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ABSTRACT: In recent years, significant progress has been made in
transdermal drug delivery systems, but there is still a search for
enhancers that can improve the absorption of active substances
through the stratum corneum. Although permeation enhancers have
been described in the scientific literature, the use of naturally
occurring substances in this role is still of particular interest, because
they can offer a high level of safety of use, with a low risk of skin
irritation, and high efficiency. In addition, these ingredients are
biodegradable, easily available, and widely accepted by consumers
due to the growing trust in natural compounds. This article
provides information on the role of naturally derived compounds in transdermal drug delivery systems that help them penetrate the
skin. The work focuses on the components found in the stratum corneum such as sterols, ceramides, oleic acid, and urea. Penetration
enhancers found in nature, mainly in plants, such as terpenes, polysaccharides, and fatty acids have also been described. The
mechanism of action of permeation enhancers in the stratum corneum is discussed, and information on the methods of assessing their
penetration efficiency is provided. Our review mainly covers original papers from 2017 to 2022, supplemented with review papers,
and then older publications used to supplement or verify the data. The use of natural penetration enhancers has been shown to
increase the transport of active ingredients through the stratum corneum and can compete with synthetic counterparts.
KEYWORDS: penetration enhancers, raw materials, skin barrier, terpenes, fatty acids, polysaccharides

1. INTRODUCTION
Transdermal drug delivery (TDD) systems are one of the most
widely researched pharmaceutical products.1 TDD is a
convenient alternative to intravenous, intramuscular, and oral
routes of administration. The transdermal route avoids the first-
pass effect in the liver making this method suitable for drugs that
have low bioavailability when administered through the oral
route or exhibit adverse effects due to biotransformation.2 This
method also has the advantage of being painless, noninvasive,
and easy to apply and having controlled release (modified
release) which can prolong the therapeutic effect.3 Nevertheless,
the skin acts as an external barrier to prevent exogenous
compounds from entering the body, including drugs.4 This
presents a significant challenge for TDD researchers in the
development of methods to penetrate the top layer of the
epidermis: the stratum corneum (SC).5 The nonpolar, hydro-
phobic nature of the SC and the physiological property of being
permeated by only those particles whose atomic weight does not
exceed 500 Da substances makes polar, hydrophilic particles
cross this barrier rarely or not at all.6 An intact SC is crucial in
maintaining legitimate skin function. Its dysfunctions are seen
during dermatological diseases, such as atopic dermatitis or
ichthyosis.5 Transdermal drug delivery systems should be

applied to healthy skin, so methods are being sought that will
temporarily interact with the components of the epidermis,
temporarily changing its permeability to therapeutic substances,
at the same time not changing the activity of the active
substance, not causing its degradation, and not causing skin
irritation and permanent skin damage.7

The key to producing an effective transdermal system is the
right choice of the type of formulation. The degree of drug
diffusion through the skin is influenced by the type of TDD
formulation, i.e., ointment, cream, gel, or transdermal patch.8,9

These formulations include different types of gels (hydrogels,
organogels, bigels, emulgels, and nano gels), emulsions,
(microemulsions, nanoemulsions, and multiple emulsions),
and liquid crystals, which are intermediate between the solid
and liquid form.10−12 Furthermore, the development of
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nanotechnology has enabled the incorporation of APIs into
carriers such as liposomes, niosomes, nanostructured lipid
carriers, solid lipid nanoparticles, polymer nanoparticles,
micelles, dendrimers, carbon nanotubes, etc.13,14

Moreover, active and passive methods are used to facilitate
TDD. Active methods involve the use of external energy to
increase the penetration of active pharmaceutical ingredients
(APIs) through the skin by using electrical energy (iontopho-
resis, electroporation), ultrasound (sonophoresis), radiofre-
quency electromagnetic waves (radiofrequency), and laser
energy.15−20 These methods include mechanical techniques
such as micropuncture to create pores in the SC for APIs.21−24

Passive methods involve the interactions between the drug,
vehicle, and SC layer. They aim to modify the API
physicochemical properties, e.g., by changing its solubility or
ionization and/or leading to an increase in skin permeability.
Given this, eutectic systems, prodrugs, ion-pair technique, and
supersaturated systems are used. Developments in pharmaceut-
ical and chemical sciences have now made it possible to use
chemical compounds that, by interacting with SC components,
improved the permeability of drugs.25,26

The eutectic system is a mixture of two or more substances
formed by entropy changes associated with both hydrogen
bonds and van der Waals forces. These interactions result in a
mutual decrease in the melting point of the mixture with respect
to each of its individual components.11,27,28 The pro-drug
technique is based on the modification of a substance’s active
molecules by attaching a lipophilic group, such as an ester group,
to create a compound that is more easily partitioned between the
SC and the pharmaceutical formulation causing a change in the
partition coefficient (LogP).29−32 The so-called ion-pair
technique which involves neutralization of the electrical charge
of the active substance by through formation its salt is also
used.33−35 Supersaturated systems allow for faster transdermal
penetration of the drug, as they have increased thermodynamic
activity.36

Among chemical compounds that increase the permeability of
the skin to drugs are those otherwise known as chemical
penetration enhancers (CPEs) or sorption promoters: terpenes,
terpenoids, sulfoxides, laurocapram (Azone), pyrrolidones, fatty
acids, fatty alcohols, alcohols containing glycols, urea, and
surfactants.25,26 In 2021, 649 compounds classified as CPEs
were collected in a database which included the following groups
of chemicals: alcohols and polyols, lactams and their analogues
(azepane, azone, caprolactam, morpholine, piperazine, piper-
idine, piperidone, pyrrolidine, pyrrolidone, and succinimide),
esters and ethers, fatty acids, terpenes and steroids, and
miscellaneous additives such as amino acids, aliphatic
compounds, aromatic compounds, and inorganic compounds.37

However, some of the listed groups of compounds, primarily
morpholine and morpholine derivatives and among them
Azone,38 surfactants,39 aromatic compounds,40 and many
others,38 carry the risk of causing skin irritation, permanent
disorganization of the skin barrier, and toxic effects on skin cells.
These effects may not be acceptable in the application of
transdermal drug delivery systems to the skin. High potential for
safe use and a low risk of skin irritation is presented by
transdermal formulations based on substances of natural origin.
In addition, these ingredients are biodegradable, readily
available, and widely accepted by consumers due to growing
reliance on natural occurring compounds.41,42 These advantages
make them commonly used in cosmetic and pharmaceutical
formulations. They are increasingly used as substrates for the

application of active ingredients43,44 and as well as compounds
that facilitate the penetration of other substances, including
APIs.45,46

The most popular permeation enhancers that occur in SC are
sterols, ceramides, fatty acids (oleic acid), and urea. The second
group of natural enhancers that occur in nature, mainly in plants,
are fatty acids and terpenes. The main sources of fatty acids are
plant oils, while terpenes and terpenoids are the main
components of essential oils.47−49

Plant oils possess skin barrier restoration and regenerative
features, as well as antioxidant, and anti-inflammatory proper-
ties.50 They are valuable ingredients in pharmaceutical and
cosmetic products, where they act as both active substances43,44

and compounds that facilitate the penetration of other
substances, including medications.45,46 They are considered
nontoxic and safe for topical use. Some divergence has been
observed in the effects of plant oils on the skin. While sunflower
seed oil contributes to improving the hydrolipidic layer of the
skin, olive oil negatively affects the integrity of SC
components.51 It has been suggested that these properties
depend on the ratio of oleic to linoleic acid in the oil
composition, as only the former contributes to an increase in
SC permeability, facilitating the penetration of the therapeutic
substance through the skin.44,52,53 Not without significance is
the content of the unsaponifiable fraction in oils, which include
compounds such as triterpene alcohols, squalene, phytosterols,
flavonoids, and phospholipids, which may also potentially affect
the barrier properties of the epidermis.44

Essential oils contain medicinal properties such as antiseptic,
antiparasitic, antiviral, antifungal, and antibacterial activities.54

However, essential oils carry a risk of skin irritation if used
undiluted or in too high of a concentration. In topical
preparations, essential oils are used in concentrations between
0.5−5% and sometimes up to 10%, depending on the specific
oil.55

It should be noticed that by using them in pharmaceutical and
cosmetic products for external application as a base and/or
active substance their disorganizing effect on the skin is
overlooked. Consequently, a given preparation may have
unforeseen and undesired effects on the skin, such as increased
transepidermal water loss and skin inflammation. When used in
daily skin care, these compounds can have the above-mentioned
adverse effects, but on the other hand, they can be a component
of the transdermal therapeutic systems, using their disorganizing
effect on the protective barrier to facilitate the penetration of
active substances. Therefore, it was deemed necessary to report
the role of these natural compounds used in systems that
facilitate the penetration of APIs through the skin.
This article focuses on the role of individual substances in

enhancing the penetration of APIs. The use of natural
substances as penetration enhancers of active substances in
TDD systems is in line with the trend of using naturally
occurring raw materials in pharmaceutical and cosmetic
formulations.41,42 Their popularity is due to their easy
availability. In addition, these compounds are considered
environmentally safe and biodegradable.
The mechanism of action of natural penetration enhancers is

important in determining the safety of the different ingredients.
This information is particularly important for pharmaceutical
and cosmetic manufacturers, as it helps in the selection of
ingredients derived from natural raw materials to be used in
transdermal systems. This paper provides information on which
components should be avoided when a restorative effect on the
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epidermal barrier is needed. This is important in the
pathogenesis of many dermatological defects.
Our literature review demonstrates the relationship between

natural substances used in TDD systems and their effects on the
SC in terms of functional changes, as well as highlighting the
analytical methods used to assess these changes. The electronic
databases such as Scopus, PubMed, and Medline formed the
basis of the information search.
The databases were searched from March 15, 2022, to July 1,

2022, with papers from 2017−2022 considered first, followed by
older publications to supplement or verify the data. Information
was supplemented in the period from March 1 to March 15,
2023. Only publications in English were included. Our review
consisted of mainly original papers that were supplemented with
review papers. The searchmethod for scientific articles consisted
of entering keywords ranging from general ones such as TDD
systems, chemical penetration enhancers, natural chemical
penetration enhancers, SC, skin barrier, and biological barriers,
to more specific ones such as ceramides, sterols (especially
cholesterol and cholesterol sulfate), fatty acids, terpenes, urea,
vegetable oils, essential oils, and polysaccharides, linking them
together with AND and OR logical connectors. These
substances were chosen because they naturally occur in the
SC or are commonly present as active ingredients in plants. The
safety of their use is well-defined, but information on their use
and benefits is not obvious. The present article gives information
on the concentrations of the applied promoters, the APIs that
can be used with natural enhancers, and the effects that can be
obtained by using the APIs together with the absorption
promoters (Table 1).

2. CHARACTERIZATION OF THE EPIDERMAL BARRIER
IN TERMS OF APIS DELIVERED BY THE
TRANSDERMAL ROUTE

Studies evaluating the permeation efficacy of substances applied
to the skin surface for potential use in TDDs most often refer to
the SC region. Research aimed at understanding the mechanism
of action of permeation enhancers at a molecular level is
particularly important. For this purpose, a brief description of
the structure of the SC is necessary.
The SC is 10−20 μm thick and consists of 15−20 layers of

flattened, densely packed keratin-filled corneocytes separated by
a lamellar intercellular lipid system (Figure 1a,b). The remainder
of the epidermis is 50−120 μm thick of stratified squamous
epithelium in which no blood vessels are present. It consists of a
lamina propria, granular layer, squamous layer, and basement
membrane separating the epidermis from the dermis.93

Small-angle X-ray scattering data obtained by Bouwsta et al.
indicates that the SC lamellar lipid system can be divided into
two recurring, characteristic phases, namely, a 6.4 nm short
periodicity phase (SPP) and a 13.4 nm long periodicity phase
(LPP)94 (Figure 1f). In the SPP, the lipid hydrocarbon chains
can form three packing forms with the cross-section of the
hydrocarbon alkyl chains indicating an orthorhombic, hexago-
nal, or liquid state (liquid crystal) arrangement (Figure 1e). The
hexagonal and liquid crystal forms are characterized by greater
mobility of the hydrocarbon chains as they are loosely packed
and therefore have greater mobility and permeability compared
to lipid chains in a orthorhombic arrangement.95,96 The
thickness of the SPP depends on the amount of water contained
in the SC, as with increasing hydration, up to 60% w/w, the
length of the SPP increases linearly indicating the formation of a
new aqueous phase between the SC lamellar lipid layers (directly

affecting the increase in SPP phase length).94 Phase separation
in the lamellar lipid region can lead to a rearrangement of the
hydrocarbon lipid chains into micelles.
The study by Ogawa et al.97 cited previous findings98 and

confirmed that a hydrated SC results in increased permeability
to hydrophilic APIs. A study by Yamamoto et al.99 discussed the
important role of the inhibition of transepidermal water loss
through occlusion in the penetration of ketoprofen. Physiolog-
ically, the water content of the epidermis decreases from the
viable epidermal layers of the stratum spinosum and stratum
granulosum (about 70% by weight) to the SC. On average, the
water content in the SC is 25%, but authors have reported
different results which may have been influenced by measure-
ment conditions as well as the individual nature of the epidermal
barrier.100

Protein components account for 60−85% of the weight of SC.
They are formed by keratin fibers, among which acidic type I
keratin and neutral to basic type II keratin can be identified.
Acidic keratins have a greater number of negatively charged
amino acid side chains, such as aspartic or glutamic acid. Basic
proteins have a greater number of positively charged side chains
such as lysine, arginine, or histidine.101 It is known that under
the influence of increasing humidity, the secondary structure of
keratin changes from an α- to a β-helix conformation (Figure
1d). Keratin in α-helix conformation has a coiled-coil structure
in which the side chains do not interact with water molecules.102

In the β-helix conformation, the side chains are exposed to the
main chain of the protein so that water molecules have access to
the peptide bonds and bind to them through hydrogen
bonds.102,103

A study by Jokura et al. provided information that water
molecules not bound to corneocyte proteins are part of the
natural moisturizer factor (NMF).104 NMF further consists of
amino acids, urea, lactic acid salts, pyroglutamic acid (PCA) and
its salts, sugars, sodium, magnesium, potassium, calcium,
chlorine, and phosphate ions.105,106 NMF form ionic bonds to
keratin fibers which alter the elasticity of keratin by reducing
intermolecular forces.104

The lipid mixture of the SC, organized in a double layer,
provides protective properties to the epidermis and at the same
time forms a barrier to API diffusion. It consists of ceramides
(40−50% by weight), cholesterol (20−30%), cholesterol sulfate
(2−5%), and free fatty acids (7−13%).107 Ceramides are
particularly important in providing a barrier function to the
epidermis. Ceramides in the SC are constructed from a
sphingoid base, which can be sphingosine, dihydrosphingosine,
or phytosphingosine and 6-hydroxysphingosine linked by an
amide bond to the acyl residue of a fatty acid which can be
nonsubstituted, α-hydroxylated, or ω-hydroxylated and contain
an ω-linoleoyl group.108−111 Recently, 1-O-acylceramides have
also been identified in the human SC, where their esterified fatty
acid is attached to the headgroup of sphingosine in position 1.
This component is described as one of the key components of
the SC because its deficiency leads to impaired protective
properties and increased water loss.112 It is generally accepted
that ceramides are composed of a small polar head and two
simple saturated hydrophobic aliphatic chains. The polar part
(polar fragment, the head) consists of 2−4 hydroxyl groups and
an amide group. This structure ensures the formation of a strong
hydrogen bonding network that maintains the stability of the
lamellar structure and the strength and barrier properties of
SC.113,114
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The free fatty acids in human SC generally consist of saturated
(chain lengths ranging from C14:0 to C34:0) and unsaturated
(C16:1 to C18:1, C30:1 to C36:1, C18:2) fatty acids.115 The
most abundant group of fatty acids present in the SC (>50% of
all SC fatty acids) are saturated, linear chain lipids with 16 to 30
carbon atoms with the most common being lignoceric acid
(C24:0) and hexacosanoic acid (C26:0).115−117

The SC is not only a physical barrier, as its protective
properties are enhanced by chemical and immunological factors.
Scientific literature indicates that the presence of the skin
microbiome, which forms the natural physiological flora and is
responsible for both chemical and immunological factors.118

The skin’s physiological flora consists of microorganisms such as
Corynebacterium species, Cutibacterium acnes, coagulase-neg-
ative Staphylococcus species including Staphylococcus epidermidis,
and Malassezia spp. The important role of the skin microbiome
in creating the skin’s protective barrier is supported by the fact
that it promotes the differentiation and integrity of the
epithelium. Additionally, some skin bacteria secrete sphingo-
myelinases, which are responsible for the production of
ceramides in the SC.119 Furthermore, microorganisms that
colonize the skin produce lipase enzymes that break down
sebum triglycerides into free fatty acids. These free fatty acids

strengthen the acidic nature of the skin, which limits the
colonization of pathogenic microorganisms on the skin.120 The
physiological pH of the skin surface is acidic, falling within the
pH range of 4.1 to 5.8. However, as one moves closer to the
living layers of the epidermis, the pH increases to neutral levels
of pH 7 to 7.4. In a low pH environment, fatty acids exist in a
nonionized form, which causes minimal repulsion of lipid head
groups and promotes the formation of lamellar structures,
ultimately affecting the integrity of the protective barrier.
Increased pH of the skin surface is associated with impaired
function of the protective barrier of the SC.121

To summarize, the SC forms a hydrophobic, nonpolar
protective barrier, which is determined by the homeostatic
composition and quantity of the individual components of the
SC. Fluctuations in the quantity of SC components as well as
increased hydration of this layer significantly alter its properties.
Regarding the transdermal administration of APIs, the
information above is a valuable clue for researchers, as it
encourages the search for permeation-enhancing agents that can
temporarily affect the chemical composition and hydration of
the SC. By doing so, the permeability of the SC to APIs can be
increased, facilitating their transdermal delivery.

Figure 1. Skin structure. (a) Structure of the epidermis. (b) Schematic diagram of the structure of the SC. (c) Schematic diagram of the arrangement of
lamellar lipids. (d) Schematic structure of keratin. (e) Three packing forms of the barrier lipids: orthorhombic, hexagonal, or liquid state (liquid
crystal) arrangement. (f) Repeated phases of lamellar lipids: LPP and SPP with a water layer (highlighted in blue) between the polar lipid heads.
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Table 2. Structural Patterns of Natural SC Components Regulating Skin Permeability of APIs (Entries 1−5 and 7) and Natural
Compounds with the Permeation-Enhancing Potential of APIs (Entries 6 and 8−16)
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3. NATURAL COMPONENTS OF THE SC ARE
COMPOUNDS THATREGULATE THE PERMEABILITY
OF APIS THROUGH THE SKIN

Substances applied externally that penetrate the structure of the

SC interact with its components. Substances containing

compounds that physiologically occur in the SC, such as
ceramides, cholesterol and its sulfate, and fatty acids affect the
proportions of their counterparts resulting in supplementation
of their deficiencies.122−128 Conversely, they may disrupt the
natural quantitative balance of lipid components to induce an
increase in skin permeability. It has been found that changes in

Table 2. continued
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the composition and chain length of fatty acids present in their
free forms as well as bound to SC ceramides change their melting
point andmembrane permeability.129 The potential to modulate
the barrier properties of the SC appears to be helpful in assisting
the transport of APIs across the skin.130

3.1. Sterols. In the SC, the ratio of cholesterol (Table 2, item
1) to cholesterol sulfate (Table 2, item 2) is important in
maintaining the SC barrier, as it is indicated that with increasing
amounts of cholesterol sulfate, an increased fluidity of the lipid
fraction is observed leading to a greater permeability of the
SC,131,132 while at the same time, the chains of fatty acid residues
or chains of acyl groups and ceramides in the SC remain
rigid.131,132 Cholesterol sulfate, by weakening the barrier
functions, may serve as a substance that facilitates API
permeation.132 The explanation for the observed effects was
based on an analysis showing that the polar, acidic, sulfate group
of cholesterol sulfate exhibits a stronger hydrogen bonding
capacity compared to the rest of the nonpolar, hydrophobic
components of the lipid matrix. Cholesterol sulfate groups, as a
result of repulsive electrostatic forces and the solvation effect of
charged atoms, increase the hydration region between lipids
creating a pathway for hydrophilic APIs.131,132 Furthermore,
cholesterol sulfate is a highly amphiphilic molecule with the
ability to penetrate cell membranes by diffusion.133

3.2. Ceramides.Current scientific research does not directly
describe topically applied ceramides as penetration enhancers
for APIs, but their role in modulating the barrier properties of
the epidermis has been confirmed. Studies have evaluated the
influence of the fatty chain and the size of the polar head of
ceramides on the permeability of externally applied substances,
which suggests the potential for ceramides as future penetration
enhancers for APIs.113,134−136 In healthy human SC, ceramides
contain fatty acid residue chains of more than 22 carbon atoms
(Table 2, item 3).108,137,138 Shorter ceramide chains are
observed in dermatoses that damage the skin barrier, such as
atopic dermatitis, lamellar ichthyosis, Netherton syndrome,
psoriasis, and autosomal recessive congenital ichthyo-
sis.113,134−136 The effect of ceramide acyl chain length on SC
barrier integrity has been confirmed in studies,139−141 in which it
was observed that replacing the acyl chain in nonhydroxy acyl
sphingosine-type ceramides (CER NS) of C24 length with a
shorter one (C4−6) resulted in a significantly increased SC lipid
permeability. An in vitro permeability study by Školova et al.56

using Franz diffusion cells of 5% theophylline (180 g/mol, LogP
= 0) and 2% indomethacin (358 g/mol, LogP = 4.3) showed that
replacement of CER NS (C24) with CER NS (C6) resulted in
an increase of approximately 3.5 times the permeation of
theophylline and nearly 6.5 times that of indomethacin. The
paper by Uche et al.57 evaluated the effect of substituting a CER
NS with a 16-carbon chain at the expense of CER NS (C24) on
lipid membrane permeability of ethyl-p-aminobenzoate (E-
PABA). An in vitro study using PermeGear in-line diffusion cells
showed that the amount of API permeated through the lipid
membrane increased with CER NS (C16) concentrations to 3.5
times more API at 50% CER NS (C16) concentrations and 6
times more API at 75% CER NS (C16) concentrations
compared to long-chain ceramide membranes. The increased
permeability of the model lipid membrane consisting of
ceramides, fatty acids, cholesterol, and cholesterol sulfate was
accompanied by an increased distance between the LPP and a
change in the spatial arrangement of the lipids, as some of the
lipid chains formed a hexagonal phase at the expense of the
rhomboid phase as confirmed by SAXS (small-angle X-ray

scattering). The increased space between the SC lipid layers and
decreased packing density of the lipid chains explain the easier
penetration of APIs. Table 1 (items 1 and 2) presents the
permeation effectiveness of APIs used with ceramides in TTDs.
3.3. Fatty Acids. 3.3.1. Oleic Acid.Themost frequently used

fatty acid in TDD systems is the unsaturated oleic acid (OA), cis-
octadecenoic acid (Table 2, item 4). An ex vivo study on rat skin
using Raman spectroscopy provided information on the
disorganizing effect of OA on SC lipid conformations.53 The
double bond in the configuration cis of the OA structure,
disrupts the organization of the alkyl chains of the lamellar lipids
leading to separation and increased fluidization of the lipid
bilayers.142,143 In vitro study using in-line Bronaugh flow-
through diffusion cells showed that the flow of the protein
interferon alpha-2B drug (19 kDa) through the SC was not
enhanced in the presence of a solution containing 10% OA in
propylene glycol. However, a separate liquid phase in the SPP
region of the lamellar lipids was simultaneously observed in an ex
vivo study on human skin using small- and wide-angle X-ray
scattering analysis, which formed a potential pathway predis-
posing to the penetration of API molecules.58 Research into the
mechanism of action of OA dates back to the 1990s, whenNaik’s
research team used attenuated total reflectance infrared
spectroscopy. It was shown that a 5% solution of OA in ethanol
applied to the human skin in vivo creates a separate liquid phase
leading to the separation of the lamellar lipid bilayers and causes
fluidization. This finding indicated that an observed effect of
changing the conformation of epidermal lipids predisposes it to
the permeation of small molecules.144 Similar conclusions were
presented by Jiang et al. following an in vivo study on rat skin in
which 10% OA in propylene glycol was applied.145

An in vitro permeation study using Franz-type diffusion cells
with a lipid membrane mimicking the quantitative and
qualitative composition of human SC in the presence of 10%
OA showed that, of the threemodel drugs used, 10% urea (60.06
g/mol, LogP = −2.11), 2% caffeine (194.19 g/mol, LogP =
−0.07), and 0.1% diclofenac sodium (318.14 g/mol, LogP =
4.28), urea was the most hydrophilic substance and had the
fastest diffusion rate. However, there were no differences in lipid
membrane permeability in the presence and absence of OA,
indicating the natural penetrating properties of urea.59 There-
fore, it can be inferred that OA does not provide significant API
permeation-enhancing properties, despite its disorganizing
effect on lipid fractions. The in vitro permeation effect on
Franz diffusion cells using a rat skin-insulin model was also
assessed with three different fatty acids: OA (C18:1, LogP:
7.64), linoleic acid (C18:2, LogP = 7.05), and linolenic acid
(C18:3, LogP = 6.46). OA was shown to have the best
permeation enhancement profile of these three fatty acids, but
not enough to be considered an insulin permeation facilitator.
Linolenic acid (Table 2, item 5) reduced the permeation of
insulin through the skin,60 which correlates with reports by other
authors on the lipid-barrier-rebuilding properties of this fatty
acid.51,146 The paper explains that this phenomenon is due to the
lower oil/water partition coefficient, higher structural rigidity
related to the number of double bonds, and higher surface
tension of linolenic acid compared to acids with fewer double
bonds.60

Currently, OA has also started to be used as a component of
carrier formulations, e.g., in micro- or nanoemulsions, whose
dermal absorption-enhancing properties for APIs are used in
various medical areas.147−151
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The work of Abd et al.77 evaluated an in vitro Franz diffusion
cell model mimicking human skin to determine the permeation
efficiency of 2% minoxidil (LogP = 1.24) incorporated into an
oil-in-water (o/w) nanoemulsion with OA or eucalyptol (Table
2, item 6) entering the oil phase. Both nanoemulsion
formulations (the one with OA and the one with terpene)
were shown to increase the amount of API penetration through
the SC and its solubility compared to the API alone, with a
greater efficacy observed in the formulation containing
eucalyptol. Nanoemulsions with OA and eucalyptol were also
found to be effective in increasing the permeation of 3% caffeine
and 2% naproxen.78

A nanoemulgel with OA was used to deliver caffeic acid from
propolis (Apis trigona). An in vitro permeation study on Franz
diffusion cells through rat skin showed that the highest API
retention was obtained using OA at a concentration of 2.5%,
compared to 5% and 1.25%.79 Lai et al.80 published results
showing a 4-fold more effective (compared to a control trial
without carriers) delivery of 2,3,5,4′-tetrahydroxystilbene 2-O-
β-D-glucoside (extracted from Polygonum multif lorum) using
OA-containing vesicles loaded into a complex gel. The
permeation-enhancing properties of OA were modified by the
use of carrier and gel forms in TDD systems. Table 1 (items 3−8
and 35−39) presents the permeation effectiveness of APIs used
with oleic acid in TTDs.
3.4. Urea.Urea, also known as carbamide, is an acyclic, polar

compound containing a carbonyl group attached to two amine
groups (Table 2, item 7). It is naturally included in human NMF
(7% of NMF composition).152,153 It is a compound that exhibits
hygroscopic and keratolytic properties in a concentration-
dependent manner. In formulations for external application, a
2−10% concentration shows a moisturizing effect, a 10−20%
concentration shows a moisturizing, keratolytic, and API-
permeation-enhancing effect, and a 30−50% concentration no
longer shows a moisturizing effect.153,154

An in vitro human epidermal barrier permeation study on
Franz diffusion cells under infinite dosing conditions showed
that urea had a higher permeation rate than more hydrophilic
substances like glycerol and mannitol but less than the more
lipophilic estradiol. In comparison, under finite dosing
conditions, the amount of urea permeated was the highest
among substances used in the study, which according to the
authors was related to the difference in the skin hydration status
between the two experiments, i.e., fully hydrated skin in the
infinite dosing technique and partially hydrated skin in the finite
dosing technique, the type of solvent, and the interactions
between it and the substance and membrane used for the
study.155 The differences between in vitro testing under infinite
dosing and finite dosing conditions were described by Franz,156

which indicated that greater reliability of in vitro test results is
obtained with the finite dosing technique. Intarakumhaeng et al.
found that nonvolatile substances with a molecular weight up to
60 g/mol, as in the case of urea, show a relatively high percentage
of a penetrating dose.155

The mechanism of action responsible for the potential
permeation enhancement of SC proposed by Mueller et al. is
based on its ability to bind water and import it into the
corneocytes. A large amount of bonded water can lead to an
increase in cell volume of up to 50% and an increase in osmotic
pressure.157 Water can also accumulate between corneocytes in
the SC, which can affect the barrier function of the skin. In the
lipid bilayer region, water can also disrupt the local electrostatic
interactions and lead to the formation of pores in the lipid

membrane. This can occur due to the reorientation of
hydrophilic lipid headgroups toward the center of the bilayer
and the formation of inverted micelles.158,159

Additionally, varying the water content of the SC can
potentially alter the degree of ionization of fatty acids, which
are commonly assumed to exist in a nonionized form.159 NMF
results published by Pham et al. confirmed that the final
segments of the keratin structure, on which glycine and serine
residues are located, are fluidized in the presence of urea.160

Urea is identified in the literature as a chemical “denaturant” that
alters the structure of proteins indirectly by affecting the
hydrogen bond network of bound water at the boundary of the
protein.161−163 Another concept concerning the denaturing
effect of urea has also been proposed, stating that urea directly
interacts with the protein by breaking intramolecular hydrogen
bonds.164

In an in vitro study, a gel with 10% urea increased transdermal
caffeine delivery by almost 50%, at a level similar to the
permeation-enhancing effect of the surfactant sodium laureth
sulfate. Furthermore, the gel formulation appeared to be more
effective in promoting caffeine absorption than the use of an
emulsion.61 Shams et al.81 used urea at a concentration of 2 M
(12.1%) together with the cyclodextrin derivative hydroxy
propyl-β cyclodextrin (HP-β-CD) to deliver recombinant
human growth hormone (rhGH) to the deeper layers of the
skin. The use of two permeation enhancers showing a synergistic
effect had a positive effect on the delivery of the API, with the
greatest amount of substance permeated after 120 min. The
synergistic effect was due to the protective effect of HP-β-CD on
the structure of rhGH in the presence of urea, such that without
HP-β-CD the activity of the hormone decreased. Higher
concentrations (4−8 M) of urea resulted in significantly lower
levels of rhGH in the skin, which, according to the authors, could
be due to the denaturing effect of urea. Table 1 (item 9) presents
the permeation effectiveness of APIs used with urea in TTDs.

4. NATURAL COMPOUNDS WITH THE
PENETRATION-ENHANCING POTENTIAL OF THE
API
4.1. Terpenes. Terpenes represent a group of compounds

with the general formula, (C5H8)n, consisting of two or more
five-carbon isoprene units (IUs) (Table 2, item 8). They are
classified according to the number of isoprene units in the
carbon skeleton: monoterpenes (2 IUs), sesquiterpenes (3 IUs),
diterpenes (4 IUs), sesterterpenes (5 IUs), triterpenes (6 IUs),
tetraterpenes (8 IUs), and polyterpenes (>8 IUs). The structure
of terpenes can be formed either by carbon chains or carbon
rings. These arranged carbon rings can be further classified as
monocyclic (one carbon ring) and successively bicyclic, tricyclic,
etc. Acyclic compounds do not contain a carbon ring.165

Isoprene is one of the most abundant volatile hydrocarbons
produced by living organisms in the world including
bacteria.165,166

Terpenes have a high LogP which is indicative of their
lipophilic properties determining their solubility in SC lipids.
However, the presence of polar and nonpolar groups in the
terpene molecule makes them exhibit the potential to promote
the permeation of both hydrophilic and lipophilic APIs.167,168

The different degrees of lipophilicity of terpenes (e.g., LogP =
2.13 for camphor and LogP = 5.32 for nerolidol), structure
(linear or ring), and presence of additional functional groups
give them different permeation enhancement efficiencies.169
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In section 3.3.1, we described eucalyptol because its use was
related to the OA study.
An in vitro study showed a higher amount of permeation of the

API haloperidol (375.9 Da, LogP = 3.36) across the human
epidermal membrane in the presence of limonene (Table 2, item
9) (LogP = 4.45) than in the presence of the oxygen-containing
terpenes linalool (LogP = 3.28) and 1,4-cineole (cineole LogP =
2.31 1,8-cineole LogP = 2.82). The work does not indicate
exactly which terpene was used, which was explained by the
facilitation of API solubility in the skin by limonene.62 FTIR
(Fourier-transform infrared spectroscopy) results confirmed
that limonene interacts with the alkyl chain region of SC lipids
causing an increase in fluidization, as it relaxes the lamellar
organization of the lipids.170

Zhu et al.171 evaluated seven oxygen-containing terpenes (1,8-
cineole, citral, geraniol, linalool, menthol, terpinen-4-ol, and α-
terpineol) at a concentration of 5%; both cyclic and linear forms
were evaluated using the method of measuring skin electrical
resistance (SER), the changes of which reflect the degree of skin
integrity after application of compounds considered to be API
permeation enhancers.172,173 Cyclic terpenes (1,8-cineole,
terpinen-4-ol, menthol, and α-terpineol) were shown to reduce
SER values and impair the skin’s barrier function to a greater
extent than linear terpenes (linalool, geraniol, and citral).
Molecular computer simulations indicated that the SER values
for cyclic terpenes were associated with the formation of
stronger hydrogen bonds with the polar head of SC ceramides171

creating a pathway for hydrophilic API penetration (LogP > 3),
as well as a pathway for water to escape through the
epidermis.171,174

In an in vitro study conducted in Franz diffusion cells,
differences in the enhancement of ligustrazine hydrochloride
permeation using the monocyclic monoterpenes menthol
(Table 2, item 10) and menthone (Table 2, item 11) were
assessed. Menthol contains a hydroxyl group attached to its ring
and was found to be more effective than menthone with a
carbonyl group. The hydroxyl groupmore easily forms hydrogen
bonds with the amide group of ceramides and, as confirmed by
FTIR analysis, menthol exhibits stronger epidermal lipid-
extracting activity.63 In the study of Huang et al.,175 the
simulation of skin permeability using molecular dynamics
confirmed the interaction of menthol with ceramide 2 by
forming hydrogen bonds in a single-component bilayer model,
which facilitated the penetration of quercetin. The study showed
that quercetin tended to localize in the area of the polar heads of
the lipid bilayer, which created barriers for its deeper penetration
through the hydrophobic region of the lipids. By hydrogen
bonding with menthol, quercetin reduced its chances of
interacting with ceramide. Meanwhile, menthol inserted itself
into the lipid bilayer, breaking the hydrogen bonds between
ceramides and facilitating the diffusion of quercetin. However,
the effect of the interaction of menthol with quercetin on the SC
should be tested on a more complicated bilayer model that
reflects the natural composition of the SC lipid mixture.
An in vitro rat skin transdermal permeation study using a TK-

20B diffusion apparatus showed that (+)-camphor (Table 2,
item 12) (monoterpene, LogP = 2.13) at a concentration of 3%
increased the permeation of APIs with different lipophilicities:
indomethacin (LogP = 3. 80), lidocaine (LogP = 2.56), aspirin
(LogP = 1.23), antipyrine (LogP = 0.23), tegafur (LogP =
−0.48), and 5-fluorouracil (LogP = −0.95). At the same time,
camphor was found to increase the permeation efficiency of the
APIs linearly with decreasing LogP values, as the highest amount

of API permeation through the skin was observed for
hydrophilic APIs (LogP of approximately 0). Camphor was
found to increase the partitioning of the API in the SC, i.e., to
increase the release of the API from the carrier into the SC.176

This is the first step in drug delivery through the skin, resulting in
a concentration gradient as molecules diffuse into deeper layers
of the epidermis and dermis.177 Camphor also extracts some of
the lipids and disrupts themolecular organization of SC lipids, as
confirmed by FTIR analysis.64 Borneol (Table 2, item 13), a
monoterpene with similar lipophilicity (LogP = 2.71) and
structural similarity to camphor, was reported by Dai et al.65

Franz diffusion tests showed that at a concentration of 0.54%,
borneol inhibited the penetration of the lipophilic API osthole
(LogP = 3.8), while increasing API penetration was observed at
the higher borneol concentration of 1.02%. TEM (transmission
electron microscope) imaging provided information on the
disorganizing effect of 0.54% borneol on lipids in rat skin, while a
concentration of 1.02% resulted in the complete destruction of
the lamellar lipid arrangement. Using CGMD (coarse-grained
molecular dynamics), it was observed that borneol at
concentrations above 10−15% disorganized the arrangement
of lipid alkyl chains and caused the extraction of some lipids and
formed aqueous spaces and inverted micelles, while concen-
trations up to 10% localized to the space of lipid alkyl chains
without affecting their structure. The disorganizing and
extracting effects on SC borneol lipids at concentrations of
1%, 3%, and 5% were confirmed using ATR-FTIR (attenuated
total reflectance−Fourier-transform infrared spectroscopy) by
Yi et al.178 Thus, the disorganizing effect on the lamellar lipid
structures is not sufficient for the penetration of lipophilic
compounds when using borneol at concentrations below 1%.
The study by Kopecňa ́ et al.66 describes a novel class of

penetration enhancers, which are a combination of an amino
acid derivative with various mono- and sesquiterpene alcohols
(namely, 6-(dimethylamino)hexanoic acid with citronellol,
geraniol, nerol, farnesol, linalool, menthol, borneol, and carveol
esters). The researchers tested the effectiveness of these
enhancers in delivering two different APIs, theophylline (MW
= 180 g/mol, LogP =−0.02) and hydrocortisone (MW= 362 g/
mol; LogP = 1.61), through human skin in vitro. Among all the
terpene alcohols used, citronellyl 6-(dimethylamino)hexanoate
was found to be the most effective at a concentration of 30 mM.
Importantly, these enhancers did not show any cellular toxicity
in vitro, and their mechanism of action was found to be based on
the fluidization of epidermal lipids, as confirmed by FTIR
analysis on the isolated human epidermis.
Terpenes are the main components of essential oils. Natural

essential oils are extracted from the herb, leaves, flowers, and
fruit. The methods used to extract essential oils from the plants
include supercritical fluid extraction, subcritical liquid extrac-
tion, solvent-freemicrowave extraction, hydrodistillation, steam-
distillation, hydrodiffusion, and solvent extraction. Essential oils
include nitrogen- and sulfur-containing compounds (isocya-
nates, e.g., allyl isothiocyanate), aromatic compounds (benzene
derivatives, e.g., eugenol), and others, including long-chain
unbranched compounds.179,180 In an in vitro study on rat skin,
the permeation of naproxen sodium from a gel matrix in the
presence of an absorption promoter in the form of 0.5% essential
oil of Lavandula angustifolia. The use of this oil formulation
allowed the API to be delivered to the skin at a higher
concentration (222.19 ± 24.87 μg/cm2) compared to naproxen
gel alone (107.65 ± 6.38 μg/cm2). The main constituents of
lavender oil, as confirmed by gas chromatography−mass
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spectrometry (GC-MS) analysis included 1,8-cineole (22.3%),
linalool (11.2%), camphor (7.9%), β-pinene (5.8%), α-terpineol
(4.9%), α-pinene (4.6%), terpinen-4-ol (4.2%), and borneol
(4.0%).67 An in vitro rat skin permeation study showed that
essential oils at a concentration of 3% extracted from Radix
Angelicae sinensis [Angelica sinensis (Oliv.) Diels (Umbelliferae)],
Rhizoma chuanxiong [Ligusticum chuanxiong Hort. (Umbellifer-
ae)], Rhizoma cyperi [Cyperus rotundus L. (Sedge)], Cinnamo-
mum cassia Presl. (Lauraceae), and Flos caryophylli [Eugenia
caryophyllata Thunb. (Myrtaceae)] are effective when used alone
in facilitating the penetration of ibuprofen. The main
constituents of these oils included ligustilide (79.32%),
ligustilide (41.00%), (E)-cinnamaldehyde (83.30%), and
eugenol (80.22%), respectively.68 In contrast, the essential oil
of Sinapis alba L. when used at concentrations of 0.5%, 2%, and
5% (with the highest efficacy at 5%) showed promising
permeation enhancement properties for the following APIs
with different lipophilicities: 5-fluorouracil (LogP = −0.95),
paeonol (LogP = 2.054), and osthol (LogP = 3.85). The main
constituents of the oil were 3-butenenitrile (16.62%), allyl
isothiocyanate (57.02%), and isothiocyanato cyclopropane
(17.46%).69

The compounds that make up the majority of essential oil
compositions do not necessarily interact with the SC
constituents and are responsible for the permeation-enhancing
effects of APIs, as confirmed by Nowak et al.70 The essential oil
from Epilobium angustifolium L. consists mainly of cosanes
(23.70%), 5-methyldocosane (14.95%), caryophyllenes
(9.22%), and oxygen derivatives of caryophyllenes (11.30%).
In an in vitro study on Franz cells, the oil promoted the
penetration of ibuprofen, lidocaine, and caffeine through pig
skin. Analysis of the composition of the pig skin and acceptor
fluid after 24 h by GC-MS analysis revealed the presence of α-
terpineol, (S)-carvone, thymol, anethole, secalciferol, and
trimethylpentadecan-2-one in the skin, which accounted for
1.94−4.54% of the oil composition, while no compounds were
found in the acceptor fluid.70 The results suggest that the
compounds present in the skin are responsible for the beneficial
effects of API penetration.
Due to the difficulty in identifying which components are

responsible for the penetration-enhancing effect, it may be
considered fair to compare the effect of a sś ́ of essential oil with
individual compounds isolated from the oil.169 A question that is
worth considering is whether a mixture of these compounds
shows a synergistic effect resulting in improved API absorption
through the skin. Oil extracted from Ledum palustre L. var.
angustum N. Busch was used in an in vitro horizontal diffusion
cells study to evaluate its efficacy in facilitating the permeation of
donepezil hydrochloride. The compound facilitating the
penetration of the API was cuminaldehyde, which accounted
for 5.72% of the oil composition. Cuminaldehyde, used alone in
the same study, was found to be 2 times more effective than the
oil alone. Terpenes included in the oil were sabinene (33.40%),
4-terpineol (20.33%), and p-cymene (18.31%), but when used
alone, they showed little or no efficacy.71

Table 1 (items 10−29) presents the permeation effectiveness
of APIs used with terpens and essentials oils in TTDs.
4.2. Fatty Acids. Plant fats such as tri-, mono-, and

diglycerides, free fatty acids, phosphatides, sterols, and fatty
alcohols occur in nature in plant tissue.181 They are most
abundant in seeds, pulp, stone fruit, tubers, and sprouts. The
main source of plant lipids are oilseed-producing plants such as
sunflower, soybean, and rapeseed, oilseed-producing fruits such

as olive, coconut, and palm, oilseed tubers such as peanuts, or
oilseed germ such as maize. Methods for extracting the lipid
compounds are based on chemical extraction, supercritical fluid
extraction, steam-distillation, mechanical extraction, and most
commonly mechanical pressing by which vegetable oil is
extracted.181,182 Volatile essential oils and fatty vegetable oils
differ in the content of the compounds predominantly present in
the same plant source such as terpenes as well as other bioactive
compounds, such as flavonoids.182 Plant oils have been found to
influence the penetration of active substances through the skin,
and fatty acids are mainly responsible for this effect.72

Results published by Cizinauskas et al.72 showed that of all the
oils used (0.5% w/w) olive oil, soybean, coconut, avocado, sea-
buckthorn pulp, and raspberry seed oils contained the same fatty
acids in different proportions: C16:0 (palmitic), C18:0 (stearic),
C18:1 (oleic), C18:2 (linoleic), and C16:1 (palmitoleic). Of
these, only soybean oil and olive oil increased dihydroquercetin
penetration (LogP < 3) in vitro using Bronaugh-type flow-
through diffusion cells. The API in the presence of soybean oil
was localized in the epidermis and dermis, while with olive oil
the API penetrated deeper by localizing only in the dermis, as
confirmed by TOF-SIMS (time-of-flight secondary ion mass
spectrometry) analysis in vivo using human skin. The
unsaturated fatty acids from the oils used in the study penetrated
into the deeper layers of the epidermis and dermis, but at the
same time, no correlation was observed in the study between the
concentration of individual fatty acids and the effect of increased
API penetration through the skin. According to the authors, this
may be due to the presence of other components in the oil, not
detected by the GC-MS analytical method used (after
derivatization into methyl esters), and the synergistic effect of
a mixture of penetration enhancers. Using flurbiprofen, which is
more lipophilic than dihydroquercetin (LogP = 4.16), olive oil
proved to be the best penetration enhancer compared to
avocado oil, coconut oil, and oils of animal origin: emu and
crocodile. This effect correlated with the highest amount of oleic
acid (OA) in the oil formulation (76%). The second highest
amount of OA was avocado oil (68%). However, it was coconut
oil that showed greater penetration enhancement effects despite
containing a high concentration (52%) of saturated, short-chain
lauric acid (C12:0).73 An ex vivo study by Singh et al. using
porcine skin and a Keshary−Chien glass diffusion target showed
that seed kernel oil of Mesua ferrea Linn. at a concentration of
15% significantly increased the penetrating amount of diltiazem
hydrochloride. FTIR spectra showed changes in the peak
positions of the methylene groups of SC lipids and the amide
groups in SC keratin indicating disordered lipid organization,
lipid fluidization, and an altered conformation of keratin fibers in
mesua oil-treated skin samples. Scanning electron microscope
(SEM) imaging of the epidermis confirmed the disruption of
protein structure in the SC.74 The mechanism of action was not
correlated with the composition of the oil; however, other
researchers have provided information on the content of OA,
stearic acid, linoleic acid, palmitic acid, myristic acid, and
arachidic acid,183 as well as coumarins, terpenoids, phenolics,
and flavonoids in the oil.184

Another in vitro Franz diffusion cell study showed that oil
extracted from Punica granatum seeds at concentrations of 2.5%,
5.0%, and 10% increased the amount of trans-resveratrol
penetrating pig skin by 1.25, 2.25, and 3.14 times, respectively,
compared to a control sample without oil. Analysis of the oil
composition by GC-MS showed a composition of punicic acid
(C18:3, 73.93%) with OA (C18:1), eicosenoic acid (C20:1),
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and linoleic acid (C18:2) which together accounted for 13.46%
of the oil composition.75 A study82 demonstrated the
penetration-enhancing potential of chaulmoogra oil extracted
from the seeds of a tree from the genus Hydnocarpus and family
Flacourtiaceae.185 A nanoemulsion containing chaulmoogra oil
at approximately 84 μg/mL, Tween surfactant at approximately
90 μg/mL, and cosurfactant at approximately 2 μg/mL was
developed for the transdermal delivery of methotrexate in the
dermatological treatment of psoriasis. Drug retention studies
showed that higher amounts of the API were retained in the
epidermis and dermis, the layers that are mainly affected by
psoriasis. Fluorescent microscopy analysis of skin cells also
confirmed the presence of the drug in the deeper layers of the
skin. In an in vivo clinical evaluation of the efficacy of this
psoriasis treatment using the Psoriatic Area Severity Index
(PASI) score, the nanoemulsion reduced the PASI by
approximately 95% after 28 days. Chaulmoogra oil alone
reduced the PASI by an average of 46%.82 Chaulmoogra oil is
characterized by the presence of predominantly cyclopentenyl
fatty acids: chaulmoogric acid (C18:1) (Table 2, item 14),
hydnocarpic acid (C16:1), and gorlic acid (C18:2) (Table 2,
item 15) containing a five-carbon ring with one unsaturated
bond attached to the carbon chain.186 These fatty acids exhibit
unusual biological activity against acid-resistant bacteria, and the
oil itself was once used as a API to treat leprosy in humans.187,188

Cyclopentenyl acids from chaulmoogra oil have been shown to
incorporate into triacylglycerols and cell membrane phospho-
lipids to further disrupt membrane processes leading to the
inhibition of Mycobacterium vaccae proliferation.185,189

Table 1 (items 30 to 33) presents the permeation
effectiveness of APIs used with oils in TTDs.
4.3. Polysaccharides. Polysaccharides are naturally occur-

ring polymers that are found in plants (e.g., starch, cellulose, and
pectin), marine sources (e.g., agarose, alginate, chitosan, and
carrageenan), microorganisms (e.g., dextran and pullulan), and
animals (e.g., hyaluronic acid (HA), chondroitin sulfate, and
heparin). Some of them have been described in the literature as
compounds showing the potential to modify the skin barrier
which supports their use in TDD, mainly for hydrophilic active
ingredients.190,191 They have beneficial properties that make
them widely used in the pharmaceutical industry. They exhibit
susceptibility to chemical modification, sensitivity to environ-
mental changes, and ability to swell in aqueous environments,
and they are nontoxic, readily available, and biodegradable.
These natural polymers via chemical or physical cross-linking
form hydrogels, which are used in TDD. Most commonly,
polysaccharides are physically cross-linked by means of
electrostatic interactions, hydrophobic interactions, and ionic
cross-linking supported by multivalent ions, van der Waals
forces, or host−guest complexes.192
Mucilage is a complex heteropolysaccharide, which in contact

with water becomes a viscous gel with a slimy appearance. It is
extracted from plant parts such as fruits, pods, seeds, flowers, and
leaves. The mucilage structure consists of hydrophilic groups
namely −OH, −CONH−, −CONH2, and −SO3H entities with
the ability to form noncovalent bonds with biological tissue.193

Saidin et al. extractedmucilage from fresh leaves ofHibiscus rosa-
sinensis L. When applied to rat skin at concentrations of 1%,
1.5%, and 2%, it resulted in extraction and fluidization of
corneocyte lipids and proteins and a conformational change in
keratin SC proteins, as confirmed by ATR-FTIR analysis.
Moreover, spectra analysis of the peak characteristic of the OH
and NH groups showed the formation of hydrogen bonds

between the gel components and SC ceramides, indicating a
mechanism of action similar to terpenes (formation of new polar
pathways for API diffusion). An in vitro permeation study using
vertical diffusion cells showed an enhanced diffusion of caffeine
in the presence of Hibiscus leaf mucilage with the best effect
occurring at a concentration of 2%. The SEM image of the
morphology of skin treated withHibiscus gel showed an increase
in skin smoothness after the application of the 2% gel compared
to skin treated with a caffeine solution alone. The smooth
surface of the SC permeation area had a reduced diffusional
resistance to API transport.76 The natural saccharide gel also
exhibited controlled drug-release properties. Mucilage extracted
from the fruit of Ficus reticulata L. acted as a matrix in
transdermal patches with properties that delayed the release of
the API diltiazem hydrochloride into the SC.83 Mucilage
extracted from Ficus carica L. also acted as a matrix in
transdermal patches delaying the release of diclofenac sodium.84

Mucilage from Colocasia esculenta (taro) corms was combined
with hydroxypropyl methylcellulose, which together served as a
matrix in transdermal patches. An in vitro study demonstrated
that these patches provided a safe, nonirritating control system
for the release of diltiazem hydrochloride through the skin. Drug
release slowed over time as the concentration of mucilage in the
formulation increased.85

Hyaluronic acid (HA) is a linear glycosaminoglycan
consisting of N-acetyl-D-glucosamine and D-glucuronic acid
(Table 2, item 16) that is naturally found in the extracellular
matrix of human connective tissue.194 For pharmaceutical and
cosmetic purposes, it is extracted by microbial fermentation of
microbial sources such as Streptococcus zooepidemicus and
Corynebacterium glutamicum.195 HA is used in a variety of drug
delivery systems including nanoemulsion hydrogels, micro-
emulsions, nanostructured carriers, and microneedles.196,197

Hydrogels form a three-dimensional network with a porous
morphology. Due to the swelling and water-attracting properties
of natural polymers, the hydrogel pores form a reservoir for
water molecules or drug solutions. Drug release occurs under the
influence of environmental changes such as pH, temperature,
the presence of enzymes, and reactive oxygen species.198,199 HA
is frequently used in pH-sensitive transdermal systems, such as
hydrogels, as the presence of a COOH carboxyl group that
dissociates at a pH equal to 6.7 creates a negatively charged
COO− group that contributes to the release of the API into the
skin through electrostatic interactions.87 The potential of HA-
based hydrogels has been used in TTD systems for polar
phenolic compounds. A study by Kong et al. indicated that
hydrogels using HA (MW= 800 kDa) and another natural plant
polymer, hydroxyethyl cellulose, facilitated the in vitro
permeation through rat skin of the phenolic compound
isoliquiritigenin extracted from Glycyrrhiza uralensis.86 In a
study by Kim, a hydrogel-based on HA (MW = 0.48 MDa) and
poly(N-isopropylacrylamide) was found to be effective in
transporting luteolin into the epidermis and dermis, as
confirmed by UV−vis spectrophotometric analysis of in vitro
drug-penetrated skin samples.87 The transport of proteins
through the skin is hindered mainly due to their hydrophilicity
and high molecular weights.200 The potential to enhance the
permeation of the protein drug bovine serum albumin (66 kDa)
hydrogel with 5% HA with different molecular weights of 5 kDa,
100 kDa and 1 MDa were evaluated.88 Using fluorescence
resonance energy transfer (FRET)-FLIM, it was observed that
low-molecular-weight HA (5 kDa) cotransported with the
protein drug into viable epidermal layers, i.e., stratum basale and
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stratum spinosum, which was not observed with the higher HA
molecular weights of 100 kDa and 1 MDa.88 Furthermore, the
relationship between HA molecular weight with the ability to
interact with SC proteins was confirmed by FTIR. Low-
molecular-weight HA dramatically increased skin hydration and
caused a conformational change in keratin structure from an α-
helix to a β-sheet, which affects the organization of the lipid
bilayer in the SC and the permeability to API. This effect was not
observed for 100 kDaHA, which only increased the hydration of
the SC.88 The SC penetration of HA is limited by its molecular
weight, which can range from 5.000 to 5.000 000 Da. Raman
microimaging of human skin sections provided information that
only low-molecular-weight HA (20−300 kDa) was able to cross
the SC barrier. In contrast, the SC barrier is impermeable to
high-molecular-weight HA of 1.000−1.400 kDa.201 A new
promising solution to improve the penetration of HA through
the skin was proposed by Yan et al. The solution involves
combining HA (in this study, HA with a molecular weight of 50
kDa) with a binding peptide called HaPP and a peptide called
Pep-1. Together, these peptides promote the penetration of HA
into the dermis.202 These penetrating peptides linked to HA are
covered by patent application No. CN107226846B. In the
discussed study by Yan et al., it has been suggested that the
discussed solution opens the possibility of potentially combining
HA with APIs.
Kawar et al. published information on a new type of liposome

with a gel core formed from HA (hyaluosomes). Hyaluosomes
were three times more effective in delivering ketoprofen through
porcine skin in vitro compared to conventional liposomes (60
μg/h versus 20 μg/h).89 The beneficial effects of HA in
enhancing API permeation are also exploited in the modification
of other liposomal carriers and ethosomes to form phospholipid-
ethanol complexes with HA.203 Fluorescence microscopic
imaging of rat skin showed that ethosomes containing sodium
forms of HA (MW = 150 kDa) facilitated the penetration of
more rhodamine B into the dermis compared to classical
ethosomes.176 Research indicates that HA can be included in
topical skin drug delivery systems for the treatment of psoriasis
and atopic dermatitis. Its mucoadhesive properties enable
controlled drug release over time and absorption rate.204 The
use of etosomes, which are based on propylene glycol coated
with a gel made of HA with MW = 240 kDa, resulted in the
delivery of 1% curcumin locally to the dermis and transdermally
after 8 h in vitro on mouse skin at levels 1.4 and 1.6 times higher,
respectively, compared to ethosomes without HA. Additionally,
the delivery was 3.3 and 3.1 times higher compared to the
curcumin solution alone.90

In the treatment of atopic dermatitis, polymeric nanoparticles
coated with HA with a MW of 100 kDa have been shown to be
effective in the ex vivo delivery of tacrolimus to rat skin,
according to Zhuo et al.91 Other polymer nanoparticles coated
with HA of the same molecular weight have also been used to
deliver betamethasone valerate to ex vivo rat skin.92

Table 1 (items 34−52) presents the permeation effectiveness
of APIs used with HA in TTDs.

5. CONCLUSION
The use of natural substances possessing properties that
facilitate API permeation through the SC is undoubtedly the
direction in which modern pharmaceuticals are heading.
The disorganizing effect on lamellar lipid fractions is

considered the most crucial factor in achieving improved
permeation. Urea is one such compound that can cause this

effect. Terpenes are widely recognized as the most versatile
permeation enhancers due to their molecular structure, which
contains both polar and nonpolar groups. This structure enables
terpenes to promote the permeation of both hydrophilic and
lipophilic APIs. Additionally, HA possesses mucoadhesive
properties that allow for controlled drug release over time and
absorption rate.
API penetrations appear to be most effective when utilizing a

compound formulation containing a mixture of permeation
enhancers that complement each other, as they can interact with
both the lipids and proteins of the SC, thereby creating transport
pathways for both hydrophobic and hydrophilic APIs. This
method also avoids the application of high concentrations of a
single permeation enhancer, which could induce overly potent
changes in the epidermis and cause skin irritation. Furthermore,
this approach offers the possibility of effective use of both polar
and nonpolar APIs.
We believe that proposed look on so diverse group of

substances that contribute to transdermal delivery system offers
new perspective for further study leading to discovery of new,
natural permeation enhancers.
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■ ABBREVIATIONS
TDDs, transdermal delivery systems; SC, stratum corneum;
CPEs, chemical permeation enhancers; API, active pharmaceut-
ical ingredient; SPP, short periodicity phase; LPP, long
periodicity phase; NMF, natural moisturizer factor; CER NS,
nonhydroxy acyl sphingosine-type ceramide; E-PABA, ethyl-p-
aminobenzoate; OA, oleic acid; HP-β-CD, hydroxy propyl-beta
cyclodextrin; rhGH, recombinant human growth hormone; IU,
isoprene unit; SER, skin electrical resistance; TEM, transmission
electron microscope; CGMD, coarse-grained molecular dynam-
ics; GC-MS, gas chromatography−mass spectrometry; TOF-
SIMS, time-of-flight secondary ion mass spectrometry; SEM,
scanning electron microscope; PASI, psoriatic area severity
index; HA, hyaluronic acid
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