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Summary 
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-
resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of 
contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs 
could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In 
addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even 
regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field 
of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the 
current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation 
and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Keywords: innate lymphoid cells, natural killer cells, immune tolerance, immune regulation, transplantation, graft-versus-host disease, hematopoietic stem 
cell transplant, rejection, ischemia reperfusion injury
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Introduction
Innate lymphoid cells (ILCs) are a family of innate lympho-
cytes with important roles in tissue homeostasis. Through 
their rapid production of cytokines and capacity to interface 
with both immune and non-immune cells, ILCs modulate and 
direct immune responses involved in host defense, tissue re-
pair, and immune tolerance [1–5]. Differentiated ILCs and ILC 
precursors in circulation can infiltrate into tissues and develop 
tissue-adapted functions, a process termed “tissue-poiesis.” 
[6, 7] Once ILCs take up residency within an organ, they can 
serve as tissue sentinels, modulating local immunity [8–11], 
and participating in a broad range of biological processes such 
as neuronal regulation, epithelial remodeling, adipogenesis, 
and circadian rhythms [12–15]. While early parabiotic mouse 
studies of ILCs supported tissue ILCs are “resident” and do 
not traffic between organs [16], recent studies have observed 
some ILCs can migrate between the intestines, lung, and liver 

[17–19], supporting that specific signals promote trafficking of 
a subset of ILCs to elsewhere in the body. However, features 
of ILCs that traffic to other locations and signals which direct 
this are only beginning to be elucidated.

The ILC family includes both cytotoxic and non-cytotoxic 
or “helper” subsets(Figure 1). Natural killer(NK) cells have 
important roles in eliminating virally infected cells and tumor 
cells through their ability to discriminate between self and 
non-self. This is accomplished primarily via recognition of 
major histocompatibility complex (MHC) molecules; cells 
that lack self-MHC molecules due to viral or tumor cell 
downregulation, or cells of allogeneic origin, are eliminated 
by NK cells via cytotoxic mechanisms mediated by granzymes 
and perforin. NK cells also produce pro-inflammatory 
cytokines interferon-gamma (IFN-γ) and tumor necrosis 
factor alpha (TNF-α), which contribute to additional pro-
inflammatory processes. In humans, NK cells are further classi-
fied as CD56dimCD16+NK cells, which exhibit potent cytotoxic 
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potential, and CD56brightCD16−NK cells which produce high 
levels of NK cell-associated cytokines [20–23]. Helper ILCs 
are divided into groups based on cytokine and transcription 
factor expression. Group 1 ILCs (ILC1s) produce IFN-γ [24] 
and protect against viral infections, although ILC1s are gen-
erally described as lacking cytotoxic potential and do not 
express molecules such as killer cell immunoglobulin-like re-
ceptors (KIRs) important for distinguishing self and non-self, 
or the transcription factor Eomesodermin (EOMES). Group 
2 ILCs (ILC2s) produce interleukin (IL)-4, IL-5, IL-13, and 
IL-9 to contribute to parasite and helminth immunity, and 
also maintain tissue homeostasis by interfacing with paren-
chymal cells to promote epithelial repair in tissues such as 
the intestine, lung, and skin(Fig. 2) [25–27]. Group 3 ILCs 
(ILC3s) produce IL-22, IL-17, and granulocyte-macrophage-
colony-stimulating-factor(GM-CSF), and respond to extra-
cellular bacteria. Similar to ILC2s, ILC3s are important for 
tissue homeostasis, possessing roles in skin repair and control 
of intestinal inflammation [28–32](Fig. 2).

While ILCs have important roles in tissue homeostasis [1], 
aberrant ILC responses can promote tissue injury [33–39]. 
For example, ILC2s can recruit eosinophils that exacer-
bate lung and muscle injury [33–35], and through IL-22 
and IL-17A, ILC3s can contribute to airway inflammation 
[36–38]. Tissue signals have key roles in directing these pro-
tective or pathogenic functions of ILCs. For example, IL-33 
signaling is critical in facilitating ILC2 activation and produc-
tion of amphiregulin to promote airway epithelia repair in 
mice [25], while IL-25 signaling can promote IL-5 production 

from mouse ILC2s, resulting in eosinophilia that contributes 
to lung inflammation [40, 41]. Thus ILC-tissue interactions 
are key for maintaining tissue homeostasis.

In addition to canonical ILCs, recent studies have identi-
fied populations of ILCs with immunosuppressive capabil-
ities in contexts such as cancer, allergy, and autoimmunity 
[42–47]. These regulatory ILCs include IL-10 producing 
ILC2s, NK-like regulatory ILCs, and ID3+ regulatory ILCs 
[48]. Understanding, however, of their ontogeny and contexts 
in which they arise is not well characterized, however, most 
data currently supports they are canonical ILCs that acquire 
immunoregulatory functions in response to microenviron-
ment triggers.

Despite wide-spread interest in ILCs, their role in solid 
organ transplantation and other allogeneic contexts is only 
beginning to be elucidated. Key questions include whether 
they contribute to tolerance or rejection, and how donor and 
infiltrating recipient-derived ILCs interface with other immune 
and non-immune cells to coordinate responses following trans-
plant. Herein we discuss the known functions of ILCs in tissues 
and examine the current understanding of ILCs protective or 
pathogenic functions in allogeneic contexts. We also explore 
potential therapeutic applications of ILCs for transplantation 
and identify areas of research needed to evaluate this potential.

Challenges limiting success of transplantation
Transplantation is widely used to treat end-stage organ 
disease. During transplantation, the organ can suffer ischemia 

Figure 1. The innate lymphoid cell family. ILCs are divided by cytotoxic (top) and non-cytotoxic (bottom) subsets. Cytotoxic ILCs include natural killer 
(NK) cells, which are subdivided into two major subsets based on expression of CD56 and CD16. Helper ILCs include ILC1s, ILC2s, and ILC3s, with 
ILC3s being further divided based on those that express the natural cytotoxicity receptor (NCR). Human ILC defining surface markers, cytokines, and 
transcription factors indicated, along with their established roles in host defense and tissue homeostasis. Created with Biorender.com.
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reperfusion injury(IRI). This involves hypoxic damage that 
occurs during organ retrieval, which can lead to cell death 
and release of pro-inflammatory cytokines [49]. Additional 
damage occurs upon restoration of oxygen to the organ, 
leading to the generation of reactive oxygen species(ROS) 
that promote expression of cellular adhesion molecules by 
endothelial cells. This combined with initial hypoxic damage 
leads to immune infiltration and inflammation [50]. Several 
immune populations participate in IRI; neutrophils exacer-
bate damage through the further production of ROS and pro-
inflammatory cytokines TNF-α, IL-6, and IL-8 [51]. Damaged 
and necrotic cells release large amounts of danger-associated 
molecular patterns (DAMPs) and activate the complement 
cascades, both of which activate macrophages leading to 
tissue damage. T cells are also involved in IRI-induced path-
ology, as T-cell deficient mice experience reduced IRI [52, 53], 

with CD4+ T helper (Th) 1 cells having harmful functions 
and CD4+ Th2 cells having protective roles in IRI [54]. NK 
cells have also been linked to promoting IRI damage, while 
subsets of ILCs are suggested to have protective functions. 
Therefore, complex cellular circuits, involving both resident 
immune cells and infiltrating immune cells from the recipient 
can contribute to IRI.

Rejection of transplanted organs remains a major challenge 
for the success of transplantation. Alloantigens can be recog-
nized through direct or indirect pathways; the direct pathway 
involves recognizing alloantigens presented on donor antigen 
presenting cells (APCs), while indirect recognition involves 
the presentation of alloantigens by recipient’s APCs. Both 
pathways can activate downstream immune mechanisms that 
lead to graft rejection [55]. Cellular rejection is highly de-
pendent on T-cell responses, which can be directed against 

Figure 2. ILC functions in promoting or inhibiting tissue tolerance. ILCs can exhibit organ-adapted functions and can differ in having protective or 
pathogenic functions, depending on the tissue. (Lung): Within the lung, ILC2s are required to maintain airway epithelial integrity following influenza 
infection through production of amphiregulin (AREG). Lung ILC3s expressing MHC class II can also limit Th2 cell responses to allergen and ILC3-derived 
IL-22 reduces inflammation following allergen challenge. (Liver): Liver-resident NK cells (lrNK) are characterized by lower responsiveness to IL-12 and 
IL-18, reduced production of IFN-g, and the ability to produce IL-10. They can also inhibit T-cell responses via a PD-1/PDL-1 axis. ILC1s within the liver can 
also promote immune tolerance by limiting IL-2 availability, thereby inhibiting CD8+ T-cell responses. Circulating NK cells were also shown to produce 
IL-10 and TGF-b following NKG2A interactions with HLA-E on hepatocytes. (Gut): ILC1s are essential for restoring normal mucus glycoprotein production 
following Salmonella infection. In a murine model of intestinal damage, ILC2s limited inflammation and promoted repair in an amphiregulin (AREG)-
dependent mechanism. ILC3s maintain immune homeostasis by limiting intestinal CD4+ T-cell responses to commensal bacteria. (Heart): In acute 
ST-segment elevation myocardial infarction (STEMI), ILC1s were increased in circulation, and their presence correlated with adverse clinical outcomes 
that was attributed to ILC1 production of IL-12, IL-18, TNF-a, and IFN-g. In a murine high fat diet model, ILC2s protected from atherosclerosis through IL-5 
and IL-13. IL-33 expanded ILC2s were also capable of reducing cardiac fibrosis via amphiregulin (AREG) effects. (Skin): ILC2s are recruited to the site of 
skin injury via IL-33 and promote repair through amphiregulin (AREG). ILC3s can be recruited to the site of injury via CCL20 and CXCL13, produce IL-17, 
IL-22, and CCL3 to directly support wound repair and recruitment of reparative macrophages. ILC3s also adopt tissue residency in the skin by IL-7 and 
TSLP released by keratinocytes, and can then negatively regulate sebaceous gland to control the skin microbiome. (Kidney): NK cells are enriched in 
fibrotic kidneys and produce the majority of IFN-g, contributing to inflammation and tubulointerstitial injury. In a mouse model of glomerulosclerosis, 
IL-33 expanded ILC2s and recruited eosinophils to protect from glomerulosclerosis. Created with Biorender.com.
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non-self MHC molecules or against alloantigens presented 
by APCs. In addition to cellular rejection, antibody-mediated 
rejection (ABMR)—or humoral rejection—is mediated by 
antibody responses against antigens found on the graft, par-
ticularly endothelial cells. ABMR leads to vascular damage 
through complement activation and subsequent macrophage 
attack, as well as NK cell killing through antibody-dependent 
cell-mediated cytotoxicity (ADCC). To prevent rejection, op-
timized human leukocyte antigen (HLA) matching and im-
munosuppressive regimens aim to limit harmful immune 
responses. However, specialized populations of immunosup-
pressive immune cells, such as regulatory T cells (Tregs) also 
serve to inhibit pathogenic immune cells. Regulatory T cells 
can suppress T cells, B cells, and APCs, through a variety of 
mechanisms including secretion of anti-inflammatory cyto-
kines (i. e. IL-10 and TGF-β1), depletion of extracellular ATP 
through CD39, and sequestering of IL-2 necessary for effector 
T-cell proliferation [56]. The ability of Tregs to promote tol-
erance of allogeneic transplants has led to widespread interest 
in harnessing Tregs as a tolerogenic cell therapy [57–59].

In addition to solid organ transplant, allogeneic hem-
atopoietic stem cell transplant (HSCT) is another common 
allogeneic therapy. HSCT is used to treat a wide range of im-
munological disorders and hematological malignancies. The 
success of HSCT is driven by the ability of donor-derived T 
cells and NK cells to attack leukemic cells, termed the graft-
versus-leukemia effect (GVL). Despite the potential curative 
effect of alloHSCT, the success of this therapy is limited by 
the high proportion of individuals that develop graft-versus-
host disease(GVHD), where donor T and NK cells attack host 
tissue [60]. The acute form of GVHD (aGVHD) generally af-
fects the skin, gastrointestinal tract, and liver, while chronic 
GVHD (cGVHD) affects multiple organs [61]. Despite im-
provements in donor matching, cell sources, and immunosup-
pression, ~40% of patients receiving matched-related donor 
transplants develop aGVHD, with higher rates in other HSCT 
transplant types [62]. While inflammatory immune inter-
actions between APCs and T cells drive aGVHD initiation 
[63], important tissue-protective and immunoregulatory roles 
have been reported for regulatory T cells, myeloid-derived 
suppressor cells (MDSCs) and ILCs.

Functions of ILCs in allogeneic hematopoietic 
stem cell transplantation
Several studies have linked NK cells to protection from GVHD, 
while also still maintaining the GVL response. Early findings 
demonstrated that a high infused dose of NK cells, rapid re-
constitution of NK cells, or a high NK cell:CD8+ T-cell ratio all 
correlated with protection from GVHD development without 
impairing GVL responses [64–68]. In haplo-mismatched 
HSCT, recipients receiving KIR ligand incompatible grafts 
were completely protected from both leukemia relapse and 
aGVHD [69]. Mouse models have provided insights into the 
molecules underlying NK cells protective functions following 
HSCT. Using a MHC mismatched mouse model, pre-infusion 
with alloreactive donor NK cells completely prevented 
GVHD development and resulted in a marked reduction in 
CD11c+ APCs in the bone marrow, spleen, and gut (Fig. 3A) 
[69]. This ablation of APCs appears to require natural cyto-
toxicity receptor NKp46, as NKp46-deficient mice had more 
severe GVHD, as did mice given NK1.1 depleted grafts [70]. 
Supporting in vivo studies, NK cells from mice and HSCT 

recipients could limit T-cell IFN-γ production and directly 
lyse activated T cells in vitro in an NKG2D-dependent mech-
anism [71, 72] (Fig. 3A). Additional studies have indicated 
that reconstitution of specifically CD56bright NK cells reduced 
the incidence of GVHD [73–75]. Decreased proportions of 
CD56bright NK cells were observed in HSCT recipients with 
aGVHD compared to those without [73]. Additionally, when 
patients were divided into groups based on the number of cir-
culating CD56bright NK cells, patients in the “high” group had 
an overall survival 2-years post-HSCT of 92.9% compared 
to only 66.7% and 42.9% in the “middle” and “low” groups, 
respectively [73].

Helper ILC reconstitution is important for establishment 
of tissue-specific adaptive immunity post-HSCT, whereas 
ILCs may serve redundant roles in systemic immunity, in 
line with mouse studies that observe a key role of ILC2 in 
regulating local but not systemic CD4 T-cell responses [8–
11]. However, increased circulating donor-derived ILC2s 
and ILC3s in HSCT recipients corresponded with decreased 
aGVHD incidence [76–78]. Munneke et al. longitudinally 
sampled HSCT recipients during conditioning therapy and 
post-transplant, and reported circulating helper ILCs were di-
minished after chemotherapy, and ILC1s, ILC2s, and natural 
cytotoxicity receptor (NCR)− ILC3s did not recover 12 weeks 
post-transplant [76]. Phenotyping revealed ILCs in HSCT re-
cipients protected from aGVHD had elevated expression of 
CD69 and CD69high ILCs had increased expression of gut 
homing marker α4β7, which correlated with reduced in-
testinal GVHD [76]. Separately, fewer circulating NKp44+, 
CD25+ or CCR6+ ILC precursors(ILCPs) were associated 
with cGVHD development, while fewer ILC2s and ILCPs 
with aGVHD [77]. Intriguingly, a high proportion of ILCs 
in granulocyte-colony-stimulating-factor (G-CSF) mobilized 
grafts correlated with better ILC recovery post-transplant and 
lower aGVHD incidence, indicating ILCs in HSC grafts may 
help restore the ILC compartment [78].

In murine studies, ILC3s were shown to protect gut tissues 
from GVHD pathology. Hanash et al. demonstrated IL-22 
produced by recipient-derived intestinal ILC3s protected 
from development of GVHD in an MHC-mismatch model 
[79]. IL-22−/− mice had increased epithelial damage, more se-
vere GVHD and lost IL-22R+ intestinal stem cells, supporting 
that ILC3-derived IL-22 protects intestinal stem cells and 
decreases intestinal damage(Fig. 3A) [79]. Separately, intes-
tinal CD39+CD73+ILC3s were decreased in GVHD patients 
compared to non-inflamed tissue from individuals with IBD, 
and serum adenosine was lower in GVHD patients relative to 
healthy controls [80]. To support a direct role for ILC3 con-
version of ATP into immunosuppressive adenosine underlying 
these patient observations, human CD39+CD73+ILC3s from 
healthy donor tonsils suppressed T-cell proliferation in vitro 
in an adenosine-dependent manner(Fig. 3A) [80].

Emerging evidence supports potential therapeutic applica-
tions of ILCs in HSCT. Infusion of in vitro expanded donor or 
third-party murine ILC2s improved mouse survival, and re-
duced symptoms of GVHD [81, 82]. Infused ILC2s trafficked 
to the gastrointestinal tract, where a reduction in donor IFN-γ+ 
CD4+ and CD8+ T cells was observed, as well as an increase in 
donor myeloid derived suppressor cells (MDSCs) [82]. When 
MDSCs were ablated using anti-GR-1 or IL-13−/− ILC2s were 
transferred that were unable to recruit MDSCs, the benefits 
of ILC2 infusion were ameliorated [82]. Interestingly, ILC2-
derived amphiregulin improved intestinal barrier function, 
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Figure 3. Overview of ILC functions in transplantation. (A) ILCs can help protect from development of GVHD in numerous ways. NK cells inhibit APC in 
the intestines, reducing activation of CD8+ T cells. NK cells also target alloreactive CD8+ T cells directly, preventing damage to intestinal epithelial cells. 
ILC3s produce IL-22 in the intestines which protects IL-22R+ intestinal stem cells from destruction. Additionally intestinal ILC3s express ecto-enzymes 
CD39 and CD73, which degrade inflammatory extracellular ATP into adenosine to suppress immune responses. In vitro expanded mouse ILC2s have 
dual roles; both improving intestinal barrier function through production of amphiregulin (AREG) and expanding local MDSCs via IL-13, which in turn limit 
T-cell accumulation and suppress IFN-γ responses. (B) During renal ischemia reperfusion injury (IRI), interactions between tubular epithelial cells (TECS) 
and NK cells exacerbate IRI. This effect is mediated by perforin and is induced via NKG2D/Rae-1 interactions. The interaction of 4-1BB on NK cells and 
4-1BBL on TECs results in the production of CXCL1 and CXCL2 leading to neutrophil recruitment that worsens IRI. In contrast, transferring ILC2s or 
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supporting ILC2s may act on both immune and non-immune 
cells to protect following HSCT(Fig. 3A). These intriguing 
findings should be further investigated in human studies, as 
well as contrasted with other ILCs to delineate unique contri-
butions ILC subsets to protection following HSCT.

ILCs in kidney transplant
End stage kidney disease affects over 840 million individuals 
globally [83, 84], with kidney transplantation being the op-
timal treatment. IRI and ABMR remain major challenges in 
kidney transplantation efficacy. While ILCs have essential 
functions in CMV infection and tissue homeostasis [85–90], 
several studies have reported circulating recipient NK cells 
infiltrate the kidney and exacerbate renal IRI [91–94]. For 
example, depletion of NK cells using anti-asialo GM1 or 
anti-NK1.1 antibodies ameliorated IRI in mouse models [91, 
92](Fig. 3B) and expression of 4-1BB on murine NK cells 
and 4-1BBL on tubular epithelial cells (TECs) was reported 
to promote TEC CXCL1 and CXCL2 production, resulting 
in neutrophil recruitment that exacerbated IRI [93]. In vitro, 
NKG2D-Rae-1 interactions direct NK cells to lyse renal TECs 
in a perforin-dependent manner. As TECs upregulated Rae-1 
in vivo following IRI, this provides a possible mechanism by 
which NK cells contribute to IRI [91] (Fig.3B).

NK cells have also been linked to ABMR [95–97]. In mouse 
studies, donor-specific antibodies (DSAs) triggered activated 
NK cells to mediate acute rejection [98]. This was attributed 
to alloreactive NK cell activation from lack of self-recognition, 
resulting in NK cells interacting with DSAs to target endo-
thelial cells via ADCC [99]. NK cells isolated from ABMR 
patients upregulated CD69 expression, and had elevated ex-
pression of perforin, granzyme A, and granulysin [100] (Fig. 
3B). Of note, mismatched KIRs and KIR ligands are associ-
ated with a 25% reduction in 10-year graft survival [101] 
and NK cells may be resistant to conventional immunosup-
pression such as cyclosporin A, methylprednisolone, hydro-
cortisone, and azathioprine [102], highlighting that targeting 
NK cells in kidney transplant may be important to improve 
clinical outcomes.

In contrast to NK cells, recent studies indicate potential 
protective roles for ILC2s in kidney transplantation. Utilizing 
a mouse renal IRI model, Cao et al. reported that transfer-
ring ILC2s prior to or following IRI minimized tubular injury 
and serum creatinine, an effect dependent on amphiregulin 
and similar to that observed with IL-33 administration [103]
(Fig. 3B). Separate studies showed that IL-25 alone or in com-
bination with IL-2 and IL-33 co-administration improved IRI 
outcomes via ILC2-induced M2 macrophage activity(Fig. 3B), 
which was abrogated with depletion of ILC2s via anti-CD90 
antibodies [104, 105]. In contrast, Cameron et al. reported no 
differences in IRI severity when multiple approaches to de-
plete or limit ILC2s were used [106]. The authors suggested 
this may be due to other immune populations being able to 
compensate for the loss of ILC2s. Although differences in the 
mouse models may underlie these conflicting findings, a key 
question is whether functions of ILC2s and other helper ILCs 
in allogeneic contexts remain unchanged. Studies are there-
fore needed to evaluate whether helper ILC populations con-
tribute to or protect from allograft rejection or allogeneic IRI.

ILCs in liver transplant
The liver possesses a complex array of liver-resident immune 
cells that exhibit unique functions. This includes populations 
of cytotoxic and non-cytotoxic ILCs that are involved in pro-
moting homeostasis and immune tolerance [107–109]. Liver-
resident NK cells comprise 30–50% of hepatic lymphocytes 
[110, 111] and in humans, include conventional NK cells 
and CD56bright NK cells that express CCR5, CXCR6, CD69, 
and EOMES. Recent studies have further identified CD7, 
KLRD1(CD94), and NCR1(NKp46) as additional defining 
features of liver-resident NK cells [112, 113], which are local-
ized to hepatic sinusoids [114, 115].

Liver-resident NK cells are well-described for their ability 
to promote immune tolerance, and can directly inhibit hep-
atic T cells [116]. In a murine lymphocytic choriomeningitis 
virus model, transfer of liver-resident NK cells decreased hep-
atic T-cell activity and impaired viral clearance, in contrast to 
conventional NK cells that promoted T-cell activity and viral 

administrating IL-33 to promote ILC2 development attenuated IRI, an effect dependent on ILC2-derived amphiregulin. When administered IL-25, mouse 
ILC2s also promoted a Th2 response that induced alternatively activated macrophages which were tissue-protective in IRI. During antibody mediated 
rejection, NK cells can interact with donor specific antibodies to damage endothelial cells through antibody dependent cell-mediated cytotoxicity 
(ADCC), and express increased levels of perforin, granzyme A, and granulysin. (C) Using a mouse model of steatotic livers, ILC1s increase with IRI 
and have increased IFN-γ and TNF-α production that promote tissue injury. In a standard IRI model, administration of IL-33 increases ILC2s, leading to 
an enrichment of M2 macrophages that decrease damage associated with IRI. NKp46+ ILC3s can reduce hepatic IRI via IL-22. In liver transplant, liver 
perfusate NK cells exhibit higher expression of perforin, granzymes and IFNγ that may enable them to protect the graft by inhibiting allogeneic immune 
responses. Conversely, long lasting resident NK cells with high EOMES expression and lower cytotoxic potential are also observed, which may promote 
long term allograft acceptance as the presence of NK cells following liver transplant is associated with immune tolerance following withdrawal of 
immunosuppressants. However mouse models of liver transplant suggest increased infiltration of recipient NK cells induced by CXCL10 and CX3CL1 
promotes liver IRI through elevated IFN-γ, IL-17A and FasL. ILC2s are increased during rejection and found in proximity to CD4+ regulatory T cells 
(Tregs), suggesting they are either recruiting or supporting Tregs. (D) In acute cellular rejection, accumulation of IFN-γ producing ILC1s and NKp44- 
ILC3s were observed, with a reciprocal decrease in IL-22 producing and NKp44+ ILC3s. In contrast, increased IL-22+ NKp44+ ILC3s is associated with 
graft tolerance. (E) NK cells are enriched within the broncho-alveolar lavage (BAL) and lung tissue during IRI. NKG2D expression by NK cells interacts 
with Rae-1 on endothelial and epithelial cells during IRI, and blocking the NKG2D receptor or depleting NK cells reduces IRI-induced pathology. IL-33 
expression following IRI increases ILC2s within the graft. These ILC2s recruit eosinophils through IL-5 production and can promote allograft tolerance in 
mice. NK cells increases in the BAL or lung tissue during acute or chronic rejection respectively. The production of IL-22 by ILC3s led to the formation 
of bronchus associated lymphoid tissue (BALT) and promoted allograft tolerance. In primary graft dysfunction, NKG2D and NKG2D ligand Rae-1 
expression is increased on NK cells and epithelial cells, respectively. The development of primary graft dysfunction is correlated with decreased ILC2s 
and increased ILC1 prior to transplant. (F) Early on in cardiac transplant, NK cells infiltrate the allograft, with increased NKG2D expression by NK cells 
and NKG2DL by cardiac parenchymal cells. Depletion of NK cells or blocking NKG2D in CD28-deficient mice led to increased cardiac graft survival and 
attenuated acute allograft rejection and allograft vasculopathy. (G) In a mouse model of islet transplant, treatment with IL-33 expands IL-10 producing 
ILC2s that can limit allograft rejection and adoptive transfer of IL-10-producing ILC2s blocked islet rejection. NK cells may also have protective functions, 
as anti-NK1.1 treatment resulted in rejection of transplanted islets in mice receiving anti-CD154 treatment. Created with Biorender.com.
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clearance [116]. This inhibition of T-cell function was de-
pendent on PD-1 and PD-L1 on T cells and liver-resident NK 
cells, respectively(Fig. 2) [116]. Liver NK cells are also charac-
terized by decreased inflammatory potential in both mice and 
humans, possessing reduced ability to produce IFN-γ and re-
spond to IL-12 or IL-18 stimulation, while also being a source 
of IL-10 [117, 118]. Interestingly in vitro studies by Jinushi 
et al. demonstrated that circulating NK cells can be induced 
to produce immunosuppressive cytokines IL-10 and TGF-β 
when co-cultured with hepatocytes via NKG2A receptor en-
gagement with HLA-E on hepatocytes [119] (Fig. 2).

Depending on the context, liver resident NK cells were re-
ported to promote or inhibit liver regeneration. In studies 
using immunodeficient mice receiving partial hepatectomy, 
optimal liver regeneration required NK cells, and blocking 
NKG2D reduced hepatocyte proliferation [120]. In con-
trast to these findings, depleting NK cells in C57BL/6J mice 
using anti-asialo- GM1-antibody enhanced liver regeneration 
[121]. These differing findings could relate to the degree of 
NK cell activation, as following liver injury, NK cells in Tigit−-

/− mice had increased activation and IFN-γ production which 
impaired liver regeneration [122]. As new data emerge on the 
distinct subsets of liver NK cells [113, 123, 124], it will be im-
portant to delineate the role of individual NK cell populations 
in liver regeneration, as these differing reports may be due to 
distinct NK cell subpopulations being activated depending on 
the model.

Liver resident NK cell functions have also been explored 
in the context of transplantation. Analysis of human liver 
perfusate NK cells before transplant reported that CD56bright 
NK cells have high perforin and granzyme expression com-
pared to circulating NK cells, express CD69 and IFN-γ, and 
exhibit enhanced cytotoxic potential [125]. In vitro studies 
where liver-resident CD56bright NK cells could kill allogeneic 
CD8+ T cells [126], supports liver NK cells may protect the 
graft during the acute phase post-transplant by inhibiting 
allogeneic adaptive immune responses. Notably, a lower per-
centage of NK cells in the liver perfusate prior to transplant 
is observed in recipients with acute cellular rejection(ACR) 
compared to those that did not [127].

While increased proportions of circulating NK cells fol-
lowing liver transplant are correlated with improved oper-
ational tolerance following immunosuppression withdrawal 
[128], these effects may also extend to liver-resident NK cells. 
For example, donor NK cells can persist within the liver 
allograft for at least 13 years following transplant and ex-
hibit decreased levels of perforin and granzymes [129] and 
hypofunctionality [130] (Fig. 3C). Furthermore, introducing 
donor-derived liver NK cells into rats prolonged allograft 
survival and reduced histological damage, collectively sup-
porting donor-derived NK cells may possess a role in limiting 
host versus graft response and promoting long-term allo-
graft acceptance [131]. The same is not necessarily true for 
recipient-derived infiltrating NK cells. Using a model of rat 
orthotopic liver transplant, Obara et al. demonstrated early 
following transplant the liver allograft upregulates CXCL10 
and CX3CL1 to recruit recipient circulating recipient NK 
cells with increased IFN-γ compared to donor NK cells [132] 
(Fig. 3C). Depletion of NK cells via an anti-asialo GM1 anti-
body prolonged allograft survival, indicating that infiltrating 
NK cells acquire a pro-inflammatory signature that contrib-
utes to rejection [132]. Infiltrating recipient NK cells were 

separately shown to promote liver IRI through IFN-γ, IL-17A, 
and FasL, which was reversed when depleting NK cells using 
anti-NK1.1 or anti-asialo GM1 antibodies [132–134] (Fig. 
3C). Taken together, these murine studies support recipient 
NK cells are detrimental, whereas donor-derived liver NK 
cells are protective, highlighting a key difference between NK 
cells from the donor or recipient.

ILC1s represent the most abundant helper ILC popula-
tion in the human liver [109], and localize to the perivascular 
spaces near DCs where they produce IFN-γ downstream of 
DC-derived IL-12 in viral infection [135, 136]. Similar to NK 
cells, ILC1s can also control T-cell activity. For example, in a 
murine hepatitis B virus model, ILC1s limited HBV-specific 
CD8+ T cell proliferation by controlling IL-2 availability 
[137] (Figure 2). Beyond regulating T-cell responses, adop-
tive transfer of ILC1s into immunodeficient mice protected 
from CCL4-mediated liver injury in a mechanism whereby 
ILC1-derived IFN-γ increased Bcl-xL expression by hep-
atocytes [138]. In contrast to these findings, ILC1s wors-
ened IRI-induced tissue damage in a high-fat diet model of 
steatotic liver disease, where induced IRI resulted in elevated 
ILC1 numbers that had increased IFN-γ and TNF-α produc-
tion [139] (Fig. 3C), and IRI studies using immunodeficient 
and ILC1 knockout mice resulted in decreased IRI-induced 
pathology [139]. Further studies are needed to clarify ILC1s 
functions in IRI, particularly in humans, as well as examine if 
these functions are maintained in allogeneic contexts.

While allogeneic studies on ILC1s are lacking, hepatic 
ILC2 was reported to significantly increase with rejection in 
a model of orthotopic liver transplant. ILC2s present within 
the allograft were of recipient origin and were spatially found 
in close proximity with liver Tregs, suggesting ILC2s may 
be attempting to inhibit allograft rejection or respond to 
damage [140]. In a murine IRI model, IL-33 treatment ac-
tivated ILC2s that in turn increased M2 macrophage liver 
accumulation, leading to decreased hepatic damage [141] 
(Fig. 3C), suggesting possible protective roles ILC2s in liver 
transplant. However, ILC2s have also been linked to liver fi-
brosis. Chronic hepatocyte stress upregulated IL-33 that acti-
vated mouse ILC2s which in turn produced IL-13 that drove 
fibrosis [142], indicating that ILC2s protective effects may be 
context specific.

Current studies support the protective functions of ILC3s in 
the liver. ILC3s signature cytokine, IL-22, was shown across 
multiple studies to promote liver regeneration [109, 143, 
144]. Using a mouse model of hepatic IRI, mice deficient in 
NKp46+ IL-22+ cells that resemble ILC3s experienced severe 
IRI, a phenotype that was reversed with adoptive transfer of 
these NKp46+ cells [144] (Fig. 3). Furthermore, in a murine 
hepatitis model, RORγt-deficient mice that lack IL-22+ ILC3s 
experienced more severe hepatitis [145]. Although the role of 
ILC3s in allogeneic contexts has yet to be determined, these 
studies collectively support ILC3s functions in promoting 
liver regeneration which may have important implications for 
transplantation.

ILCs in intestinal transplant
Intestinal failure is a life-threatening condition primarily 
caused by intestinal resections performed to treat inflam-
matory bowel disease, cancer, or intestinal dysmotility 
[146]. Intestinal transplants have been increasingly used 
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due to severe catheter-related infections and risk of patients 
developing metabolic complications [146]. While the success 
of intestinal transplants has improved, only 50% of grafts 
remain functional at 5-years [147], due to a wide variety of 
complications including sepsis, ACR, ABMR, posttransplant 
lymphoproliferative disorder, IRI, and GVHD [148].

Many complications stem from lymphoid cells present 
within transplanted tissue, as well as the complex immune 
network in the gut-associated lymphoid tissue [149]. This in-
cludes DCs which stimulate anti-graft lymphocytes, B cells 
that produce DSAs causing ABMR, and cytotoxic T and NK 
cells driving ACR. Shortly after transplant, a substantial in-
crease in recipient ILCs in the epithelium and lamina propria 
is observed in recipients compared to healthy controls [150, 
151], which is maintained up to a decade after transplant, 
gradually skewing towards recipient-derived ILCs [151, 152]. 
Allograft-resident ILCs are primarily NK cells, ILC1s, and 
ILC3s, with elevated IFN-γ+ and IL-22+ CD3− intraepithelial 
lymphocytes, and an increased cytotoxic profile compared to 
healthy individuals [150]. Despite the cytotoxic profile, none 
of the grafts in this study failed and patients did not experience 
infections, suggesting this profile is consistent with successful 
transplants [150]. Indeed, other studies noted elevated helper 
ILCs in patients with healthy grafts and those with rejection 
[151, 152]. Interestingly, Gomez-Massa et al. biopsied a single 
patient weekly to evaluate ILC replacement kinetics and ob-
served that once the patient progressed to ACR, there was 
an expansion of ILC1s and a decrease of ILC3s [151]. This 
could indicate that while an elevation of ILC1s and ILC3s 
compared to native intestine is beneficial for graft success, a 
shift in ILC1-ILC3 balance or changes in ILC subpopulations 
may lead to rejection (Fig. 3D). Separately, patients who de-
veloped ACR were reported to have similar proportions of 
ILC1s, ILC2s, and total ILC3s compared to patients without 
rejection and healthy controls, however, a decrease in specif-
ically NCR+ILC3s and a reciprocal increase in NCR−ILC3s 
was observed [153]. Further supporting ILC3s’ importance 
for intestinal transplant tolerance, when Kang et al. compared 
ILCs between stable and rejecting allografts, a stark decrease 
in NCR+ILC3s and an increase in ILC1s occurred in rejecting 
allografts [154]. Collectively, these data show that a healthy 
ILC compartment is important for prevention of graft rejec-
tion, with NCR+ILC3s being associated with protection.

ILCs in lung transplant
Within the lungs, all ILC subsets are present and have im-
portant functions in host defense; NK cells make up 10% of 
total lymphocytes and are predominantly CD56dimCD16+. 
Lung NK cells display hyporesponsiveness to stimulation and 
express more KIRs than circulating NK cells [155]. Other 
ILCs are also present, with ILC2s and ILC3s comprising the 
majority of non-cytotoxic ILCs in the lung [156].

During lung transplants, NK cells have been linked to lung 
allograft failure. NK cell numbers were significantly elevated 
in bronchoalveolar lavage (BAL) or lung biopsy samples col-
lected from recipients with acute or chronic lung allograft 
rejection, respectively [157, 158]. In a separate study, an in-
crease of NK cells in areas of lung IRI was noted, which could 
also be detected in the BAL [159] (Fig. 3E). These human 
findings were supported by mouse studies, where NK cell-
deficient mice had reduced IRI-induced pathology and adop-
tive transfer of NK cells worsened IRI [159]. NKG2D receptor 

ligands are present on lung endothelial and epithelial cells fol-
lowing IRI, and blocking the NKG2D receptor similarly re-
duced IRI, supporting a role for NKG2D in controlling NK 
cell responses to the lung graft [159] (Fig. 3E). In a murine 
tracheal transplant model, depletion of NK cells or inhibition 
of NKG2D attenuated bronchiolitis obliterans in recipients 
[160], a finding supported by studies of patients with primary 
graft dysfunction, where NKG2D ligands were enriched in 
airway epithelial cells and NKG2D was upregulated on NK 
cells [161, 162]. However, NK cells have also been shown to 
promote lung transplant tolerance. In a murine model of lung 
transplant, recipient NK cells expanded with IL-15/IL-15-Ra 
complex killed allogeneic APCs and protected from rejec-
tion, [163] and in humans, HLA-mismatched NK cells correl-
ated with improved outcomes of lung transplantation [164]. 
These contrasting reports may reflect differences in donor and 
recipient NK cells, specific NK cell populations, as well as 
unique donor–recipient interactions. As NK cells are a highly 
heterogeneous population, additional studies mapping spe-
cific subsets of NK cells and their source are needed.

Although helper ILCs functions in lung infection and inflam-
mation have been described (Fig. 2), there are comparatively 
fewer studies assessing ILCs role in lung allograft tolerance 
[25, 165, 166]. Monticelli et al. reported the development 
of primary graft dysfunction is associated with a marked 
reduction in ILC2s following reperfusion, and patients that 
did not develop primary graft dysfunction had higher ILC1 
frequencies prior to allograft reperfusion [167] (Fig. 3E). In 
a murine lung transplant model, ILC2s facilitated lung allo-
graft acceptance through eosinophil recruitment via IL-5 pro-
duction [168] (Fig. 3E). This is intriguing, as ILC2-mediated 
eosinophilia has been associated with lung inflammation in 
asthma and other lung pathologies [169–173], yet eosino-
philia in models of murine lung transplant has been shown 
to promote immune tolerance, suggesting that the effects of 
ILC2 mediated eosinophilia may be context dependent [174]. 
While not studied in allogeneic context, Seehus et al. report 
IL-10-producing ILC2s can serve as “tissue sentinels” able 
to rapidly produce IL-10 to limit immune responses [175]. 
Whether IL-10-producing ILC2s are protective in lung trans-
plantation is not known, and further investigation is needed 
to determine if specific ILC2 cytokines support transplant tol-
erance, or if distinct ILC2 populations are protective.

In the human lung, ~60 % of helper ILCs are ILC3s, with 
NCR− ILC3s being the predominant ILC population [156]. 
While studies of ILC3s in human lung transplantation are 
lacking, murine transplant models support that ILC3s within 
lung allografts are crucial producers of IL-22 that promotes 
allograft tolerance [176] (Fig. 3E). Interestingly, lung ILC3s 
may also directly regulate T-cell responses within the lung. 
Mouse ILC3s that express MHC class II inhibited CD4+ T-cell 
responses to allergen, thereby limiting airway inflammation 
[166] (Fig. 2). Whether ILC3s could regulate allogeneic T-cell 
responses within the lung remains to be examined, but the 
possibility of lung ILC3s exhibiting antigen-presenting cap-
abilities warrants investigation into whether this may occur 
in the transplant setting.

ILCs in cardiac transplant
Studies of ILCs in the human heart are rare, due in part to 
the complexity and scarcity of cardiac transplant samples. 
However, cardiac ILC functions were explored at the steady 
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state in mouse models [177–179] (Fig. 2), where NK cells rep-
resent 3% of immune cells, ILC2s 1.7%, and ILC1s represent 
0.2%, with no ILC3s being detected [180]. Parabiosis and 
adoptive transfer experiments suggest the proportion of heart 
ILCs remains stable during homeostatic and inflammatory 
conditions, implying that circulating ILC progenitors do not 
infiltrate and alter ILC proportions [180, 181]. Studies in hu-
mans corroborate these findings and indicate that a large pro-
portion of non-cytotoxic ILCs are committed cardiac ILC2 
precursors. Following ischemic cardiomyopathy or myocar-
ditis, this ILC2 precursor population decreases, and levels 
of differentiated ILC2s increase, suggesting a mechanism 
whereby ILC2 precursors are locally activated and differen-
tiate in response to tissue injury [181].

NK cells are the most well-characterized ILC population 
within cardiac transplantation and are reported to contribute 
to allograft rejection. Early following transplant, murine NK 
cells comprise the predominant population of infiltrating 
lymphocytes, and NKG2D ligands are upregulated in cardiac 
tissue [182, 183] (Fig. 3F). Early studies involving CD28-
deficient mice show that while these mice reject cardiac allo-
grafts in a CD8-T-cell mediated mechanism, depletion of NK 
cells using an anti-NK1.1 antibody prolongs graft survival 
and established long-term allograft acceptance [184] (Fig. 
3F). Blocking the NKG2D receptor was also able to abrogate 
acute allograft rejection [185], an observation that was rep-
licated in the context of antibody-dependent rejection [186] 
(Fig. 3F). In addition, separate studies demonstrated NK cells 
contribute to cardiac allograft vasculopathy through CD16-
dependent activation and IFN-γ responses [187, 188]. While 
human studies are needed, there is consensus from mouse 
studies to date that NK cells are harmful in cardiac trans-
plants.

ILCs in pancreas and islet transplant
Beta-islet cell (β-cell) replacement therapy is used to treat pa-
tients with type 1 diabetes who cannot be stably treated with 
external insulin [189]. Replacement therapy involves either 
a whole pancreas transplant requiring major surgery, or the 
less invasive islet transplantation which can be done laparo-
scopically [190]. While these are life-changing therapies, both 
approaches do not resolve underlying immunopathology and 
recipients require life-long immunosuppression to prevent 
graft loss [191].

Beilke et al. reported a mouse NK1.1+ILC population-
induced islet allograft tolerance following anti-CD154 anti-
body treatment [192]. Perforin−/− mice were unable to induce 
tolerance, suggesting this NK1.1+ILC was an NK cell, and 
supporting NK cell-mediated tolerance involved a cytotoxic 
mechanism (Fig. 3G). Similarly, induction of islet tolerance 
using anti-CD45RB and anti-Tim-1 antibodies required both 
regulatory B cells and NK1.1+ cells for allograft tolerance, 
and tolerance could be restored with wild-type NK cell infu-
sion [193].

In models of pancreatic stress, ILC2s may have protective 
capabilities or improve islet function. In mice treated with 
streptozotocin to induce β-cell destruction, increased IL33 
expression was observed in pancreatic mesenchymal cells 
which activated ILC2s [194]. ILC2s in turn produced IL-13 
and GM-CSF, inducing myeloid cells to secrete retinoic acid 
that increased β-cell insulin secretion [194]. In a murine islet 
transplant model, IL-33 injection protected from allograft 

rejection via expansion of IL-10 secreting ILC2s, and adop-
tive transfer of mouse ILC2s inhibited allograft rejection 
[195] (Fig. 3G). While promising, additional studies con-
trasting ILC2s with other ILCs are needed, as are human 
studies to understand if adoptive transfer of ILCs could limit 
rejection of transplanted islets.

Harnessing or targeting ILCs to promote 
transplant tolerance
ILC family members have important roles in tissue homeo-
stasis and immune tolerance. To date, therapeutics that spe-
cifically target or harness ILCs have not been used clinically, 
however, a growing body of evidence supports targeting or 
harnessing ILCs populations may have applications for trans-
plantation. This includes the possibility of harnessing ILC2 
or ILC3s dual reparative and tolerance-promoting functions. 
Several potential methods of manipulating ILCs have been 
suggested, including using cytokine and cytokine receptor 
agonists, targeting receptors expressed by specific subsets 
using monoclonal antibodies, and even using ILCs in adop-
tive cell therapies.

Studies of cytokine-based approaches include those where 
IL-33 injection results in a short-term expansion of ILC2s 
that protect from islet graft rejection and acute colitis [195, 
196]. Expansion of IL-10-producing ILC2s was enhanced 
with IL-33 co-administration with IL-2/anti-IL-2 receptor 
antibody complex and prevented rejection in an islet trans-
plant model or decreased renal IRI [43, 195]. Similarly, IL-1β, 
IL-23, and retinoic acid promoted ILC3 differentiation from 
ILC1s, which could potentially correct aberrant ILC1 to ILC3 
ratios [151, 197]. Similar approaches have been used to ex-
pand or activate NK cells, CD8+ T cells, and Th2 cells in a 
variety of contexts [163, 198], although identifying cytokines 
that selectively expand protective ILC populations without 
acting on other immune populations remains challenging.

Adoptive cell transfer of expanded ILCs with 
immunoregulatory potential has been explored in multiple 
transplant contexts. Huang et al. transferred in vitro ex-
panded IL-10-producing murine ILC2s into mice shortly 
before and after islet transplant, which could migrate to the 
allograft and limit rejection [195]. Similar results were seen in 
murine GVHD, where infused ILC2s localized in the intestines 
and indirectly suppressed GVHD through IL-13-mediated 
MDSC expansion [82]. Additionally, adoptive transfer of 
mouse ILC2s limited renal IRI in an amphiregulin-dependent 
manner, supporting ILC2’s dual reparative role could be har-
nessed for transplantation [103]. Whether ILC3s might have 
similar beneficial effects in adoptive cell therapies for trans-
plant has not been explored to date, but has been examined in 
autologous contexts. For example, in a model of experimental 
type 2 diabetes during Mycobacterium tuberculosis infection, 
adoptive transfer of IL-22+ILC3s or LTi cells improved mouse 
survival [199], and adoptive transfer of NKp46+IL-22 produ-
cing ILCs minimized liver IRI [144].

Challenges and limitations of ILC research and 
clinical applications
Limiting translation of adoptive ILC-based therapies to hu-
mans is the relatively small numbers of ILCs in peripheral 
blood, which is typically the source of immune cells for cell 
therapy. Helper ILCs generally comprise 0.1% of circulating 
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lymphocytes and 0.5% of lymphocytes in cord blood [8]. 
While several groups have developed protocols for the gen-
eration of ILCs from CD34+ cord blood or ILC precursor 
populations, these expansions result in a mixed ILC popula-
tion [7, 200]. Separate studies have expanded human ILC3s 
(referred to as NK22 cells in the study) and ILC2s in vitro. 
While achieving robust fold expansions, these methods have 
not been able to obtain sufficient numbers for clinical trans-
lation [201, 202].

While NK cells have been widely associated with protec-
tion from GVHD following HSCT, and protective in mouse 
models of islet transplant, they are associated with IRI-
induced pathology and rejection in kidney, liver, and car-
diac transplant. These varying results across transplant types 
might be explained by organ-adapted functions of ILCs, and 
suggest protective or harmful ILC populations could differ 
between tissues. Human studies examining differences in ILC 
functions within organ allografts of those with and without 
rejection are needed to define local ILC responses, not just 
tracking the presence or absence of ILC family members. 
Further complicating this, is the diversity of circulating and 
resident ILC populations between individuals. Even within 
circulating CD56dim and CD56bright NK cells, there are large 
variations in phenotypes [203], with overlapping markers of 
other ILC family members [20], thereby complicating inter-
pretations of early correlative studies of clinical outcomes 
with NK cell phenotypes. This in turn creates challenges for 
development of therapeutics targeting NK cells, as both pro-
tective and harmful subpopulations of NK cells may be pre-
sent. New approaches such as single-cell RNA sequencing 
(scRNAseq)-based technologies are being applied across 
organs to assess responses that underly rejection and those 
which occur in healthy individuals. This will allow for better 
delineation of phenotypic and functional heterogeneity of NK 
cells and all ILCs in transplantation, which will be important 
to resolve NK cell populations that drive harmful responses 
or improve graft outcomes.

Importantly, current immunosuppression has been mostly 
studied in the context of inhibiting B- and T-cell responses, 
with some evidence suggesting NK cells and helper ILCs 
may be resistant to current immunosuppression [102]. 
Alemtuzumab, an anti-CD52 humanized monoclonal anti-
body, and polyclonal rabbit anti-thymocyte globulin have 
been used to treat patients following kidney and pancreas 
transplantation, resulting in a marked loss of circulating 
NK cells that exhibited decreased cytotoxicity and increased 
apoptosis [204]. However, both therapies are unable to target 
CD52− NK cells found within liver and also deplete T and 
B cells [205]. A more specific approach that targeted NK 
cells and CD8+ T cells using anti-NKG2D and anti-CTLA 
improved allograft survival in a mouse model of islet trans-
plant [206], and similar improvements were seen by blocking 
NKG2D in in vitro models of airway epithelial cytotoxicity 
[161]. This emphasizes the possibility of using targeting 
antibodies to prevent NK cell-mediated IRI and organ rejec-
tion. As new data emerges on ILC metabolism, microbiome-
derived metabolites effects on ILC functions, chemokines that 
control ILC trafficking, impact of MHC expression by helper 
ILCs in allogeneic contexts, and molecules that activate or 
inhibit ILCs, novel approaches may emerge that more specif-
ically promote ILCs reparative functions, blocking harmful 
NK cell responses or promoting tolerogenic ILC expansion 
or activation.

Tissue tolerance is mediated by complex interplay between 
the various immune cells including DCs [207, 208], mast cells 
[207], macrophages [209], eosinophils [174, 210], B cells, 
[211] and ILCs. For example, IFN-γ can induce iNOS+ eosino-
phils that are protective in lung transplantation and infiltrate 
early after transplant [210]. ILC2s are similarly protective 
in lung transplantation, yet they are constrained by IFN-γ 
[212]. Intriguingly, ILC subsets have been shown to interface 
with many of these cells and promote regulatory functions 
[5, 213]. Moving forward, it will be important to disentangle 
the network of cells and pathways in each organ that leads 
to protection from adverse outcomes following organ trans-
plantation and explore how ILC family members contribute 
to these circuits across different tissues. Of particular interest 
is the role of ILC-Treg crosstalk in promoting tolerance. 
Currently, the interplay between these immune populations 
is not well understood in the context of transplantation, but 
evidence from autologous settings indicates ILCs could work 
collaboratively with Tregs to promote tolerance. For example, 
in mice, IL-9 from ILC2s was crucial for activation of Tregs 
and resolution of inflammation in an arthritis model [214]. In 
resting or helminth-infected adipose tissue, IL-33 stimulated 
ILC2s induced Treg activation and accumulation through 
ICOSL-ICOS interactions [215]. Similarly, ILC3s in the in-
testine are an important source of IL-2, which supports in-
testinal Treg maintenance [216] and GM-CSF, which helps 
maintain Treg homeostasis through DCs and macrophages 
[217]. It will therefore be important to examine ILC-Treg 
crosstalk and consequences for tissue tolerance.

A major limitation of our current understanding of the 
role of ILCs in organ transplantation and HSCT is that most 
studies have been correlational. While scRNAseq studies 
investigating human transplantation are shedding new light 
into the cells and pathways that drive tolerance, these only 
capture a single point in time, missing important temporal 
observations of early immune responses that drive organ re-
jection or promote tolerance. Rodent models of organ trans-
plantation have been essential in bridging the gap between 
correlational patient data and mechanisms underlying organ 
transplant and tolerance. Unfortunately, these models do not 
accurately reflect the diverse human population, and thus 
have limitations for translation of insights gained from these 
models [218]. A further complication for the field of ILCs 
is the differences between mouse and human ILC subsets 
including markers to identify them, specific functions, and 
responses to environmental triggers [219]. To gain a better 
understanding of the functional role of human ILCs in trans-
plantation, newer humanized mouse models, as well as ex 
vivo approaches such as precision cut-tissue slice models, 
organoids, organ-on-a-chip, and 3D cultures should be har-
nessed to better define human ILC interactions with allo-
geneic tissues and other immune populations that contribute 
to protective or pathogenic immune responses to organs. This, 
combined with powerful new single-cell and spatial technolo-
gies, will provide valuable insights into mechanisms by which 
human ILCs coordinate transplant immune responses, which 
may one day lead to novel therapeutic approaches for trans-
plantation.
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