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Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health,
resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ

from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and
postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the
use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however,
these influences subside with age. Although some factors and processes are difficult to intervene in or avoid,
understanding the potential factors and determinants will help in developing timely strategies for a healthy gut
microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm

infants and their underlying mechanisms.

Keywords Gut microbiota, Microbial colonization, Dysbiosis, Preterm infant, Human breast milk, Antibiotics,

Probiotics, Delivery mode

Background

According to the World Health Organization (WHO),
preterm infants (PTIs) are those born at <37 weeks of
gestation. Every year, 15 million PTIs are delivered world-
wide, which accounts for more than 10% of all deliveries
(Harrison and Goldenberg 2016). Prematurity remains
the leading cause of neonatal mortality and is associated
with an increased risk of deficits in cognitive outcomes
and neurodevelopmental disabilities in childhood (Sere-
nius et al. 2013; Cheong et al. 2018; Crump et al. 2019;
Zhu et al. 2021; Husby et al. 2023). In the short-term,
PTIs are more likely to experience intestinal injury due to
their fragile intestinal barrier (Lemme-Dumit et al. 2022;
Ma et al. 2022). 90% of necrotizing enterocolitis (NEC)
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cases occur in PTIs, and the severity of NEC is associated
with the degree of prematurity (Kosloske 1994). This life-
threatening intestinal disease is a major cause of morbid-
ity and mortality in PTIs, posing a significant threat to
global public health (Stoll and Hansen 2003; Battersby et
al. 2018; Healy et al. 2022). A higher risk of other intes-
tine-associated diseases is also found in PTIs (Healy et al.
2022; Humberg et al. 2020).

The gut microbiota (GM), which includes trillions of
microorganisms inhabiting the digestive system, is com-
plex and dynamic (Brody 2020). Starting from birth, the
GM performs important functions in digestion, nutrition,
and growth, as well as participating in the maintenance of
intestinal epithelial homeostasis, activation and matura-
tion of the immune system, and resistance to pathogens
(Gomez et al. 2016; Dominguez-Bello et al. 2019; Henrick
et al. 2021; Kalbermatter et al. 2021; Durda-Masny et al.
2022). The microbiota in the premature gut has attracted
much attention because of its impact on PTIs, espe-
cially intestinal diseases. With the rapid development of
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metagenomic studies in recent years, the composition
and function of the preterm GM has been extensively
investigated.

GM colonization starts from, if not earlier than, the ini-
tiation of labor. The early period after birth plays a vital
role in the establishment of the GM. Patterns of micro-
bial colonization in PTIs differ from those in full-term
infants (FTIs) owing to prenatal factors, birth mode,
feeding type, and antibiotic use(Aguilar-Lopez et al.
2021). Dysbiosis at the early stage of life is likely to pre-
dispose PTIs to NEC and late-onset sepsis (LOS) (Jacob
2016; Warner et al. 2016; Pammi et al. 2017; Stewart et
al. 2017). Dysbiosis is also associated with higher risks
of childhood obesity, asthma, IgE-associated eczema,
autism, and neurodevelopmental impairments (Pammi
et al. 2017; Boghossian et al. 2013; Shreiner et al. 2015;

Table 1 Alterations in the gut microbiota of preterm infants
related to different factors

Factors Alterations Reference
PROM?and 1 Staphylococcus Chernikova,
chorioamnionitis 1 Streptococcus etal. (2016)
1 Serratia
1 Parabacteroides
Pre-eclampsia | Escherichia/Shigella Westaway, et
al. (2021)
GDM 1 Firmicutes Chen, et al.
| Alpha-diversity (2021), Su, et
| Proteobacteria al. (2018)
| Prevotella
| Lactobacillus
C-section 1 Firmicutes Pammi, et
1 Actinobacteria al. (2017),
1 Clostridium sensu stricto Rutayisire,
| Bacteroides etal. (2016),
Gregory, et al.
(2015), Hill, et
al. (2017)
Prenatal antibiotic | Bifidobacterium Zou, et al.
(2018)
IAP | Alpha-diversity Arboleya,
| Bacteroidetes etal. (2015),
1 Proteobacteria Diamond,
1 Bifidobacteria etal. (2021),
1 Staphylococcaceae Dierikx, et al.
1 Unclassified bacilli (2020)
| Enterobacteriaceae
1 Comamonadaceae
Postnatal antibiotic 1 Enterococcus Zou, et
(PTIs) | Bifidobacteria al. (2018),
| B.fragilis Penders, et al.
| Bacteroidetes (2006), Chang,
etal. (2021)
MOM 1 Alpha-diversity Ford, et
1 Bacteroides al. (2019),

1 Bifidobacterium
1 Enterococcus

Gregory, et al.
(2016)

aPTls, preterm infants; PROM, premature rupture of the fetal membrane; GDM,
gestational diabetes mellitus; C-section, cesarean section; IAP, Intrapartum
antibiotic prophylaxis; MOM, mother’s own milk
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Luca and Shoenfeld 2019; Marietta et al. 2019; Musis et
al. 2020; Fu et al. 2021; Lee et al. 2021). These findings
emphasize the essential role of microbial colonization.

Intestinal dysbiosis in PTIs affects normal intestinal
function and can threaten the life of PTIs (Weiss and
Hennet 2017; Graspeuntner et al. 2019; Thénert et al.
2021). However, the exact mechanism underlying dys-
biosis in the premature gut is not completely under-
stood. Many factors help shape the preterm GM, such
as delivery mode, antibiotic use, and feeding type. In this
review, we provide an overview of the development of the
preterm GM and summarize the microbial differences
associated with contributing factors (Table 1). We also
discuss two promising strategies to protect against dys-
biosis, human breast milk (HBM) feeding and probiotics
administration (Fig. 1).

Two hypotheses: “sterile womb” and “in-utero microbial
colonization”

The human womb has always been considered ster-
ile (Sterpu et al. 2021), and multiple studies have indi-
cated that the placenta and amniotic fluid are devoid of
microbiota (Leiby et al. 2018; Li et al. 2020). However, in
some cases, small amounts of bacterial DNA have been
detected in the placenta, fetal tissues, and amniotic fluid
using high-throughput molecular technologies. Consid-
ering that prenatal factors can influence gut microbial
colonization early in life (Chernikova et al. 2016; Chen
et al. 2021; Westaway et al. 2021), many scientists have
challenged the concept of a “sterile womb” and have sug-
gested that gut microbial colonization in a healthy state
may begin in utero. Studies addressing these two hypoth-
eses have been conducted recently (Li et al. 2020; Stout
et al. 2013; Younge et al. 2019; Goffau et al. 2019; Shar-
landjieva et al. 2023), and their findings are summarized
in Table 2.

In a cross-sectional study of 195 patients, 27% showed
intracellular bacteria in their placental basal plate (Stout
et al. 2013). In another study of full-term and unlabored
cesarean deliveries, placental microbes were detected by
in situ hybridization, but they could not be visualized
using traditional histological or clinical culture meth-
odologies (Seferovic et al. 2019). Younge et al. (2019)
described the presence of bacterial DNA and viable bac-
teria in the in-utero environment of humans and mice,
and suggested that the placenta may be an important
source of microbiota in both organisms. Aagaard et al.
(2014) collected 320 placental specimens and character-
ized a unique, but low-abundance, placental microbi-
ome composed of nonpathogenic commensal microbiota
similar to the oral microbiota. Amanda et al. (Prince et
al. 2016) extracted DNA from placental membranes and
found oral and urogenital commensals, such as Fusobac-
terium spp. and Streptococcus thermophilus. Therefore,
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Probiotics

Fig. 1 Potential strategies for improving dysbiosis in preterm infants (PTls).
The human milk microbiome and human milk oligosaccharides (HMOs) can effectively protect the gut microbiota (GM) in PTls. Probiotics administration
and fecal microbiota transplantation (FMT) can be used to improve preterm intestinal dysbiosis

researchers speculated that the placental microbiome
may be established by the hematogenous spread of the
maternal oral microbiota (Aagaard et al. 2014; Han et al.
2006, 2010; Fardini et al. 2010).

Previous studies, however, could not adequately detect
low-biomass microbial populations and lacked appro-
priate controls against contamination. Sharlandjieva et
al. (2023) hypothesized that the abundance of placental
microbiota might be related to placental perfusion by

analyzing placental villi, maternal decidua, and dental
embryonic organ tissues from 5 to 19 weeks of gesta-
tion age (GA). However, their observations did not sup-
port the existence of an apparent placental microbiome
in early pregnancy, let alone support their hypothesis
(Sharlandjieva et al. 2023). There was no overlap between
the bacterial DNA detected in the different sequenc-
ing studies, and the low-abundance and low-biomass
microbiota seemed far from being able to initiate “fetus
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Table 2 Research studies related to the two hypotheses: “sterile womb"vs. “in-utero microbial colonization”
Reference Region Samples Study sub- Methods Major result Support for
jects (n) hypothesis
Sterpu, etal.  Sweden  Three layers of placental 76 PCR, DNA sequencing No evidence to support the exis-  Sterile
(2021) tissue; amniotic fluid; techniques tence of a placental microbiome womb
vernix caseosa; and sa-
liva, vaginal, and rectal
samples
Leiby, et al. USA Placental samples 40 (20 term 16 STRNA, shotgun No evidence to support the exis-  Sterile
(2018) and 20 metagenomics tence of a placental microbiome womb
preterm)
Li, etal. (2020) USA Fetal intestine - 16 S rRNA Did not detect any bacterial DNA  Sterile
womb
Stout, et al. USA Different regions of the 159 (127 Histological staining Evidence of intracellular bacteriain  In-utero
(2013) placenta term and 68 the basal plate of the placentain ~ microbial
preterm) 27% of cases colonization
Younge, etal. USA Human: endome- Human: 10(5 16 STRNA gene sequenc-  Bacterial 16 S rDNA signatures In-utero
(2019) trial surface (uterus), termand 5 ing, fluorescence in situ were identified in the placentas of ~ microbial
placenta, and amniotic  preterm) hybridization, and bacterial women; Lactobacillus and other colonization
membrane; culturing microbes were present in murine
Mice: fetal tissues
fetal intestine
de Goffau, et UK Placental samples 537 (318 cases 16 S rRNA, shotgun The human placenta does not Sterile
al. (2019) of adverse metagenomics have a microbiome womb
pregnancy
outcome, 219
controls )
Sharlandjieva, Canada Placental villi, maternal 25 16 S rRNA gene Failed to identify placental Sterile
etal. (2023) decidua, and fetal em- sequencing microbiota womb
bryonic organ tissues
Seferovic, et USA Placental tissue 52 (26 term In situ hybridization, Placental microbes were detected  In-utero
al. (2019) and 26 traditional histological by in situ hybridization microbial
preterm) methods, clinical culture colonization
methodologies
Aagaard, etal. USA Placental specimens 320 16 StDNA and whole-ge-  Placenta harbored a unique low-  In-utero
(2014) nome shotgun sequencing abundance microbiome microbial
and analysis colonization
Theis, et al. USA Rhesus macaques: fetal  Rhesus ma- Culturing, gPCR,and 16 S No existence of a placental Sterile
(2020a) and placental samples, caques: 4 rRNA gene sequencing microbiota womb
uterine wall
Theis, et al. USA Mice: fetal and placen-  Mice: 11 Culturing, gPCR,and 16 S No consistent evidence for placen-  Sterile
(2020b) tal samples rRNA gene sequencing tal and fetal microbiota in mice womb

colonization” A recent study involving 537 women (318
with adverse pregnancy outcomes and 219 controls)
found extremely small amounts of bacterial DNA, the
majority of which was identified as contamination from
laboratory reagents and equipment (Goffau et al. 2019).
In another study, fetal intestines were obtained from
electively terminated fetuses at 14—23 weeks of gesta-
tion, and no bacterial DNA was detected (Li et al. 2020).
Furthermore, in other animal experiments, there was no
evidence of microbial communities in the fetal and pla-
cental tissues of rhesus macaques (Theis et al. 2020a, b)
and mice (Theis et al. 20204, b). Thus, support for the “in-
utero microbial colonization” hypothesis requires more
high-quality evidence. However, investigation of the fetal
microbiome remains challenging because of the non-cul-
turable content, risks associated with invasive testing of

the fetus, and potential contamination (Perez-Munoz et
al. 2017). As a result, current opinion and support for the
“sterile womb” hypothesis remain mainstream (Leiby et
al. 2018; Theis et al. 2019).

Evolution of the gut microbiota in PTls

High-throughput molecular methods help us further
understand the details of the GM (Liu et al. 2021). Fir-
micutes, Bacteroidetes, Actinobacteria, and Proteo-
bacteria are the major phyla found in the gut of healthy
adults. It is generally accepted that neonates experi-
ence normal initial colonization of microbiota from the
maternal vagina and rectum during vaginal birth. Neo-
nates delivered via cesarean section (C-section) carry
bacteria from the skin of healthcare professionals and/
or the environment. After interaction with the maternal
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microbiota, multiple factors contribute to initial coloni-
zation and GM development, including preterm birth,
feeding type, antibiotic therapy, and probiotics (Collado
et al. 2012). During the first few days of life, Bifidobacte-
rium and Enterobacteriaceae dominate in the gut of FTIs
(Eggesbg et al. 2011; Bokulich et al. 2016), but from day
10 to 3 months of age, Bifidobacterium and Bacteroides
dominate (Arboleya et al. 2012).

Gut microbial colonization of PTIs differs significantly
from that of FT1Is in displaying less diversity, delayed col-
onization by Bifidobacteria, and more opportunistic and
potential pathogen growth, including that of Enterococ-
cus, Staphylococcus, and Enterobacter, during early life
(Itani et al. 2017). In the first week of life, GM diversity
in PTIs is low (Drell et al. 2014), with colonization by
facultative bacteria, such as Enterobacteriaceae (Younge
et al. 2019), Streptococcus, Enterococcus, and Staphylo-
coccus (Bokulich et al. 2016; Itani et al. 2017; Drell et al.
2014). With increasing postmenstrual age (PMA) among
PTIs fed human breast milk (HBM), the GM switches
from one dominated by Staphylococcus and Enterococcus,
to one dominated by Enterobacter, and finally towards
Bifidobacterium-dominated anaerobic genera, such as
Bacteroides and Clostridium (Drell et al. 2014; Korpela et
al. 2018). Diversity increases over 2 months (Drell et al.

Marternal complication
Delivery Mode
Gestation Age
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2014). Regardless of the gestational age at birth, infants
begin to proceed towards a Bifidobacterium-dominated
GM composition, an indicator of a healthy microbiota,
after 30 weeks of PMA (Korpela et al. 2018).

When infants (both PTIs and FTIs) are weaned (Oye-
demi et al. 2022), the GM gradually becomes dominated
by anaerobic Clostridia (Béckhed et al. 2015). The cessa-
tion of breastfeeding affects microbial composition and
function more significantly than does the addition of
solid food (Oyedemi et al. 2022). This process is crucial
for transformation into an adult-type microbiota (Back-
hed et al. 2015; Palmer et al. 2007). By approximately 2
years of age, the GM of children resembles that of adults
(Bokulich et al. 2016). Serious diseases (e.g., NEC or
LOS), exposure to antibiotics, and C-section may have no
significant long-term effects on the GM of PTIs (Stewart
et al. 2015) (Fig. 2).

Maternal conditions

The prevailing view is that before birth, the fetus develops
in a sterile environment. The presence of bacteria in the
amniotic cavity and fetal membranes is often associated
with preterm delivery. Exposure to a nonsterile intrauter-
ine environment aggravates the aberrant initial coloniza-
tion of the GM induced by preterm birth (Chernikova

dominated by Clostridia

adult-like microbiota

Fig. 2 Factors shaping the preterm infant (PTl) gut microbiota during early life and evolution

During the first weeks after birth, the human infant gut is colonized by facultative anaerobes, such as Enterobacteriaceae, Streptococcus, Enterococcus, and
Staphylococcus. PTls are more highly colonized by Staphylococcus than are full-term infants (FTIs) during this period, and PTls gradually become domi-
nated by anaerobic genera, including Bifidobacterium, Bacteroides, and Clostridium. Between 10 days and 3 months of age, Enterococcaceae and Lactoba-
cilli dominance is observed in premature babies. After cessation of breastfeeding and the addition of solid foods, the gut microbiota gradually becomes
dominated mainly by members of the anaerobic class Clostridia, a process required for maturation into an adult-like microbiota
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et al. 2016; Westaway et al. 2021; Roswall et al. 2021). A
prospective longitudinal study found that during hos-
pitalization, PTIs exposed to premature rupture of fetal
membranes and chorioamnionitis had a higher abun-
dance of intestinal pathogenic bacteria (including Staph-
ylococcus, Streptococcus, Serratia, and Parabacteroides)
than that of non-exposed PTIs, irrespective of postna-
tal antibiotics (Chernikova et al. 2016). Westaway et al.
(2021) also reported significantly higher Staphylococcus
gut colonization in PTIs with maternal chorioamnionitis
at admission; however, these changes were not perma-
nent (Chernikova et al. 2016; Westaway et al. 2021).

In contrast, infants whose mothers experienced non-
infectious pregnancy complications, such as gestational
diabetes mellitus (GDM) or preeclampsia, exhibited a
different GM from that of healthy controls (Chen et al.
2021; Westaway et al. 2021; Roswall et al. 2021). Pre-
eclampsia and GDM influence the maternal GM (Chen et
al. 2020; Li et al. 2022). Although the exact mechanism of
gut microbial transfer from mother to fetus is unknown,
it is possible that the GM of neonates follows maternal
alterations (Collado et al. 2012; Jost et al. 2014; Hiltunen
et al. 2021; Valles-Colomer et al. 2023). At discharge,
Escherichia/Shigella was significantly lower in the gut of
PTIs whose mothers were diagnosed with preeclamp-
sia (Westaway et al. 2021). Chen et al. (2021) observed
that the abundances of Firmicutes and Proteobacteria
changed significantly and alpha diversity decreased in
neonates of mothers with GDM. Moreover, the relative
abundances of Prevotella and Lactobacillus were also sig-
nificantly lower (Su et al. 2018). However, 5 years after
delivery, the abundance of the top 15 genera and alpha
diversity were similar between the GDM and non-GDM
groups, in both women and neonates, in a cross-sectional
study of 237 subjects (Hasan et al. 2018). Notably, there
remained a similar microbiome composition between a
mother and her own child when compared with that of
others.

The maternal GM is relevant to immune development
in infants, neurodevelopment in children, and the devel-
opment of asthma (Gomez et al. 2016; Macpherson et al.
2017; Sun et al. 2023). After birth, mother-to-infant gut
microbial transmission is indispensable for establish-
ing the infant GM (Ferretti et al. 2018). During infancy,
this transmission is considerable and stable, and shared
species comprise approximately half of the same strains
(Valles-Colomer et al. 2023). In one case report by Wei
et al. (2022), a pregnant patient infected with Clostridi-
oides difficile received a fecal microbiota transplantation
(FMT), and demonstrated the cross-generational transfer
of donor fecal bacteria to her late-born infant. Interven-
tion with the maternal GM before labor may be a novel
strategy for modulating the infant GM, especially when
the mother is experiencing gut dysbiosis.
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Delivery mode
Data from 154 countries covering 94.5% of live births
showed that 21.1% of women gave birth via C-section
in the past decade (Betran et al. 2021). Premature births
accounted for 50% of the C-Sect. (Bannister-Tyrrell et al.
2015). During a C-section birth, the mother-to-neonate
microbial colonization is disturbed owing to limited ver-
tical transmission (Liu et al. 2015). Most studies on the
impact of delivery mode on the GM have focused on
FTIs, and indicated that infants delivered by C-section
bypass the vaginal seeding process and thus develop an
abnormal GM (Korpela et al. 2018; Madan et al. 2016;
Rutayisire et al. 2016; Shao et al. 2019; Selma-Royo et al.
2020). In these cases, the GM of neonates is dominated
by skin bacteria (e.g., Staphylococcus and Streptococcus)
from the environment (Korpela et al. 2018). Opportu-
nistic pathogens from hospital environments, including
Enterococcus, Enterobacter, and Klebsiella spp., pose a
significant risk of future infection (Shao et al. 2019). Lac-
tobacillus spp., which mainly come from the mater-
nal vagina, colonize the gut later and weaker in infants
delivered by C-Sects. (Nagpal et al. 2016; Kervinen et al.
2019). Disrupted transmission of maternal Bacteroides
strains has also been reported (Shao et al. 2019; Nagpal
et al. 2016; Kervinen et al. 2019). Rutayisire et al. (2016).
indicated that the influence of delivery mode on the GM
of FT1Is disappears at approximately 6 months of age.
Compared to FTIs, PTIs are more likely to receive anti-
biotic treatment and hospital care, which may shape the
development of their GM. The impact of delivery mode
is also confounded by prematurity. After adjusting for
these factors, the delivery mode was still shown to affect
the GM in some studies. For example, compared with
the other delivery mode at the phylum level, the rela-
tive abundance of Firmicutes was higher in PTIs born via
C-section, whereas the abundance of Bacteroidetes was
higher in PTIs born via vaginal delivery (Pammi et al.
2017). Additionally, a lower abundance and diversity of
Actinobacteria were associated with C-section delivery
in infants from birth to 3 months of age (Rutayisire et al.
2016). At the family/genus level, the abundance of Bifi-
dobacterium and Bacteroides increased significantly over
time among vaginally delivered infants and they were not
influenced by antibiotic administration or nutritional fac-
tors (Gregory et al. 2015). Moreover, these genera in vagi-
nally delivered infants were significantly more constant
than in those born via C-Sect. (Rutayisire et al. 2016). The
prevalence and abundance of Lactobacillus were similar
between infants delivered vaginally or by C-Sect. (Shao
et al. 2019), whereas Bacteroides colonization was signifi-
cantly delayed in infants delivered via C-Sect. (Gregory et
al. 2015). Clostridium sensu stricto was more abundant in
PTIs born via C-section than in PTIs delivered vaginally
during the first week of life (Hill et al. 2017). The delivery
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mode had a minimal effect on Bacteroides colonization
by the age of 6—12 months (Rutayisire et al. 2016).

However, current research is not univocal regarding
the influence of the delivery mode on the GM. In previ-
ous studies, the delivery mode did not correlate with
detectable differences in the composition of the GM
between preterm groups on day 7 (Patole et al. 2016; Esa-
iassen et al. 2018). Hill et al. (2017) compared the GM of
PTIs (C-section, n=35; vaginal birth, n=4) at the same
age from 1 to 24 weeks after birth and found no differ-
ence in the relative proportion of Bifidobacterium at any
time point. This finding is consistent with the results of
another study (Imoto et al. 2021). During the first 3—4
days postpartum, no differences in GM composition were
observed using 16 S rRNA gene profiling in infants deliv-
ered by the two different modes (Hiltunen et al. 2021).
Nonetheless, fecal samples from vaginally delivered
infants showed high levels of Bacteroides using qPCR
analysis on day 10 (Arboleya et al. 2015). Interpretation
of the results of the above-mentioned studies may suffer
from experimental limitations, such as small sample size,
long sampling interval, low detection sensitivity, and lack
of association analysis between the maternal microbiota
and the preterm GM. Factors, including prenatal condi-
tions, GA, hospital stay, and antibiotic use, can inevitably
lead to bias in the analysis and comparison of results.

Normally, the vaginal seeding process plays a crucial
role in determining the difference between the two deliv-
ery modes. However, in randomized controlled trials,
orally administered vaginal bacteria, as a simulated form
of vaginal seeding, did not alter the GM of infants born
by cesarean Sects. (Butler et al. 2020; Wilson et al. 2021).
During the first year of life, there was a significantly lower
similarity between the GM of infants born via C-section
vs. vaginally, as compared to their respective mothers
(Biackhed et al. 2015). Korpela et al. (2020) found that
after oral FMT from mothers to their FTIs, the GM
was similar between C-section and vaginally delivered
infants. This suggests that the maternal GM, rather than
the vaginal microbiota, plays an important role in mater-
nal-neonatal microbial transmission. In the future, novel
interventions and therapies to improve the health of PTIs
may take advantage of the known transmission from the
maternal GM to PTIs.

Antibiotics

Antibiotic exposure significantly alters the abundance of
bacteria and delays microbial maturation and coloniza-
tion by certain bacterial taxa during the first 2 years of
life (Bokulich et al. 2016). Moreover, dysbiosis mediated
by antibiotics is associated with NEC, LOS, and other
adverse health outcomes (Deshmukh et al. 2014; Zhou
et al. 2020). The effects of maternal and PTI exposure to
antibiotics are discussed below.
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Maternal exposure to antibiotics
In the full cohort of 1,347,018 infants (live singletons
born between 2006 and 2018), 294,657 (21.9%) were
exposed to prenatal antibiotics (Nakitanda et al. 2023).
Indications for obstetric antibiotics include clinical cho-
rioamnionitis, group B Streptococcus infection, pre-
mature rupture of fetal membranes, and prophylactic
administration for premature birth (Martinez de Tejada
2014; (2018) 2018; (2020) 2020; Ronzoni et al. 2022).
Antibiotic exposure (prenatal and postnatal) influences
the early establishment of the GM in patients with PTIs
(Zou et al. 2018). A higher load of Lactobacillus was
observed in the meconium of PTIs without antibiotic
exposure than in those with perinatal antibiotic expo-
sure (Zhou et al. 2020). The abundance of Bacteroidetes
and Bifidobacterium was significantly decreased 7 and
14 days after birth. Colonization by Bifidobacterium was
delayed in the prenatal antibiotic-exposure group (Zou
et al. 2018). Maternal exposure to antibiotics can disturb
the maternal GM, and maternal intestinal dysbiosis may
be transmitted to neonates (Nyangahu et al. 2018).
Intrapartum antibiotic prophylaxis (IAP) are fre-
quently administered during emergency C-section. This
may result in a decrease in the alpha diversity and abun-
dance of Bifidobacteria (Diamond et al. 2021). Dierikx et
al. (2020) found a decreased abundance of Bacteroidetes
and a concurrent increase in Proteobacteria in the fecal
samples of neonates whose mothers had received IAP.
The effects of antibiotics on the establishment of the
GM are minimal within the first few days after delivery,
becoming more apparent later (Arboleya et al. 2015). At
1 month of age, a higher relative abundance of Coma-
monadaceae, Staphylococcaceae, and unclassified bacilli,
as well as a lower relative abundance (P<0.05) of Entero-
bacteriaceae were observed in PTIs from IAP-exposed
mothers than in those from non-IAP-exposed mothers.
Most of these differences, however, disappeared at 90
days of age (Arboleya et al. 2015).

PTI exposure to antibiotics

PTIs are susceptible to bacterial translocation from the
gut and other epithelial surfaces into the bloodstream;
therefore, prophylactic antibiotic therapy is common for
PTIs (Nguyen et al. 2016). The oral administration of
antibiotics (mainly amoxicillin) to infants decreases the
abundance of Bifidobacteria and B. fragilis during the
first month of life (Penders et al. 2006). The abundance of
Bacteroidetes decreases with increasing antibiotic expo-
sure time (Zou et al. 2018). Different drugs exhibit vary-
ing effects, e.g., cephalosporins are associated with a slow
increase in Bifidobacterium over time (Coker et al. 2020).
b-lactam antibiotics are associated with a slower increase
in several taxa, including Bacteroides (Coker et al. 2020)
within the first year of life and have a major influence on
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the Bifidobacterium population in newborns. This influ-
ence is most significant in 1-month-old infants, persists
for 3 months, gradually weakens, and then disappears by
approximately 6 months of age (Shao et al. 2019).

Chang et al. (2021) conducted an observational study of
24 breastfed very low birth weight (VLBW) PTIs admin-
istered ampicillin-gentamicin (n=10) or ampicillin-cefo-
taxime (n=14). No statistically significant differences
were detected in the observed bacterial phyla between
the two groups at 7, 14, and 30 days after birth. Entero-
coccus was significantly more abundant in newborns
treated with ampicillin-cefotaxime than in those treated
with ampicillin-gentamicin, especially on day 7. Excessive
growth of Enterococcus disappeared in newborns treated
with cefotaxime at 1 month of age.

Although antibiotics disrupt the richness and composi-
tion of the GM, recent studies have indicated that short-
term enteral antibiotics confer benefits to PTIs shortly
after birth (Nguyen et al. 2016; Birck et al. 2016). Enteral
antibiotics, rather than systemic antibiotics (Nguyen
et al. 2016) may help the intestine mature structurally,
functionally, and immunologically by delaying microbial
colonization and reducing interference from colonized
bacteria (Birck et al. 2016; Jensen et al. 2014). Moreover,
systemic immunity and resistance to LOS are improved
by delayed colonization of the premature gut (Nguyen et
al. 2016).

Bokulich et al. (2016). demonstrated that the influ-
ence of antibiotics was weaker than that of the delivery
mode and age. The duration of antibiotic administration
influences the GM for no longer than the first 2 weeks
of life (Stewart et al. 2015; Costeloe et al. 2016). Further
research is needed to optimize antibiotic exposure and
explore whether breastfeeding can minimize the adverse
effects of antibiotic exposure (Azad et al. 2016). Timing,
mode, duration, drug type, and underlying conditions
should be considered for prophylactic antibiotic treat-
ment of PT1Is.

Feeding type

HBM is the primary nutrition choice for all healthy and
ill neonates, including PTIs. HBM contains nutritional
components, distinct bioactive molecules, and immuno-
logical factors (Ballard and Morrow 2013), which pro-
vide short- and long-term benefits, including nutritional,
immunological, developmental, etc., and may be associ-
ated with a decreased risk of NEC when compared with
formula-feeding (Leoz et al. 2015; Ford et al. 2019). With
the growing knowledge of HBM composition, insight has
been gained into the mechanism of protective effects of
HBM on PTIs. Human milk oligosaccharides (HMOs)
and HBM microbiota play roles in the establishment of
the preterm GM (Leoz et al. 2015; Jost et al. 2013; Zehra
et al. 2018; Bhowmik et al. 2022). In the absence of the
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mother’s own milk (MOM), donor human milk (DHM)
can also meet nutritional requirements, promote intes-
tinal health, and support resistance against pathogens
(Li et al. 2017). DHM must be pasteurized to inactivate
potentially harmful viral and bacterial agents. After pas-
teurization, the relative abundance of Staphylococcus
decreased, whereas that of Streptococcus and Pseudomo-
nas increased (Beghetti et al. 2022). Previous data indi-
cated that maternal gut bacteria may influence neonatal
gut colonization via the entero-mammary pathway (Jost
et al. 2014). However, little is known about whether pas-
teurization affects the process of passing maternal milk
microbiota to infants. Formula milk, which has a high
caloric density and protein content, is a good nutritional
source when HBM is unavailable (Chinnappan et al. 2021;
Moreira-Monteagudo et al. 2022). Currently, research is
focused on how feeding patterns influence the outcome
and development of the GM in PT1s (Table 3).

HBM microbiome may bridge the maternal GM and the GM
of offspring

HBM contains a highly diverse and complex microbi-
ome (Jost et al. 2013) that may help establish the infant
GM. The HBM microbiome affects the colonization of
the GM of PTIs, including with beneficial, commensal,
and potentially probiotic bacteria (Yi and Kim 2021),
and it can be influenced by antibiotics (Ferndndez et
al. 2020). An analysis of 16 subjects demonstrated that
there is a “core” microbiome in HBM composed of nine
operational taxonomic units, including Staphylococcus,
Streptococcus, Serratia, Pseudomonas, Corynebacterium,
Ralstonia, Propionibacterium, Propionibacterium, Sphin-
gomonas, and Bradyrhizobiaceae (Hunt et al. 2011). The
GM can be transmitted vertically from mother to infant
via lactation (Jost et al. 2014; Valles-Colomer et al. 2023;
Zhong et al. 2022), and the HBM microbiota may origi-
nate from the maternal gastrointestinal tract (Greiner et
al. 2022). Dendritic cells send dendrites out of the epi-
thelium via tight junctions (Rescigno et al. 2001), and
dendritic cells carrying bacteria migrate to the mesen-
teric lymph nodes (Macpherson and Uhr 2004), lactate
mammary glands, and ultimately into milk (Greiner et
al. 2022; Perez et al. 2007). This process is known as the
entero-mammary pathway (Fig. 3).

HMOs promote the growth of “good bacteria” and inhibit
pathogenic colonization

HMOs, which are nondigestible carbohydrates, are the
third largest solid component in human milk and are
highly variable and unique (Aakko et al. 2017). It is well-
established that the probiotic and immunomodulatory
function of HMOs can help promote intestinal matura-
tion and barrier function (Zehra et al. 2018; Bhowmik et
al. 2022; Goehring et al. 2016). HMOs help establish a
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Table 3 Alterations in the preterm infant gut microbiota related to feeding type

Reference Region Sample size (n) Sample time Alterations in the GM? of PTls
MOM DHM Formula MOM DHM Formula
Ford,etal.  USA 74 43 - Within 6 weeks  tAlpha-diversity -
(2019) after birth
Week 4 1Bacteroides, Bifidobacterium, and tStaphylococcus -
Enterococcus
Parra- Spain 34 28 7 By the time | Clostridiaceae, 1 Bifidobacterium, lActinobacteria, -
Llorca, et al. of full enteral Staphylococcus, Clostridium, Serratia, 1Bacteroidetes
(2018) feeding Coprococcus, Aggregatibacter, and
Lactobacillus
Acineto- Bacteroidetes
bacter genus was  was highest;
found Staphylococ-
cus and Kleb-
siella were
dominant
Gregory, et USA 10 10 10 First 60 days Initial increase in diversity Lactobacil-
al. 2016) lales was
highest
Wang, etal. USA 10 - 10 At an average of  Veillonella, Escherichia/Shigella, Staphy- - | Proteobac-
(2020) 15and 17 days lococcus, Clostridium, Enterococcus, and teria
after birth Streptococcus were dominant
2GM, gut microbiota; PTls, preterm infants; MOM, mother’s own milk; DHM, donor human milk
Maternal gut Mesenteric lymph nodes
E ” \
y
- Q-
]
DC
Circulation
R
- )
"
Lactation Mammary gland

Fig. 3 Entero-mammary pathway

Dendritic cells send dendrites out of the epithelium through tight junctions. Dendritic cells carrying bacteria migrate to the mesenteric lymph nodes,
lactate mammary glands, and ultimately into milk. Through this entero-mammary pathway, the maternal gut microbiota (GM) finally reaches the gut of
preterm infants (PTls)
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healthy GM in at least two ways. First, they exhibit probi-
otic effects and selectively promote the growth and colo-
nization of beneficial bacteria, including Bifidobacterium
and Bacteroides (Marcobal et al. 2011). Second, HMOs
suppress the growth and colonization of pathogenic bac-
teria. HMOs function as anti-adhesive molecules by act-
ing as decoy receptors to bind pathogens and inhibit their
colonization (Newburg et al. 2005; Shoaf-Sweeney and
Hutkins 2009). HMOs compete with pathogens for adhe-
sion to carbohydrate receptors on epithelial cells, further
preventing the adhesion of pathogens to their receptors
(Angeloni et al. 2005; Coppa et al. 2006; Weichert et al.
2013) (Fig. 4).

A proof-of-concept study proved that HMOs selec-
tively enrich the growth of beneficial bacteria, including
Bifidobacterium and Bacteroides (Marcobal et al. 2011).
In a large-scale study of 1023 infants, HMOs showed
natural variations and influenced the GM of infants (Bar-
nett et al. 2023). Lacto-N-hexaose and 6'-sialyllactose
were positively and negatively associated with the abun-
dance of Bifidobacterium, respectively (Barnett et al.
2023). Additionally, the variable composition of HMOs
can be explained by maternal genotype, including the
secretor (FUT2) and Lewis (FUT3) genes, which, nota-
bly, do not drive major differences in the GM between
infants (Barnett et al. 2023). These results suggest various

Act as decoy receptors for pathogens adherence
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mechanisms related to HMOs are involved and that fur-
ther research is needed.

Clinical trials have investigated the effects of HMO
interventions on the GM in PTIs and other animals (Tor-
res Roldan et al. 2020; Wang et al. 2020a, b). Shortly after
birth, the primary microbial consumers of HMOs (Bifi-
dobacteria and Bacteroidetes) are not dominant in the
preterm gut (Barnett et al. 2023). HMO supplementation
of formula did not aid in the maturity of the immature
intestine or prevent NEC in preterm pigs during the first
weeks of life, and the effects depended on the different
stage of intestinal maturity (Cilieborg et al. 2017). There-
fore, when the gut reaches a more mature phase and the
abundance of HMO-consuming Bacteroidaceae and Bifi-
dobacteriaceae increases (Barnett et al. 2023), HMOs
may exert more protective effects on the gut. Thus, the
timing of HMO supplementation in DHM- or formula-
fed PTIs should be carefully evaluated (Bering 2018).

DHM can promote a somewhat similar GM in PTls as that
observed in MOM-fed PTlIs

MOM and DHM can provide PTIs with more benefits for
microbial colonization than that provided by formula-
feeding. However, the GM composition differs signifi-
cantly between PTIs fed MOM and DHM (Parra-Llorca
et al. 2018). Among PTIs fed MOM, a significantly higher
alpha diversity and relative abundance of Bacteroides

A

Beneficial bacteria

’ 4
’

Pathogens

o
Y A

HMOs

Mucus

Fig. 4 Human milk oligosaccharides (HMOs) promote the growth of “good bacteria” and inhibit pathogenic colonization

HMOs help establish a healthy gut microbiota (GM) in at least two ways. First, HMOs exhibit a probiotic effect, promoting the growth of beneficial bacteria
and inhibiting the growth of pathogens. Second, HMOs act as decoy receptors and bind pathogens, competing with them through adhesion to their
receptors on epithelial cells, suppressing the colonization of pathogenic bacteria
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were observed within 6 weeks after birth, and a signifi-
cant increase in the abundance of Bacteroides, Bifidobac-
terium, and Enterococcus was observed by week 4 of life
(Ford et al. 2019). When full enteral feeding (defined as
2150 cc/kg/day of MOM, DHM, or formula) was admin-
istered, there was a lower abundance of Actinobacteria
(Parra-Llorca et al. 2018) and a higher abundance of Bac-
teroidetes in the GM of PTIs fed DHM than in those fed
MOM alone. The relative abundance of Bifidobacterium
was higher and that of Clostridiaceae was lower after
MOM feeding than after DHM feeding (Parra-Llorca et
al. 2018). High Enterobacter abundance was observed in
the GM of the MOM-fed group when full enteral feed-
ing was achieved (Cong et al. 2017), as well as that of
Staphylococcus,  Clostridium, Serratia, Coprococcus,
Aggregatibacter, and Lactobacillus, when compared to
the DHM-fed PTIs (Parra-Llorca et al. 2018). Supple-
mentation with pasteurized DHM partially promoted a
microbiota similar to that of MOM-fed PTIs, and a mod-
erately rapid increase in bacterial diversity was observed
(Gregory et al. 2016).

Formula feeding induces different microbial patterns in
PTIs than that observed in MOM-fed PTls

MOM-fed PTIs exhibit a higher initial microbial diver-
sity with a more gradual acquisition than observed in
formula-fed PTIs (Gregory et al. 2016). In a cohort of 20
PTIs fed MOM or formula, the alpha diversity was sim-
ilar at 15 and 17 days after birth, but the beta diversity
showed a significant difference in composition between
groups (Wang et al. 2020a, b). Firmicutes were domi-
nant in both groups, whereas Veillonella, Escherichia/
Shigella, Staphylococcus, Clostridium, Enterococcus, and
Streptococcus were the dominant members of the GM in
MOM-fed PTIs (Wang et al. 2020a, b). Staphylococcus
and Klebsiella were dominant in the gut of formula-fed
PTIs, followed by Enterococcus, Clostridium, and Veil-
lonella. Peptostreptococcaceae, a family of gram-positive
bacteria in the class Clostridia, was observed only in
the formula-fed PTIs, whereas Acinetobacter was found
only in the DHM-fed PTIs (Parra-Llorca et al. 2018).
Formula-fed infants had the highest abundance of Lac-
tobacillales (Gregory et al. 2016) and Bacteroidetes
(Parra-Llorca et al. 2018) among all feeding types, and a
significantly lower abundance of Proteobacteria than that
of the MOM-fed group (Wang et al. 2020a, b). Cai et al.
(2019) indicated that feeding type significantly affects the
GM structure at the late feeding stage (2—4 weeks after
birth), but not in the early feeding stage (within 2 weeks
of birth).

Probiotics
Probiotics are defined by the WHO as live microorgan-
isms that when administered in adequate amounts,
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confer health benefits to the host (Morelli and Capurso
2012). The lactic acid-producing genera Lactobacillus
(including L. acidophilus and L. rhamnosus) and Bifido-
bacterium (including B. bifidum, B. animals subsp. lactis,
and B. longum subsp. infantis) are the most frequently
used probiotic bacteria in humans to manage dysbiosis,
followed by Streptococcus, Enterococcus, Lactococcus,
Pediococcus, Bacillus, Escherichia, and certain Saccharo-
myces yeast strains (Tanaka et al. 2019; Koutsoumanis et
al. 2020, 2022). Probiotics have been shown to compre-
hensively influence host health in both human and ani-
mal studies. Among PTIs, there is increasing evidence
that probiotics are effective in promoting health and
improving adverse outcomes (Tanaka et al. 2019; Oncel et
al. 2014). The benefits include normalizing aberrant GM,
reducing microbiota-associated diseases, and improv-
ing outcomes in fragile neonates. Alterations in the GM
using probiotic therapies are often transient, but in early
life stages, especially in the neonatal stage of PTIs, recti-
fying the aberrant GM in the short term can bring non-
negligible benefits.

Many large multicenter studies and placebo-controlled
randomized trials have provided evidence that the use of
probiotic prophylaxis can prevent NEC and sepsis (Oncel
et al. 2014), shorten hospital stays, and reduce overall
mortality (Lau and Chamberlain 2015; Dermyshi et al.
2017; Sun et al. 2017). However, the efficacy of probiot-
ics appears to depend on the bacterial strain used in the
trials (Costeloe et al. 2016). In the section that follows, we
review the impacts of the most promising and common
probiotic strains on the premature gut and briefly sum-
marize the potential mechanisms of various probiotics,
especially those used in the prevention or treatment of
NEC and LOS (Table 4).

Commonly used probiotic strains

Bifidobacterium breve strain BBG-001

A multicenter randomized controlled phase 3 trial (PiPS
trial) (Costeloe et al. 2016) showed that formula supple-
mented with B. breve strain BBG-001 did not affect
the incidence of LOS, NEC, or death in PTIs. To fur-
ther explore how probiotics influence the GM of PTIs,
another research (Millar et al. 2017) examined 88 fecal
samples (48 placebo and 40 probiotics-treated) at 36
weeks PMA and found no statistically significant differ-
ence in microbial richness or diversity between groups.
Additionally, no probiotic-associated adverse events were
recorded (Costeloe et al. 2016).

Bifidobacterium breve M-16 V

B. breve M-16 V presents in the healthy gut. When
added to infant formula, it can promote early gut micro-
bial colonization and help regulate the immune balance
and inflammatory responses. This strain can protect
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Table 4 Studies on the use of probiotics and microbiota outcomes
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Reference Type of probiotic Sample size (n) Sample time Outcomes in microbiota samples of PTlIs? exposed to
probiotics
Probiotics Non-probiotics Higher Lower Other
abundance abundance findings
Esaias- Lactobacillus 31 45 Day 7 Bifidobacterium and - -
sen,etal.  acidophilus, Bifido- Lactobacillus
(2018) bacterium longum
subsp. infantis
Horigome, Bifidobacterium 12 10 2-9 weeks after Actinobacteria, Proteobacteria -
etal. breve M-16V hospital discharge  Bifidobacte-
(2021) rium breve M-16V,
Bifidobacterium
Millar, et al. Bifidobacte- 40 48 36 weeks post- - - No differ-
(2017) rium breve strain menstrual age ence in the
BBG-001 microbial
richness and
diversity
Nguyen, et Bifidobacterium 31 46 Throughout Enterobacte- - Total Bifido-
al. (2021) longum subsp. hospital stay riaceae and/or bacteriaceae
infantis EVC001 Staphylococcaceae developed
rapidly
Plum- Bifidobacterium 38 28 During probiotic  Bifidobacterium Enterococcus -
mer, etal.  longum subsp. administration
(2018) infantis BB-02,
Streptococcus
thermophilus TH-4,
Bifidobacterium
animalis subsp.
lactis BB-12
Marti, et al. Lactobacillus re- 54 54 During first week - Staphylococcacea; -
(2021) uteri DSM 17,938 Enterobacteriaceae

1-36 weeks PMA L. reuteriDSM 17,938 - -

During first month - - Significantly
higher
bacterial
richness, di-
versity, and
evenness

2 years - - No
significant
differences
in the gut
microbiota

Abdulka-  Lactobacillus 7 3 During probiotic  Lactobacillus spp. - Signifi-
dir, et al. acidophilus- administration (highest abundance); cantly lower
(2016) NCIMB701748, Bifidobacterium Shannon
Bifidobacterium diversity
bifidum-ATCC15696 After probiotic Lactobacillus spp. - -
administration (highest
abundance)

?PTls, preterm infants; PMA, postmenstrual age

high-risk infants from allergies and prevent NEC (Wong
et al. 2019)development (Wong et al. 2019) by normaliz-
ing toll-like receptor (TLR) 4 expression and enhancing
TLR2 expression to suppress inflammatory responses, as
evidenced in rat models (Satoh et al. 2016).

In one study, LBW infants (n=22) were either adminis-
tered B. breve M-16 V from birth until hospital discharge

(n=12) or left untreated as controls (n=10). No signifi-
cant difference was observed in alpha diversity between
gorups (Horigome et al. 2021). The relative abundances
of Bifidobacterium and Enterococcus were significantly
higher, whereas those of Rothia, Lactococcus, and Klebsi-
ella were significantly lower in the M-16 V-treated group
than in the controls. The abundances of Bifidobacterium
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spp., B. breve, B. longum, and B. catenulatum were sig-
nificantly higher in the M-16 V group than in the con-
trols. Additionally, colonization by M-16 V persisted for
at least several weeks after the discontinuation of pro-
biotics (Horigome et al. 2021). Li et al. (2004) suggested
that early administration of B. breve had the beneficial
effect of promoting the colonization of Bifidobacterium
and reducing susceptibility to colonization by potential
pathogens.

Bifidobacterium lactis

In a previous cohort study by Chi et al. (2021), 138 PTIs
were fed breast milk (BM, n=31), probiotic formula
(PF, n=59) (B. lactis), or non-probiotic formula (NPE,
n=48) (Li et al. 2004), and the longitudinal variations
in GM diversity and composition were explored. Diver-
sity (Shannon index and Simpson indices) was highest
in the PF group in the first week, and it was significantly
higher than that in the BM group in the sixth week after
birth. The NPF group had a greater relative abundance
of Enterococcus (28.20%) than that of the BM (19.57%)
and PF (9.57%) groups. Bifidobacterium was gradually
enriched in all infants, with a larger proportion in the PF
group than in the other two groups. The GM values of
the three groups tended to be similar by week 12. There-
fore, probiotic supplementation may affect GM coloniza-
tion and reduce the number of some potential pathogens.

B.longum subsp. infantis

A recent observational study (Nguyen et al. 2021) con-
sisted of 77 PTIs indicated that B. infantis EVC001
reduced enteric inflammation. A higher abundance of
Bifidobacteriaceae, with rapid development and sig-
nificantly lower levels of key pro-inflammatory bio-
markers, were detected in the B. longum subsp. infantis
EVCO001-treated group (n=31) than in the control group
(n=46). Furthermore, B. longum subsp. Infantis EVC001
improved the functional capacity of the GM of PTIs for
HMO utilization. In the ProPrems trial of very premature
infants (n=1099), supplementation with B. longum subsp.
infantis BB-02, Streptococcus thermophilus TH-4, and
B. animalis subsp. lactis BB-12 was associated with an
increased abundance of Bifidobacterium soon after birth,
resulting in a reduced NEC risk (Plummer et al. 2018).
Commencing this supplementation within 5 days of birth
was associated with an increased detection of probiotic
species over the study period, suggesting improved sub-
sequent colonization by probiotics (Plummer et al. 2021).

Lactobacillus

L. reuteri

In a randomized placebo-controlled trial of 132 PTIs
(<1500 g) who received L. reuteri DSM 17,938 or a pla-
cebo from birth to the postnatal week, 86% of extremely
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LBW infants treated with L. reuteri were colonized with
this probiotic strain during the neonatal period (Spreck-
els et al. 2021). A lower abundance of Enterobacteriaceae
and Staphylococcaceae was observed in the L. reuteri-
supplemented group during the first week. The compo-
sition and diversity of the GM differed between groups
during the first month of life (Marti et al. 2021). At 2
years of age, no difference was found in the GM, and
there was no effect on NEC or sepsis incidence (Spreckels
et al. 2021; Marti et al. 2021). L. reuteri may be useful in
improving feeding tolerance, promoting growth, facilitat-
ing defecation, and shortening hospital stays in PTIs (Cui
et al. 2019; Wejryd et al. 2019).

L. acidophilus

Greater Bifidobacterium (15.1%) and Lactobacillus (4.2%)
abundances were observed in groups supplemented
with L. acidophilus NCIMB701748 and B. bifidum
ATCC15696 than observed in the control group (Bifido-
bacterium 4.0% and Lactobacillus 0%). Bifidobacterium
abundance remained high after hospital discharge, sug-
gesting successful long-term colonization, whereas that
of Lactobacillus was reduced (Abdulkadir et al. 2016).
Extremely LBW PTIs exposed to antibiotics supple-
mented with L. acidophilus and B. longum subsp. infantis
had a higher relative abundance of Bifidobacterium and
Lactobacillus than that of FTI controls. The FTIs had a
higher abundance of Streptococcus, Veillonella, and Hae-
mophilus. At 4 weeks and 4 months, the overall microbial
diversity and resistome of the probiotic-supplemented
infants were similar to those of the more mature infants.
This indicates that probiotics may induce colonization
resistance and alleviate the harmful effects of antibiot-
ics on the GM and antibiotic resistome (Esaiassen et al.
2018).

Initiating probiotics shortly after birth has been recom-
mended in several studies because of its benefits to the
GM (Plummer et al. 2021), and the efficacy and safety of
probiotics have been demonstrated. However, the effect
of early probiotic supplementation is not sustained,
as observed at 2 years of age. Additionally, the highly
dynamic and individualized nature of the GM (Shao et
al. 2019) limits studies examining the GM at an isolated
time point, often resulting in the failure to identify differ-
ences between probiotic and placebo groups over time.
Future research should consider the dosage, duration,
and standard indications of probiotics, especially com-
bined supplementation, evaluate the targeted and effec-
tive use of multiple probiotic strains to benefit the health
status of the host, and explore whether there is a possible
association between breastfeeding and the colonization
efficacy of probiotics.
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Conclusions

The GM is strongly associated with the health status of
PTIs. Although it is generally believed that GM coloni-
zation begins as the neonate leaves its mother, prenatal
maternal status can pre-dispose the infant to dysbiosis
before delivery. PTIs born via C-section or vaginally are
initially colonized by different microbiota and exhibit dif-
ferent microbial distributions. Breastfed PTIs, or those
supplemented with HMOs, may exhibit a more “normal”
GM resembling that of FTIs. Antibiotic and probiotic
administration may significantly influence the GM com-
position. The influence of all of the aforementioned fac-
tors subsides with age.
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