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Summary 
The Forkhead Box P3 (FOXP3) protein is an essential transcription factor for the development and function of regulatory T cells (Tregs), involved 
in the maintenance of immunological tolerance. Although extensive research over the last decade has investigated the critical role of FOXP3+ 
cells in preserving immune homeostasis, our understanding of their specific functions remains limited. Therefore, unveiling the molecular 
mechanisms underpinning the up- and downstream transcriptional regulation of and by FOXP3 is crucial for developing Treg-targeted thera-
peutics. Dysfunctions in FOXP3+ Tregs have also been found to be inherent drivers of autoimmune disorders and have been shown to exhibit 
multifaceted functions in the context of cancer. Recent research suggests that these cells may also be involved in tissue-specific repair and 
regeneration. Herein, we summarize current understanding of the thymic-transcriptional regulatory landscape of FOXP3+ Tregs, their epigenetic 
modulators, and associated signaling pathways. Finally, we highlight the contributions of FOXP3 on the functional development of Tregs and 
reflect on the clinical implications in the context of pathological and physiological immune responses.
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Introduction
In the context of peripheral self-tolerance maintenance, regu-
latory T cells (Tregs) were originally defined as a subset of T 
cells expressing CD4 and CD25. However, it was later dis-
covered that Tregs specifically expressed the Forkhead Box 
P3 (FOXP3) transcription factor, a master regulator of Treg 
differentiation and function, which is crucial for the main-
tenance of immune tolerance. Abnormalities in FOXP3 were 
found to cause a wide range of immunopathological dis-
eases. Deficiency in the Foxp3 gene can lead to the devel-
opment of fatal lymphoproliferative autoimmune disease, 
likely due to the absence in FOXP3+ Treg-mediated immune-
suppressive mechanisms [1]. Similarly, mutations, in human 
FOXP3, have been shown to cause immune dysregulation, 
polyendocrinopathy enteropathy, and X-linked syndrome 
(IPEX) [2]. Using a scurfy mouse model deficient in CD4+ 

FOXP3+ Tregs, an adoptive transfer of CD4+ T cells demon-
strated that these cells were critical mediators of disease de-
velopment [3].

After years of research establishing FOXP3+ Tregs as dis-
tinct regulators of CD4+ T cells, recent evidence suggests that 
they play a multifaceted role beyond immunosuppression. As 
the onset of FOXP3 expression was used as a standard marker 
of Tregs, it became clear that these cells have diverse func-
tions in regulating immune responses. These recent advances 
highlight a promising avenue for potential therapeutics using 
biologicals targeting CD4+FOXP3+ Tregs. In certain patholo-
gies, such as autoimmune diseases, inflammatory disorders, 
and cases of graft rejection, the polyclonal expansion of 
FOXP3+ Tregs can enhance their immunomodulatory cap-
acity. However, in other cases, such as certain types of can-
cers where FOXP3+ Tregs accumulate and are associated with 
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poor prognosis [4], a potential antitumor immune response 
may involve suppressing Treg function (Fig. 1). Here, we pre-
sent current literature on the development and function of 
FOXP3+ Tregs, including their emerging implications in tissue 
regeneration, and discuss prospects for harnessing these cells 
in clinical settings.

Development and differentiation of Tregs
The thymus is an indispensable organ for the development 
and maturation of Tregs. During fetal thymic development 
(Fig. 2), T-cell receptor (TCR+) CD4+ CD8+ double posi-
tive thymocytes undergo negative selection, when they are 
presented with high-affinity or high-avidity self-peptides 
via major histocompatibility complex class II (MHC II) 
by thymic epithelial cells or dendritic cells (DCs). A small 
subset of these thymocytes develop into thymic Tregs (tTreg), 
which can detect self-antigens via the expression of a biased 
self-reactive TCR repertoire that results in the induction of 
FOXP3 expression [5]. In addition to the signaling mediated 
by the TCR, CD28 is also essential in the development of 
tTregs. This is supported by evidence from mouse models de-
ficient in CD28-CD80/86, which exhibit reduced frequency 
of Tregs [6]. Although engagement of TCR-CD28 leads to 
the activation of the phosphatidylinositol-3-kinase (PI3K) 
signaling pathway, the differentiation of FOXP3+ Tregs ap-
pears to require a limited duration of this signaling cascade 
[7]. In contrast, extended activation of the PI3K pathway in 
conventional T (Tconv) cells appears to counter the induction 
of FOXP3 expression.

As Treg development progresses, there is an upregulation 
of the interleukin (IL)-2 receptor alpha chain, (IL-2Rα/
CD25), which is a marker of tTregs that have undergone 

TCR signaling [8, 9]. The expression of CD25 is concurrent 
with the expression of FOXP3 and is also associated with 
the expression of additional Treg markers, such as cyto-
toxic T-lymphocyte–associated antigen 4 (CTLA-4) and 
glucocorticoid-induced TNFR-related protein (GITR) [8, 9]. 
Moving forward in the developmental process, medullary 
thymic epithelial cells (mTECs) that express the transcription 
factor autoimmune regulator (AIRE) contribute to negative 
selection and the prevention of autoimmunity by presenting 
tissue-restricted self-antigens to developing T cells [10]. In the 
absence of AIRE, potentially self-reactive CD4+ T cells are 
then able to exit to the periphery and become pathogenic, 
leading to peripheral autoimmunity. Thus, AIRE is critical in 
maintaining self-tolerance to a vast array of autoantigens and 
ensuring proper development of FOXP3+ Tregs.

In the presence of IL-2 and transforming growth factor β 
(TGF-β), antigenic stimulation can convert naïve CD4+ Tconv 
cells into peripheral Tregs (pTregs) cells. Although pTregs 
make up a small fraction of the overall Treg population in the 
blood, they have a tendency to accumulate in specific organs, 
such as the gut, and are crucial for preserving maternal–fetal 
tolerance [11]. Within the small intestine, pTregs recognize 
foreign antigens such as those found in food and commensal 
bacteria. In addition to maintaining tolerance to commensal 
bacteria, pTregs can also play an essential role in preserving 
the expression of FOXP3 via the production of TGF-β [12, 
13]. Furthermore, short-chain fatty acids, including butyrate 
and propionate, generated by commensal microorganisms, 
have been shown to induce FOXP3 expression in Tregs and 
expand their population in the colon [14].

During the course of Treg development, signature markers, 
including CTLA4 and CD25, have recently been found to be 
influenced by the insulin receptor substrate 1 (IRS1) signaling 

Figure 1. Therapeutic targeting of Tregs. The targeting of Tregs for therapeutic purposes has been proposed for various pathologies. Experimental 
models have provided evidence showing that reducing Tregs can result in a decrease in tumor growth and enhanced efficacy of tumor immunotherapy. 
In such cases, suppressing the CD4+CD25+FOXP3+ Treg population could prove beneficial (right side of the scale). However, in the context of 
autoimmune disease, inflammatory disorders, and graft rejection, polyclonal expansion and proliferation of CD4+CD25+FOXP3+ Tregs may have potential 
utility by mitigating autoimmune attack and augmenting Treg-mediated immunosuppression (left side of the scale).
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pathway. In vitro studies by Lee et al. identified that over-
expression of IRS1 in Tregs led to a reduced expression of 
FOXP3 and Treg phenotype markers. Moreover, in an adop-
tive cell transfer model of colitis, IRS1-overexpressing Tregs 
demonstrated reduced immunosuppressive capacity and 
were unable to inhibit the pathogenic effects of cotransferred 
Tconv cells. Further investigation revealed that IRS1 led to 
Treg instability through activation of the mTORC1 pathway 
and upregulation of IFN-γ and glucose transporter 1 (Glut1) 
[15].

To investigate the heterogeneity and functional diversity of 
Tregs, Zemmour et al. employed a multimodal approach con-
sisting of single-cell RNA sequencing (scRNA-seq), activation 
reporter, and TCR-seq analysis. They obtained gene expres-
sion profiles of distinct Treg subsets in mice and humans and 
identified that resting Tregs had similarities to Tconv cells, 
with similar gene and protein expression profiles. Moreover, 
all Tregs were found to express a fundamental set of FOXP3-
dependent transcripts, with additional gene expressions or 
pathways activated nonuniformly across the different sub-
types. Genes required for Treg function, including Il2ra and 
Ctla4, were revealed to be consistently expressed across the 

different Tregs subsets, while inhibitory cytokines were more 
variably expressed. Finally, it was also revealed that TCR 
signaling strength appeared to influence the gene expression 
patterns of activated Tregs [16].

Functional Tregs can, however, be distinguished based 
on their levels of FOXP3 expression, with continuous and 
elevated FOXP3 transcription levels leading to their mat-
uration [17]. Nonetheless, stable expression of FOXP3 is 
essential for the development and function of Tregs and 
is partly dependent on the epigenetic modifications of the 
Treg-specific demethylated region (TSDR) [18, 19]. This 
non-coding region, located in the first intron of the FOXP3 
gene locus, has become a defining marker of true tTregs, 
distinguishing them from activated CD4+CD25+FOXP3+ 
Tconv cells, which lack suppressive function and only tran-
siently express FOXP3. Therefore, the presence of DNA 
hypomethylation at the TSDR is critical for lineage sta-
bility, ensuring stable FOXP3 expression and long-term 
Treg function. However, in the event of FOXP3 expression 
loss, two phenotypic outcomes are possible: the induction 
of either a memory Treg cell or an inflammatory effector T 
cell [20, 21].

Figure 2. Schematic of Treg development. Derived from hematopoietic progenitor cells, TCR+CD4+CD8+ double-positive (DP) thymocytes differentiate 
to become either CD8+ single-positive (SP) or CD4+ SP thymocytes. Once in the periphery, upon antigen stimulation, with the expression of TGF-β and 
IL-2, CD4+ T cells differentiate into pTregs. In the thymus, however, there is upregulation of IL-2Rα/CD25, FOXP3, CTLA-4, and GITR, all of which denote 
the differentiation into tTregs. In the absence of AIRE by mTECs, developing T cells are not negatively selected and can escape into the periphery as 
potentially pathogenic T cells.
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Tregs beyond immunosuppression
As part of the regulatory pathway, certain Tregs (tTregs or 
pTregs) express the CC chemokine receptor 4 and respond 
to its ligand, CC chemokine ligand 22 (CCL22). However, 
in some pathologies, including cancer, this mechanism allows 
Tregs to migrate toward CCL22-expressing tumor-associated 
macrophages and cancer cells. Within the tumor stroma, 
Tregs are induced to proliferate and expand by IL-2 and TCR 
stimulation, as they recognize tumor antigens presented by 
DCs [22]. In addition, TGF-β from the tumor microenviron-
ment can induce differentiation of Tconv cells into Tregs [23]. 
In certain cancers, such as non-small-cell lung carcinoma and 
breast cancer, inhibiting the expansion and proliferation of 
Tregs may enhance therapeutic outcomes [22, 23].

Interestingly, evidence also points towards a potentially 
immunosupportive role of Tregs. In the context of immuno-
logical memory of antiviral responses, Tregs facilitate rapid 
movement of effector cells to the site of infection. In add-
ition, they regulate the differentiation of memory CD8+ T 
cells via the production of IL-10, TGF-β, and downregulation 
of IL-2. Emerging data have shown that specific Treg-derived 
cytokines are crucial for the diversification of memory T 
cell populations. For instance, the proliferation and optimal 
maintenance of memory CD8+ T cells is dependent on Treg-
derived IL-15, while KLRG1-IL-7Rα+ memory CD8+ T cells 
rely on Treg-derived IL-10 [24]. By highlighting the diverse 
functions of Tregs beyond immunosuppression and revealing 
their underlying mechanisms in different pathological states, 
it may allow them to be used for applications beyond their 
immunoregulatory function.

Transcriptional regulation of Treg function by 
FOXP3
The FOXP3 gene consists of 12 exons that code for a 431 
amino acid FOXP3 protein. The protein includes a C2H2 
zinc finger (Cys2-His2), a central leucine zipper domain, and 
a C-terminal forkhead (FKH) domain [25]. The FHK domain 
is essential for DNA binding, nuclear localization, and inter-
action with other transcription factors, such as nuclear factor 
of activated T cells (NFAT). The central leucine zipper domain 
and zinc finger domains create a structural scaffold, which 
plays a pivotal role in facilitating protein–protein interactions 
and the formation of FOXP3 complexes required for regula-
tory activity [25]. A recent study on the dimerization states of 
FOXP3 identified that it can fold into two distinct structures, 
with the functional one being a head-to-head dimer, which 
uses the RUNX1-binding region as a link for the forkhead do-
mains [26]. This dimerization state allows for FOXP3 mono-
mers to interact with one another and bind DNA to facilitate 
transcriptional regulation of gene expression.

To further facilitate Treg development, FOXP3 can bind 
to distinct genomic sites and interact with various binding 
partners depending on the extracellular environmental cues. 
Moreover, driving FOXP3 programming of Tregs are nu-
merous domains of complexes that act as either repressors 
or activators [27, 28]. An alanine-scanning mutagenesis ana-
lysis identified that FOXP3 was able to interact with certain 
binding partners to form an “operative” complex, active in 
both target gene transcriptional activation and repression. 
FOXP3 was also able to form a “non-operative” complex 
with reduced activation and repressive capacity [28]. Other 

factors affecting FOXP3 binding interactions include muta-
tions in the N-terminus, leading to inefficient Treg-mediated 
suppression of T helper 1 (Th1) responses, but increased sup-
pression of Th2 and Th17 [29]. Other binding partners of 
FOXP3, including GATA3 and enhancer of zeste homolog 
2 (EZH2), were found to interact following TCR activation 
[27]. These findings emphasize the requirement for FOXP3 
interactions in the regulation of Treg responses to external 
stimuli and ultimately demonstrate functional adaptability.

Emerging evidence has revealed that the loss of FOXP3 ex-
pression by Tregs is regulated through various transcriptional, 
epigenetic, and post-translational regulatory mechanisms. 
Transcription factors including signal transducer and acti-
vator of transcription 5 (STAT5), NFAT, and forkhead box 
protein O1 (FOXO1), directly bind to the FOXP3 promoter 
region to regulate its transcriptional activation. In addition, 
conserved non-coding sequence (CNS) elements upstream 
and within the FOXP3 gene locus interact with multiple tran-
scription factors to regulate gene expression. For instance, 
CNS1 binds to SMAD3, which is activated downstream of 
TGF-β signaling [30]; CNS2 interacts with STAT5, NFAT, 
RUNX1, and CREB [31, 32]; and, CNS3 binds to the NF-κB 
signaling molecule c-Rel [33]. CNS2 also contains the Treg-
specific TSDR, which is demethylated in tTregs and partially 
methylated in pTregs [34]. The demethylated TSDR stabilizes 
FOXP3 expression through the recruitment of various tran-
scription factors, including FOXP3 itself, CREB, and Ets1 [35, 
36]. Moreover, FOXP3 stability is also impacted by protein 
acetylation, phosphorylation, and ubiquitination [37].

In addition, metabolism has been reported to play a cru-
cial role in the regulation of Treg stability through mech-
anisms that intersect with transcriptional, epigenetic, and 
post-translational modifications of FOXP3 expression. For 
instance, hypoxia-inducible factor 1α (HIF-1α) has been im-
plicated in Treg differentiation, wherein HIF-1α can interact 
with FOXP3, leading to its degradation in hypoxic condi-
tions. In models of HIF-1α deficiency, Tregs exhibited efficient 
suppressive function and reduced levels of IFNγ. In contrast, 
continuous T cell expression of HIF-1α led to an upregulation 
of IFNγ+ effector T cells as compared to Tregs. Treg stability 
was also dependent on the expression of the HIF-1α repressor, 
and E3 ligase, Deltex1 [38, 39]. However, further research is 
necessary to fully elucidate the various mechanisms by which 
metabolism and hypoxic factors contribute to the transcrip-
tional regulation of Tregs.

Treg stability and adaptability
Treg stability is defined as the ability to maintain FOXP3 ex-
pression and suppress the pro-inflammatory effector functions 
during immunogenic challenges. However, recent studies have 
shown that some FOXP3+ Tregs can lose their expression of 
FOXP3 and acquire effector-like functions, indicative of lin-
eage instability. Despite this, Tregs exhibit functional adapt-
ability and increase expression of transcription factors and 
chemokine receptors associated with Th1 [40], Th17 [41], 
and T follicular helper (Tfh) cells [42]. Perhaps, this may be a 
mechanism that allows for greater homing and suppression of 
T-effector cells at sites of inflammation

Epigenetic regulation of the FOXP3 locus is important for 
the stability of Treg function by diminishing their conversion 
into “pathogenic” cells. However, moderate exposure to in-
flammatory cytokines can destabilize Tregs. The presence of 
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repressive histone markers at the promoter of IL-12Rβ2 can 
impair the responsiveness of Tregs to IL-12, which prevents 
activation of the Th1 pathway and subsequent upregulation 
of T-bet (T-box expressed in T cells), encoded by Tbx21, 
CXC chemokine receptor 3 (CXCR3), and IFNγ [43]. Tregs 
maintain FOXP3 expression but acquire various effector 
T cell functions, which has been referred to as Treg plasti-
city. Given this potential plasticity, it is critical for Tregs to 
fine-tune their response to inflammatory and environmental 
challenges. For instance, in Th1-driven responses, Tregs accu-
mulate at the site of inflammation and are induced to express 
T-bet, which helps to enhance the immunoregulatory func-
tion of Tregs in this context. Consistent with this notion, de-
pletion of T-bet-expressing Tregs was shown to result in Th1 
autoimmunity [40]. However, for Th2-dependent responses, 
Tregs acquire expression of interferon regulatory factor 4, 
and in Th17, signal transducer and activator of transcription 
3 (STAT3) [40, 41, 43, 44]. In addition, suppressor of cyto-
kine signaling 1 protects Tregs from responding to excessive 
pro-inflammatory cytokines by the inhibition of STAT1/3 
signaling in response to IFN-γ and IL-17 [45].

In vitro work has demonstrated that Tregs can lose stability 
upon stimulation with pro-inflammatory cytokines, including 
IL-6 and IL-4 [46], to become FOXP3- “exTregs.” In adoptive 
transfer experiments using purified FOXP3+ Tregs transplanted 
into recipients lacking T cells, there was a loss of FOXP3 ex-
pression [46, 47], which led to the expression of inflammatory 
cytokines [48]. As the majority of unstable Treg subsets have 
been found to be CD25loFOXP3+, this may explain their in-
herent underlying instability in vivo. In addition, fate-mapping 
in experimental mouse models have shown that these exTregs 
derive from activated T cells that failed to undergo Treg differ-
entiation and only transiently expressed FOXP3 [20]. Perhaps, 
Treg stability is dependent on the host context to modulate 
inflammation and induce peripheral tolerance.

FOXP3 dysfunction and autoimmunity
Although the etiology of autoimmunity is multifactorial, 
changes in FOXP3 expression and function are thought 
to underlie mechanisms relating to its development [28]. 
Dysregulated FOXP3 expression in autoimmune diseases may 
be attributed to variations in genomic regulation, transcrip-
tional regulators, and post-translational modifications. In the 
thymus, potentially self-reactive Treg precursors, following 
TCR stimulation, express the CD25 to induce activation of 
STAT5 [49]. This, together with TGF-β signaling, results in the 
expression of FOXP3 [50]. The signal received from IL-2 is, 
therefore, a critical requirement for their differentiation [49, 
50], and dysfunctions in IL-2 and TGF-β signaling have been 
implicated in the development of autoimmunity. Additionally, 
several dysfunctional immune pathways can contribute to the 
pathogenesis of self-reactive disorders (Fig. 3).

Molecular mechanisms of FOXP3 regulation in 
autoimmunity
Single-nucleotide polymorphisms (SNPs) in coding and 
non-coding gene regions of the FOXP3 gene have been 
linked to autoimmune diseases and allergies [51] and been 
found to influence mRNA stability in affected children 
[51]. Additionally, SNPs in genes regulating IL-2 responses, 

including IL2RA (CD25), PTPN2, and PTPN22, have also 
been associated with autoimmunity [52–54]. These genes 
are thought to mediate their function through activation of 
a STAT5 feedback loop that positively reinforces FOXP3 ex-
pression [52]. However, SNPs can interfere with this loop to 
affect FOXP3 expression. For example, in Type 1 Diabetes 
(T1D), a SNP in PTPN2 has been shown to reduce levels of 
FOXP3 and inhibit Treg activity through the downregulation 
of IL-2-mediated STAT5 activation [55]. Similarly, in Primary 
Sclerosing Cholangitis and Multiple Sclerosis, reduced FOXP3 
and Treg suppression are observed, due to downregulated ac-
tivation of STAT5 [53, 54]. While polymorphisms in PTPN2 
are implicated in various signaling mechanisms, their regula-
tion of FOXP3 may be mediated by an increase in IL-2 sensi-
tivity following TCR activation [56]. For instance, decreased 
expression of PTPN2 reduces the differentiation of Tregs in 
conditions of strong TCR signaling but leads to an increase in 
FOXP3 expression in weak TCR activity [57].

Micro RNAs (miRNAs) also play a key role in regulating 
FOXP3 mRNA expression by binding to stress granules. The 
absence of miRNAs, including miR-155, can result in failure 
of Treg function [58]. Specifically, miR-155 has been shown 
to positively regulate Treg differentiation and development 
[59], and is involved in mediating pregnancy tolerance [60]. 
In addition, miR-146a has been identified as a key regulatory 
of Treg suppressor function, and a deficiency in this miRNA 
can result in a loss of immune tolerance mechanisms [61]. 
Notably, activated but naïve Tregs from at-risk T1D pa-
tients have been found to have elevated levels of miR-26a, a 
miRNA which disrupts the transcriptional repressive function 
of FOXP3 by reducing levels of the histone methyltransferase, 
EZH2 [62]. In the presence of miR-26a, a reduction in EZH2 
expression impairs FOXP3 function [63].

In autoimmune diseases such as Juvenile Idiopathic Arthritis 
(JIA) and psoriasis, Treg dysfunction has also been identi-
fied as a contributing factor. In JIA, CD25+ FOXP3lo Tregs 
were present in afflicted joints, which surprisingly showed 
hypomethylation of their TSDRs [64]. These FOXP3lo Tregs 
also showed impaired IL-2R signaling [63] and given the cen-
tral role of IL-2 signaling in core pathological mechanisms, 
improving sensitivity to IL-2 may be a promising avenue for 
therapeutic intervention in autoimmunity. In psoriasis, Tregs 
appear to have impaired suppressive capacity, perhaps due to 
elevated levels of phospho-STAT3 (pSTAT3) resulting from 
increased IL-6 and IL-21 [65]. However, in vitro studies have 
shown that a reduction in Treg FOXP3 levels from JIA syn-
ovial fluid can be corrected through IL-6R-mediated acti-
vation of STAT3 [64]. These findings highlight the complex 
downstream effects of FOXP3 dysfunction, and the involve-
ment of related pathways.

Other molecules have also been implicated in regulation 
of FOXP3 stability and Treg activity. For instance, cyclin-
dependent kinase 2 (CDK2) has been identified as a negative 
regulator of FOXP3+ Treg function and stability [66]. Mutations 
of serine/threonine to alanine residues at every CDK motif re-
sulted in increased stability of FOXP3 protein in CD4+ T cells 
and enhanced ability of T cells to inhibit Tconv proliferation 
in vitro. Furthermore, this mutation was effective at mitigating 
colitis in a mouse model of inflammatory bowel disease [66]. 
CDK2, along with lymphocyte-specific protein tyrosine kinase 
(LCK) [67] and proto-oncogene serine/threonine-protein 
kinase (PIM)-1 [68], were all able to phosphorylate FOXP3 
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on Tyr, and Ser and Thr residues, respectively, leading to im-
paired function [69] and disabled Treg suppression [66, 68, 
69]. Therefore, manipulation of kinases through the use of tar-
geted inhibitors may provide potential therapeutic approaches 
in countering the loss of Treg function [69]. Identification of 
the various inter-connected pathways and molecular targets in 
the functional regulation of Tregs demonstrates the complex 
and dynamic nature of immune regulation.

Emerging roles of Tregs in wound healing and 
regeneration
Growing evidence suggests that in addition to their role in im-
mune suppression and tolerance, Tregs may also be involved 

in tissue regeneration and wound repair processes [70]. For 
example, in skin wound healing, the activation of epidermal 
and dermal regeneration is mediated by epidermal growth 
factor receptor (EGFR) signaling. Tregs express the EGFR 
ligand and are involved in tissue repair and maintenance [71]. 
Studies by Nosbaum et al. have shown that following skin 
injury, activated Tregs in the skin reduce levels of IFNγ and 
pro-inflammatory macrophages, while a deficiency in Tregs 
impedes wound repair, as evidenced by a delay in wound 
re-epithelialization and closure [70].

Tregs have also been demonstrated to contribute to tissue 
repair in lung injury. In an experimental model, FOXP3+ 
Tregs were shown to promote increased proliferation of al-
veolar epithelial cells [72]. These effects were also observed 

Figure 3. Disruptions in Treg development can contribute to autoimmune pathologies. This can occur through a number of mechanisms, including 
the loss of FOXP3 transcriptional regulation, altered epigenetic mechanisms, post-translational modifications, single-nucleotide polymorphisms, and 
dysfunctions in upstream signaling pathways of IL-2 or TGF-β.
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in acute lipo-polysaccharide (LPS)-induced models of lung 
inflammation, wherein Tregs helped to resolve inflammation 
by suppressing the activity of alveolar macrophages and neu-
trophils [73].

Tregs have also been proposed to play a role in neural re-
pair. In a mouse model of ischemic stroke, Ito et al. observed 
an accumulation of Tregs in the brain. In addition, it was 
found that these Tregs can inhibit astrogliosis by producing 
amphiregulin [74]. The recent discoveries regarding the im-
mune tolerogenic-independent functions of Tregs in various 
tissues suggest their potential use as broad therapeutic agents. 
However, additional research is required to identify the tissue-
specific mechanisms underlying these effects for precise thera-
peutic targeting.

Conclusion and future directions
In the years since the discovery of Tregs, research has pro-
gressed to recognize them as a vital component of immune 
homeostasis, particularly in relation to self-tolerance, anti-
tumor responses, autoimmunity, and more recently, wound 
healing and regeneration. However, targeting Tregs presents a 
significant challenge as a precise understanding of the tissue-
specific environmental cues will be needed for effective strat-
egies. In the context of autoimmunity, alterations in various 
levels of FOXP3 activity can result in a loss of effective Treg 
function. Fluctuations in IL-2 signaling or modifications of 
FOXP3 at the post-translational or transcriptional levels can 
all contribute to a breakdown in self-tolerance. As a result, it 
is critical to identify and evaluate the interconnected immune 
pathways of FOXP3+ Tregs for immunological and pharma-
cological manipulation.

There remains a need for the development of new methods 
to selectively target Tregs with minimal adverse effects. This 
challenge can potentially be overcome through the use of 
cytokine partial agonists, which function at a lower capacity 
than full agonists. In a recent study by Glassman et al., they 
took advantage of the underlying differences in cytokine sen-
sitivities to generate an IL-2 partial agonist that exclusively 
retained its ability to activate Tregs [75]. Future clinical 
translation of these approaches will pave the path toward 
developing cell-specific immunotherapies.

Representing a potential strategy in the treatment of auto-
immune diseases and transplantation may also involve the 
use of a combination therapy consisting of costimulation 
blockade and IL-2. Although CD28 costimulation blockade 
leads to a loss of Tregs, administration with IL-2 in human-
ized mice was shown to counteract this effect by selectively 
disabling T cell effector responses while preserving Tregs [76]. 
These findings provide promising guidance for current clin-
ical implementation; potentially introducing the use of a sup-
plementary immunotherapy to counteract the limitations of 
the primary treatment.

Further elaboration on methods for expanding FOXP3+ 
Tregs in vivo are clearly needed. However, due to constraints 
in identifying FOXP3 expression levels in humans, it would 
be difficult to assess Treg manipulation success rates. Thus, 
methods to measure infused or in vivo administered Tregs are 
required to better understand the half-life and points of ac-
cumulation to track any phenotypic alterations [77]. Recent 
efforts in the clinical setting include attempts to expand the 
population of Tregs in vivo by adoptively transferring ex 

vivo-expanded Tregs, rather than relying solely on the ex-
pansion of endogenous Tregs. Low doses of IL-2 have been 
used to expand Tregs in a way that prevents natural killer 
and effector T cell activation and expansion [77]. However, 
this therapy depends on the assumption that polyclonal Tregs 
maintain their ability to recruit to sites of inflammation and 
remain antigen-specific at a population level. Another ap-
proach has been the development of chimeric antigen recep-
tors, which use CAR Tregs with an antibody Fab specific for 
a self-antigen to prevent the autoimmune activation of T cells 
[78].

Increasing efforts for Treg TCR sequencing will be monu-
mental in expanding the understanding of Treg heterogeneity 
and functionality. Through increased sequencing, clinicians 
can better comprehend inter-individual immune diversity and 
identify effective Treg clones for potential immunological ma-
nipulation. In addition, identifying the differential protein ex-
pression patterns of different Treg populations can be used 
to better understand their functions and associated features. 
This has recently been executed through a proteomic ana-
lysis wherein iTregs were found to share similar expression 
of signaling and metabolic-related proteins with Tconv cells 
but were distinct from tTregs [79]. Further research is needed 
to investigate the functional differences among iTregs, tTregs, 
and Tconv cells.

Continued exploration and discoveries relating to FOXP3+ 
Tregs, their immunosuppressive role, and emerging functions, 
represent a promising avenue for clinical advancements. 
Undoubtedly, focused research on the transcriptional and mo-
lecular dynamics underpinning FOXP3+ Tregs will allow for 
a greater understanding of the regulation of T cell-mediated 
immune responses.
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