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Abstract

Phthalates are ubiquitous environmental exposures that may be implicated in inflammatory 

processes, as demonstrated by previous in vivo and in vitro studies. Few human studies have 

substantiated these observations. This study sought to examine whether maternal phthalate 

exposures impact inflammatory processes, as measured by circulating inflammatory biomarkers, 

in the PROTECT cohort in northern Puerto Rico. Inflammatory biomarkers included matrix 

metalloproteinases 1, 2, and 9 (MMPs), C-reactive protein (CRP), vascular cell adhesion 

molecule-1 (VCAM), and intercellular cell adhesion molecule-1 (ICAM). Biomarkers were 

measured in maternal serum samples collected during pregnancy. 19 phthalate metabolites 

were assessed in urinary samples collected at three study visits across pregnancy. Phthalates 

with <50% of measurements above the limit of detection were excluded from analysis. We 

utilized linear mixed effect models to estimate associations between interquartile range increases 

in phthalate metabolite concentrations and percent changes in inflammatory biomarkers. Our 

results revealed significant associations between mono-n-butyl phthalate (MBP) and higher 

MMP1 by 7.86% (95% CI: 0.49, 15.76) and between mono oxononyl phthalate (MONP) and 

higher MMP2 by 8.30% (95% CI: 2.22, 14.75). We observed negative or null associations 

between phthalate metabolites and MMP2, MMP9, ICAM, VCAM, and CRP. Many results 
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were significantly modified by fetal sex, particularly those between di-2-ethylhexyl phthalate 

(DEHP) metabolites and MMP1 (p-interaction: MEHHP=0.01, MEOHP= 0.04, MECPP= 0.01) 

and MMP2 (p-interaction: MEHHP=0.03, MEOHP=0.01, MECPP=0.01), for which associations 

were positive among only women carrying female fetuses. MMPs have been previously associated 

with preeclampsia and hypertensive pregnancy disorders as mediators of artery remodeling. 

Hence, our findings suggest a potential role for phthalates in mediating the maternal inflammatory 

response, as well as significant sexual dimorphism in these relationships, which has implications 

for several adverse pregnancy outcomes.
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1. Introduction

Phthalates are a class of man-made chemicals ubiquitously found in the modern environment 

through their uses as plasticizers and solvents. The range of possible phthalate exposure 

sources is extensive, ranging from food packaging to personal care products (Kelley et 

al., 2012). High molecular weight (HMW) phthalates including di-2-ethylhexyl phthalate 

(DEHP), di-decyl phthalate (DiDP), and di-nonyl phthalate (DiNP) are prevalent in products 

such as food and water packaging and PVC-containing products (Marie et al., 2015). Low 

molecular weight (LMW) phthalates including dibutyl phthalate (DBP), dimethyl phthalate 

(DMP), and diethyl phthalate (DEP) are commonly used as solvents and adhesives in 

products such as personal care products (Sathyanarayana, 2008). In addition to their large 

presence in plastics, phthalates have a substantial environmental presence due to their 

noncovalent bonding allowing for spontaneous volatilization and leaching into food and 

water sources (Serrano et al., 2014). Significant phthalate metabolite concentrations were 
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found in pregnant women of the PROTECT cohort, and increased concentrations were 

associated with women who reported using perfume and cosmetics in addition to other 

activities and dietary factors (Rodríguez-Carmona et al., 2020). Reduction and control of 

phthalate exposures are challenging due to these chemical properties and wide range of 

applications and sources, making research into their human health effects important.

Despite the prevalence of phthalate exposure, the scope of their human health effects is 

not well established. Current scientific literature supports associations between phthalate 

exposures and endocrine disruption with significant implications for maternal and fetal 

health such as preterm birth, long term maternal weight gain, and preeclampsia (Colón et 

al., 2000; Latini et al., 2003; Meeker & Ferguson, 2014; Philips et al., 2020; Rodríguez-

Carmona et al., 2019; Swan, 2008; Y. Zhang et al., 2009). Preeclampsia and preterm 

birth are leading causes of maternal mortality and morbidity across the globe and are 

associated with systemic inflammatory responses (Al-Jameil et al., 2014; Lo et al., 2013). 

Consequently, investigating the role of common environmental exposures, like phthalates, 

in maternal inflammation is important to advancing our understanding of these complex 

pregnancy disorders.

Previous in vivo and in vitro studies support an association between phthalates 

and inflammatory biomarkers, particularly DEHP/MEHP-induced oxidative stress and 

consequent upregulation of pro-inflammatory biomarkers (Chen, 2012; Duan et al., 2017; 

Erkekoglu et al., 2010; Manteiga Sara & Lee Kyongbum, 2017; Stermer et al., 2017; Tetz et 

al., 2013). However, only a few human studies have sought to corroborate these associations 

(Bedrosian et al., 2018; Ferguson et al., 2011, 2015; Trim et al., 2021). These studies 

assessed maternal inflammation using either only matrix metalloproteinases or CRP and 

interleukins. A previous preliminary PROTECT study investigated the associations between 

maternal phthalate exposures and biomarkers of inflammation and oxidative stress (Ferguson 

et al., 2014). However, only CRP and interleukins were measured in that study. Accordingly, 

this study utilized a diverse range of inflammatory biomarkers including CRP, matrix 

metalloproteinase-1, 2, and 9 (MMP1, MMP2, MMP9), intercellular adhesion molecule-1 

(ICAM), and vascular cell adhesion molecule-1 (VCAM). MMPs are key regulators in 

tissue remodeling, a process that is suspected to trigger an inflammatory response when 

incomplete (Chen & Khalil, 2017). Hence, MMPs can serve as biomarkers of changes to 

vascular remodeling contributing to gestational inflammation.

MMP1, MMP2, and MMP9 are most often examined in pregnancy studies (Estrada-

Gutierrez et al., 2011; C. Kim et al., 2022; Nikolov & Popovski, 2021; Sakowicz et al., 

2018). CRP upregulation is noted in times of infection, disease, and other conditions that 

stimulate a systemic inflammatory response (Tjoa et al., 2003). Elevated CRP has been 

associated with hypertensive pregnancy disorders (Rebelo et al., 2013). ICAM and VCAM 

molecules are involved in the migration and localization of activated leukocytes to sites 

of inflammation in endothelial cells (Yusuf-Makagiansar et al., 2002). Thus, these proteins 

are key elements in either general inflammatory responses or secondary processes that can 

trigger maternal inflammation when rendered dysfunctional.
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The present study examines the role of phthalate exposures in the maternal inflammatory 

response. To do so, we use data from the PROTECT cohort to investigate associations 

between urinary phthalate metabolites and inflammatory biomarkers, including CRP, 

MMP1, MMP2, MMP9, ICAM, and VCAM, during pregnancy. PROTECT is a prospective 

birth cohort study dedicated to researching the contributions of various environmental 

contaminants to maternal and fetal health in Puerto Rico (Ferguson et al., 2014). Puerto 

Rico historically has some of the highest rates of preterm birth and other adverse pregnancy 

outcomes across the globe (Meeker, Cantonwine, Rivera-González, Ferguson, Mukherjee, 

Calafat, Ye, Anzalota Del Toro, Crespo, et al., 2013). Previous studies revealed elevated 

urinary phthalate metabolite concentrations within the PROTECT cohort relative to women 

in the general US population, and that concentrations of some phthalate metabolites 

were associated with preterm birth (Ferguson et al., 2019). PROTECT is still actively 

recruiting pregnant women, and currently does not have enough clinically diagnosed cases 

of preeclampsia to test associations with phthalate exposure. Therefore, in the present 

study we sought to test the hypothesis that markers of phthalates exposure are associated 

with increased biomarkers of gestational inflammation, which is relevant for pregnancy 

outcomes, within the PROTECT cohort. Our secondary objectives were to evaluate effect 

modification of these associations by fetal sex and study visit.

2. Methods

2.1 Study Population

Data for this analysis was obtained from the PROTECT prospective birth cohort in Puerto 

Rico. The PROTECT cohort was started in 2011 and recruitment is ongoing. Details on 

study protocols and recruitment have been described previously (Meeker, Cantonwine, 

Rivera-González, Ferguson, Mukherjee, Calafat, Ye, Anzalota Del Toro, Crespo-Hernández, 

et al., 2013). In short, women were recruited at median 14 weeks gestation between 2011 

and 2019 and participated in up to three study visits – two clinic visits occurring at median 

18 (range 16–20) and 26 (range 24–28) weeks gestation, and one in-home visit occurring 

at median 22 (range 20–24) weeks gestation. Women were included in the study if they 

were between the ages of 18 and 40 years, had their first clinical visit before their 20th 

gestational week, did not take oral contraceptives in the three months prior to becoming 

pregnant, did not use in vitro fertilization to become pregnant, and had no known preexisting 

medical or obstetric conditions. Information on demographics and other relevant health 

information was collected at the first study visit. The demographics of the participants in 

this analysis were similar to those of the overall PROTECT birth cohort (Cathey et al., 2022; 

Rodríguez-Carmona et al., 2020).

This study was approved by the research and ethics committees of the University of 

Michigan School of Public Health, University of Puerto Rico, Northeastern University, and 

participating hospitals and clinics. All methods reported in this study were performed in 

accordance with relevant guidelines and regulations imposed by those institutions. All study 

participants provided full informed consent prior to participation.
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2.2 Phthalate Exposure Assessment

Urine samples were collected into polypropylene containers from study participants at all 

three study visits (16–20, 20–24, and 24–28 weeks gestation). 491 women provided one 

sample and 327 women provided two samples. Samples across study visits were averaged 

using geometric means. Samples were then aliquoted at the University of Puerto Rico and 

shipped overnight at −80°C on dry ice to the Centers for Disease Control and Prevention 

for analysis. Samples were analyzed using solid phase extraction high-performance liquid 

chromatography-isotope dilution tandem mass spectrometry, described in more detail 

elsewhere (CDC, 2013). Each analytical batch included 40 unknown samples, five reagent 

blanks, and two high- and two low-concentration quality control materials. All quality 

control materials were characterized by 60 repeated measurements in a 3-week period 

to define control limits for each phthalate metabolite. Further details on sample analysis 

and quality control are published elsewhere (Kato et al., 2005; Silva et al., 2007, 2019). 

Samples obtained in earlier years of the PROTECT study beginning in 2011 were analyzed 

for 11 phthalate metabolites: mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-

hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-

ethyl-5-carboxypentyl phthalate (MECPP), mono-3-carboxypropyl phthalate (MCPP), mono 

carboxyisononyl phthalate (MCNP), mono carboxyisooctyl phthalate (MCOP), monoethyl 

phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and 

mono-isobutyl phthalate (MiBP). Later batches added in 2013 included the metabolites 

mono-hydroxyisobutyl phthalate (MHiBP), mono-hydroxybutyl phthalate (MHBP), mono 

isononyl phthalate (MNP), cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl 

ester (MHiNCH), and cyclohexane-1,2-dicarboxylic acid monocarboxy isooctyl ester 

(MCOCH), and finally the metabolites mono oxononyl phthalate (MONP), mono-2-ethyl-5-

carboxypentyl terephthalate (MECPTP), and mono-2-ethyl-5-hydrohexyl terephthalate 

(MEHHTP) were the last to be added to the analytical panel in 2015. Values detected below 

the LOD were assigned a value of the LOD divided by the square root of two (Hornung & 

Reed, 1990).

2.3 Inflammatory and MMP biomarker Assessment

Inflammatory biomarkers were quantified from serum samples using customized Luminex 

assay from Invitrogen following the manufacturer’s recommended protocol, modified 

to include overnight incubation (with shaking) at 4°C. Most of the targets of interest 

required dilution prior to assay: C-reactive protein (CRP, Catalog #EPX01A10288901) was 

diluted 2000-fold; matrix metalloproteinase-2 (MMP2, Catalog #EPX01A12132901) and 

MMP9 (Catalog #EPX01A12016901) were diluted 50-fold; intracellular adhesion molecule 

(ICAM, Catalog #EPX01A10201901) and vascular cell adhesion molecule (VCAM, Catalog 

#EPX01A10232901) were diluted 200-fold; and MMP1 (Catalog #PPX07MX322FV) 

required no dilution. A Luminex-200 plate reader using xPonent software was used to 

acquire the raw data, which were compiled using Milliplex analyst (5.1.0.0). All samples 

were run in duplicate and then duplicate measures were averaged. Luminex assays were 

performed in the Rogel Cancer Center’s Immune Monitoring Shared Resource Center at the 

University of Michigan.
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Based on the measurements of 8 standard concentrations provided by the manufacturer, 

a seven parameter standard curve was utilized to convert optical density values into 

concentrations (pg/mL). Based on percent recovery outside the ideal range of 70–

130% (ratio of observed to expected concentration) we eliminated the highest standard 

concentration from the standard curve. Coefficients of variation (CVs) were then calculated. 

Sample CVs above 30% (CRP, N=260; MMP1, N=39; MMP2, N=9; MMP9, N=67; ICAM, 

N=43; VCAM, N=47), which indicate errors in pipetting and sample preparation, were 

eliminated from all subsequent analyses. After removal of sample CVs above 30%, intra-

assay CVs ranged from 3.7% (VCAM) to 14.9% (CRP), and inter-assay CVs ranged from 

6.1% (MMP2) to 12.0% (VCAM). All samples measured below the lower limit of detection 

(LOD) were assigned a value of the LOD divided by the square root of 2, and samples 

measured above the upper LOD (CRP, N=23) were assigned a value of the upper LOD.

2.4 Statistical Analyses

Initially, our study population consisted of 890 women (providing 1238 samples) for 

whom we had biomarker data on at least one exposure-outcome pair. We explored various 

possible covariates among this population of women – maternal age, education level, 

marital status, employment status, annual household income, smoking status, exposure 

level to secondhand smoke, alcohol use, parity, pre-pregnancy body mass index (BMI), 

and fetal sex. Covariates were selected based on a priori knowledge and are consistent 

with previously published PROTECT analyses. This assessment yielded models which 

adjusted for categorical maternal age and education level, and continuous pre-pregnancy 

BMI. Models additionally adjusted for specific gravity, which was measured using a digital 

handheld refractometer (AtagoCo., Ltd., Tokyo, Japan), to account for differences in urinary 

dilution. There were some study participants who were missing data on included covariates, 

resulting in a final sample size of 818 women (providing 1145 samples).

Distributions of exposure and outcome biomarker concentrations were assessed at each 

study visit. Intraclass correlation coefficients (ICCs) were also calculated to assess between- 

and within-person variability of biomarker concentrations across study visits. All biomarkers 

displayed right-skewed distributions and were natural log-transformed for all subsequent 

analyses.

Linear mixed effects models (LMEs) were used to regress inflammatory biomarkers on 

phthalates and included random intercepts for study participant. Sensitivity analyses were 

then employed to explore effect modification by fetal sex and differences between study 

visits. These analyses were achieved using 95% confidence intervals and interaction terms 

between fetal sex or study visit indicator variables and phthalate exposure variables. All 

results can be interpreted as the percent change in inflammatory biomarker concentration 

associated with an interquartile range (IQR) increase in phthalate metabolite. Significance 

level was set to alpha=0.05. All analyses were completed using R software and the default 

setting, corresponding to no within-group correlation.
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3. Results

3.1 Demographics

Characteristics of the study population, including demographics and other relevant health 

information, are shown in Table 1. The majority of participants were under the age of 30 

years (68.3%), had attained at least some college education (55.6%), were either married or 

cohabitating (80.7%), were employed (63.8%), lived in a home earning less than $30,000 

per year (64.2%), were never-smokers (86.0%), reported no exposure to secondhand smoke 

(89.4%), were nulliparous (43.2%), and had a pre-pregnancy BMI ≤ 25 kg/m2 (52.3%). 

There were more pregnancies with a male fetus (52.1%) than with a female fetus (47.9%).

3.2 Biomarker Distributions

Inflammatory biomarkers included in this study were CRP, MMP1, MMP2, MMP9, ICAM, 

and VCAM, distributions for which are shown in Table 2. All measurements were above 

the limit of detection (LOD). ICC characterizes the within-subject variability relative to 

total (within-subject plus between-subject) variability across visits with values between 0–

1. ICC values closer to 1 indicate low temporal variability within subjects whereas ICC 

values closer to 0 indicate high temporal variability. MMP1, MMP2, and ICAM marker 

measurements displayed low temporal variability within subjects (ICC =0.79, 0.77, 0.86). 

Meanwhile, MMP9 and VCAM marker measurements exhibited moderate within-subject 

temporal variability (ICC =0.49, 0.47).

3.3 Exposure Descriptives

Distributions of phthalate metabolites are shown in Table S1. For most of the metabolites 

analyzed, >90% of measurements were above the LOD. MCPP, MEHP, and MHBP 

measurements were the exceptions with %>LOD values ranging from 81–88%, 80–84%, 

and 77–86% respectively. MCOCH, MHINCH, and MNP measurement data were excluded 

from the present analysis due to %>LOD values <50%. Most of the analyzed phthalate 

metabolites additionally exhibited high within-subject variability with ICC values ranging 

from 0.10 to 0.46.

3.4 Main Effects

Overall, most of the phthalate metabolites examined were not significantly associated 

with inflammatory biomarkers in adjusted linear mixed effects models as shown in Table 

3. However, all three MMPs were significantly associated with at least one phthalate 

metabolite. MBP was associated with a 7.86% increase (95% CI: 0.49, 15.76) in MMP1. 

MONP and MCNP were associated with an 8.30% increase (95% CI: 2.22, 14.75) and 

4.51% decrease (95% CI: 1.40, 7.53) in MMP2, respectively. MECPTP was associated 

with a 6.62% decrease (95% CI: 1.05, 11.9) in MMP9. MEHP was associated with a 

3.55% decrease (95% CI: 0.59, 6.42) in ICAM. Of note, these associations were largely not 

significantly modified by study visit.
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3.5 Fetal Sex Effects

Effect modification by fetal sex on the relationship between phthalate metabolites and 

inflammatory biomarkers was observed for several associations (Figure 1 and Table S2). 

Significant effect modification by fetal sex was noted for the associations between MMP1 

and the following phthalates: MBP with a 15.2% increase (95% CI: 4.55, 27.0; p-int=0.030), 

MIBP with a 12.8% increase (95% CI: 0.89, 26.0; p-int=0.048), MHIBP with a 16.8% 

increase (95% CI: 0.44, 35.9; p-int=0.007), MEHHP with a 11.0% increase (95% CI: 0.92, 

22.1; p-int=0.011), MEOHP with a 12.5% increase (95% CI: 2.28, 23.7; p-int=0.014), 

and MECPP with a 14.7% increase (95% CI: 3.63, 26.8; p-int=0.012). Of these MMP1-

phthalate associations, all were significantly positive among female fetuses, but none 

reached statistical significance among male fetuses. Effect modification by fetal sex was 

additionally observed for the associations between MMP2 and MEHHP with a 3.96% 

increase (95% CI: 0.02, 8.06; p-int=0.028), MEOHP with a 3.98% increase (95% CI: 0.03, 

8.08; p-int=0.009), and MECPP with a 4.27% increase (95% CI: 0.10, 8.62; p-int=0.014), 

and these associations were also significant among only female fetuses. Effect modification 

by fetal sex was noted for the association between MMP9 and MCOP with a 6.06% decrease 

(95% CI: −11.0, −0.84; p-int=0.019), which was only significant among male fetuses.

4. Discussion

The present study is one of the first to examine associations between maternal phthalate 

exposure and this set of inflammatory biomarkers, including MMP1, MMP2, MMP9, 

ICAM, VCAM, and CRP, during pregnancy. We previously examined associations between 

phthalate metabolites and CRP and biomarkers of oxidative stress in a preliminary subset of 

this cohort (Ferguson et al., 2014). In our primary analysis we observed several associations 

between MMPs and maternal phthalate metabolites. ICAM was associated with one 

phthalate metabolite, whereas no associations were observed for VCAM and CRP. Notably, 

our results revealed significant effect modification of multiple phthalate and inflammatory 

biomarker associations by fetal sex. Associations between phthalate metabolites and MMP1 

and MMP2 were mostly significant and positive only among mothers carrying female 

fetuses, while the associations with MMP9 were limited.

Of the inflammatory biomarkers assessed here, the MMPs were most notably associated 

with maternal phthalate exposure, although the overall effect direction was mixed. MMPs 

are enzymes that aid in the degradation and remodeling of the extracellular matrix and are 

essential in vascular remodeling during pregnancy (Chen & Khalil, 2017; Palei et al., 2012). 

Given these roles, changes in expression of MMPs are associated with multiple adverse 

pregnancy outcomes, including preeclampsia and spontaneous preterm birth, highlighting 

the importance of understanding environmental MMP regulators (Lyall et al., 2013; Pandey 

& Awasthi, 2019; Tency et al., 2012).

Our results showed that maternal MBP concentrations were associated with increased 

MMP1. An in vitro study using human vascular smooth cells found that MMP1 activated 

and recruited neutrophils evidenced by increased neutrophil migration in MMP1-treated 

tissues (Estrada-Gutierrez et al., 2011). Neutrophil migration is associated with an increased 

inflammatory response. The capacity of MMP1 to recruit neutrophils may also be mediated 
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by the secretion of interleukin-8 (IL-8), a pro-inflammatory cytokine involved in neutrophil 

recruitment that is associated with maternal phthalate exposure as well (Vetrano et al., 2010). 

Our present findings suggest a potential role of maternal phthalate exposures in altering 

maternal MMP1, indicative of an enhanced maternal inflammatory response. This study 

is one of the first to demonstrate associations between upregulated MMP1 and phthalate 

exposures, warranting further investigation.

In our present study, we discovered both positive and negative associations between 

maternal phthalate exposure and MMP2, as well as a negative association with MMP9. 

Two separate in vitro studies using endometrial cells and breast cancer cells, respectively, 

found that DEHP exposure upregulated MMP2 and MMP9 (S. H. Kim et al., 2015; S. 

Zhang et al., 2016). Another in vitro study reported that DBP treatment of endothelial cells 

altered expression of the MMP2 gene, the direction of regulation depending on the length 

of exposure (Stanic et al., 2022). Other studies have also investigated associations between 

MMP2 and MMP9 with maternal inflammation, particularly in the context of preeclampsia 

(Eleuterio et al., 2015; Montagnana et al., 2009; Myers et al., 2005; Palei et al., 2012). 

These studies generally found that MMP2 was upregulated in women with preeclampsia, 

characterized by inflammation, but null differences in MMP9 levels. The lack of conclusive 

associations between MMP9 and maternal inflammation suggests that circulating MMP9 

may be a less robust inflammatory biomarker relative to MMP1 and MMP2, clarifying 

our unexpected observations regarding MMP9. The mixed associations with MMP2 may 

be the result of complex interactions between MMP2 and regulatory elements, including 

tissue inhibitor of metalloproteinase 2 (TIMP2) as examined in Eleuterio et al. However, 

further research is required to elucidate our findings between maternal phthalate exposure 

and MMP2 and MMP9.

ICAM and VCAM are endothelial cell adhesion molecules that partake in the systemic 

inflammatory response when activated by pro-inflammatory cytokines (Videm & Albrigtsen, 

2008). Thus, they can be utilized as markers of endothelial activation and systemic 

inflammatory responses. Here, we did not observe any changes in VCAM but did note a 

downregulation of ICAM with biomarkers of maternal phthalate exposure. A similar cohort 

study revealed null findings of VCAM and ICAM with inflammatory biomarkers suggesting 

the possibility that circulating VCAM and ICAM may not be sensitive markers of maternal 

inflammation, perhaps due to interactions with regulatory elements such as thromboxane 

(Lewis et al., 2010).

We did not detect any significant associations between maternal phthalate exposure and 

CRP, despite its well-documented indication of an inflammatory response. These findings 

are consistent with our previous study utilizing this biomarker in the PROTECT cohort 

where CRP was marginally associated with increases in MCPP and MCNP (Ferguson et 

al., 2014). In a separate analysis of the LIFECODES cohort, CRP was not found to be 

significantly associated with phthalate metabolites (Ferguson et al., 2015). However, CRP 

was significantly associated with MBzP and MiBP in an NHANES 1999–2006 sample, 

which may be attributed to physiological differences between pregnant women and the 

general US population or other differences between studies and study populations (Ferguson 

et al., 2011). Another consideration is that CRP was measured in the second trimester, which 
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is characterized by a more anti-inflammatory profile compared to the other trimesters (Mor 

et al., 2017). Thus, associations between CRP and maternal phthalate exposures may be 

more appropriately evaluated in another timeframe.

Most of the phthalate metabolites we observed to be significantly associated with 

inflammatory biomarkers were metabolites of high molecular weight phthalates, apart 

from MBP which is a derivative of dibutyl phthalate (DBP). In an exploratory subset 

of the LIFECODES birth cohort, we previously observed suggestive positive associations 

between MMP1 and DBP metabolites (Bedrosian et al., 2018), which is consistent with our 

present findings in PROTECT. We noted associations between urinary DEHP metabolites 

with MMP1 and MMP9 in LIFECODES as well. In this study, however, we only found 

associations between MEHP, a DEHP metabolite, and ICAM. The prevalence of HMW 

phthalates in our observed associations supports prioritizing the reduction of HMW 

phthalate exposures.

A notable observation in the present study was fetal sex effect modification of associations 

between maternal phthalate exposure and inflammatory biomarkers, particularly by female 

fetal sex for MMPs. These sex-specific effects may be attributed to sexual dimorphism 

in the maternal secretion of growth factors and pro-inflammatory cytokines, which aid 

in the activation and regulation of MMPs, VCAM, and ICAM. Women carrying a male 

fetus have been linked to higher concentrations of pro-inflammatory cytokines and higher 

concentrations of angiogenic growth factors (Enninga et al., 2015). A recent study also 

reported more robust inflammatory cytokine mRNA expression associated with prenatal 

phthalate exposure in the placentae of male fetuses than female fetuses (Wang et al., 2020). 

These findings could additionally be explained by sex-specific phthalate-induced endocrine 

disruption concerning human chorionic gonadotropin (hCG) and its transcription factor, 

peroxisome proliferator-activated receptor gamma (PPARγ) (Adibi et al., 2015, 2017). 

Given the critical role of hCG in placental function, its dimorphic expression by fetal sex 

may increase the risk of placental dysfunction and its accompanying inflammatory response 

in one sex (Rosenfeld, 2015).

Our results generally indicate that female fetal sex, not male fetal sex, enhanced 

the associations between maternal phthalate exposures and circulating inflammatory 

biomarkers. The contrast between our findings and the literature could be the result of 

using circulating inflammatory biomarkers versus placental or MMPs versus inflammatory 

cytokines to assess gestational inflammation. Despite these differences, our findings 

introduce an intriguing avenue for future research examining the role of fetal sex in 

differential inflammatory responses to prenatal phthalate exposures.

This study has several limitations. Our inflammatory biomarker measurements were based 

on circulating levels as opposed to tissue sampling, which was not feasible for our 

study. Previous studies have reported changes in TIMP concentrations associated with 

maternal inflammation; thus, measuring MMP/TIMP ratios, which we did not analyze, may 

contextualize changes in total MMP concentrations (Chen & Khalil, 2017; Deng et al., 2015; 

Estrada-Gutierrez et al., 2011; Palei et al., 2012). We also noted high variability within 

subjects in phthalate metabolite measurements across pregnancy as evidenced by low to 
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moderate ICC values. This variability has similarly been noted in other studies measuring 

urinary phthalate metabolites in pregnant women, which may be improved by increasing the 

number of samples per subject (Casas et al., 2018; Fisher et al., 2015; Philippat et al., 2021; 

Shin et al., 2019). Additionally, our use of a significance level of 0.05 leaves room for Type I 

error in our results and the potential for overestimation of some associations.

Despite the aforementioned weaknesses, our study offers many strengths. We utilized a large 

sample size with repeated measurements taken throughout pregnancy, allowing us to better 

assess phthalate exposure and the outcomes. Furthermore, we analyzed a diverse and novel 

set of inflammatory biomarkers. This is the first human study, to our knowledge, to examine 

the role of phthalate exposure on the maternal inflammatory response collectively using 

CRP, MMPs, ICAM, and VCAM biomarkers. Our observed associations between MMPs, 

key regulators of gestational vascular remodeling, and maternal phthalate exposures provide 

evidence that phthalates may impact the vascular remodeling process during pregnancy 

promoting maternal inflammation. Increased maternal inflammation and deficits in vascular 

remodeling may contribute to gestational pathologies, including preeclampsia, preterm 

birth, and fetal growth restriction (Cotechini et al., 2014; Ulrich et al., 2019). Thus, these 

inflammatory biomarkers can be versatilely used as indicators of several major adverse 

pregnancy outcomes. Additionally, our findings of fetal sex effect modification provide 

intriguing insight into the sexual dimorphism of inflammatory responses and potentially 

its related pathologies. Further research is needed to understand the balance of MMPs 

with other regulatory elements in maternal inflammatory responses as well as the impacts 

of timing and placental versus plasma sampling for sex-specific effect modifications. 

Recruitment is ongoing in the PROTECT cohort; as our sample size increases, we plan 

to assess the impact of phthalate exposure on gestational inflammation, and the role that 

MMPs play in mediating those relationships.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Phthalates are ubiquitous exposures found in many plastics and consumer 

products

• Matrix metalloproteinases are associated with maternal inflammation

• Phthalate metabolites were associated with changes in matrix 

metalloproteinases

• Phthalate exposure may impact the development of inflammatory maternal 

disease

• Fetal sex moderates these associations
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Figure 1. 
Effect estimates and 95% confidence intervals from linear mixed effects models for 

the associations between phthalate metabolites and inflammatory biomarkers among 818 

women in PROTECT, by fetal sex.

Red squares denote estimates for female fetuses and blue circles denote estimates for male 

fetuses. Effect estimates measured as % change in inflammatory biomarker concentration 

per interquartile (IQR) increase in phthalate metabolite concentration.
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Table 1.

Demographics and other relevant health information for 890 women in PROTECT.

N %

Maternal Age

18–24 321 36.1%

25–29 287 32.2%

30–34 187 21.0%

35–41 95 10.7%

Missing 0

Maternal Education

GED or less 184 21.2%

Some college 299 34.4%

Bachelors or higher 386 44.4%

Missing 21

Marital Status

Single 168 19.3%

Married 470 54.0%

Cohabitating 232 26.7%

Missing 20

Currently Employed

No 314 36.2%

Yes 554 63.8%

Missing 22

Annual Household Income

<10k 236 30.6%

10k – <30k 259 33.6%

30k – <50k 182 23.6%

≥50k 93 12.1%

Missing 120 15.6%

Smoking Status

Never 765 86.0%

Ever 111 12.5%

Current 14 1.6%

Missing 0

ETS

Never 725 89.4%

1 hour 40 4.9%

> 1 hour 46 5.7%

Missing 79

Alcohol Use
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N %

Never 437 50.3%

Yes, before pregnancy 376 43.3%

Yes, currently 56 6.4%

Missing 21

Number of Children

0 378 43.2%

1 307 35.1%

2–5 189 21.6%

Missing 16

BMI

(0, 25] 433 52.3%

(25, 29.9] 235 28.4%

(29.9, 51] 160 19.3%

Missing 62

Fetal Sex

Female 355 47.9%

Male 386 52.1%

Missing 149
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Table 3.

Effect estimates and 95% confidence intervals from linear mixed effects models for the associations between 

phthalate metabolites and inflammatory biomarkers among 818 women in PROTECT. Estimates refer to the 

percent change in inflammatory biomarker with an interquartile range increase in phthalate metabolite.

CRP ICAM VCAM MMP1 MMP2 MMP9

MBP 4.91 (−3.82, 
14.42)

−0.53 (−3.23, 
2.26) 0.38 (−2.84, 3.71) 7.86 (0.49, 15.76) 2.06 (−1.94, 6.23) −0.69 (−5.31, 

4.15)

MHBP 4.50 (−8.04, 
18.75)

−0.75 (−4.64, 
3.30) 0.50 (−4.16, 5.38) 0.00 (−9.44, 

10.42)
5.49 (−0.79, 

12.17)
−6.24 (−12.29, 

0.22)

MIBP 1.48 (−7.51, 
11.35)

−1.60 (−4.63, 
1.54)

−1.79 (−5.08, 
1.62)

3.15 (−4.59, 
11.53) 0.03 (−4.22, 4.47) 0.82 (−4.03, 5.92)

MHIBP 7.85 (−5.47, 
23.05)

−3.26 (−7.47, 
1.15)

−2.69 (−7.20, 
2.04)

−1.57 (−11.45, 
9.41)

−3.59 (−9.74, 
2.99)

−0.70 (−7.13, 
6.16)

MEP 0.43 (−8.08, 9.72) −2.71 (−5.63, 
0.31)

−1.60 (−4.78, 
1.68)

3.38 (−4.04, 
11.37)

−1.80 (−5.82, 
2.39) 0.42 (−4.21, 5.27)

MEHP −2.50 (−10.89, 
6.69)

−3.55 (−6.42, 
−0.59)

−0.81 (−4.12, 
2.61)

−1.50 (−8.59, 
6.14) 0.15 (−3.98, 4.45) 2.12 (−2.78, 7.28)

MEHHP 5.19 (−3.13, 
14.23)

−1.40 (−3.98, 
1.24)

−1.35 (−4.35, 
1.75) 1.21 (−5.33, 8.19) −0.49 (−4.16, 

3.32)
−0.23 (−4.61, 

4.35)

MEOHP 3.63 (−4.58, 
12.54)

−1.63 (−4.20, 
1.02)

−1.06 (−4.09, 
2.07) 2.81 (−3.86, 9.95) −0.52 (−4.20, 

3.31)
−0.71 (−5.11, 

3.89)

MECPP 7.00 (−2.15, 
17.01)

−1.05 (−3.84, 
1.82)

−0.53 (−3.75, 
2.79)

3.38 (−3.78, 
11.08)

−1.83 (−5.73, 
2.23)

−1.63 (−6.23, 
3.18)

MCOP 2.13 (−5.03, 9.83) −0.29 (−2.59, 
2.07)

−0.15 (−2.82, 
2.60) 1.94 (−3.92, 8.16) −2.31 (−5.50, 

0.98)
−3.50 (−7.18, 

0.32)

MONP −5.20 (−15.64, 
6.53)

−1.32 (−4.31, 
1.76)

−3.47 (−7.67, 
0.93)

5.11 (−2.70, 
13.54) 8.30 (2.22, 14.75) −1.55 (−7.40, 

4.68)

MCNP 2.33 (−4.73, 9.91) 0.39 (−1.82, 
2.65) 1.43 (−1.29, 4.23) 0.81 (−4.81, 6.76) −4.51 (−7.53, 

−1.40)
−1.92 (−5.71, 

2.02)

MCPP 2.64 (−5.55, 
11.53)

0.22 (−2.41, 
2.92)

−0.11 (−3.11, 
2.98) 1.05 (−5.45, 8.01) 0.25 (−3.42, 4.05) −1.58 (−5.81, 

2.84)

MBZP −0.61 (−9.07, 
8.65)

−1.07 (−4.00, 
1.95) 1.44 (−1.88, 4.88) 5.48 (−2.15, 

13.71) 0.51 (−3.65, 4.85) 0.19 (−4.53, 5.14)

MECPTP 7.08 (−3.39, 
18.69)

2.45 (−0.61, 
5.61)

−0.18 (−4.17, 
3.99)

3.62 (−3.90, 
11.73) 1.15 (−4.56, 7.20) −6.62 (−11.87, 

−1.05)

MEHHTP 11.83 (−1.45, 
26.90)

3.29 (−0.45, 
7.18) 0.52 (−4.39, 5.67) 1.84 (−7.10, 

11.65) 0.30 (−6.55, 7.64) −6.53 (−12.88, 
0.28)

All models adjust for categorical maternal education, continuous maternal age and pre-pregnancy BMI, and specific gravity.
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