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Parathyroid carcinoma (PC) is an ultra-rare malignancy with a high risk of

recurrence after surgery. Tumour-directed systemic treatments for PC are

not established. We used whole-genome and RNA sequencing in four

patients with advanced PC to identify molecular alterations that could

guide clinical management. In two cases, the genomic and transcriptomic

profiles provided targets for experimental therapies that resulted in bio-

chemical response and prolonged disease stabilization: (a) immune check-

point inhibition with pembrolizumab based on high tumour mutational

burden and a single-base substitution signature associated with APOBEC

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) over-

activation; (b) multi-receptor tyrosine kinase inhibition with lenvatinib due
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to overexpression of FGFR1 (Fibroblast Growth Factor Receptor 1) and

RET (Ret Proto-Oncogene) and, (c) later in the course of the disease,

PARP (Poly(ADP-Ribose) Polymerase) inhibition with olaparib prompted

by signs of defective homologous recombination DNA repair. In addition,

our data provided new insights into the molecular landscape of PC with

respect to the genome-wide footprints of specific mutational processes and

pathogenic germline alterations. These data underscore the potential of

comprehensive molecular analyses to improve care for patients with ultra-

rare cancers based on insight into disease biology.

1. Introduction

Parathyroid carcinoma (PC) is an ultra-rare malig-

nancy with an incidence of approximately 0.03 per

100 000 persons per year [1,2]. In the vast majority,

tumoural parathyroid hormone secretion results in

hypercalcemia, which can be life-threatening. PC

accounts for < 1% of all cases of primary hyperpara-

thyroidism [3]; however, the diagnosis is rarely made

during preoperative workup and is based on histopa-

thology with capsular and vascular invasion as the

main features of malignancy. Surgery is the only cura-

tive treatment for PC [4].

In a retrospective study of 83 patients with PC, disease-

specific overall survival was favourable, but nearly 40% of

patients experienced recurrence. Factors associated with

longer recurrence-free survival were low tumour stage, a

Ki67 index < 10%, normalization of calcium levels after

surgery and absence of lymph node (LN) invasion [5].

Recurrence is locoregional in most cases, and surgery is

the mainstay of treatment but may lead to severe compli-

cations such as recurrent laryngeal nerve palsy [6]. Distant

metastasis occurs in < 10% of patients [5]. To date, there

is no systemic treatment for patients with locally advanced

or metastatic PC except for the calcimimetic cinacalcet to

control hypercalcemia [7].

Known molecular drivers of PC include germline and

somatic mutations in CDC73 and MEN1. Furthermore,

activation of the PI3K-AKT-mTOR (PAM) pathway

and amplification of CCND1 have been observed in up

to one-third of patients [8–14]. Despite genome-wide

studies that have led to a better molecular understand-

ing of PC, clinically actionable genomic or transcrip-

tomic alterations have not been reported [7].

The National Center for Tumor Diseases (NCT), the

German Cancer Research Center (DKFZ) and the Ger-

man Cancer Consortium (DKTK) conduct MASTER

(Molecularly Aided Stratification for Tumor Eradication

Research), a prospective observational study that applies

whole-genome/exome sequencing (WGS/WES) and RNA

sequencing (RNA-seq) to inform the care of young adults

with advanced malignancies and patients with incurable

rare cancers [15,16]. Here, we describe the molecular pro-

files of four patients with advanced PC enrolled in MAS-

TER and demonstrate, for the first time, the utility of

broad molecular profiling for the clinical management of

this disease, including the application of targeted treat-

ment strategies.
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2. Materials and methods

2.1. Patients

Metastases of four patients aged 39–82 years with

advanced PC and imminent need for systemic treat-

ment, followed between 2017 and 2020 by two tertiary

referral centres, were studied by WGS and RNA-seq

as part of NCT/DKFZ/DKTK MASTER. In all cases,

peripheral blood was used as a control. The trial was

approved by the Ethics Committee of Heidelberg Uni-

versity (protocol no. S-206/2011), and all patients pro-

vided written informed consent. Clinical data were

collected as part of clinical routine. The study was

conducted in accordance with the Declaration of

Helsinki.

2.2. Sample collection, molecular profiling,

bioinformatics analysis, and clinical decision-

making

Sample processing was done as previously published

[17]: A fresh-frozen tumour specimen and matched

peripheral blood were collected from each patient.

Samples were pseudonymized, and tumour histology

and cellularity were assessed before further processing.

DNA and RNA from the tumour specimen and DNA

from the blood sample were isolated using the AllPrep

DNA/RNA/Protein Mini Kit (Qiagen, Hilden, Ger-

many), followed by quality control and quantification

using a Qubit 2.0 Fluorometer (Life Technologies,

Darmstadt, Germany), a 2200 TapeStation system

(Agilent, Waldbronn, Germany) and a 2100 Bioanaly-

zer system (Agilent). WGS and RNA-seq libraries were

prepared using the TruSeq Nano LT DNA Sample

Prep Kit (Illumina, San Diego, CA, USA) and the

TruSeq RNA Sample Preparation Kit (Illumina), and

paired-end sequencing was carried out with a HiSeq X

or HiSeq 4000 instrument (Illumina).

Mapping and alignment of sequencing reads, detec-

tion of somatic single-nucleotide variants (SNVs),

small insertions and deletions (indels), DNA structural

variations (SVs) and copy number variations (CNVs),

and assessment of gene expression were performed

using previously reported bioinformatics workflows

[15,18,19–21]. A variant frequency > 1% in the DKFZ

local control database consisting of 4879 WGS and

1198 WES samples was used to remove common arte-

facts and single-nucleotide polymorphisms from the

somatic SNVs and indels. Supervised mutational signa-

ture analysis of somatic SNVs was performed using

YAPSA (version 1.14.0, R version 4.0.0) on COSMIC v3

signatures [22]. Genomic instability was assessed using

the loss-of-heterozygosity-homologous-recombination-

deficiency (LOH-HRD) score and the number of large-

scale state transitions (LSTs) as previously described

[23–25]. Microsatellite instability was assessed using the

MSISENSOR algorithm [26]. Clustering of samples based

on somatic CNVs was performed using the pairwise

Jaccard distance calculated from somatic gains and

losses. Germline variants were analysed based on joint

calling of tumour and control samples using PLATYPUS

(version 0.8.1.1) and further annotated with GNOMAD

(version 2.1) and the local controls database using

VCFANNO (version 0.3.2), and variants with a minor

allele frequency > 0.005 in GNOMAD and a frequency

> 0.05 in the local control database were removed. VEP

(version 97) was used to annotate the rare variants in

detail. Rare germline variants were evaluated according

to American College of Medical Genetics and Geno-

mics and Association for Molecular Pathology criteria

and further specifications [27,28]. Mappings of control

sequencing of MEN1 and CDC73 were manually

inspected and did not indicate structural variants.

Immune infiltration analysis was performed using tran-

script per million (TPM) values with seven different

tools via the unified interface of IMMUNEDECONV (ver-

sion 2.0.2) [29].

The PROGENY algorithm (R package progeny version

1.12.0) [30] was used to estimate, based on TPM

values determined by RNA-seq, the activity states of 14

signalling pathways involved in tumorigenesis (Andro-

gen, EGFR, Estrogen, Hypoxia, JAK-STAT, MAPK,

NFkB, p53, PI3K, TGFb, TNFa, Trail, VEGF, WNT).

Based on RNA-seq data, small-molecule inhibitors were

selected and prioritized according to the number of

overexpressed kinases. The targets of clinical kinase

inhibitors were derived from Klaeger et al. [31] using an

affinity cut-off of 1 lM to consider only high-affinity

binding. A kinase gene was considered overexpressed if

the expression was higher than that of 75% of all kinase

genes across all samples (Tables S1 and S2).

Biological curation and clinical annotation of geno-

mic and transcriptomic alterations were performed as

previously described [15], and treatment recommenda-

tions were determined within the interdisciplinary

molecular tumour board (MTB) at NCT Heidelberg,

involving the treating physicians.

3. Results

3.1. Genomic landscape

Key clinical characteristics are provided in Table 1. All

patients had undergone multiple surgical treatments and

received cinacalcet for calcium control. WGS identified
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a median of 92 functional somatic SNVs (PC-A, 496;

PC-B, 45; PC-C, 14; PC-D, 139) and a median of nine

functional somatic indels (PC-A, 7; PC-B, 18; PC-C, 1;

PC-D, 11). Across all patients, 14 of 731 functional

somatic mutations affected known and candidate PC

driver genes [8,10,11] (Fig. S1, Table S3).

Six genes (CDC73, MEN1, MSH6, CCND1,

DICER1 and HRAS) were altered in more than one

case (Fig. 1A). PC-A harboured two inactivating

CDC73 mutations (p.Y97* and p.W32Dfs*21). PC-B

had biallelic CDC73 inactivation due to a CDC73

K34Rfs*3 frameshift deletion and LOH. PC-C showed

a deletion with LOH at chromosome 11q13.1, includ-

ing MEN1. PC-D harboured a MEN1 p.Q547_S561de-

linsH in-frame deletion. MSH6 was affected by two

somatic missense mutations (p.D135N and p.S574L) in

PC-A, which were classified as variants of unknown

significance. Immunohistochemistry showed no loss of

mismatch-repair protein expression in this case, sug-

gesting benign mutations. CCND1 was amplified in

PC-B and PC-C. Outlier overexpression of CCND1

was observed in PC-C and PC-A, but we observed no

somatic or germline alterations affecting CCDN1 in

PC-A (Fig. S2). HRAS and DICER were affected by

CNVs or SVs in two samples each.

In one case each, we found a p.E2181K missense

mutation in the phosphatidylinositol 3- and 4-kinase

domain of MTOR that has not been functionally char-

acterized, a p.S183X stop-gain mutation in the DNA-

binding domain of TP53, a functionally unannotated

p.H483Y missense mutation in RB1 and a p.S567X

stop-gain mutation in ATRX. In two patients, PC-A

and PC-D, tumour mutational burden (TMB) was

considered high [15], with 503 and 150 functional

somatic SNVs and indels.

Single-base substitution signature 3 (SBS3), which is

highly prevalent in HRD-related cancers [22], was

detected in three patients (Fig. 1B). SBS2 and SBS13,

associated with overactivation of the physiologically

mutagenic enzyme APOBEC (apolipoprotein B mRNA

editing enzyme, catalytic polypeptide-like) [22], were

detected in all patients, with PC-A and PC-D display-

ing a more pronounced contribution, reaching 90% in

one case. SBS18 was present in one patient and is dis-

cussed in more detail below.

A total of 821 CNVs were identified in the four

patients (Fig. 1C), with copy number losses (median,

91; range, 20–121) predominating over copy number

gains (median, 62.5; range, 5–200), and copy-neutral

LOH (median, 26.5; range 20–95) was observed in all

Table 1. Clinical characteristics. Gy, Gray; N/A, not available.

Parameter PC-A PC-B PC-C PC-D

Age at diagnosis, years 43 51 39 82

Sex Female Male Male Female

Follow-up from diagnosis,

months

200 260 312 31

Calcium at diagnosis,

mmol�L�1 (reference range,

2.0–2.7)

3.6 3.6 N/A 3.5

Parathyroid hormone at

diagnosis, pg�mL�1

(reference range, 12–65)

6770 321 N/A 883

LN metastasis at diagnosis Yes No No No

Distant metastasis at

diagnosis

No No No No

Primary surgery Left parathyroidectomy,

hemithyroidectomy, central

LN dissection

Right parathyroidectomy,

hemithyroidectomy, central

LN dissection

Left

parathyroidectomy,

hemithyroidectomy

Right

parathyroidectomy,

hemithyroidectomy

Resection status R0 N/A N/A RX

Postoperative external beam

radiation

Yes (thyroid and LN;

cumulative dose, 50.4 Gy)

No No No

Postoperative recurrence,

years after diagnosis

12 4 13 1

Metastasis at relapse Abdominal LNa (omentum

minus and liver hilus)

LN, lung, skull basea Cervical LNa Cervical LNa, lung

Surgery at recurrence Yes Yes Yes Yes

Medication with calcimimetics Yes Yes Yes Yes

a

Sample analysed in this study.
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(A) (B)

(C)

Fig. 1. Genomic landscape of PC. (A) Recurrent (identified in at least two samples) mutations affecting known PC driver genes and

germline predisposition genes (from a curated list of 143 established predisposition genes). (B) Absolute contribution of mutational

signatures to the overall SNV load in PC patients. Each bar represents the number of SNVs explained by the respective mutational signature

in an individual tumour. Error bars represent 95% confidence intervals. SBS1, clock-like, spontaneous deamination; SBS2 and SBS13, altered

APOBEC activity; SBS3, defective HR; SBS18, damage by reactive oxygen species. Of note, SBS18 shows a similar profile as SBS36, which

is associated with defective base excision repair due to MUTYH inactivation. In patient PC-D, who displays SBS18, a pathogenic MUTYH

germline mutation was identified. SBS40 is of unknown aetiology, but mutation numbers attributed to this signature are correlated with

patient age in some cancer types. (C) Two CNV clusters with loss of chromosome 3q in patients PC-A, B, and C. TCC, tumour cell content.
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four samples, along with genome-wide LOH in PC-D.

Recurrent copy number losses affected chromosomes

1, 3, 6, 9 and 13, and recurrent gains affected chromo-

somes 1, 5, 7 and 20. A common loss encompassing

chromosome 3q was detected in three samples. Fea-

tures of genomic instability were detected in three sam-

ples, with whole-genome doubling in two patients and

HRD, defined by LOH-HRD score and LSTs, in one

patient. All cases were microsatellite-stable as deter-

mined using the MSIsensor, with results below the cut-

off of 3.5 (Table S3).

The four patients harboured 13 rare germline alter-

ations affecting eight known cancer predisposition

genes [32] (Table S3). One of them, a heterozygous

MUTHY p.G393D variant in PC-D, was classified as

pathogenic. MUTYH encodes the DNA glycosylase

mutY, which removes adenine residues mispaired with

8-oxo-deoxyguanosine or -guanine. PC-D also had

somatic LOH at MUTYH, resulting in biallelic inacti-

vation of MUTYH, a constellation conferring a herita-

ble predisposition to colorectal carcinoma and possibly

other malignancies termed MUTYH-associated poly-

posis. Interestingly, this sample also displayed SBS18,

most likely caused by the MUTYH variant and

somatic LOH [33,34]. Immunohistochemistry showed

increased 8-oxo-guanine staining with a predominant

nucleolar pattern in archived tumour tissue but not in

the control sample (Fig. 2).

3.2. Kinase expression landscape

To identify aberrant activation of potentially drug-

gable signalling pathways, we examined the expression

patterns of 138 kinases that can be targeted by at least

one small-molecule inhibitor approved by the United

States Food and Drug Administration (FDA). We

noticed striking overexpression of RET and FGFR1

in PC-A and PC-B compared with PC-C and PC-D

(Fig. 3A,C).

Considering the top 25% expressed kinase genes

across the four samples, seven kinase inhibitors with at

least five targets in at least one sample were identified

as potential therapies (Fig. 3B,C). Dasatinib, ponatinib

and bosutinib are biomarker-based treatments for

chronic myeloid leukaemia and Philadelphia

chromosome-positive acute lymphoblastic leukaemia

[35–38]. Dabrafenib is a mutant BRAF-specific inhibi-

tor approved for melanoma and non-small-cell lung

cancer. Nintedanib has activity against VEGFR,

FGFR and PDGFR and is approved for non-small

cell lung cancer in combination with docetaxel [39].

Ibrutinib is a BTK inhibitor approved for the treat-

ment of lymphatic neoplasms [40]. Lenvatinib primar-

ily targets VEGFR and FGFR family members and,

to a lesser extent, RET and KIT and is approved as

monotherapy for the treatment of hepatocellular carci-

noma and differentiated thyroid cancer [41,42].

Fig. 2. Immunofluorescence microscopic detection of 8-oxoG in archived tissue specimens. (A, E) Overlay images of DAPI (blue) and 8-

oxoG (green) staining at low magnification (scale bar 400 lm). At higher magnification (scale bar 100 lm), detection of intense nucleolar

staining of 8-oxoG (B, F: DAPI; C, G: 8-oxoG; D, H: overlay) in the heterozygous MUTYH mutation carrier PC-D (F–H) but not in a MUTYH-

wildtype specimen from PC-A (B–D). DAPI, 40,6-diamidino-2-phenylindole; 8-oxoG, 8-oxo-guanine.
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To explore changes in pathway activity that cannot

be inferred from the expression of individual kinase

genes, we further used the PROGENy algorithm. An

enrichment of PIK3CA, MAPK and WNT signalling

was observed in PC-A, whereas PC-D showed upregu-

lation of the NFkB, TNFa, JAK-STAT, VEGF and

Trail pathways (Fig. S3).

3.3. Genomics and transcriptomics-guided

treatment

In the MASTER program, biomarkers and treatment

recommendations are categorized into eight molecular

intervention baskets based on the cellular pathways or

processes involved: tyrosine kinases (TKs), PI3K-

AKT-mTOR (PAM), RAF-MEK-ERK (RME), cell

cycle (CC), developmental regulation (DEV), DNA

damage repair (DDR), immune evasion (IE) and other

(OTH).

At least two targeted therapies were recommended

for each patient. These were assigned to the IE (three

patients), TK (three patients), PAM (two patients),

DDR (two patients), DEV (one patient) and CC (one

patient) baskets. Treatment combinations were recom-

mended in two cases (Table S3). In two patients,

molecularly guided treatment was implemented.

PC-A, a 43-year-old woman with locally advanced

PC, remained in remission for 12 years after primary

treatment when she developed abdominal LN metasta-

ses. Based on a high TMB (496 functional somatic

SNVs and seven functional somatic indels) and the

APOBEC mutational signatures SBS2 and SBS13 in a

metastasis sample, the PD-1 inhibitor pembrolizumab

was recommended. Interestingly, compared with the

other three cases, the CIBERSORT deconvolution

algorithm, an immune infiltration analysis tool in

immunedeconv, indicated high fractions of activated

CD8-positive T cells, T-follicular helper cells, inflamma-

tory M1 macrophages and a small fraction of regulatory

T cells (Tregs), suggesting a responder phenotype for

immune checkpoint inhibitor treatment [43] (Fig. S4).

Pembrolizumab, initiated on a compassionate-use basis,

resulted in disease stabilization for 12 months and a

clear biochemical response [44].

Patient PC-B, a 51-year-old man with localized PC,

relapsed 4 years after primary resection with lung and

skull base metastases, for which he underwent repeat

surgical interventions. Rapid progression required

radiation to the skull base. Molecular analysis of a

skull base metastasis revealed overexpression of

FGFR1 and RET, which prompted treatment with len-

vatinib. The patient experienced complete biochemical

Fig. 3. Kinase expression landscape of PC. (A) mRNA expression of 138 kinases targeted by at least one of 37 FDA-approved small-

molecule inhibitors in the four PC samples. (B) Ranking of kinase inhibitors by the number of targets expressed in the top 25%. (C) Drug–

target matches for kinase inhibitors with at least five overexpressed targets in at least two samples. Note that for PC-B, which showed both

FGFR1 and RET overexpression, only RET was predicted as a lenvatinib target. FDA, United States Food and Drug Administration.
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remission and remained on therapy for 3 months. Due

to adverse events, treatment was discontinued, and

radiologic and biochemical disease progression

occurred 5 months later. The second molecularly

informed treatment with the PARP inhibitor olaparib,

informed by somatic loss of BRCA2 and detection of

SBS3 [45], resulted in disease stabilization lasting

14 months (Fig. 4) before lenvatinib was resumed.

Patient PC-C was a 39-year-old man who underwent

left parathyroidectomy and hemithyroidectomy followed

by remission for 13 years. He subsequently developed

local relapse with LNmetastases, for which he underwent

multiple surgical procedures before enrolling in the

MASTER program. He was lost to follow up, and no

information is available on treatment or response.

Finally, patient PC-D was an 82-year-old woman

with localized PC who developed lung metastases 1 year

after the initial surgery. High expression of somatostatin

receptor 5 detected by immunohistochemistry prompted

two courses of peptide receptor-mediated radionuclide

therapy with Lu-177 DOTATOC, but this did not halt

the progression of LN metastases. A surgical biopsy of

one LN was subjected to molecular analysis, but the

patient died of progressive disease before targeted ther-

apy could be considered. Also in this patient, immune

checkpoint inhibition was recommended based on high

TMB, although immune cell deconvolution suggested a

protumoral tumour microenvironment characterized by

higher proportions of Tregs and immunosuppressive

M2 macrophages and fewer M1 macrophages, CD8-

positive T cells and T-follicular helper cells (Fig. S4).

4. Discussion

This is the first study to perform genome- and

transcriptome-wide characterization of advanced PC to

guide clinical management of patients with this ultra-

rare cancer after failure of standard therapy. Analyses

were performed using the standardized workflow

established in the NCT/DKFZ/DKTK MASTER pro-

gram for young adults with advanced cancers and

patients with refractory rare malignancies [15].

pg·mL–1 mmol·L–1

Fig. 4. Biochemical response of patient PC-B to lenvatinib and olaparib. Tumour progression with parathyroid hormone increased to

436 pg�mL�1 (reference range, 12–68 pg�mL�1) and moderate hypercalcemia (2.8 mmol�L�1; reference range, 2.2–2.5 mmol�L�1) despite

cinacalcet treatment was observed. Administration of the TK inhibitor lenvatinib at a dose of 24 mg decreased parathyroid hormone to

113 pg�mL�1 within 3 weeks, and symptomatic hypocalcemia of 1.9 mmol�L�1 with paresthesias and muscle cramps occurred, requiring

replacement of calcium citrate and activated vitamin D. Lenvatinib was discontinued because of renal impairment. Five months later, radio-

logic and biochemical progression occurred. Further molecularly informed treatment with the PARP inhibitor olaparib was started, resulting

in disease stabilization as the best response. After 14 months, olaparib was discontinued due to disease progression, and lenvatinib was

reintroduced, resulting in another biochemical response. PTH, parathyroid hormone; Ca, calcium.
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Molecularly informed treatment recommendations

could be made in all four cases, and biochemical

response and prolonged disease stabilization were

observed in both patients in whom treatment was

implemented.

Both DNA and RNA sequencing provided clinically

valuable information. Because cryopreserved tumour

tissue is required for whole-genome and RNA sequenc-

ing, as used in our study, a direct comparison with

archival tissue samples from primary and metastatic

lesions to shed light on spatial and temporal heterogene-

ity in PC was not possible. However, previous targeted

RNA expression studies on formalin-fixed, paraffin-

embedded samples have revealed marked differences in

gene expression between primary tumours and metasta-

ses from different patients [46].

In line with previous data, we detected somatic

CDC73 mutations in two of four patients, which have

been linked to a more aggressive disease course and

increased TMB [14], features that we also observed in

our patients. We also confirmed amplification and con-

comitant overexpression of CCND1 as a recurrent

alteration in PC [8], suggesting that a subset of PC

depends on the deregulation of this druggable pathway

and, in one case, triggering the recommendation of a

CDK4/6 inhibitor. Deleterious TP53 mutations are

rare in PC and associated with a more aggressive clini-

cal course [8]. Consistent with this, the patient with

TP53-mutant PC in our cohort relapsed after 1 year

with rapid clinical deterioration. The pathogenetic role

and potential clinical significance of additional tumour

suppressor genes in PC are largely unknown. Our

observation of deletion of chromosome 3q in three of

four samples suggests that one or more such genes

may be located in this region.

The increased TMB observed in two cases could be

attributed to two different genetic mechanisms. In PC-

D, LOH for a heterozygous germline mutation in

MUTYH was observed in the tumour and associated

with the characteristic SBS18, supported by evidence

of increased oxidative DNA damage on immunohisto-

chemistry. While biallelic germline mutations in

MUTYH are associated with adenomatous polyposis

and increased risk of colorectal cancer, the relative

cancer risk for heterozygous carriers is less clear.

Monoallelic MUTYH variants contribute to tumori-

genesis through loss of the remaining functional

MUTYH allele via LOH. The characteristic C-to-A

base substitutions in MUTYH-deficient tumours

increase the formation of stop codons, contributing to

the inactivation of tumour suppressor genes [47,48].

The copy-neutral LOH and whole-genome doubling in

our patient resemble the pattern observed in

adrenocortical carcinoma, which has been reported as

the most frequent cancer in heterozygous MUTYH

carriers [32,49] and points to a possible role for

MUTYH in the pathogenesis of this PC case.

In addition, PC-D, the second patient with elevated

TMB, exhibited SBS2 and SBS13, which are attributed

to APOBEC cytidine deaminase activity and account

for more than one-third of human cancers signatures

[14,22]. As SBS2 and SBS13 have been associated with

response to immune checkpoint inhibition [50], they

were among the biomarkers considered for treatment

recommendation in both cases. PC-A benefited from the

PD-1 antagonist pembrolizumab with a biochemical

response and prolonged disease stabilization and has

been tumour-free and without biochemical evidence of

disease for more than 2 years after repeat surgery.

Thus, the clinical courses of PC-A and PC-D under-

score the clinical utility of integrating composite bio-

markers – in these cases, TMB and mutational

signatures – in the workup of advanced PC. This gen-

eral strategy, which requires comprehensive molecular

profiling, is also supported by patient PC-C, in whom

evidence of HRD and HRD-LOH provided a rationale

for PARP inhibition, which was implemented after

treatment with lenvatinib and led to prolonged disease

stabilization.

Recent studies have demonstrated that transcrip-

tome analysis can substantially increase the number of

patients treated in molecularly informed clinical trials

[51,52]. Accordingly, RNA-seq has been shown to sig-

nificantly expand molecularly informed treatment

options in the MASTER trial with particular utility in

the TK basket [15]. In the current analysis, we interro-

gated the RNA-seq results beyond detecting oncogenic

fusion genes and aberrantly expressed single genes and

used experimental data on inhibitor activity towards

various TKs to derive expression patterns predictive of

response. By matching the kinase genes overexpressed

in the four tumours with the target spectrum of FDA-

approved inhibitors, we identified dasatinib and pona-

tinib as the compounds with the most targets in our

patients, that is, with inhibitory activity against five to

16 overexpressed kinase genes. Furthermore, in PC-A

and PC-B, overexpression of FGFR1 and RET

prompted the recommendation of treatment with len-

vatinib by the MTB. This led to a dramatic biochemi-

cal response in PC-B, even entailing hypocalcemia as

an indicator of response, and morphologic disease sta-

bilization for 8 months. In this exceptional responder,

only RET but not FGFR1 was among the targets of

lenvatinib when only the top 25% expressed kinases

with a high binding affinity (threshold, 1 lM) were

considered. Together with the strong overexpression of
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RET in PC-A, these observations suggest a role for

RET signalling in the development and/or progression

of a subset of PC, a hypothesis that requires further

validation in preclinical models and the clinical setting.

Notably, a previous study comparing parathyroid ade-

noma, non-metastatic and metastatic PC found that

FGFR1 is one of the genes overexpressed in metastatic

versus non-metastatic PC, also emphasizing FGFR1

inhibition as a potential therapeutic strategy [46].

5. Conclusions

In summary, our findings reveal novel aspects of the

molecular pathogenesis of PC, particularly the impor-

tance of mutational processes reflected in the APO-

BEC signatures SBS2 and SBS13, heterozygous

germline mutations in MUTYH as potential predispos-

ing factors, and recurrent overexpression of FGFR1

and RET. Notably, some of these features provide

novel therapeutic targets. Our work thus underscores

the scientific and clinical value of multi-omics-based

and entity-spanning precision oncology programs,

which is particularly apparent in very rare and poorly

understood cancers for which there are few standards

of care, such as PC.
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