approaches are more powerful than oCRT and 

HRT. The knockoffs have no discoveries in around 45% of the experiments.
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Table 1.

Average computation times of 300 repetitions in R in the breast cancer application. Our use of the resampling-

free version of the dCRT makes it faster than the HRT in this case

d0CRT dICRT oCRT Knockoffs HRT

0.8 0.8 443.3 0.3 3.1
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