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Abstract

Background: Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within
tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal
salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor
treatments, remains unknown.

Methods: Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification
of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KITþ) cells from patient-derived xenografts (PDXs) of human ACCs.
Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested
whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2
cell types and tested their role as lineage-specific therapeutic targets.

Results: Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-
like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling,
respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) pro-
moted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct
abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and
in vivo antitumor activity against PDX models of human ACC.

Conclusions: In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentia-
tion is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new thera-
peutic approach against human ACCs.

Adenoid cystic carcinomas (ACCs) are malignant adenocarcinomas
that originate in exocrine glands, most commonly the salivary
glands (SGs) (1). ACCs display indolent growth, but their slow prolif-
eration kinetics often belie an aggressive and relentless nature,
characterized by perineural infiltration and early hematogenous
spread (1-3). Current treatments for ACCs are limited to surgery
and radiotherapy. Because ACCs usually arise within the craniofa-
cial district, such treatments are often destructive and, in

approximately 60% of cases, unable to prevent metastatic relapse
and patient death (2-5). ACCs are usually refractory to chemother-
apy, immunotherapy, and various types of targeted therapies (6-9).
ACCs often associate with t(6; 9) MYB-NFIB chromosomal transloca-
tions (10-13), but no actionable treatments are currently available
to suppress the oncogenic signaling that results from them (14).

Histologically, ACCs are characterized by a distinctive feature:
the coexistence of 2 populations of malignant cells, termed
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ductal-like and myoepithelial-like, because of their phenotypic simi-
larity to ductal and myoepithelial lineages of normal SG epithelia
(15-21). The molecular causes of this feature are poorly under-
stood and remain difficult to investigate because of the lack of
experimental means to differentially isolate the 2 cell types. It
remains unknown, for example, whether the 2 populations repre-
sent distinct genetic clones, arising from the divergent accumula-
tion of distinct repertoires of somatic mutations, or distinct
developmental lineages, arising from the retention by malignant
tissues of normal differentiation programs (22-25). It also
remains unclear how the 2 populations compare in terms of dif-
ferential sensitivity to antitumor therapies.

In this study, we used single-cell RNA-sequencing (scRNA-seq)
(26) to identify cell surface markers that enable, for the first time,
the differential purification by fluorescence-activated cell sorting
(FACS) of the 2 malignant cell types found in human ACCs. We
then demonstrated that one can differentiate into the other and
identified a signaling pathway that controls this process. Finally,
we leveraged this knowledge to develop a new pharmacological
approach for the treatment of human ACCs.

Methods
An expanded description of all materials and methods used in
this study is provided in the Supplementary Methods (available
online), together with relevant technical references.

Patient-derived xenograft (PDX) lines
PDX lines representative of human ACCs (Supplementary Table
1, available online) were obtained from the Adenoid Cystic
Carcinoma Registry at the University of Virginia (27) and propa-
gated subcutaneously in female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
mice (Jackson Laboratory; stock #005557) (25).

Animal welfare
Animal experiments were approved by the institutional animal
care and use committee (IACUC) of Columbia University
(research protocols: AC-AAAL7751, AC-AAAW1466, AC-
AABM9553).

.

Fluorescence-activated cell sorting
Solid tumors were dissociated into single-cell suspensions, and
malignant cells isolated by FACS, following established protocols
(Supplementary Figure 1, available online) (23,25). Monoclonal
antibodies used to visualize different subtypes of malignant cells
included mouse anti-human EpCAM (clone: 9C4) conjugated to
fluorescein isothiocyanate (FITC), rat anti-human-and-mouse
CD49f (clone: GoH3) conjugated to allophycocyanin (APC), and
mouse anti-human KIT (clone: 104D2) conjugated to phycoery-
thrin (PE). Mouse cells were excluded using mouse anti-mouse H-
2Kd (clone: SF1.1) conjugated to biotin, rat anti-mouse Cd45
(clone: 30-F11) conjugated to PE/Cyanine5, and streptavidin
conjugated to PE/Cyanine5 (BD Biosciences). Cell-cycle distribu-
tion of sorted cells was evaluated using 40,6-diamidino-2-phenyl-
indole (DAPI), following permeabilization with BD Cytofix/
Cytoperm (BD Biosciences).

RNA-sequencing
scRNA-seq experiments were performed using Chromium Single
Cell 3’ Solution (10x Genomics) and NovaSeq-6000 (Illumina) plat-
forms and analyzed using cellranger (v3.1.0) and Randomly (28).
In conventional RNA-seq experiments, RNA was isolated using the

NucleoSpin RNA XS kit (Takara) and cDNA libraries prepared using
the TruSeq Stranded mRNA kit (Illumina). Conventional RNA-seq
reactions were run on either HiSeq-4000 or NovaSeq-6000 plat-
forms (Illumina), and results analyzed using DESeq2 (29) and
STAR-fusion (30). Differentially expressed genes were identified
based on false-discovery rates (FDR), calculated using the
Benjamini–Hochberg method. RNA-seq datasets were deposited in
the database of Genotypes and Phenotypes (dbGAP; https://www.
ncbi.nlm.nih.gov/gap), under accession number: phs002764.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded tissue blocks were stained
with the following antibodies: mouse anti-human TP63 (clone:
4A4), rabbit anti-human KIT (clone: YR145), rabbit anti-human
MKI67 (clone: 30-9).

In vivo tumorigenicity
Autologous pairs of CD49fhigh/KITneg and CD49flow/KITþ cells
were double sorted by FACS, resuspended in high-concentration
matrigel (Corning), and injected subcutaneously, side by side,
into opposite flanks (left vs. right) of NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ mice. The frequency of tumor-initiating cells was calculated
by Extreme Limiting Dilution Analysis (ELDA; http://bioinf.wehi.
edu.au/software/elda) (31).

In vitro tissue cultures
ACC cells were cultured either as 3-dimensional organoids (32-34)
or 2-dimensional monolayers (35) and treated with all-trans reti-
noic acid (ATRA; 0.1-10mM), bexarotene (10mM), BMS493 (1-10mM),
or AGN193109 (1-10mM). Lentivirus vectors (36) were based on the
pLL3.7 backbone (Addgene; #11795), re-engineered to drive constit-
utive expression of a dominant negative version of human retinoic
acid receptor alpha (DNhRARa) (Addgene; #15153) (37) in tandem
with the enhanced green fluorescent protein (EGFP), which was
used as a fluorescent reporter. Cell viability was assessed using the
alamarBlue HS Cell Viability Reagent (38).

In vivo therapeutic studies
Tumor-bearing animals were treated by intraperitoneal injection
of BMS493 (1 mg x 3-4 days/week x 3 weeks) resuspended in 0.15
M hydroxypropyl-b-cyclodextrin (Cayman Chemicals).

Statistical analyses
A detailed explanation of all statistical tests used in this study is
provided in the Supplementary Methods (available online).

Results
Identification of surface markers differentially
expressed between myoepithelial-like and
ductal-like cells
To identify surface markers differentially expressed between
myoepithelial-like and ductal-like cells, we analyzed by scRNA-
seq a bulk preparation of epithelial cancer cells (EpCAMþ)
purified by FACS from a PDX line representative of a human ACC
with classic cribriform histology (Figure 1, A and B;
Supplementary Figure 1, available online) (27). We used the
Randomly (28) algorithm to remove stochastic contributions to
the transcriptional variability observed between cells and then
clustered cells based on systematic differences in transcriptional
patterns, identifying an optimal clustering solution consisting of
3 subgroups (Figure 1, C; Supplementary Figure 2, available
online). Of these 3 subgroups, the largest 2 displayed mutually

S. Viragova et al. | 839

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
http://bioinf.wehi.edu.au/software/elda
http://bioinf.wehi.edu.au/software/elda
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djad062#supplementary-data


exclusive expression of known myoepithelial (ACTA2, CNN1,

TP63) and ductal (KRT7, KRT18, ELF5) cell markers

(Supplementary Figure 3, available online), and a third appeared

to represent a highly proliferating (MKI67high) subset of ductal-

like cells (Figure 1, G and J; Supplementary Figure 3, C, available

online). Among the differentially expressed genes, we identified

those encoding for cell-surface markers CD49f (ITGA6) and KIT,

also known as CD117 (KIT), which associated with myoepithelial-
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Figure 1. Identification of surface markers for the differential purification of myoepithelial-like and ductal-like cell populations in human ACCs.
A) Histological analysis of the ACCX22 human PDX line, confirming retention of a cribriform histology with pseudocyst formation, characteristic of
well-differentiated (grade 1) ACCs. B) Magnification of the tissue area outlined in (A) (dashed box), demonstrating the presence of 1) ductal-like cells,
characterized by abundant eosinophilic cytoplasm and arranged in ringlike structures (arrows); and 2) myoepithelial-like cells (arrowheads),
characterized by spindle-shaped morphology and arranged to line pseudocysts. C) Visualization by Uniform Manifold Approximation and Projection
(UMAP) of scRNA-seq data obtained from a purified preparation of human malignant cells (EpCAMþ) sorted by FACS from the ACCX22 human PDX line.
In the UMAP scatter plot, the 3 cell clusters identified as representing the most robust clustering solution (ie, as displaying the highest mean silhouette
score following clustering based on the Leiden algorithm) were labeled with different colors and displayed clear visual separation. Based on
differentially expressed genes (Supplementary Figure 3, available online), the 3 clusters were annotated as follows: cluster 1¼myoepithelial-like cells;
cluster 2¼ductal-like cells; cluster 3¼proliferating ductal-like cells. D) List of genes identified as displaying a statistically significant difference in
mean expression levels between cluster 1 (myoepithelial-like) and cluster 2 (ductal-like), based on a Student’s t test (2-tailed) adjusted for multiple
comparisons (FDR< 0.001; Benjamini–Hochberg method). Among the differentially expressed genes are those encoding for 2 surface markers: ITGA6
(CD49f) and KIT (CD117). E-G) UMAP plots displaying gene-expression levels for ITGA6 (E), KIT (F), and the proliferation marker MKI67 (G); q values are
based on a Student’s t test (2-tailed), corrected for multiple comparisons (Benjamini–Hochberg method), as described in Supplementary Figure 3
(available online). H-J) Violin plots displaying the distribution of gene-expression levels for ITGA6 (H), KIT (I), and MKI67 (J) across the 3 cell clusters
identified by scRNA-seq; P values are based on a Kruskal–Wallis H test. ACC ¼ adenoid cystic carcinoma; FACS ¼ fluorescence-activated cell sorting;
FDR ¼ false discovery rate; PDX ¼ patient-derived xenograft; scRNA-seq ¼ single-cell RNA sequencing; TPM ¼ transcripts per million.
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like and ductal-like cell types, respectively (Figure 1, D-I). We
then tested whether CD49f and KIT could be leveraged to visual-
ize myoepithelial-like and ductal-like cells by FACS. Indeed,
staining with fluorophore-conjugated antibodies directed against
the 2 markers enabled clear discrimination of 2 cell populations,
cells expressing high levels of CD49f and no measurable levels of
KIT (CD49fhigh/KITneg) and cells expressing low levels of CD49f
and measurable levels of KIT (CD49flow/KITþ), across 5 independ-
ent PDX lines representative of biphenotypic ACCs (Figure 2, A).
Analysis of the same tumors by IHC also confirmed that KIT

expression was restricted to ductal-like cells, and mutually
exclusive to expression of TP63, a myoepithelial marker (Figure 2,
B), in agreement with previous IHC studies (39).

Transcriptional profiling of CD49fhigh/KITneg and
CD49flow/KIT1 cells
To understand whether CD49fhigh/KITneg and CD49flow/KITþ cells
isolated from different patients displayed similar gene-
expression patterns, we sorted autologous pairs of the 2 cell types
from 5 biphenotypic PDX lines and analyzed them by

ACCX5M1 ACCX14 ACCX22 SGTX6ACCX6
C

D
49

f-A
PC

0 103 104 105

0
102

103

104

105

23.7%

70.3%

0 103 104 105

0
102

103

104

105

72.1%

21.0%

0 103 104 105

0
102

103

104

105

36.2%

54.2%

0 103 104 105

0
102

103

104

105

75.7%

20.7%

0 103 104 105

0
102

103

104

105

45.2%

47.2%

KIT-PEKIT-PE KIT-PE KIT-PE KIT-PE

B

PC1: 58% variance

PC
2:

 1
1%

 v
ar

ia
nc

e

PDX Line:
ACCX6ACCX22 SGTX6

ACCX5M1ACCX14

-25

0

25

-25 0 25

KIT+CD49fhigh

DC

Genes overexpressed in myoepithelial-like cellsGenes overexpressed in ductal-like cells

C
A

6
G

C
H

F
R

G
A

B
2

A
I
F
1

L
T

M
C

6
E

N
P

P
4

P
R

R
X

2
I
T

P
R

2
P

R
R

3
6

T
M

C
4

T
N

F
S

F
1

0
S

L
C

1
2

A
1

B
A

R
X

2
A

Z
G

P
1

P
1

S
Y

T
7

L
Y

N
A

D
G

R
V

1
E

S
P

N
A

N
X

A
8

L
1

G
U

C
Y

1
A

1

*
*

  
A

N
X

A
8

T
M

P
R

S
S

2
B

3
G

A
L
T

5
C

O
B

L
S

L
C

6
A

1
4

P
K

P
1

R
H

O
V

A
Z

G
P

1
B

I
C

D
L
2

T
G

F
A

S
L
C

2
8

A
3

P
R

R
1

5
L

Z
N

F
7

5
0

A
R

H
G

A
P

3
0

B
S

P
R

Y
G

A
B

R
P

N
E

B
L

C
L
D

N
8

*
*

  
S

L
P

I
N

E
C

T
I
N

4
C

A
L
M

L
5

C
L
D

N
3

O
S

R
1

Z
N

F
4

2
3

T
R

A
M

2
T

G
F
B

1
I
1

W
N

T
3

A
A

B
C

G
1

I
K

B
K

B
I
F
I
T

M
1

0
P

D
G

F
A

I
T

G
B

4
P

D
G

F
R

A
A

N
G

P
T

2
A

N
K

R
D

6
5

S
Y

T
1

C
O

L
2

3
A

1
I
L
1

7
B

P
D

G
F
B

K
L
H

L
2

9
T

P
M

2
T

P
7

3
I
T

P
R

1
T

N
S

4
C

E
M

I
P

J
A

G
2

C
G

B
7

N
T

F
4

P
E

G
3

W
L
S

P
P

P
1

R
1

4
A

I
G

F
B

P
2

S
M

O
C

2
G

A
S

6
L
F
N

G
F
B

L
N

1
H

T
R

A
1

P
D

Z
K

1

U
C

N
2

C
O

L
7

A
1

L
O

X
L
2

M
Y

L
9

I
G

F
B

P
5

C
S

P
G

4
N

G
F

M
M

P
2

L
I
M

S
2

P
D

Z
K

1
P

1
E

D
N

R
B

A
D

C
Y

5
S

E
M

A
3

A
S

E
R

P
I
N

F
1

C
O

M
P

M
A
T

N
2

ACCX6
SGTX6
ACCX14
ACCX22
ACCX5M1
ACCX22
SGTX6
ACCX6
ACCX5M1
ACCX14

-3 -2 -1 0 1 2 3

*
  
M

Y
H

1
1

*
  
A

C
T

A
2

*
  
P

D
P

N

*
  
T

P
6

3

*
*

  
E

L
F
5

*
*

  
K

I
T

Top 100 DE genes
Log2Fold Change >1
FDR < 0.05 

s
u

b
s
e

t

TP
63

KI
T

A

z-score

CD49fhigh

KIT+

Subset

50 μm 50 μm 50 μm 50 μm 50 μm

50 μm 50 μm 50 μm 50 μm 50 μm

Figure 2. Differential purification by flow cytometry of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KITþ) cells. A) Analysis by flow
cytometry of CD49f and KIT surface expression in 5 human PDX lines representative of biphenotypic ACCs, enabling visual discrimination of 2 distinct
populations of human malignant cells: CD49fhigh/KITneg (top-left gates) and CD49flow/KITþ (bottom-right gates). B) Analysis by immunohistochemistry
(IHC) of corresponding tumors, confirming mutually exclusive expression of TP63 (a myoepithelial marker) and KIT (a ductal marker). Scale bar: 50 mm.
C) Principal component analysis (PCA) of RNA-seq data obtained from 5 autologous pairs of CD49fhigh/KITneg (CD49fhigh) and CD49flow/KITþ (KITþ) cells,
purified in parallel from 5 biphenotypic PDX lines of human ACCs (ACCX5M1, ACCX6, ACCX14, ACCX22, SGTX6). PCA was performed using the top 500
genes displaying the highest level of variance across the full 10-sample dataset. The 10 samples segregated into 2 distinct clusters, corresponding to
their surface marker phenotype (CD49fhigh/KITneg vs CD49flow/KITþ) and separating along the first principal component (PC1). (D) Heatmap of the top
100 genes identified as differentially expressed (DE) between CD49fhigh/KITneg and CD49flow/KITþ cells, after mean centering of gene-expression levels
and hierarchical clustering of both genes and samples. Differentially expressed genes were defined as those with a more than twofold difference in
mean expression levels between the 2 populations (log2 fold-change >1) that was considered to be statistically robust based on a Wald test corrected
for multiple comparisons (FDR< 0.05; Benjamini–Hochberg method). Differentially expressed genes were ranked based on the P value from the Wald
test. Asterisk labels indicate genes encoding for previously validated myoepithelial (*) and ductal (**) markers. ACC ¼ adenoid cystic carcinoma; APC ¼
allophycocyanin; DE ¼ differentially expressed; FDR ¼ false discovery rate; PC1 ¼ first principal component; PC2 ¼ second principal component; PDX ¼
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conventional RNA-seq. When plotted based on a principal com-
ponent analysis (PCA) of their transcriptional profiles, the 10
samples segregated into 2 equal clusters (5 samples per cluster)
that matched the original phenotypes of sorted cells (CD49fhigh/
KITneg vs. CD49flow/KITþ). The 2 clusters separated along the first
principal component (PC1), which accounted for a dominant frac-
tion (58%) of the variability within the dataset (Figure 2, C). This
observation revealed that the 2 cell types were defined by sys-
tematic differences in transcriptional profiles, strongly conserved
across different tumors irrespective of patient-specific variables
(eg, site of origin, sex, repertoire of genetic alterations)
(Supplementary Table 1, available online) (27). We then used
DESeq2 (29) to identify genes differentially expressed between
the 2 cell types (Supplementary Table 2, available online) and
observed that CD49fhigh/KITneg cells expressed markers of myoe-
pithelial cells (eg, ACTA2, MYH11, PDPN, TP63) (15-20), and
CD49flow/KITþ cells expressed markers of the ductal and/or lumi-
nal lineages of exocrine glands (eg, ELF5, KIT, SLPI, ANXA8) (40-43)
(Figure 2, D), thus confirming their myoepithelial-like and ductal-
like identities. Finally, we used STAR-Fusion (30) to test whether
CD49fhigh/KITneg and CD49flow/KITþ cells, which are both known
to carry t(6; 9) MYB-NFIB translocations (44), differed in expres-
sion of MYB-NFIB chimeric transcripts. Our analysis revealed
that, in ACCs that harbored such translocations, both cell types
expressed MYB-NFIB chimeric transcripts, without evidence of
meaningful differences in terms of absolute levels or alternative
splicing (Supplementary Figure 4, available online).

Developmental relationship of CD49fhigh/KITneg

and CD49flow/KIT1 cells
We next wanted to test whether the 2 cell populations repre-
sented different genetic clones that coexisted within the same
tissue (Figure 3, A), or whether they were linked by a develop-
mental relationship, whereby one population could differentiate
into the other, in a process akin to those sustaining the normal
morphogenesis of epithelial tissues (Figure 3, B). To explore this
concept, we decided to perform prospective xenotransplantation
studies with purified preparations of the 2 cell populations, to
evaluate their tumor-initiating and multilineage differentiation
capacity. Autologous pairs of CD49fhigh/KITneg and CD49flow/KITþ

cells were double sorted by FACS from 2 biphenotypic PDX lines
(ACCX5M1, SGTX6) and injected, side by side, at progressively
decreasing doses (10 000-250 cells per injection) in immune-
deficient animals (Figure 3, C) (31). We observed that the fre-
quency of tumor-initiating cells was higher in CD49fhigh/KITneg as
compared with CD49flow/KITþ cells (Figure 3, D and E;
Supplementary Figure 5, A and B, available online), resulting in
larger and faster-growing tumors (Supplementary Figure 5, C-F,
available online) despite CD49fhigh/KITneg cells having a smaller
fraction of actively proliferating cells (Supplementary Figure 5, G
and H, available online). These results revealed that
myoepithelial-like cells represent a biologically aggressive com-
ponent of human ACCs, despite having a more quiescent pheno-
type. We then proceeded to analyze the cell composition of
tumors originated from transplantation of sorted cells. Our
results showed that tumors originated from sorted CD49fhigh/
KITneg cells contained both cell types, at frequencies comparable
with those observed in parent lines, irrespectively of the number
of injected cells (Figure 3, F-H, L-N). This observation showed that
CD49fhigh/KITneg cells can differentiate into CD49flow/KITþ cells,
thus excluding the clonal hypothesis. When we analyzed the few

tumors originated from CD49flow/KITþ cells, we also found them
indistinguishable from parent lines (Figure 3, I-K, O-Q). In this
specific case, however, given the high number of CD49flow/KITþ

cells required for tumor initiation, we could not exclude the pos-
sibility that such tumors arose from cross-contaminations of
CD49fhigh/KITneg cells, despite the high purity achieved by double
sorting.

Differential expression of mechanistic regulators
of retinoic acid (RA) signaling
To elucidate the molecular mechanisms that control the differ-
entiation of CD49fhigh/KITneg cells into CD49flow/KITþ cells, we
searched for signaling pathways with differential activation in
the 2 cell types. We tested whether CD49fhigh/KITneg and
CD49flow/KITþ cells differed in the expression of genes encod-
ing for mechanistic regulators of RA signaling, such as
enzymes involved in RA biosynthesis (45-47), RA binding pro-
teins (48-50), retinoic acid receptors (RARs) and retinoid x
receptors (RXRs) (51) (Figure 4, A), given that RA signaling plays
a key role in the differentiation of SG epithelia (52-54) and
antagonizes MYB signaling in human ACCs (55,56). We found
that activators of RA signaling were overexpressed in CD49flow/
KITþ cells, whereas suppressors of RA signaling were overex-
pressed in CD49fhigh/KITneg cells, in a coordinated fashion
(Figure 4, B and C).

In vitro effects of RAR/RXR activation and
inhibition
To elucidate the role played by RA signaling in regulating cell dif-
ferentiation, we leveraged a 3-dimensional in vitro organoid
tissue-culture system (32-34) that recapitulated the biphenotypic
composition of primary tissues (Figure 4, D-G), as well as key ele-
ments of their histological architecture (Supplementary Figure 6,
available online). We observed that stimulation of organoid cul-
tures with agonists of RARs (ATRA) or RXRs (bexarotene) caused
an increase in the percentage of CD49flow/KITþ cells, whereas
suppression of the signaling mediated by RAR and RXR hetero-
dimers (RAR/RXR) with inverse RAR agonists (BMS493,
AGN193109) resulted in selective loss of CD49flow/KITþ cells
(Figure 4, H and I). These effects were observed at concentrations
(0.1-10 mM) that spanned the drugs’ known median effective dose
(ED50) (Figure 4, J-M) and were reproduced across 3 biphenotypic
PDX lines (ACCX5M1, SGTX6, ACCX6) (Figure 5, A-F). To clarify
the mechanism causing such changes in cell composition, we
first tested whether ATRA or BMS493 induced preferential prolif-
eration of one cell type. Analysis by IHC and FACS showed no
increases in the frequency of MKI67þ cells (Figure 5, G-R;
Supplementary Figure 8, A-O, available online) or of cells in either
the G2 or M phases of the cell cycle (Supplementary Figure 8, P-S)
in either cell type. The IHC analysis also confirmed that cells
with a ductal-like phenotype, as defined by expression of KIT and
lack of expression of TP63 (KITþ/TP63neg) became more abundant
following treatment with ATRA, and were undetectable after
treatment with BMS493 (Figure 5, G-R; Supplementary Figure 8,
A-O, available online). Remarkably, organoids treated with
BMS493 displayed a striking change in morphology, with areas
occupied by KITþ cells undergoing nuclear fragmentation, sug-
gesting selective cytotoxicity toward ductal-like cells (Figure 5, O-
R; Supplementary Figure 8, L, available online). We thus hypothe-
sized that agonism and suppression of RAR/RXR signaling might
have lineage-specific effects on the 2 cell populations (Figure 5,
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Figure 3. Tumorigenic properties of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KITþ) cells. A) Predicted outcomes of cell
transplantation experiments under a clonal model, whereby different cell types give rise to distinct progenies, each retaining the phenotypic properties
of the parent cells. B) Predicted outcomes of cell transplantation experiments under a differentiation model, whereby 1 or more cell types can serve as a
progenitor of others, in a plastic and dynamic fashion. C) Experimental workflow of prospective xenotransplantation experiments aimed at comparing
the tumor-initiating capacity of CD49fhigh/KITneg and CD49flow/KITþ cells. The 2 populations were purified in parallel by FACS, starting from the same
tumor lesion, double sorted to achieve high purity (>95%) and injected subcutaneously, side by side, into the opposite flanks of the same animal. D-E)
Extreme limiting dilution analysis (ELDA) of xenotransplantation experiments using paired sets of CD49fhigh/KITneg and CD49flow/KITþ cells sorted from
ACCX5M1 (D) and SGTX6 (E) PDX lines. In both models, the frequency of tumor-initiating cells was higher in CD49fhigh/KITneg as compared with
CD49flow/KITþ cells. F-Q) Analysis by FACS and IHC of the cell composition of tumors originated from the xenotransplantation of purified preparations
of either CD49fhigh/KITneg or CD49flow/KITþ cells, sorted from either ACCX5M1 (F-K) or SGTX6 (L-Q) PDX lines. Analysis by FACS (F-G, I-J, L-M, O-P)
showed that tumors originated from sorted cells contained both CD49fhigh/KITneg and CD49flow/KITþ populations, irrespective of the original phenotype
of sorted cells. In tumors originated from CD49fhigh/KITneg cells, the percentage of CD49fhigh/KITneg cells did not appear increased as compared with
that observed in parent tumors but was lower than that observed in the purified preparations (G, M), indicating spontaneous in vivo differentiation (n.s.
¼ not statistically significant; *P< .05; Mann–Whitney U test, 1-tailed). A symmetric scenario was observed in tumors originated from CD49flow/KITþ

cells (J, P). Analysis by IHC of tumors originated from sorted cells (H, K, N, Q) confirmed the reconstitution of a cribriform histology and of a
biphenotypic cell composition, defined by the coexistence of 2 distinct subsets of cancer cells with mutually exclusive expression of myoepithelial-
specific (TP63) and ductal-specific (KIT) biomarkers. Scale bars: 50 mm. APC ¼ allophycocyanin; CI ¼ confidence interval; FACS ¼ fluorescence-activated
cell sorting; IHC ¼ immunohistochemistry; PDX ¼ patient-derived xenograft; PE ¼ phycoerythrin.
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Figure 4. The role of retinoic acid (RA) signaling in controlling the cell composition of human ACC organoids. A) Schematic modeling of the RA signaling
pathway. B) Comparison of the gene-expression levels for known mediators of RA signaling in CD49fhigh/KITneg (CD49f) and CD49flow/KITþ (KIT) cells, as
measured by RNA-seq on autologous pairs from biphenotypic ACCs. Genes identified as attenuators of RA signaling displayed preferential expression in
CD49fhigh/KITneg cells (CD49f), whereas genes identified as potentiators of RA signaling displayed preferential expression in CD49flow/KITþ cells (KIT).
Error bars: mean þ/- standard deviation (n.s. ¼ not significant; *P< .10; **P< .05; ***P< .01; Student’s t test, paired samples). C) Heatmap displaying
mean-centered z scores for the average expression levels of modulators of RA signaling in CD49fhigh/KITneg (CD49f) and CD49flow/KITþ (KIT) cells. D-G)
Analysis by microscopy and IHC of 3D organoids established from human ACCs. Organoids consisted in large adenoid structures (D-E) that
recapitulated key elements of the histological architecture of primary tumors, such as the coexistence of 2 cell types with mutually exclusive
expression of TP63 (F) and KIT (G). H-I) Analysis by flow cytometry of ACCX5M1 organoids treated for 1 week with either agonists (ATRA, 10 mM;
bexarotene, 10 mM) or inhibitors (BMS493, 10 mM; AGN193109, 10 mM) of RAR/RXR signaling. Treatment with agonists induced an increase in the
percentage of CD49flow/KITþ cells, whereas treatment with inhibitors resulted in their reduction. J-M) Dose-response studies of the effects of agonists
and inhibitors of RAR/RXR signaling on the cell composition of human ACC organoids. Treatment with increasing concentrations of ATRA (0.1-100 mM)
resulted in a progressive increase of the percentage of CD49flow/KITþ cells (ACCX5M1 [J-K]). The effects of ATRA were already detectable at low
concentrations (0.1-1 mM; ACCX5M1 [J]). Treatment with inhibitors of RAR/RXR signaling (BMS493, AGN193109) resulted in a profound reduction of the
percentage of CD49flow/KITþ cells, even at low pharmacological doses (1 mM; ACCX5M1 [L]; SGTX6 [M]). Changes in the percentage of CD49flow/KITþ

cells were evaluated by FACS and tested for statistical significance using Welch’s 1-way ANOVA followed by Dunnett’s T3 test (n.s. ¼ not significant;
*P< .05; **P< .01; ***P< .001) assuming a normal distribution (Supplementary Figure 7, available online). 3D ¼ 3-dimensional; ACC ¼ adenoid cystic
carcinoma; ANOVA ¼ analysis of variance; APC ¼ allophycocyanin; ATRA ¼ all-trans retinoic acid; DMSO ¼ dimethyl-sulfoxide; FACS ¼ fluorescence-
activated cell sorting; H&E ¼ hematoxylin and eosin stain; IHC ¼ immunohistochemistry; NT ¼ untreated; PE ¼ phycoerythrin; RA ¼ retinoic acid; RAR
¼ retinoic acid receptor; RNA-seq ¼ RNA sequencing; RXR ¼ retinoid X receptor.
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Figure 5. Pharmacological perturbation of RAR/RXR signaling across different PDX models and analysis of its effects. A-F) Analysis and quantification by flow
cytometry of the relative percentage of CD49flow/KITþ cells in ACC organoids established from 3 independent PDX lines (ACCX5M1, SGTX6, ACCX6), following
1 week of treatment with either ATRA (10mM) or BMS493 (10mM). Treatment with ATRA was associated with an increase in the percentage of CD49flow/KITþ

cells, whereas treatment with BMS493 was associated with its reduction, as compared with control organoids treated only with DMSO, the solvent used to
resuspend the 2 drugs. Differences in the mean percentage of CD49flow/KITþ cells were tested for statistical significance using Welch’s 1-way ANOVA
followed by Dunnett’s T3 test (*P< .05; **P< .01; ***P< .001) assuming a normal distribution (Supplementary Figure 7, available online). Box plots report the
results of at least 2 independent experiments (with a minimum of 3 replicates for each condition). G-R) Analysis by IHC of 3D organoids established from the
ACCX6 PDX line and treated with DMSO, ATRA (10mM), or BMS493 (10mM). Treatment with ATRA resulted in a visual expansion of KITþ cells (M) as
compared with treatment with DMSO alone (I), whereas treatment with BMS493 resulted in a complete loss of KIT expression (Q) and was associated with a
dramatic change in the organoids’ morphology, characterized by the appearance of amorphous, eosin-rich deposits at their center (O). Neither ATRA nor
BMS493 appeared to upregulate MKI67 expression in either cell population (H, L, P). Scale bars: 100mm. S) Schematic modeling of the effects produced by
agonism and inhibition of RAR/RXR signaling on the cell composition of human ACCs, as hypothesized based on the observations conducted on whole 3D
organoids: stimulation of RAR/RXR signaling induces the differentiation of myoepithelial-like cells into ductal-like cells, whereas inhibition of RAR/RXR
causes selective death of ductal-like cells. 3D¼ 3-dimensional; ACC¼ adenoid cystic carcinoma; ANOVA¼ analysis of variance; APC¼ allophycocyanin;
ATRA¼ all-trans retinoic acid; DMSO¼ dimethyl-sulfoxide; H&E ¼ hematoxylin and eosin stain; IHC¼ immunohistochemistry; PDX¼ patient-derived
xenograft; PE¼ phycoerythrin; RAR¼ retinoic acid receptor; RXR¼ retinoid X receptor.
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S). To formally test this hypothesis, we purified CD49fhigh/KITneg

and CD49flow/KITþ cells and treated them individually with ATRA
(10 mM) or BMS493 (10 mM) using 2-dimensional monolayer cul-
tures (35) (Figure 6, A-F). The experiment revealed that stimula-
tion with ATRA did not impact the viability of CD49fhigh/KITneg

cells (Figure 6, B) but changed their phenotype, with a majority of

cells becoming CD49flow/KITþ (Figure 6, C-D), suggesting
myoepithelial-to-ductal differentiation. Conversely, treatment of
purified CD49flow/KITþ cells with BMS493 resulted in a substan-
tial decrease in cell viability, indicating selective toxicity against
ductal-like cells (Figure 6, E and F). To provide orthogonal evi-
dence in support of RAR/RXR signaling as a key mediator of
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sets of CD49fhigh/KITneg and CD49flow/KITþ cells were sorted in parallel from the same tumor (ACCX5M1) and cultured for 1 week as 2D monolayers, in
the presence of either ATRA (10mM) or BMS493 (10mM), respectively. B-D) Evaluation of the effects of ATRA on sorted CD49fhigh/KITneg cells. Treatment
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myoepithelial-to-ductal differentiation, we decided to test
whether the effects of RAR/RXR inhibitors could be phenocopied
by overexpression of a dominant-negative version of human
RARa (DNhRARa), known to suppress the transcriptional activity
of all 3 members of the human RAR family (RARa, RARb, RARc)
(37). Indeed, infection of CD49fhigh/KITneg cells with a lentivirus
driving constitutive expression of the DNhRARa construct

resulted in complete abrogation of their spontaneous differentia-
tion into CD49flow/KITþ cells (Figure 6, G-N).

In vivo antitumor activity of BMS493
We next aimed to elucidate whether the selective toxicity dis-
played by BMS493 against ductal-like cells in vitro could be lever-

aged for the in vivo therapy of ACCs. We hypothesized that,
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Figure 8. In vivo antitumor activity of BMS493. A) Schematic description of the BMS493 dosing regimen used for the in vivo treatment of solid ACC models
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among ACCs, those enriched in ductal-like cells would represent
the most susceptible targets. Although most ACCs display biphe-
notypic histology, over the course of the disease, a subgroup pro-
gresses to a solid histological pattern, consisting predominantly
of KITþ cells (20). Progression to solid histology associates with
NOTCH1-activating mutations, increased proliferation kinetics,
and worse clinical outcomes (57-63). To understand whether
ACCs with solid histology represented monophenotypic expan-
sions of ductal-like cells, we analyzed 2 PDX models representa-
tive of this specific subtype (ACCX9, ACCX11) (20) and confirmed
that they consisted of a single KITþ/TP63neg population (Figure 7,
A-F). We then performed RNA-seq on KITþ cells purified by FACS
from these 2 models and repeated the principal component anal-
ysis (PCA), combining the new data with those from purified pairs
of myoepithelial-like and ductal-like cells from biphenotypic
ACCs. Indeed, KITþ cells from solid ACCs clustered with
CD49flow/KITþ cells from biphenotypic ACCs (Figure 7, G), indicat-
ing retention of a ductal-like transcriptional profile (Figure 7, H).
Furthermore, when treated with BMS493 (10 mM), organoids
established from solid PDX lines displayed loss of structural
integrity and decreased viability, indicating retention of sensitiv-
ity to suppression of RAR/RXR signaling (Figure 7, I-K). As a final
step, we tested whether in vivo administration of BMS493 (40 mg/
kg, intraperitoneal) could be leveraged for the treatment of PDX
lines with either solid (ACCX9, ACCX11) or cribriform (ACCX5M1)
histology (Figure 8). We used a more intense regimen for the cri-
briform model (4 times/week x 3 weeks; Figure 8, F) as compared
with the solid models (3 times/week x 3 weeks; Figure 8, A),
assuming lower sensitivity of the former. Treatment with
BMS493 was associated with side effects reminiscent of vitamin
A deficiency in mice (eg, encrusted eyelids, rough coat, scaling of
skin) (64). Of 18 tumor-bearing animals treated with BMS493, 33%
(6 of 18) experienced tumor shrinkage (Supplementary Figure 9,
available online). Four (22%) animals were prematurely euthan-
ized because of abrupt deterioration of general health conditions.
In 3 of these animals, health deterioration occurred immediately
following tumor shrinkage, suggesting acute toxicity due to
tumor lysis (Supplementary Figure 9, available online). Overall,
treatment with BMS493 led to a statistically significant reduction
in tumor growth across all 3 models, even after removal of ani-
mals that underwent premature euthanasia (Figure 8, B-E, G-H;
Supplementary Figure 9, available online).

Discussion
In this study, we identified 2 cell-surface markers (CD49f, KIT)
that, for the first time, enabled the differential purification and
comparative study of the 2 subtypes of malignant cells (myoepi-
thelial-like and ductal-like) that are known to coexist in human
ACCs. Our data reveal that the 2 cell types do not represent dis-
tinct genetic clones but rather distinct developmental lineages
(ie, distinct cell types that originate as a result of multilineage dif-
ferentiation processes, akin to those that enable stem-cell popu-
lations to sustain the homeostatic turnover of normal tissues).
Our data also reveal that myoepithelial-like cells are highly
tumorigenic upon xenotransplantation in immune-deficient ani-
mals, despite their low proliferation rates. In tumors originated
from exocrine glands (eg, breast cancer), myoepithelial-like cells
are often considered tumor suppressive (65,66). Our findings cau-
tion against this interpretation in ACCs and indicate that, to be
curative, treatment strategies will need to eradicate
myoepithelial-like components. Furthermore, our data show
that, in ACCs, myoepithelial-like cells act as progenitors of

ductal-like cells and that myoepithelial-to-ductal differentiation
is promoted by RAR/RXR signaling. These findings provide a
mechanistic explanation for the conflicting results that have
been recently obtained in studies that tested ATRA’s antitumor
activity in human ACCs. ATRA displayed marked antiprolifera-
tive activity against PDX models (55,56) but appeared to provide
limited benefit when administered to patients (67). We hypothe-
size that, in ACC patients, the therapeutic benefit of ATRA might
be short lived because of the cytostatic nature of its effect, which
consists in a transient perturbation of the tumor tissues’ cell
composition.

Perhaps more importantly, our data also revealed that sup-
pression of RAR/RXR signaling induces selective death of ductal-
like cells. This finding provides an opportunity for the selective
pharmacological targeting of ACCs, especially of cases with solid
histology, which are characterized by monophenotypic expan-
sions of ductal-like cells. These tumors often originate during the
natural progression of ACCs, following the acquisition of
NOTCH1-activating mutations, in a scenario that is reminiscent
of the “blast crisis” observed in chronic myelogenous leukemias,
whereby a population of more differentiated, yet highly prolifera-
tive cells becomes dominant, because of mutations that aber-
rantly activate self-renewal (22,68,69). Our data indicate that, in
solid ACCs, treatment with an inverse agonist of RAR/RXR signal-
ing (BMS493) can have robust antitumor activity. Agonists of
RAR/RXR signaling have been extensively explored as antitumor
agents in humans (70-74), whereas inverse agonists, to the best
of our knowledge, have not. Our findings advocate in support of
the clinical development of inverse agonists of RAR/RXR signaling
as antitumor agents, to assess their efficacy and toxicity in the
treatment of selected subtypes of epithelial cancer, especially
those characterized by ductal and/or luminal phenotypes.

Finally, our study demonstrates that, by “hacking” the signal-
ing pathways that control multilineage differentiation in epithe-
lial tissues, it is possible to discover novel pharmacological
manipulations with selective toxicity on specific cellular lineages.
Because multilineage differentiation programs are retained in
many forms of cancer (22-24), this study could provide a meth-
odological template to guide the discovery of novel antitumor
drugs against a large and diverse repertoire of human malignan-
cies.
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number: phs002764.
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