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Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves 
progressive cartilage degeneration and bone destruction of subchondral bone. At 
present, clinical treatment is mainly for pain relief, and there are no effective 
methods to delay the progression of the disease. When this disease progresses to 
the advanced stage, the only treatment option for most patients is total knee 
replacement surgery, which causes patients great pain and anxiety. As a type of 
stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation 
potential. The osteogenic differentiation and chondrogenic differentiation of 
MSCs can play vital roles in the treatment of OA, as they can relieve pain in 
patients and improve joint function. The differentiation direction of MSCs is 
accurately controlled by a variety of signaling pathways, so there are many factors 
that can affect the differentiation direction of MSCs by acting on these signaling 
pathways. When MSCs are applied to OA treatment, the microenvironment of the 
joints, injected drugs, scaffold materials, source of MSCs and other factors exert 
specific impacts on the differentiation direction of MSCs. This review aims to 
summarize the mechanisms by which these factors influence MSC differentiation 
to produce better curative effects when MSCs are applied clinically in the future.
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Core Tip: Several reviews have summarized the current status of mesenchymal stem cells (MSCs) in the 
treatment of osteoarthritis (OA). These studies usually focus on the paracrine function of MSCs. However, 
the differentiation function of MSCs also plays an important role in the treatment of diseases. This is the 
first review to report the factors that may affect the differentiation direction of MSCs in the treatment of 
OA and aims to provide guidance for more accurate regulation when MSC therapy is applied in the future.
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INTRODUCTION
Osteoarthritis (OA) is one of the most common degenerative joint diseases, and its incidence increases 
with age[1]. With the rapid growth of the aging population, the prevalence of OA is increasing[2]. At 
present, there are more than 300 million OA patients worldwide[3]. The major symptoms of OA are 
pain and joint dysfunction, which seriously affect the quality of life of patients. Intra-articular microen-
vironment changes occur as OA develops. Due to tissue injury, severe hypoxia occurs in the joint cavity, 
and the expression level of hypoxia inducible factor 1 alpha increases significantly[4]. Many inflam-
matory cytokines infiltrate joints with OA, including interleukin-1 and tumour necrosis factor alpha 
(TNF-α). The expression of transforming growth factor-beta (TGF-β) in cartilage is significantly lower 
than that in healthy joints, which can lead to metabolic disorders of chondrocytes[5].

OA is an incurable disease at present, and cartilage degeneration and subchondral bone remodeling 
are considered the main pathogenic mechanisms of OA. There are no drugs that can delay the progres-
sion of OA[6]. The goal of clinical treatment is to relieve symptoms such as pain and loss of function[7]. 
The common treatments for OA include physiotherapy, pain relievers and nonsteroidal anti-inflam-
matory drug administration, intra-articular glucocorticoid injection and surgery. When OA progresses 
to the advanced stage, the only treatment option for most patients is total knee replacement surgery, 
which causes patients great pain and anxiety[8]. Some innovative new treatment options have been 
proposed, including mesenchymal stem cell (MSC) therapy.

Mesenchymal stem cells are a branch of stem cells, with the stem cell characteristics of self-renewal 
and differentiation potential[9]. MSCs can repair tissue damage after injury by differentiating into 
different tissue cells, so they can play an important role in disease treatment. In 1968, Professor 
Friedenstein[10] first discovered the existence of MSCs in bone marrow and established an adherent 
method to isolate and culture MSCs in vitro. Pittenger et al[11] proved for the first time that MSCs have 
multidirectional differentiation ability. Since then, MSCs have been widely studied and applied to the 
treatment of clinical diseases. In 2006, the International Society for Cell Therapy (ISCT)[12] established 
three minimal criteria for defining MSCs unequivocally: (1) The cells must have the ability to adhere to 
plastic surfaces when cultivated in standard conditions; (2) they must express CD105, CD73, and CD90, 
but not CD45, CD34, CD14/CD11b, CD79a/CD19, or HLA-D; and (3) they must have the ability to 
differentiate into at least the following cell types in vitro: Osteoblasts, adipocytes, and chondroblasts.

MSCs can be isolated from various tissues, such as bone marrow, adipose tissue, cord blood and 
placenta. MSCs from different sources have different characteristics[13]. At present, bone marrow MSCs 
(BMSCs) and adipose MSCs (ADSCs) are the most commonly used. Heo et al[14] found that only BMSCs 
and ADSCs have the ability to differentiate into three lineages, including osteoblasts, adipocytes and 
chondrocytes, to meet the minimum MSC standard proposed by the ISCT[15]. However, Beeravolu et al
[16] believe that MSCs from the human umbilical cord and fetal placenta can also differentiate into three 
lineages.

At present, there are approximately 1519 studies on “mesenchymal stem cells” registered, according 
to clinicaltrials.gov (April 2023). MSCs have been used as cellular therapy for various degenerative, 
inflammatory and autoimmune diseases in a large number of clinical trials. These clinical trials include 
diseases of the musculoskeletal system, respiratory system, blood system and cardiovascular system 
and have already shown the effectiveness and safety of MSCs. These cells are most commonly used for 
the treatment of OA in the musculoskeletal system. At present, the pathogenesis of OA is not 
completely clear. A large number of studies have shown that subchondral bone destruction[17,18] and 
cartilage degeneration[19-21] participate in pathogenesis. Osteogenesis and chondrogenesis of MSCs 
play a key role in the treatment of OA.

Lamo-Espinosa et al[22] recruited 30 patients with OA and injected MSCs into the experimental group 
and hyaluronic acid (HA) into the control group. After 12 mo, magnetic resonance imaging (MRI) 
showed that the experimental group receiving the high dose of MSCs had a greater cartilage thickness, 
which is an indicator of the regeneration of cartilage in OA patients, than the control group. Tang et al
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[23] injected MSCs into rabbit models of OA. Nine weeks later, the knee joints of the rabbits were 
collected and analyzed. They found that when MSCs were injected, the articular cartilage of the rabbit 
showed characteristics of good reconstruction, such as a regular surface, restored cartilage thickness, 
nearly normal chondrocyte morphology, and uniformly distributed red Safranin O staining in the 
articular cartilage. At present, no experiment has been performed on the differentiation of MSCs in 
isolated subchondral bone tissue. However, many similar studies that applied MSCs to bone defects 
have been performed and proved the feasibility of osteogenic differentiation of MSCs in vivo. For 
example, in the treatment of femoral head necrosis in the same hypoxic environment, after MSCs are 
implanted, the expression of bone-related genes is improved, and alkaline phosphatase and type I 
collagen are increased, which are indicators of bone formation[24]. MSCs are considered promising 
candidates for bone and cartilage repair and regeneration in OA. But the differentiation of transplanted 
MSCs is influenced by the microenvironment. Therefore, this article reviews the factors affecting the 
osteogenesis and chondrogenesis of MSCs (Figure 1).

MECHANISM OF OSTEOGENIC AND CHONDROGENIC DIFFERENTIATION OF MSCS
The differentiation of MSCs depends on a number of factors, including chemical, physical and biological 
factors. These factors activate different signaling pathways and transcription factors that regulate MSC 
differentiation into different cells[25]. The differentiation of MSCs is precisely controlled by various 
signaling pathways[26]. These signaling pathways activate lineage-specific transcription factors[27].

Chondrogenesis and osteogenesis of MSCs are interrelated processes. There are two ways for MSCs 
to form bone: Endochondral or intramembranous ossification. In endochondral ossification, MSCs first 
differentiate into chondrocytes and secrete cartilage matrix, and then they are stimulated by osteoblasts 
to form bone. In contrast, in intramembranous ossification, MSCs differentiate into osteoblasts directly
[28]. Therefore, there are some common signaling pathways and transcription factors involved in the 
osteogenic differentiation and chondrogenic differentiation of MSCs.

TGF-β signaling, Wnt/β-catenin signaling and Notch signaling are the key pathways involved in 
chondrogenic differentiation of MSCs. The key cytokines include Sox9, Runx2, TGF-β, FGF and others
[29]. Sox9 plays an essential role during chondrogenic differentiation and is considered an early sign of 
chondrocyte formation. Complete deletion of Sox9 can prevent the formation of cartilage. When it is 
overexpressed, it significantly inhibits the proliferation of chondrocytes[30]. Sox9 is a regulator of the 
type II collagen (ColII) gene, which is a specific marker of cartilage formation. The expression of ColII in 
chondrocytes has been found to be in direct proportion to the concentration of Sox9[31]. TGF-β can 
promote the differentiation of MSCs into chondrocytes and inhibit the terminal differentiation of 
chondrocytes into mast cells[32]. The differentiation of chondrocytes induced by TGF-β is mainly 
mediated by the Smad signaling pathway[33], which can upregulate the expression of Sox9 trans-
cription factors and promote the synthesis of collagen and proteoglycan.

The main paracrine signaling pathways involved in the osteogenic differentiation of MSCs include 
bone morphogenetic protein (BMP) signaling, Wnt signaling, and Notch signaling[28,34-36]. The key 
transcriptional regulatory factors include Runx2, β-catenin, and osterix[27]. Runx2 is indispensable for 
the osteogenic differentiation of MSCs because it is a common convergence point for many signaling 
pathways[25,37]. It leads to the differentiation of MSCs into osteoblasts and inhibits the differentiation 
of adipogenesis and chondrogenesis. Runx2 promotes the differentiation of MSCs into osteoblasts in the 
early stage and promotes the maturation and mineralization of osteoblasts in the later stage by 
regulating extracellular matrix proteins, such as ColI and alkaline phosphatase (ALP). When Runx2 is 
absent, neither periosteal nor endochondral ossification occurs[38]. BMP2 is also an effective osteogenic 
induction factor that promotes the expression of Runx2, thus promoting the differentiation and 
maturation of osteoblasts[28]. Osterix is an osteoblast-specific transcription factor that is only expressed 
in osseous tissue and plays a decisive role in the differentiation of MSCs into osteoblasts[39]. Activation 
of the Wnt signaling pathway induces osterix expression. Overexpression of osterix in MSCs leads to 
osteogenic differentiation and an enhanced bone regeneration ability of MSCs[40]. The activity of β-
catenin is also regulated by Wnt signaling. β-catenin can facilitate the shift of MSC fate to osteoblasts 
and enhance endochondral ossification. Its deficiency hinders the osteogenesis of MSCs and promotes 
the formation of cartilage and fat[41,42] (Figure 2).

FACTORS AFFECTING THE OSTEOGENIC AND CHONDROGENIC DIFFERENTIATION OF 
MSCS IN THE MICROENVIRONMENT OF OA
Oxygen concentration
The effect of oxygen concentration on MSCs has been studied for over twenty years (hypoxia promotes 
murine bone marrow-derived stromal cell migration and tube formation). Although there are still some 
controversies, a large number of studies have proven that low oxygen tension (hereinafter “hypoxia”) 
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Figure 1 Common sources and differentiation potential of mesenchymal stem cells.

Figure 2 Signaling pathways involved in osteogenic and chondrogenic differentiation of mesenchymal stem cells and the mechanism of 
certain factors. TGF-β: Transforming growth factor-beta.

exerts a significant impact on the differentiation of MSCs. Hypoxia often occurs in the stem cell microen-
vironment, which induces beneficial signals, such as upregulation of pluripotency markers, for MSCs to 
maintain their functions[43]. In the general microenvironment in vivo, the oxygen concentration is 
usually low. For example, the oxygen concentration in healthy bone marrow is only 1.3% to 7.0%[44], 
and that in articular cartilage is only 2% to 5%[45]. In particular, OA often occurs in a hypoxic 
environment. Nitric oxide synthase and hypoxia-inducible factor-1 are often upregulated in OA and 
aggravate the hypoxic environment[46]. Although the oxygen concentration in the microenvironment of 
MSCs is low, a 21% O2 concentration (hereinafter “normoxia”) is routinely used in cell culture.

Ciapetti et al[22] isolated and cultured BM-MSCs under 2% O2. They observed a higher tendency of 
osteogenic differentiation of these cells compared with the cells cultured in standard normoxia. 
Significant changes in the MSC immunophenotype, such as increased CD73 and CD90 expression, were 
observed, but CD105 expression was reduced. MSCs cultured under hypoxia have better mineralization, 
higher mineral density and higher calcium matrix deposition than those cultured under normoxia. 
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Alizarin red S staining is a convenient method for detecting calcium salt deposition. The positive area 
observed in hypoxic cultured MSCs was greater than that in cells cultured in normoxia, which means 
that osteoblast differentiation was enhanced[47,48]. Fennema et al[49] found that hypoxic culture 
increased the levels of osteogenic genes, such as osteopontin, osteocalcin, ALP and ColI[50]. Hypoxia 
activates the Notch signaling pathway, increases the expression of CBF-1α, and promotes the osteogenic 
differentiation of MSCs[51,52].

Similarly, hypoxic conditions increased the chondrogenic differentiation efficiency compared to 
normoxic conditions. Chondrogenic differentiation of MSCs can be quantitatively assessed by Safranin 
O staining[53,54], and the positive area increases after hypoxic culture. Immunohistochemistry 
demonstrated that the expression of ColII increased[50]. Hypoxia may enhance the chondrogenic differ-
entiation capacity of MSCs by enhancing the expression of chondrogenic genes[55]. This may be 
manifested as increased mRNA expression of glycosaminoglycans, aggrecan, transcription factor and 
Sox9[56,57]. The level of cartilage oligomeric matrix protein is higher under hypoxic conditions[53]. 
These factors play crucial roles in chondrocyte differentiation. Hypoxia affects the overall cellular 
response through TGF-β, leading to upregulation of cartilage molecular markers, such as ColII and Sox9
[58]. However, some studies have shown that hypoxia can enhance chondrogenesis and inhibit 
osteogenesis of MSCs[59,60]. These differences between studies may be due to differences in culture 
conditions and sources of MSCs and therefore larger sample sizes and more precise experiments are 
required to fully elucidate the effect of hypoxia on MSC differentiation.

Inflammation
OA was once referred to as noninflammatory arthritis, but it is now considered a persistent low-grade 
inflammatory disease, and many inflammatory cells are involved[61]. Chronic inflammation activates 
the Wnt/β-catenin pathway, which leads to mitochondrial damage and further impairs the differen-
tiation of MSCs[62]. Interferon-gamma (IFN-γ) and TNF-α are two important inflammatory cytokines 
involved in OA inflammation[63]. Li et al[64] pretreated MSCs with IFN-γ and TNF-α to simulate the 
inflammatory microenvironment. They found that the inflammatory microenvironment promoted 
chondrogenic differentiation of MSCs and inhibited their osteogenic differentiation.

Acidic pH
Inflammation decreases the extracellular pH and makes the OA joint cavity a weakly acidic microenvir-
onment[65]. The pH of joints with OA (6.40 ± 0.08) was obviously lower than that of normal joints (7.01 
± 0.26)[66]. Decreasing pH was shown to inhibit the proliferation and metabolism of MSCs in culture. 
Furthermore, the activity of alkaline phosphatase was reduced, which means that the osteogenic differ-
entiation of MSCs was decreased[67]. At physiologic pH (8.0), MSCs exhibit the strongest osteogenic 
differentiation potential[68]. A pH of 8.0 is recommended for a greater therapeutic effect of MSCs in OA.

Osmolar pressure
The osmolar pressure in the joint cavity of healthy adults is 404 mOsm/L ± 57 mOsm/L, while that in 
OA patients is 297.0 mOsm/L ± 16.9 mOsm/L. The joint cavity of OA patients is exposed to a 
hypoosmotic environment[69,70]. At present, there is little research on the effect of osmotic pressure on 
the osteogenic and chondrogenic differentiation of MSCs. Some studies have demonstrated that 
hyperosmolarity promotes the chondrogenic differentiation of MSCs and cartilage repair[71-73]. No 
study on the effect of hypo-osmotic stress has been conducted.

Cytokines
In contrast to normal bone, subchondral bone in advanced OA is characterized by osteosclerosis, 
including a higher bone volume fraction, a greater number of trabecular bones in the load-bearing area, 
and an increase in the thickness of the original trabeculae. This may be due to the overexpression of 
growth factors in the joints of patients with OA, such as insulin-like growth factor 1 and TGF-β[74]. Both 
of these cytokines have been shown to promote osteogenic and chondrogenic differentiation of MSCs
[75,76]. The local expression of basic fibroblast growth factor (bFGF) in the joints of patients with OA is 
significantly higher than that in healthy people[77]. bFGF has been proven to be an important growth 
factor for maintaining the stemness of MSCs[78].

OTHER COMMON INFLUENCING FACTORS IN THE TREATMENT OF OA
Glucocorticoids
Dexamethasone is a member of the glucocorticoid class, and it is considered to be the mildest corticos-
teroid drug used for OA treatment[79]. Intra-articular injection of glucocorticoids is one of the treatment 
methods for OA[80], and dexamethasone can also be used as an immunosuppressive agent for MSC 
transplantation. Moreover, dexamethasone is generally considered one of the main components that 
induces MSCs to differentiate toward osteogenic, adipogenic and chondrogenic lineages[81]. The 
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osteogenic differentiation of MSCs mainly relies on osteogenic induction medium, which is usually 
composed of dexamethasone, ascorbic acid and β-sodium glycerophosphate. Dexamethasone induces 
increased expression of Runx2, osterix, and bone matrix proteins. Furthermore, it can induce osteogenic 
differentiation by inhibiting Sox9 expression[82]. Ascorbic acid and β-sodium glycerophosphate increase 
the content of ColI and stimulate the formation of a mineralized matrix[11]. Human MSCs need 
dexamethasone to produce ALP, a marker used to distinguish osteoblasts in culture[83,84]. The 
chondrogenic differentiation medium often includes dexamethasone, ascorbic acid and TGF-β3. 
Dexamethasone enhances the expression of the cartilage-specific gene Sox9[85]. The adipogenic differ-
entiation medium often contains dexamethasone, ascorbic acid, 3-isobutyl-1-methylxanthine, insulin 
and other components[86]. Although the detailed mechanism of differentiation induced by dexa-
methasone is currently unknown, dexamethasone clearly affects the direction of MSC differentiation
[87].

Doi et al[88] found that dexamethasone had certain effects on the osteogenic differentiation of MSCs. 
The effect of dexamethasone on inducing MSCs to differentiate into osteoblasts depends on the dosage 
and exposure time of the drugs[89]. It has been reported that short-term use of low-dose (10-8, 10-7 mol/
L) dexamethasone can stimulate the osteogenesis of MSCs and significantly increase the formation of 
mineralized nodules and the expression of osteogenic markers (BSPII and Runx-2) in cells[90,91]. It has 
also been reported that high concentrations of dexamethasone (10-6 mol/L) can inhibit the osteogenic 
differentiation of MSCs and induce them to differentiate into adipocytes. A high dose can reduce the 
osteogenic differentiation-related surface phenotype, as indicated, for example, by decreased surface 
expression of CD73. The higher concentration of dexamethasone resulted in enhanced lipid droplet 
formation and higher expression of lipid-forming markers (PPAR-γ and CEBP-α) in cells. In addition, a 
high concentration of dexamethasone exacerbates apoptosis of MSCs, inhibits MSC proliferation, and 
promotes senescence of MSCs[83]. A concentration of dexamethasone up to 10-6 mol/L imposes toxic 
effects on MSCs[89,92]. When the concentration of dexamethasone was lower than 10-8 mol/L, no differ-
entiation of osteoblasts was detected[93,94]. Therefore, 10-7 mol/L is considered the most appropriate 
concentration for inducing MSCs to differentiate into bone[91].

Similarly, dexamethasone can also promote chondrogenic differentiation of MSCs[93]. Tangtrongsup 
et al[95] found that chondrogenic differentiation was suppressed in dexamethasone-free cultures. It can 
increase the proteoglycan content and collagen type II intracellular content. Dexamethasone may not 
function as a specific chondrogenic factor to directly promote cartilage differentiation, rather, it may 
promote it by inducing cells to upregulate cartilage factors, such as Runx2 and Noggin[96]. Its influence 
is mainly dependent on the context[97].

In addition to the dosage, the duration of dexamethasone treatment also affected the differentiation of 
MSCs. Dexamethasone is commonly used in bone trauma to relieve edema and pain, but long-term use 
may lead to osteoporosis through bone loss and bone marrow lipogenesis. Some studies suggest that 
long-term exposure of MSCs to dexamethasone may negatively impact their differentiation[91]. Others 
found that a lack of dexamethasone inhibits the differentiation of MSCs, so continuous delivery in vivo 
should be given priority[95]. Moreover, Song et al[98] found that within 4 wk, as exposure time 
increased, stimulation of osteogenic differentiation by dexamethasone strengthened, and calcium 
deposition increased. According to some authors, the sensitivity of MSCs to dexamethasone depends on 
the stage of cell maturation. Dexamethasone mainly acts on early stem cells, so it should be applied in 
the early stage[84]. It has also been suggested that early exposure to dexamethasone has little effect on 
MSC differentiation, and thus, continuous exposure for at least one week is required[89]. At present, 
there is little research on the effect of the duration of dexamethasone exposure on MSC differentiation, 
and more accurate experiments are needed to verify this hypothesis. As a glucocorticoid, dexa-
methasone is not suitable for systematic use to regenerate local tissue defects due to possible negative 
effects on healthy tissues and organs. Therefore, the application of local controlled release devices of 
dexamethasone in MSC therapy is reasonable.

Scaffolds
MSCs can be injected directly into the damaged site or differentiate into target cells together with the 
tissue engineering scaffold. Many tissue engineering experiments have proven that biological scaffolds 
can enhance the osteogenic and chondrogenic differentiation of MSCs. HA is often used to form a stable 
3D environment for MSC chondrogenesis in vitro, which allows for better provision of oxygen and 
nutrients to MSCs. HA can promote the osteogenic process of endochondral ossification of MSCs[99]. 
Three-dimensional nanofibrous scaffolds, such as poly-((D,L)-lactide-ε-caprolactone)dimethacrylate 
scaffolds and poly(-caprolactone) nanofibrous scaffolds, have been shown to enhance chondrogenic 
differentiation of MSCs[100,101]. The combination of MSCs with biomaterials can improve the differen-
tiation ability of MSCs. These studies have demonstrated that better efficacy can be achieved by 
injection of scaffolds loaded with MSCs.

Sources of MSCs
The source of MSCs also significantly impact their differentiation. By reviewing clinical trials, we found 
that bone marrow-derived MSCs (BM-MSCs), adipose tissue-derived MSCs (AD-MSCs) and umbilical 
cord-derived MSCs (UC-MSCs) are mainly used in OA research. MSCs from different sources have 
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different characteristics and differentiation potentials[102].
BM-MSCs offer the advantages of strong differentiation ability, mild implantation reaction and strong 

expansion ability in vitro. However, BM-MSCs need to be obtained from the patient’s bone marrow, and 
bone marrow collection is a painful and invasive process. The number of BM-MSCs derived in vivo is 
quite low and requires in vitro amplification. Moreover, the differentiation potential and proliferative 
capacity of BM-MSCs decrease with the age of the donor[103]. Adipose tissue was first identified as an 
alternative source of MSCs in 2001[104,105]. AD-MSCs offer the advantage that they can be obtained in 
large quantities in a simple, minimally invasive manner. They can be extracted from excess adipose 
tissue that is discarded as waste during liposuction, avoiding immunogenicity and ethical concerns. The 
quantity and quality of MSCs from adipose tissues were significantly higher than those of other tissues
[106]. Some studies have suggested that the differentiation potential of AD-MSCs depends on the source 
of adipose tissue[107]. MSCs from visceral adipose tissues have greater osteogenic differentiation 
capacity[108,109]. UC-MSCs exhibit superior clonogenic, proliferation and migration capacities[43,110]. 
They can secrete relevant chondrogenic factors[111,112]. Furthermore, UC-MSCs are less mature, which 
makes them a better choice for allogeneic therapy[113]. Wharton’s jelly (WJ) is the most frequently used 
source of umbilical cord tissue[114]. WJ-MSCs are relatively novel for cell and tissue engineering 
therapy and are considered promising candidates for the development of cell-based therapies[113,115].

Many studies have shown that BM-MSCs have higher osteogenic and chondrogenic differentiation 
potential[116,117]. They exhibit a relatively high incidence of bone and cartilage formation[50], and they 
can generate more mature bone tissue and more compact cartilage pellets[118]. BM-MSCs express high 
levels of CD90, which means that they are more suitable for bone repair and regeneration[119].

AD-MSCs are more inclined to differentiate into adipocytes, and their potential for osteogenic differ-
entiation and chondrogenic differentiation is relatively low[107]. Some studies hypothesize that the 
chondrogenic potential of MSCs derived from adipose tissue is higher than that of MSCs derived from 
UC sources[120]. However, other studies have suggested that AD-MSCs and UC-MSCs show similar 
chondrogenic potential[110].

Although BM-MSCs have stronger differentiation ability, AD-MSCs and UB-MSCs perform better for 
pain relief and functional improvement in OA[121]. AD-MSCs are considered the most effective MSCs 
in relieving pain, while UC-MSCs are considered the most effective MSCs in improving function in OA 
patients[122]. Therefore, AD-MSCs and UC-MSCs showed better anti-arthritis efficacy than BM-MSCs
[123].

CONCLUSION
In this review, we summarize the common factors that affect the differentiation of MSCs in the OA 
microenvironment. MSCs can differentiate into different lineages, and these processes are precisely 
regulated by signaling pathways. Many factors can affect the differentiation direction of MSCs by acting 
on these signaling pathways. The multidirectional differentiation potential and tunability of MSCs make 
them a promising treatment for OA and other diseases. A large number of studies have confirmed their 
safety and effectiveness.

At present, a large number of studies focus on the paracrine effect of MSCs. However, the differen-
tiation function of MSCs can also play an important role in disease treatment. Chemical, physical and 
biological factors can affect the differentiation of MSCs. Therefore, there are many conditions that can 
affect the efficacy of MSCs. To control the differentiation of MSCs more precisely to improve their 
efficacy in the treatment of diseases, it is necessary to understand how various influencing factors work. 
However, there are few studies on the factors that affect the differentiation direction of MSCs, and we 
are still at a preliminary stage in understanding how these factors determine the fate of MSCs. More 
research is needed on the differentiation of MSCs, which is of great value for developing novel therapies 
for diseases and applying MSCs to clinical practice.
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