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Summary 
Regulatory T cells (Tregs) are a subtype of CD4+ T cells that can mediate immune tolerance by a multitude of immunomodulatory mechan-
isms. Treg-based adoptive immunotherapy is currently being tested in multiple phases I and II clinical trials in transplantation and autoimmune 
diseases. We have learned from the work done on conventional T cells that distinct mechanistic states can define their dysfunctions, such as 
exhaustion, senescence, and anergy. All three can negatively impact the therapeutic effectiveness of T-cell-based therapies. However, whether 
Tregs are susceptible to such dysfunctional states is not well studied, and results are sometimes found to be controversial. In addition, Treg 
instability and loss of FOXP3 expression is another Treg-specific dysfunction that can decreasein their suppressive potential. A better under-
standing of Treg biology and pathological states will be needed to compare and interpret the results of the different clinical and preclinical trials. 
We will review herein Tregs' mechanisms of action, describe different T-cell dysfunction subtypes and how and if they apply to Tregs (exhaustion, 
senescence, anergy, and instability), and finally how this knowledge should be taken into consideration when designing and interpreting Treg 
adoptive immunotherapy trials.
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Introduction
Around 50 years ago, a new type of T cell was discovered 
and named suppressor T cells [1]. These cells were further 
described and labeled regulatory T lymphocytes (Tregs) in the 
1990s by the work of Dr. Shimon Sakaguchi and his team [2, 
3]. They can be identified by a high level of the IL-2 Rα (CD25) 
[2, 3], low expression of IL-7Rα (CD127) [4], and high ex-
pression of forkhead box p3 (FOXP3) transcription factor [5, 
6]. FOXP3 is located on the X-chromosome and plays a cru-
cial role in their development and identity [7]. However, its 
role in mature cells was recently challenged [8]. Mutations in 
FOXP3 lead to the development of the Immunodyregulation 
Polyendocrinopathy Enteropathy X-linked (IPEX) syndrome, 
which is characterized by an abundance of autoimmune 

diseases such as autoimmune enteropathy, endocrinopathies, 
and eczematous dermatitis [9]. The equivalent mouse model 
of IPEX syndrome is the “scurfy” mouse, which likewise 
develops multi-organ lymphocytic infiltration and severe 
autoimmune-related dysfunctions [10].

Tregs are classified into two main Treg subtypes; thymic-
derived ((tTregs), also known as natural Tregs, (nTregs)) and 
induced (pTregs or iTregs). iTregs are derived from naïve con-
ventional CD4+ T cells in the periphery and, under certain 
circumstances and factors such as TGF-β and IL-2, start to 
express FOXP3 and obtain the regulatory phenotype [11]. 
nTregs are more stable over time, unlike -iTregs that could re-
verse into a pro-inflammatory phenotype in an inflammatory 
environment [12]. While no markers have been established 
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to distinguish nTregs from iTregs, some studies suggest that 
Helios and Neuropilin-1 expression in nTregs indicates their 
thymic origin, with some controversy between mice and 
human results [13–16].

The promoter and three non-coding sequence elem-
ents (CNS1, CNS2, and CNS3) of the FOXP3 gene have 
an interesting dynamic toward Treg differentiation and 
proliferation. CNS2, also known as TSDR (Treg-Specific 
Demethylated Region), interacts directly with FOXP3 to sta-
bilize Tregs promotion [17]. nTregs have a demethylated state 
of TSDR, but iTregs lack complete demethylation of this re-
gion, which reduces their phenotypic stability. TSDR deletion 
does not lead to excessive autoimmunity, and thus does not 
seem necessary for Tregs. However, its role is linked to many 
other regulatory factors that are essential for Treg differenti-
ation and function [18]. Histone modifications of CNS1 by 
downstream signaling of TGF-β, retinoic acids, rapamycin, 
and others also lead to the successful production of iTregs 
[17]. Treg epigenome is crucial for their identity, and therapies 
aiming at increasing Treg production and function through 
histone/protein deacetylases (HDACs) inhibition, which al-
ters  FOXP3 post-translational modifications, are currently 
being tested (reviewed in [19]).

Treg adoptive immunotherapy was proposed decades ago 
to promote tolerance in auto-immune diseases and trans-
plantation. In the last 20 years, it has been tested in multiple 
phase I/II clinical trials, assessing the feasibility and safety 
of this therapy in many diseases including transplantation 
[20], graft-versus-host disease, type I diabetes, inflammatory 
bowel disease, amyotrophic lateral sclerosis, autoimmune 
hepatitis, Alzheimer’s disease, acute respiratory distress 
syndrome, pemphigus, and B-cell acute lymphocytic leu-
kemia [21]. To translate to clinical use, phase III clinical 
trials assessing their efficacy will need to be done. The focus 
placed on the balance between apoptosis and proliferation 
[22] or metabolic regulations [23, 24] of Tregs brought us 
closer to understanding Treg fitness. However, most bio-
logical dysfunctions associated with chronic diseases in 
Tregs have yet to be clearly established. This review will thus 
tackle current knowledge of the different mechanisms for 
Treg dysfunction, their definition, and their implications for 
cell therapy.

Tregs mechanism of action
Tregs can promote the suppression of conventional T cells 
either directly, or through their interaction with other cells 
such as dendritic cells (Fig. 1). First, they can secrete soluble 
mediators such as TGF-β, IL-10, and IL-35, which serve as 
immunosuppressive signals for pro-inflammatory T cells (re-
viewed in [25]). TGF-β can also play a role in the generation 
of iTregs by regulating the expression of FOXP3 (11). Other 
mediators released by Tregs include granzymes and perforin 
leading to cytolysis of the targeted cell [26].

Interleukin-2 (IL-2) consumption represents one of the first 
described non-antigen-specific Treg’s mechanism of action. 
IL-2 is a cytokine first discovered and characterized by Dr 
Robert Gallo’s team in the early 1980s [27]. Tregs, as opposed 
to conventional T cells (Tconvs), are defined by constitutively 
high expression of IL-2Rα (CD25), a high-affinity IL-2 re-
ceptor. IL-2 is crucial for their survival and proliferation and 
induces the expression of FOXP3 [28]. Tregs, however, do not 
secrete IL-2 and need to scavenge it from their environment to 

survive. By doing so, the higher consumption of IL-2 by Tregs 
empties this local “reservoir” for conventional T cells [29] 
and starves them, leading to their death. Indeed, CD4+ and 
CD8+ Tconvs need autocrine and paracrine IL-2 for cell-fate 
decisions following their antigen-receptor activation [30–32]. 
Tregs can also deplete the microenvironment of extracellular 
ATP through CD39, CD73, and adenosine 2a receptor (A2AR). 
Adenosine release can be regulated by soluble or membrane-
bound expression of CD39 and CD73 on T cells by trans-
forming ATP/ADP into AMP via their ectonucleotidase 
cascade [33, 34]. Adenosines and A2AR have been identified 
for downregulating proinflammatory responses in Tconv 
[35]. Constitutive high expression of A2AR in Tregs, along 
with its expression of CD39/CD73, effectively reduces the use 
of ATP by Tconv, limits their activation, and induces iTregs 
differentiation [36]. Another mediator-related mechanism 
of Tconv suppression by Tregs belongs to the consumption/
reduced availability of cysteine either by directly oxidizing 
it into sulfate or inhibiting glutathione (GSH) synthesis in 
DCs via CTLA-4-CD80/86 interaction [37]. Consumption 
of cysteine is needed for the one-carbon metabolic network 
(1CMet), essential for effector T cells’ redox balance, DNA 
methylation, and other synthetic processes [38].

As mentioned above, Tregs also have an impact on DCs, 
leading to the inhibition of their maturation and function. 
This, in turn, leads to lower conventional T-cell activa-
tion and proliferation. Expression of CD80/86 co-receptors 
by DCs is important for Tconv antigen-receptor signaling 
activation. Tregs, however, express high levels of CTLA-4 
that bind to CD80/86 on DCs, competing with CD28 (ac-
tivation co-receptor) expressed by Tconvs [39]. Tregs can 
also remove CD80/86 costimulatory molecules at the surface 
of DCs via trogocytosis, where part of DCs’ surface mem-
branes are taken by Tregs, reducing the available receptors 
for Tconv activation [40]. Transendocytosis (TE) was also 
previously reported as a CTLA-4-related mechanism to re-
duce CD80/86 availability. Unlike trogocytosis, TE leads to 
the capture of CTLA-4’s ligand and its destruction via endo-
cytosis and lysis [41]. These mechanisms of Tconv suppres-
sion have been associated with many autoimmune diseases 
such as T1D [42].

Other costimulatory molecules expressed by Tregs such as 
LAG-3, TIGIT and PD-1 can interact with antigen presenting 
cells (APC)s and contribute to their immunosuppressive ef-
fect [43, 44]. LAG-3 is a homolog of the CD4 receptor with a 
higher affinity for MHC-II [45] and can inhibit DCs’ activa-
tion upon engagement with their MHC-II [46]. Upregulated 
in activated Tregs, LAG-3 does not seem critical for sup-
pression but highly reduces Tconv activation by blocking 
MHC-II-TCR interaction [47]. T-cell immunoreceptor with 
Ig and ITIM domains (TIGIT), expressed on T and NK cells, 
interacts with DCs to induce a suppressive phenotype in 
these APCs. While not affecting their maturation state, DCs 
interacting with TIGIT produce higher levels of IL-10 and 
significantly reduce their proinflammatory cytokines produc-
tion [44]. Programmed death 1 (PD-1)’s role in Tregs is more 
controversial. It can mediate tolerance through its interaction 
with PD-L1/PD-L2 on DCs by inducing immunotolerant 
DCs. The PD-1/PD-L1 axis is also implicated in iTreg de-
velopment [48]. However, PD-1 expression in Tregs can in-
hibit their activation and suppressive capacity [49]. Tregs 
can also cause a downregulation of CD80/86 on DCs via 
the leukocyte function-associated antigen-1 factor (LFA-1), 
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which is important for their aggregation on DCs and work 
synergistically with the CTLA-4 signaling pathway [50]. 
Furthermore, Tregs can lead to the secretion of indoleamine 
2,3-dioxygenase (IDO) by DCs via CTLA-4 signaling. This 
enzyme converts tryptophan into kynurenine and leading to 
Tconv starvation and cell death [51].

All known antigen- and non-antigen-specific immunosup-
pressive mechanisms guide the global tolertogenic function of 
Tregs against allo- and autoimmunity. Highly diverse in their 
suppressive  abilities , Tregs can also maintain homeostasis 
through “infectious tolerance.” This process involves mech-
anisms described above to transfer specialized suppressive 

Figure 1. Regulatory T cells mechanisms of action. Regulatory T cells (Tregs) can mediate immune tolerance through different mechanisms of action. 
First, they can lead to the production of inhibitory mediators such as IL-10, IL-35, TGB-β, and adenosine. They can also mediate cytolysis through 
granzyme and perforin secretion and lead to metabolic disruption by depleting the environment in IL-2 and extracellular ATP (eATP). Then, they can 
lead to the generation of induced Tregs through TGF-β production. Finally, they can mediate their tolerance through their impact on other cells, such 
as dendritic cells (DC)s. Indeed, they generate more tolerogenic DCs through binding, trogocytosis and transendocytosis of CD80/86 with CTLA4. 
Other inhibitory co-receptors such as LAG-3, PD-1, and TIGIT also have an immunomodulatory impact on DCs. nTregs: natural regulatory T cells; iTregs: 
induced regulatory T cells; DC: dendritic cells; MHC: Major Histocompatibility Complex. 
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abilities of Tregs to other lymphoid populations either indir-
ectly, via soluble mediators, or directly through interaction 
with DCs [52]. The efficient creation of a regulatory milieu is 
one of Tregs’ strengths and is also a reason for its high poten-
tial for use in transplantation [53].

Tregs in chronic diseases
As Tregs are important to maintain homeostasis and toler-
ance, deficits or dysfunctions consequently lead to auto-
immune diseases, or alloimmune reactions in the context 
of transplantation. A decrease in Treg number or imbalance 
between Tregs and proinflammatory T cells such as Th1 
and Th17, correlates with the development and progres-
sion of rheumatoid arthritis, type 1 diabetes, chronic kidney 
disease (CKD), and many other autoimmune and inflamma-
tory chronic conditions [54–57]. Chronic inflammation and 
changes in the microenvironment associated with those dis-
eases represent a bidirectional relationship for their impact on 
Tregs’ phenotype and functions [58], and the consequences 
on Treg biology are only scarcely studied.

Treg dysfunction
Through the evolution of adoptive cell therapies with con-
ventional T lymphocytes, potential dysfunction-associated 
phenotypes were studied to optimize cell manufacturing and 
engineering. The degree of overlap between the different sub-
types of cell dysfunction remains a matter of debate and the 
transferability of those concepts to Treg biology is still mostly 
unknown. We will summarize herein the current body of lit-
erature and identify knowledge gaps in Treg biology (Fig. 2).

Exhaustion
Persistent antigen exposure and chronic activation can lead 
to a stage of exhaustion. T cells in this state are described 
as being functionally hyporesponsive and secrete fewer cyto-
kines (reviewed in [59]). They are characterized by the expres-
sion of inhibitory co-receptors such as CTLA-4, PD-1, LAG-3, 
and TIM-3 that compete with their activation signaling path-
ways. Specific transcription factors, namely T-BET, EOMES, 
TOX and others, have been described as feed-forward mech-
anisms of persistent T-cell exhaustion phenotype, at different 
stages of exhaustion (reviewed in references [60, 61]). Stress 
responses induced by excessive stimulation also impact mito-
chondrial and epigenetic cross-talks leading to higher histone 
acetylation, methylation, and DNA methylation amongst 
others (reviewed in reference [62]).

There is now a growing body of evidence that exhaustion 
also exists in Tregs. Although shown to proliferate better 
than Tconvs in homeostatic conditions [63] in vitro Tregs are 
known to become hypoproliferative upon antigenic and IL-2 
stimulation [64]. Since they also mediate their immunosuppres-
sive effects through the expression of inhibitory co-receptors 
such as PD-1, LAG-3, and CTLA-4, illustrating the difference 
between a suppressive and an exhausted Treg phenotype re-
quires a more complex approach than with Tconv. Lowther 
et al. showed that PD-1hi Tregs had a reduced suppression 
of CD4+ Tconv, possessed a molecular exhaustion signature, 
and secreted IFN-ɣ [65]. However, their suppressive abilities 
were tested without the presence of DCs, that is important for 
PD-1-mediated mechanisms of suppression. Still, their results 

align with those of Hiroyoshi Nishikawa’s team who showed 
that mouse Tregs deficient in PD-1 signaling were more prolif-
erative and immunosuppressive. They suggested that patients 
with a high number of PD-1+ Tregs could have a paradoxical 
response to PD-1 blockade manifested by a rapid cancer pro-
gression, as the therapy might not only reinvigorate Tconvs 
but Tregs as well [66].

Recently, we used a model known to induce exhaustion in 
conventional T cells, to study the existence and characteris-
tics of Treg exhaustion, i.e., Tregs expressing a tonic signaling 
Chimeric Antigen Receptor (CAR). We showed that tonic-
signaling-CAR Tregs acquired a phenotype similar to what 
is seen in exhausted Tconvs and had important changes in 
their transcriptome, metabolism, and epigenome [67]. Indeed, 
they expressed PD-1, TIM-3, and TOX, but also showed Treg-
specific changes such as high expression of 4-1BB, LAP, and 
GARP. In addition, they remained suppressive in vitro but 
were not functional in vivo [67].

Senescence
In conventional T cells, senescence can be defined as irrevers-
ible, permanent cell-cycle arrest, usually in correspondence 
to telomere shortening. Upon activation of DNA damage 
response, senescent T cells can be identified through an  in-
crease  in  β-galactosidase activity and dysfunctional mito-
chondria [68]. Immune aging has a direct correlation with 
low-grade chronic inflammation found commonly in the eld-
erly [69]. Exposure to stress factors in addition to repeated 
stimulation can also induce “premature” senescence (reviewed 
in reference [70]). Although Tconvs are known to stay viable 
and metabolically active (reviewed in reference [68]), the sen-
escent phenotype in Tregs has not been well characterized.

Previous studies showed no significant difference in  the 
Tregs reservoir with age (reviewed in reference [69]), but later 
studies in mice indicate reduced generations of these cells and 
of their immunosuppressive potential with time [71]. RNA-
seq of less proliferative aged Tregs showed upregulation of 
gene signatures related to senescence such as p16Ink4a, p19Arf, 
and p21Cip1. In fact, Tregs have been shown to possess shorter 
telomeres and manifest a more severe aging phenotype than 
Tconvs [72]. With Tregs senescing faster than their Tconvs 
counterparts, an imbalance between Th17/Tregs could ex-
plain the low-grade inflammation “inflammaging” often 
found in the elderly [73]. A few studies in mice and humans 
have found that DCAF1 downregulation associated with 
tissue aging can also be found in Tconvs as well as Tregs. 
Deficiency of DCAF1 has been associated with elevated re-
active oxidative species (ROS) levels, increased  senescence-
associated-β-gal activity, and upregulation of p16Ink4a in 
T cells [72]. Pathways needed for the regulation of ROS 
are found to be altered in aging Tregs such as PI3K/Akt/
mTOR and DNA damage/p53 response pathways. AMP-
activated protein kinase (AMPK) is also downregulated in 
“inflammaging” associated with DNA damage. Impaired 
AMPK signaling pathway leads to reduced STAT5 phosphor-
ylation and altered IL-2R function thus affecting Treg sur-
vival and immunosuppressive functions [74].

In the elderly, larger differences between nTregs and 
iTregs are thought to derive in part from the lack of proper 
demethylation of the Foxp3 region [73]. Such epigenetic alter-
ations associated with aging and inflammation could be caused 
by altered fatty acid and protein metabolisms [73, 75, 76].  
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Indeed, lipid metabolism is proposed to be a critical regulator 
and target of senescent cells (reviewed in [77]).

Anergy
Dysfunction in T cells classified as anergy is when an antigen 
encounter will be followed by functional hyporesponsiveness 
[78]. These anergic T cells remain alive but cannot play their 

intrinsic role. There are, precisely, two states of anergy. One 
is known as clonal anergy, or growth arrest, which arises 
when previously activated T cells incompletely activate due 
to an issue in their downstream pathways. Adaptive toler-
ance, or in vivo anergy, happens when T cells are exposed to 
a costimulation-deficient or inhibition-rich environment (re-
viewed in [79]). Like senescence, the definition of anergy in 

Figure 2. Mechanisms of regulatory T-cell dysfunction. Cell mechanisms responsible for Tregs’ loss of tolerance potential are led by four main 
dysfunctional states. (A) Exhaustion is driven by a persistent antigen exposure and leads to an increased susceptibility to apoptosis, a decreased 
proliferation rate, and the expression of inhibitory receptors such as PD-1, LAG-3, and TIM-3. Exhausted Tregs are believed to be less suppressive 
in vivo. (B) Senescence, resulting in part from telomere shortening due to age and inflammation, is characterized by an ability to maintain oxidative 
stress protection. DNA stability for cell survival and suppressive potential is negatively affected. Senescent cells are also believed to be less 
suppressive. As Tregs are more susceptible to senescence than conventional T cells, it could explain the imbalance between Th17 and Tregs ratio in 
the elderly. (C) Anergy is induced by a lack of proper costimulation. Reduced downstream signaling from CD25 (IL-2R) leads to hyporesponsiveness 
and downregulation of their suppressive potential. (D) Treg instability. Other important regulators of Treg lineage stability and functions, such as the 
metabolic mediator LKB1 and epigenetic modifiers such as DNMTs and TET enzymes, have important roles in the maintenance of FOXP3 expression 
and Tregs’ identity. Also, IL-6 and an inflammatory environment could skew iTreg differentiation towards Th17. Treg: regulatory T cells; nTregs: natural 
Tregs; iTregs: induced Tregs; DNMT: DNA methyltransferase.
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Tregs is another controversial concept, since in nature they 
can be considered anergic as they cannot produce their own 
IL-2 but depend on it to survive and proliferate [78].

Tregs cannot expand via TCR signaling alone which is why 
they capture IL-2 in their environment with high affinity IL-2R 
[3]. Absence of IL-2 for other Tconvs can lead to anergy in 
these T cells and induce tolerance [80]. Calcineurin inhibitors, 
used for the prevention of solid organ graft rejection, collat-
erally impair Treg responsiveness via anergy-inducing mech-
anisms. By inhibiting the activation of the nuclear factor of 
activated T cells (NFAT) this drug suppresses the production 
of IL-2 and other cytokines decreasing abruptly the number 
of Tconv and Tregs in the periphery [81]. Basiliximab, a 
monoclonal antibody that targets IL-2Rα used in kidney 
transplant recipients to prevent graft rejection, reduces T-cell 
proliferation but alters Tregs as well [82]. Inversely, the use of 
exogenous low-dose human recombinant IL-2 promotes Treg 
activation, proliferation, and reversion of their anergic-like 
phenotype [83].

Treg instability
Other mediators are important for Treg stability and func-
tion but are not related yet to one of the typical dysfunction 
subtypes cited above. Involved in metabolic homeostasis of T 
cells, the liver kinase B1 (LKB1) seems particularly important 
for Treg lineage stability. Indeed, LKB1-deficient Tregs 
produce Th1 and TH17 cytokines, are less suppressive [84], 
and express less FOXP3 [85]. LKB1 acts mainly as a meta-
bolic sensor and is critical to maintaining cellular metabolism 
[24]. As LKB1 serves serine homeostasis, so does glutathione 
(GSH) which also leads to the downregulation of FOXP3 and 
decreased suppressive functions when deficient in Tregs [86].

Numerous epigenetic modulators impact Treg stability 
and function. DNA methyltransferases 1-3 (DNMT1-3), 
while not essential for nTregs TSDR’s methylation status, 
are important regulators of immunosuppressive gene expres-
sion in Tregs [87]. TET enzymes that are known to oxidize 
DNA-methylation reactions also contribute to Tregs lineage 
stability and impact the demethylation of the TSDR region. 
Recent studies indicate that DNMTs and TETs are often 
downregulated in diseases associated with chronic inflamma-
tion such as cardiovascular diseases [88].

Proinflammatory mediators imbalance with regulatory me-
diators in the environment can also turn Tregs pathogenic 
with the loss of FOXP3 expression, transforming them into 
“exTregs” [89, 90]. Although, it is thought that this phenom-
enon only affects iTregs because nTregs’ FOXP3 expression is 
deemed too stable [91]. In some instances, inflammatory cyto-
kines such as IL-6 have been shown to reduce Treg suppres-
sive functions and  to  stimulate their differentiation toward 
Th17 effector cells. However, as Tregs are naturally more 
self-reactive compared with conventional T cells, the Tregs-
turned-Th17 can cause autoimmunity [92].

Cell therapy
In the last decade, T-cell adoptive immunotherapy revolu-
tionized cancer care. That being said, the potency of this ap-
proach was shown to be limited by different states of T-cell 
dysfunction, namely terminal differentiation, exhaustion, 
senescence, and activation-induced cell death [59]. Targeting 
those dysfunctional states is an efficient way to increase im-
munotherapy therapeutic efficacy. However, as most of those 

concepts have been studied in conventional T cells, the trans-
ferability of such an approach to Tregs is still unknown. In 
addition to a clear definition of Treg fitness and dysfunction, 
we also need to acknowledge the different factors influencing 
cell therapy products; cell source, expansion protocols, and 
cell engineering.

Cell source
Tregs can be either isolated from peripheral blood, thymus, 
or cord blood. New methods of genetic engineering also open 
the possibility of genetic reprogramming of conventional T 
cells or pluripotent stem cells (reviewed in reference [93]). 
Peripheral blood Tregs are the most used. However, it is still 
a heterogeneous population and cell surface markers to iso-
late them varies. Most commonly, people use CD4+CD25hi. 
The use of CD127low and CD45RAhi (naïve) can prevent con-
tamination with activated conventional CD4+ cells that can 
upregulate CD25 [94, 95]. A more stringent definition thus 
increases Treg purity to the detriment of cell number, which 
can be an issue for cell therapy.

The thymus is an excellent source of Tregs in terms of yield, 
stability, and suppressive abilities [96]. Thymic Tregs can be 
collected at the time of pediatric cardiac surgeries as this organ 
is routinely removed and discarded otherwise. Thymic Tregs 
are currently being tested in pediatric heart-transplanted chil-
dren, one of the only autologous options (NCT04924491) 
[97]. Their broader utilization will reside in third-party “off-
the-shelf” cell therapy, which comes with a risk of decreased 
cell survival or off-target effects.

Another similar strategy is the use of Tregs from umbilical 
cord blood, which shares the advantages with thymic Tregs of 
being mostly naïve [98]. However, the main limitation resides 
in the need of a high count of cells and third-party therapies. 
They were tested in phase I clinical trials in graft-versus-host 
disease [99, 100]. It is now possible to genetically modify cells 
to be antigen-specific with the use of transgenic T-cell recep-
tors (TCRs) or chimeric antigen receptors (CARs). One of the 
main advantages of antigen-specific Tregs is its lower cells 
need, at an estimated 10th of the common dose. With smaller 
doses needed, there is a possibility for umbilical cord blood 
use to resurface.

When using autologous Tregs, the patient’s disease and 
immunosuppressive therapy also need to be considered. 
Recently, Tang et al. reported the results of the ARTEMIS 
trial, which tested the use of autologous donor alloantigen-
reactive Treg therapy in liver transplant recipients [101]. Cells 
were collected between 2 and 6 years after transplant, in pa-
tients on immunosuppressive drugs. They experienced major 
manufacturing problems as only two cell products out of nine 
reached the attended cell number and an additional three 
expanded enough for a partial dose. Their results were ex-
plained by a selective reduction of donor-reactive Tregs after 
transplant and generalized Treg activation and senescence 
[101].

Expansion protocol
Many different expansion protocols are currently being tested 
and used [102]. The activation, cytokines, media, supple-
ments, and feeder cells can have an impact on Tregs. However, 
their implication is poorly studied. Recently, MacDonald et al. 
showed that cell density and feeding frequency have not only 
an impact on growth rate but also viability and FOXP3 ex-
pression [103]. Julia Polanski’s group also studied the impact 
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of repetitive cycles of stimulation on Treg DNA methylation 
profiles. They showed hypomethylation in the promoter of 
genes implicated in Tconv exhaustion and increased TSDR 
methylation indicating possible destabilization [104]. This 
important study was the first, to our knowledge, to study 
the epigenetic consequences of an expansion protocol. Bruce 
Blazar’s group also studied the impact of adding rapamycin 
to their expansion protocol and showed that the transcrip-
tome of Tregs stimulated once or twice without rapamycin 
had a transcriptome enriched for exhaustion genes and were 
not as stable as opposed to Tregs expanded through up to five 
rounds of stimulation with rapamycin [105]. Dr Soldevila’s 
group also used rapamycin for long-term expansion of allo-
specific Tregs (4 weeks). Their Tregs were suppressive, but 
long-term expansion led to an increase in methylation of the 
TSDR [106]. In conclusion, the consequences of the different 
expansion protocols on Treg phenotype, function, transcrip-
tome, and epigenome thus need to be further studied.

Cell engineering
Cell engineering can be used in Tregs to either alter their 
target/specificity, homing, cytokine production, identity 
(FOXP3 expression), etc [93]. With almost endless possibil-
ities, the associated impact of cell engineering on Treg biology 
is only sparsely studied. Recently, we studied the impact of a 
CAR with tonic-signaling on Treg biology and showed that it 
could drive Treg exhaustion similarly to what was observed 
in Tconvs. Their phenotype, transcriptome, metabolism, and 
epigenome were changed with persistent signaling. When 
those cells were adoptively transferred to humanized mice, 
they could no longer prevent graft-versus-host disease [67]. 
Similarly, Lamarthée and colleagues saw a dramatic impact 
of a CAR with tonic-signaling (4-1BB) on Tregs with an asso-
ciated reduction in their suppressive capacities [107]. A com-
prehensive study of the impact of cell engineering on Treg 
biology should thus be done before testing them in clinical 
trials.

Conclusion
Treg adoptive immunotherapy is a promising approach to in-
duce tolerance in auto- and alloimmune diseases. To critic-
ally analyze the results of the many phase I/II clinical trials 
being conducted, we need a better definition of Treg fitness. 
As Tregs differ from conventional T cells in terms of their 
biology, mechanisms of action, metabolism, and epigenome, 
we currently do not know if and how the current definitions 
of cell dysfunctions apply to Tregs. With the era of cell en-
gineering and the corresponding impact on cell biology, this 
cannot be overlooked.
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