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Abstract

Despite decades of research, identifying selective sweeps, the genomic footprints of positive selection, remains a core problem in popu
lation genetics. Of the myriad methods that have been developed to tackle this task, few are designed to leverage the potential of gen
omic time-series data. This is because in most population genetic studies of natural populations, only a single period of time can be 
sampled. Recent advancements in sequencing technology, including improvements in extracting and sequencing ancient DNA, have 
made repeated samplings of a population possible, allowing for more direct analysis of recent evolutionary dynamics. Serial sampling 
of organisms with shorter generation times has also become more feasible due to improvements in the cost and throughput of sequen
cing. With these advances in mind, here we present Timesweeper, a fast and accurate convolutional neural network-based tool for iden
tifying selective sweeps in data consisting of multiple genomic samplings of a population over time. Timesweeper analyzes population 
genomic time-series data by first simulating training data under a demographic model appropriate for the data of interest, training a one- 
dimensional convolutional neural network on said simulations, and inferring which polymorphisms in this serialized data set were the 
direct target of a completed or ongoing selective sweep. We show that Timesweeper is accurate under multiple simulated demograph
ic and sampling scenarios, identifies selected variants with high resolution, and estimates selection coefficients more accurately than 
existing methods. In sum, we show that more accurate inferences about natural selection are possible when genomic time-series 
data are available; such data will continue to proliferate in coming years due to both the sequencing of ancient samples and repeated 
samplings of extant populations with faster generation times, as well as experimentally evolved populations where time-series data are 
often generated. Methodological advances such as Timesweeper thus have the potential to help resolve the controversy over the role 
of positive selection in the genome. We provide Timesweeper as a Python package for use by the community.
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Introduction
Over a century after the modern evolutionary synthesis, there is 
still a great deal of controversy over the role of natural selection 
in molecular evolution. In particular, the impact of positive selec
tion, in which beneficial alleles are favored by selection and thus 
increase in frequency in the population, is hotly debated (Hahn 
2008; Kern and Hahn 2018; Jensen et al. 2019). This controversy ex
tends to the role of selective sweeps (Stephan 2010), in which posi
tively selected mutations rapidly sweep through a population 
thereby drastically reducing and altering patterns of genetic di
versity in the vicinity of the selected locus (Smith and Haigh 
1974; Kaplan et al. 1989), with some studies claiming that signa
tures of selective sweeps alter genome-wide patterns of poly
morphism (Enard et al. 2014; Garud et al. 2015; Garud and 
Petrov 2016; Schrider and Kern 2017; Booker et al. 2021), and 
others purporting that these signatures may be largely or even en
tirely false positives (Harris et al. 2018).

A number of methods have been devised to make inferences 
about positive selection in the recent past, including recently 
completed or even ongoing selective sweeps, on the basis of snap
shots of present-day variation obtained from a set of genomes 
sampled from the population(s) of interest. These methods 

typically examine one of several aspects of genetic diversity that 
are each indicative of an allele that has spread rapidly enough 
such that there has been little time for recombination and muta
tion to introduce diversity into the class of haplotypes carrying the 
sweeping allele. These signatures of selection include: character
istic skews in the frequencies of neutral alleles linked to the se
lected site (Fay and Wu 2000; Kim and Stephan 2002; Li 2011a), 
reduced haplotypic diversity around the selected site (Hudson 
et al. 1994; Garud et al. 2015; Harris and DeGiorgio 2020), the pres
ence of abnormally long-range haplotypes bearing the selected al
lele (Sabeti et al. 2002; Voight et al. 2006; Ferrer-Admetlla et al. 
2014), increased linkage disequilibrium (Kelly 1997), especially 
on either flank of the selected site (Kim and Nielsen 2004), and ele
vated divergence between closely related populations in the case 
of local adaptation (Chen et al. 2010).

One pernicious obstacle to efforts to accurately detect sweeps 
is demographic change. For example, strong population bottle
necks, which involve a recovery from a period of drastically re
duced population size, can result in rapid changes in allele 
frequencies that can produce false-positive signals of selective 
sweeps, especially if the demographic history is unknown 
(Jensen et al. 2005; Nielsen et al. 2005; Mughal and DeGiorgio 
2019). Some recent methods combine each of the signatures of 
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selection described above via machine learning in order to identify 
the multidimensional spatial patterns of diversity along the 
chromosome that sweeps produce (Lin et al. 2011; Pybus et al. 
2015; Sugden et al. 2018; Mughal and DeGiorgio 2019; Xue et al. 
2021; Caldas et al. 2022; Lauterbur et al. 2022), have proved to be 
far more robust to demographic events (Schrider and Kern 2016; 
Mughal and DeGiorgio 2019). However, even these methods may 
experience an appreciable loss of power under nonequilibrium 
demographic histories, especially if they are not adequately mod
eled during the training process (Schrider and Kern 2016; Mughal 
and DeGiorgio 2019). Thus, in spite of decades of theoretical and 
empirical research, detecting selective sweeps remains a major 
challenge.

The difficulty in discriminating between positive selection and 
purely neutral processes could potentially be alleviated by using 
population genomic time-series data, in which genomes are 
sampled across a range of timepoints rather than a single contem
poraneous point. Such data allow us to more directly track the tra
jectories of any potentially sweeping alleles/haplotypes, and to 
determine if they appear to be spreading faster than other alleles 
segregating in the population. Population genomic time-series 
data are becoming more and more prevalent, in part because it 
is often feasible, and increasingly affordable, to collect and se
quence longitudinal samples of populations from species with ra
pid generation times (Bergland et al. 2014; Pennings et al. 2014; 
Feder et al. 2021; Machado et al. 2021). For example, studies con
ducted in collections repeated each season in Drosophila over a 
period of several years have presented evidence that seasonal os
cillations in the frequencies of some alleles may be adaptive 
(Bergland et al. 2014; but see Buffalo and Coop 2020), and that 
temporal variances in allele frequencies are explained in part by 
positive selection (Bertram 2021). Even in organisms with longer 
generation times, the production of time-series data may be pos
sible in some cases. For example, a large number of ancient and 
archaic human genomes have been sequenced, and this has al
lowed researchers to directly ask whether alleles proposed to be 
under positive selection have indeed rapidly increased in fre
quency, and to more precisely infer when these frequency 
changes occurred (Hummel et al. 2005; Bollback et al. 2008; 
Enard et al. 2014; Sverrisdóttir et al. 2014; Wilde et al. 2014; 
Jeong et al. 2016; Malaspinas 2016; Olalde et al. 2019).

As population genomic time-series continue to proliferate, 
novel methods that can fully take advantage of the potential of 
such data are required. One area where such methods have 
been in development for a number of years is experimental 
evolve-and-resequence (E&R) studies (reviewed in Schlötterer 
et al. 2015), in which lab populations are subjected to controlled 
selective pressures and often sampled during the course of the ex
periment (e.g. Illingworth et al. 2012; Feder et al. 2014; Terhorst 
et al. 2015; Otte and Schlötterer 2021). These methods include 
statistical tests to distinguish between selected and unselected 
loci on the basis of allele frequency changes through the course 
of the experiment, methods that use hidden Markov models to ob
tain maximum likelihood estimates of parameters such as the se
lection coefficient (Mathieson and McVean 2013; Steinrücken 
et al. 2014; Iranmehr et al. 2017), and Bayesian methods for par
ameter estimation (Ferrer-Admetlla et al. 2016; Schraiber et al. 
2016). Some of these methods take advantage of the fact that 
E&R studies often produce experimental replicates, allowing for 
more confident identification of selected loci in cases where posi
tive selection has acted on these loci in more than one replicate 
(Vlachos et al. 2019). However, in natural populations, controlled 
replicates are unavailable, and we therefore require methods that 

can accurately detect targets of selection in a single population 
genomic time-series.

Here, we describe a deep learning method for detecting positive 
selection from population genomic time series. This method, 
called Timesweeper, constructs an image representation of tem
poral changes in allele or haplotype frequencies around a focal 
site and then, with the aid of a convolutional neural network 
(CNN), uses these data to (1) classify the site as either experiencing 
a recent selective sweep or not and (2) estimate the selection coef
ficient of a candidate sweeping mutation. We show that this 
method can localize sweeps and infer selection coefficients with 
better accuracy than competing methods. This method is trained 
on simulated data under a user-specified demographic model and 
sampling scheme, but we show that it can be robust to at least 
some scenarios of demographic model misspecification during 
training. Moreover, because the default mode of Timesweeper ex
amines only changes in sample allele frequencies over time, it is 
applicable to data for which phased haplotypes or even high- 
confidence genotypes are not available, including pooled popula
tion genomic sequence data or lower coverage genomes such as 
ancient human DNA. We demonstrate this practical utility on 
an E&R data set of 10 experimental replicate population of 
Drosophila simulans (Barghi et al. 2019), finding that we are able 
to identify selective sweep signatures and replicate candidate 
sweep loci at a high rate. Timesweeper is also computationally ef
ficient, completing the training step within several minutes even 
without the use of GPUs. We argue that methodologies such as 
Timesweeper, which seek to better leverage population genomic 
time-series to detect natural selection, have the potential to not 
only uncover targets of positive selection with unprecedented ac
curacy but to help resolve the lingering controversy over the role 
of positive selection in shaping patterns of diversity within 
species.

Methods
Overview of the Timesweeper workflow
Timesweeper is a Python package consisting of multiple intercon
nected modules that can be used in sequence to simulate training 
and test data consisting of genomic regions with and without se
lective sweeps given a user-specified demographic model and 
sampling scheme (i.e. the time and size of each sample in the ser
ies), process the resulting simulation output and convert it into 
useable data formats, use these data to train neural networks to 
detect selective sweeps and infer the selection coefficient (s), 
and finally to perform inference on real data using the trained net
work. Each of these steps is described in detail below, with full 
command line examples and options described in the software’s 
readme found at https://github.com/SchriderLab/Timesweeper/ 
blob/master/README.md. Timesweeper is developed as separate 
modules as opposed to a single workflow with modularity and 
customizability in mind—the code is intended to be used out of 
the box but can also be adapted to a user’s needs by modifying 
or replacing any of the constituent modules if desired. 
Timesweeper can detect sweeps using one of two pieces of infor
mation: allele frequency trajectories surrounding a focal poly
morphism and haplotype frequency trajectories within a focal 
window. All modules in Timesweeper can be run using a single 
YAML configuration file across the workflow. Most modules are 
optimized for multiprocessing and allow for specification of the 
number of threads using the –threads flag at runtime. 
Timesweeper’s simulation modules allow for the partitioning of 
replicate ranges, allowing for straightforward parallelization 
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across a high-performance computing system during what is the 
most computational-heavy stage of the workflow.

Simulating using custom SLiM scripts
Timesweeper has two modules for simulating training data using 
SLiM (Haller and Messer 2019, p. 3): a module for simulating from 
custom-made SLiM scripts and another for using premade 
stdpopsim (Adrion et al. 2020a) demographic models. The former 
is relatively straightforward: a user supplies a working directory, 
the path to their SLiM script, the path to the SLiM executable, 
and the number of replicate simulations they would like to pro
duce. Other optional parameters supplied at runtime are passed 
to SLiM through the simulate_custom module of Timesweeper. 
This module is intended to be modified to suit the needs of the ex
periment and is written such that it is easy to incorporate utility 
functions, stochastic variable draws, and more into each 
replicate.

Users must write their SLiM script such that it accepts two con
stant parameters at runtime: the sweep type and the output file 
name. The sweep types are denoted by the “scenarios” list in the 
YAML configuration file, and a user may write their SLiM script 
to use these arguments however they wish. In our default work
flow, they specify the class of training/test data to be generated, 
with “neut” denoting simulations lacking a selective sweep, 
“sdn” denoting simulations with a selective sweep on a single- 
origin de novo mutation (hereafter referred to as the SDN model), 
and “ssv” denoting simulations with a selective sweep from stand
ing variation (the SSV model). An example SLiM script is included 
in the software package and many more included with the GitHub 
repository associated with the experiments in this manuscript. 
Note that in all of our simulations of the SDN and SSV models, 
we condition on the selected allele not being lost—if the allele is 
lost during a simulation run, the simulation then jumps back to 
the point at which the beneficial mutation is introduced in the 
center of the simulated chromosome (SDN) or the neutral allele 
nearest to the center is chosen to be given a positive selection co
efficient (SSV).

Note that SSV sweeps with lower starting allele frequencies are 
more likely to be lost, and thus if we were to condition on a ran
domly selected polymorphism to go to fixation, we would obtain 
a downwardly biased initial selected frequency relative to what 
would be expected under an SSV model that correctly deals with 
different fixation probabilities (see Hermisson and Pennings 
(2017)). To mitigate this problem in our simulations, when an 
SSV sweep is lost, we restart the simulation from 500 generations 
prior to the onset of selection so that there is the opportunity for 
different mutations to be selected in subsequent attempts. The 
rationale for this design choice is that those sweep attempts 
that happen to select a more common polymorphism will be 
more likely to result in fixation, although we did not investigate 
the extent to which this avoids the frequency bias described 
above. We also note that our SSV mutations do not condition on 
a soft sweep—it is possible that SSV sweeps may involve only a 
single ancestral copy of the adaptive allele that reaches fixation. 
Users writing their own custom scripts are free to adjust these 
conditions or indeed any other aspect of Timesweeper’s three 
classes however they wish.

The amount of time required to run simulations varies greatly 
by the complexity of the demographic model and the parameter
ization. For all of the constant population size simulations in this 
manuscript, the average runtime of a single replicate was 10 sec
onds for the neutral and SSV and scenarios and 25 seconds for the 
SDN scenario, which is in concordance with the average number 

of restarts for each class being 0 for neutral (as no restarts are 
needed), 0.5 for SSV, and 15 for SDN simulations, respectively. 
Neither conditioning on allele frequency upon sweep starts nor 
upon sampling finishing was implemented for any experiments 
described. The average runtimes given here were obtained on a 
cluster where the typical compute node has two Model E5-2680 
v3 2.50 GHz Intel Xeon processors (24 cores in total, although 
each simulation used only a single core), 30 M cache, and 256 GB 
RAM.

Simulating using stdpopsim
The second option for simulating training data is by injecting 
time-series sampling code into a SLiM script generated by the 
stdpopsim package (Adrion et al. 2020a). By using stdpopsim 
with the slim and –slim-script flags, stdpopsim will write out a 
SLiM script for running whichever demographic model the user 
selects from the stdpopsim catalog. This script can then be used 
as input to Timesweeper’s simulate_stdpopsim module, along 
with information about sampling times (specified in years as per 
stdpopsim’s convention), sampling sizes, the identity of the popu
lation that is sampled and experiences any positive selection 
(hereafter referred to as the “target population”), and the range 
of selection coefficients to use in a log-uniform distribution. This 
module then adds the desired events to the stdpopsim SLiM script 
before running the simulation. The output of this module is iden
tical in format to that generated when using the simulate_custom 
module described above, and is processed identically down
stream. We note that although stdpopsim supports selective 
sweeps with some degree of customizable parameters, this fea
ture does not currently support all of the scenarios we desired 
for our workflow (e.g. selection on a randomly chosen polymorph
ism that was previously fitness-neutral, while specifying only the 
time at which the derived allele later became beneficial). As more 
features are added to the stdpopsim software, we may update our 
workflow to better take advantage of this resource.

VCF file processing post-simulation
For both simulation modules described above, at each sampling 
timepoint, SLiM draws a random sample of the specified number 
of individuals from the target population without replacement, 
and concatenates a variant call format (VCF) entry to an output 
file, hereafter referred to as a “multiVCF”, for that replicate. 
After a simulation replicate is complete, the multiVCF is split 
into separate files consisting of one timepoint each, labeled in nu
merical order according to when they were sampled in the series. 
Note that because our workflow uses forward simulations, the 
sweeping mutation may often be lost, requiring the simulation 
to jump back to an earlier point. This may result in repeated sam
plings drawn for one or more sampled timepoints, but our work
flow ensures that only the last sample for each timepoint 
(corresponding to the simulation run where the sweeping muta
tion was not lost) is retained. VCF files are then sorted and indexed 
using BCFtools (Li 2011b; Danecek et al. 2021) sort and index. 
Individual VCFs are then merged using the command bcftools 
merge –force-samples -0 to create a VCF containing all poly
morphisms among the set of all genomes sampled across all time
points. Information from these VCFs can then be loaded into a 
format suitable for input to our neural network as described in 
the next two sections.

Time-series allele frequency matrices
Timesweeper’s allele frequency tracking (AFT) method seeks to 
classify each individual polymorphism on the basis of allele 
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frequencies at each of l biallelic polymorphisms in a surrounding 
window that consists of the central polymorphism and (l − 1)/2 
polymorphisms on either side, measured at m distinct timepoints. 
We therefore chose to represent allele frequencies around a focal 
polymorphism by an l × m matrix, which serves as our input for 
both training and prediction. This was constructed by first obtain
ing sample allele frequency trajectories from merged VCF files. 
For a single merged VCF, whether obtained from either real or si
mulated data, genotypes are loaded using scikit-allel (Miles et al. 
2021), and the two alleles at each polymorphism are labeled as 
“net-increasing” or “net-decreasing” according to their change in 
frequency between the first and final timepoints. For polymorph
isms with no net frequency change, the “net-increasing” or “net- 
decreasing” are randomly assigned to the two alleles. The desired 
l × m matrix showing the frequency of the net-increasing allele for 
each polymorphism at each timepoint is then created (shown for 
several individual replicates as well as mean values in Fig. 1a and 
Supplementary Fig. 1). For this paper, we set l to 51 (i.e. 25 flanking 
polymorphisms are examined around each focal polymorphism 
to be classified) unless otherwise noted. When dealing with simu
lated data, the number of polymorphisms obtained was always 
greater than l, and thus the matrix was cropped to obtain l poly
morphisms as described below in “Classifier Training and 
Validation”. When applying Timesweeper to real (or test) data, a 
sliding window of l polymorphisms can be used to obtain a classi
fication for each individual polymorphism (see “Detecting Sweeps 
in Genomics Windows” below). Given that some users may wish to 
examine a larger window, we give users the option of changing the 
value of l when running Timesweeper.

Time-series haplotype frequency matrices
Timesweeper’s haplotype frequency tracker (HFT) method con
structs matrices containing information about haplotype fre
quency trajectories. For a given window of l polymorphisms, the 
frequencies of all haplotypes are recorded at each timepoint using 
information from the merged VCF (again processed using 
scikit-allel), and recorded in a k × m matrix, where m is again the 
number of timepoints, and k is the number of distinct haplotypes 
observed across all samples (shown for individual replicates as 
well as mean values in Fig. 1b and Supplementary Figure 1B). 
This matrix is then sorted such that the haplotype with the high
est net increase in frequency between the first and last timepoints 
is located at the “bottom” of the frequency matrix, i.e. the 0th in
dex. The remaining haplotypes are then sorted by their similarity 
(Hamming distance) to the haplotype at the 0th index (i.e. the 
haplotype at index 1 is the most similar to the haplotype with 
the highest net increase in frequency, the haplotype at index 2 
is the second-most similar, and so on). In the context of using 
CNNs to perform inference on population genetic alignments, it 
has been noted that sorting haplotypes based on similarity in
creases accuracy for multiple tasks (Flagel et al. 2019; Ray et al. 
2023), because such sorting makes informative structures (e.g. 
similarities between populations when searching for evidence of 
gene flow) more readily visible. Our rationale was that sorting 
haplotypes by their frequency clearly distinguishes selected 
from neutrally evolving regions (e.g. Figure 3 from Garud et al. 
(2015)), and this appears to carry over into two-dimensional visua
lizations of haplotype frequency time series (Supplementary 
Figure 1B). However, we did not test the impact of this sorting 
on accuracy, and we note that for the one-dimensional CNN 
used for most of our analyses, the order of haplotypes chosen 
would not impact performance so long as the manner in which 
haplotypes are ranked is consistent between training and test 

sets. For two-dimensional CNNs, the order could potentially im
pact performance even if it is held consistent across training 
and testing.

Neural network architectures
We implemented all neural network models in Keras (Chollet and 
others 2015) with Tensorflow backends, including: a shallow 1D 
convolutional neural network (1DCNN) described below; a similar 
network but with shallow 2D rather than 1D convolutional layers 
(2DCNN); a Recurrent Neural Network (RNN) model for time- 
series data; and for single-timepoint data, series data and a shal
low fully-connected network (FCN) consisting of several fully con
nected layers each followed by dropout. Architectures for both 
AFT and HFT data types (allele frequencies and haplotype fre
quencies, respectively) are identical in structure, although the 
number of parameters differs due to the difference in input image 
size aside from the adjustment in input layer dimensions.

The 1DCNN time-series network begins with two 1D convolu
tional layers with 64 filters and a kernel size of 3 each (i.e. the first 
convolutional layer runs rectangular filters across an area of all 
polymorphisms/haplotypes by 3 timepoints at a time), sliding 
across timepoints with a stride length of 1. These are followed 
by a 1D maximum pooling layer with a pool size of 3, followed 
by a dropout layer with a dropout rate of 0.15. A flattening layer 
then precedes two blocks of 264-unit dense layers followed by 
dropout layers with a rate of 0.2. This is followed by a 128-unit 
dense layer, a dropout layer with dropout rate of 0.3, and a final 
dense layer with three output units. All layers described use 
ReLu activation function other than the final output layer, which 
uses a softmax activation function for classification (identifying 
and classifying sweeps), and linear activation for regression (infer
ring s). Our rationale for having the 1D convolutional filters stride 
across timepoints was that they would be able to examine the se
lected allele and any linked hitchhiking alleles in any given time
point, and track them together across timepoints. We did not 
experiment with transposing the input such that filters stride 
across polymorphisms rather than time.

The one-timepoint network is a FCN consisting of two blocks of 
512-unit dense layers followed by dropout layers with rates of 0.2, 
followed by a 128-unit dense layer with dropout of 0.1, and a final 
dense layer with 3 output units. This network also uses ReLu acti
vations for all layers aside from the final output layer, which uses 
a softmax activation function for classification and linear activa
tion for regression.

The full architectures for the 1DCNN, single-timepoint FCN, 
and other benchmarked architectures including a 2DCNN, a 
more complex 1DCNN with more trainable parameters, and a re
current neural network (RNN) are shown in Supplementary Fig. 2.

Network training and validation
To create training labeled data for models we first process simu
lated VCFs as discussed above. During this process the mutation 
type specified in the SLiM simulation is obtained from each VCF 
entry, allowing us to retrieve the selected mutation (the only non- 
neutral mutation present in the simulation). When constructing 
training sets for the SDN and SSV scenarios for the AFT method, 
by default, the selected mutation is retrieved and set to be the cen
ter of the 51-polymorphism window (i.e. only the 25 closest poly
morphisms on either side of the selected mutation are retained). 
For the neutral scenario, the central-most polymorphism is set 
to be the center of the 51-polymorphism window. For the HFT 
method, the data are formatted as described above without regard 
to the selected mutation (i.e. the haplotype found at the highest 
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frequency is placed at the bottom of the matrix, regardless of 
whether or not it contains a selected mutation). Windows of the 
designated size are saved in a compressed pickle file and loaded 
into memory at training time along with the simulation replicate’s 
selection coefficient and sweep type (if applicable), and a replicate 
identifier.

Data are split into training/validation/testing partitions con
sisting of 70%/15%/15% of the entire data set, respectively, and 
each partition is stratified such that classes are evenly split among 
them. Models are trained for a maximum of 100 epochs with the 
potential for early stopping based on validation accuracy: training 
stops if at any point 10 consecutive training epochs fail to improve 
upon the highest validation accuracy (classification) or validation 
mean-squared error (regression) achieved up to that point. The 
validation partition is used for hyperparameter tuning of the 
ADAM optimizer (Kingma and Ba 2017), while the test partition 
is used exclusively evaluating performance post-training. If early 
stopping occurs, model weights are restored to the epoch with the 
highest validation accuracy, otherwise, the full number of epochs 
is trained, and then the weights with the highest validation accur
acy are saved using Keras’ ModelCheckpoint functionality.

Detecting sweeps and inferring selection 
coefficients in genomic windows
Timesweeper’s final module, cleverly named find_sweeps, re
ports AFT classifier probabilities and estimated selection coeffi
cients and optionally HFT classifier probabilities and selection 
coefficients for each sliding window of polymorphisms across all 
polymorphisms in a given VCF, whether obtained from simulated 

data (for testing) or real data (for inference). Trained neural net
works are first loaded into memory, and the input VCF is loaded 
in chunks. For each polymorphism in a chunk [except for those 
within (l − 1)/2 bp of the edge of a chromosome], data are pro
cessed into the required formats described above for each method 
prior to classification/inference. The find_sweeps module also al
lows for testing on simulated data using the –benchmark flag, 
which causes the module to check each prediction against the 
ground truth from the simulation, allowing for easy validation 
of all methods on labeled test data.

Simulations for testing Timesweeper on 
time-series data from a constant-sized population
As in the standard Timesweeper workflows described above, all 
simulations used to evaluate Timesweeper’s accuracy were 
performed via SLiM (Haller and Messer 2019). For the constant- 
sized population scenarios, a population of 500 individuals was 
created with a mutation rate of 1 × 10−7 and recombination rate 
of 1 × 10−7. Simulations underwent burn-in for 20N generations. 
In the SDN scenario, a de novo mutation is introduced at the 
physical midpoint of the chromosome with a given selection coef
ficient. In the SSV scenario, the closest standing neutral mutation 
to the center of the chromosome is selected, and the selection 
coefficient of that mutation is set to a value from a uniform distri
bution with bounds [0.00025, 0.25) with the exception of the selec
tion coefficient experiments where s was set at a constant value 
for each experiment. Sampling began at a time, measured in 
generations after the onset of selection, sampled from a uniform 
distribution with bounds [−50, 50) except when noted in the 

(a) (b)

Fig. 1. Timesweeper’s input formats. a) Allele frequency tracker (AFT) data format: mean values of allele frequencies of the allele with the largest 
increase in frequency from the first to final timepoints in a 51-polymorphism window over 20 timepoints. b) Haplotype frequency tracker (HFT) data 
format: mean values of haplotype frequencies for the haplotype with the largest frequency increase from the first to last timepoints (bottom row) and the 
39 most-similar, ranked by decreasing similarity to the bottom haplotype. For both formats, the mean input images were calculated from 10,000 
individual replicates for each class. For the SDN and SSV classes, selection coefficients were drawn from a uniform distribution with bounds [0.00025, 
0.25) and with a starting sampling generation drawn from a uniform distribution with bounds [−50, 50) generations from the onset of selection.
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selection timing experiments. A number of sampling schemes and 
sweep parameterizations were tested under this constant-size 
scenario, as described in the Results section. For each of these ex
periments, 10,000 replicates of each scenario were simulated: 
sweeps under the SDN model, SSV sweeps, and neutrality. For ex
periments testing the impact of the number of replicates, data 
were subsampled from a total pool of 30,000 replicates for each 
class to create a data set of the desired size. Data were then parti
tioned into training, testing, and validation sets as described 
above.

Testing the effects of demographic model 
misspecification on Timesweeper’s accuracy
We simulated three demographic models of increasing complex
ity: a constant-sized population (described above), herein referred 
to as the “simple model”, a three-epoch bottleneck model fit to a 
data set of Utah CEPH individuals by Marth et al. (2004), herein 
the “bottleneck model”, as well as the Out-of-Africa model de
scribed in Gutenkunst et al. (2009) as implemented in stdpopsim, 
herein “OoA model”. For the OoA model, we sampled only indivi
duals from the population modeled after the Han Chinese (CHB). 
For all models, we sampled 20 evenly spaced timepoints with 10 
diploid individuals at each timepoint. Sampling started at a gener
ation drawn from a uniform distribution between −50 and 50 gen
erations post-selection and proceeded for a total of 200 
generations. For the SSV and SDN scenarios of each model, selec
tion coefficients were randomly drawn from a uniform distribu
tion with bounds [0.00025, 0.25). We simulated 10,000 replicates 
of the neutral, SDN, and SSV scenarios under all models and 
trained Timesweeper as described above. We then used each 
trained CNN to detect sweeps on 5,000 additional independent 
test replicates from each demographic model. Performance me
trics were then calculated on the class probabilities and selection 
coefficient estimate predictions across all replicates.

Previous methods assessed in this study
We compared the performance of Timesweeper to a number of 
previously published methods for detecting selection or inferring 
selection coefficients from genomic time-series, and we briefly de
scribe these below. Each method’s performance was evaluated on 
5,000 test replicates of each class, simulated with identical par
ameterization as described above, with selection coefficients 
drawn from a uniform distribution with bounds [0.00025, 0.25) 
and the initial sampling generation again sampled from a uniform 
distribution with bounds [−50, 50).

Binary classification using the Frequency Increment Test
The frequency increment test (FIT) detects selection in time-series 
data by determining whether the allele frequency increments 
from timepoint to timepoint significantly differ from zero. We im
plemented FIT in Python following Feder et al. (2014). In brief, 
SLiM output was parsed identically to the method described above 
for the time-series allele frequency spectrum, and the rescaled al
lele frequency increments for each polymorphism in the simu
lated region are calculated as Yi = νi−νi−1������������������

2νi−1(1−νi−1)(ti−ti−1)
√ , i = 1, 2, . . ., L

where νi and ti refer to the allele frequency and time at time
point i of L, respectively. The frequency increments Yi are used 
in a one-sample Student’s t-test for each polymorphism. We 
used a P-value threshold of 0.05 to classify a polymorphism as ei
ther experiencing a sweep or evolving neutrally. No effort is made 
to distinguish between sweep types using this test.

Fisher’s exact test
Fisher’s exact test (FET) can be used to detect a significant differ
ence in allele frequencies between timepoints of a longitudinal 
data set, and we used it to test for frequency differences between 
the first and last timepoints (following Barghi et al. (2019)). We 
used the SciPy (Virtanen et al. 2020) implementation of the FET, 
with its input being a contingency table consisting of the major 
and minor allele counts for the first and final samples.

slattice
slattice (Mathieson and McVean 2013) is a hidden Markov model 
(HMM) approach originally developed for inferring selection coef
ficients from spatially structured populations using time-series 
data. For input, it requires sample sizes and allele counts from 
time-series data for every generation during the sampling 
window. We ran slattice in a similar manner as described in 
the software’s vignettes (see https://github.com/SchriderLab/ 
timesweeper-experiments/blob/main/scripts/comp_methods/ 
vcf_to_slattice.py for our commands). VCFs were parsed using 
scikit-allel, and focal loci (the centermost polymorphism in the 
case of neutral scenarios and the true target of selection for the 
SDN or SSV scenarios) were formatted and written to a temporary 
input file that was then used to run slattice with the default 
options.

ApproxWF
ApproxWF (Ferrer-Admetlla et al. 2016) is another HHM-based ap
proach that uses an approximated Wright–Fisher process, result
ing in faster runtimes than other HMM approaches to estimate 
selection coefficients from time-series data. Similar to the manner 
in which we ran slattice, VCFs were parsed, and allele counts 
and sampling sizes were converted into temporary files in con
cordance with the format required to use ApproxWF, which we 
then ran using default parameters.

WFABC
WFABC (Foll et al. 2015) is an approximate Bayesian computation 
(ABC)-based method used to infer effective population size and se
lection coefficients using time-series data. WFABC was run with 
default parameters using input formatted from VCF files similarly 
as described above.

Sweepfinder2
Sweepfinder2 (DeGiorgio et al. 2016) is an updated version of the 
popular Sweepfinder (Nielsen et al. 2005) tool, which examines 
the allele frequencies at polymorphisms at various genetic dis
tances from a focal site to determine if it was the target of a re
cently completed selective sweep. SweepFinder accomplishes 
this by using a composite likelihood ratio test comparing the prob
abilities of these allele frequencies under a hitchhiking model to 
the probabilities under neutrality (i.e. the background site fre
quency spectrum). Sweepfinder2 was run on VCFs containing 
only the final timepoint of each replicate with a grid size of 1 kb 
(with only the central point in this grid examined to calculate en
tries of the confusion matrix), after which, the 95% composite like
lihood ratio (CLR) threshold was calculated as the 95th percentile 
of the neutral CLRs across all windows. Regions with reported a 
CLR value above this threshold were labeled as a predicted sweep, 
otherwise, the region was labeled as neutral.

https://github.com/SchriderLab/timesweeper-experiments/blob/main/scripts/comp_methods/vcf_to_slattice.py
https://github.com/SchriderLab/timesweeper-experiments/blob/main/scripts/comp_methods/vcf_to_slattice.py
https://github.com/SchriderLab/timesweeper-experiments/blob/main/scripts/comp_methods/vcf_to_slattice.py
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diploSHIC
diploSHIC (Kern and Schrider 2018) is a version of S/HIC 
(Schrider and Kern 2016) that has been updated to be applicable 
to unphased diploid as well as phased haploid data. diploSHIC 
uses a neural-network approach for sweep detection that utilizes 
a variety of summary statistics calculated in a number of sub- 
windows surrounding (and including) a focal window to be classi
fied as a sweep (hard or soft), closely linked to a sweep (hard or 
soft), or as neutrally evolving. In diploSHIC, these summary statis
tics are arranged into a two-dimensional feature array used as in
put to a CNN. The dimensions of this array are f × l, where f is the 
number of features (12), and l is the number of sub-windows (a de
fault value of 11, which we used here). We converted VCFs of the 
final timepoint of each replicate into diploSHIC’s input images for 
each replicate in the training and testing data. The diploSHIC CNN 
was trained for 10 epochs and then evaluated by running predic
tions on the central window of held-out testing data.

TS-SHIC
We developed an extended version of diploSHIC that examines 
time-series data, which we refer to as TS-SHIC. TS-SHIC first cal
culates the f × l feature input array as described above for each 
timepoint, and then concatenating them into an f × t format, 
where t is the number of timepoints, that was then used to train 
and test the standard 1DCNN architecture described above. All 
training and testing were performed identically to other 
Timesweeper benchmarks, including 10,000 replicates for each 
class for training, 5,000 replicates of each class for testing.

Applying Timesweeper to a D. simulans 
evolve-and-resequence data set
To demonstrate Timesweeper’s flexibility and applicability to real 
data, we applied the AFT method to a data set published by Barghi 
et al. (2019) comprised of time-series D. simulans pool-sequencing 
data from an E&R study. In brief, Barghi et al. exposed 10 repli
cates of an ancestral population to extreme temperatures in 
12-hour cycles for 60 generations. Each experimental replicate 
population was sampled every 10 generations, yielding a total of 
7 sampled timepoints including the initial ancestral population. 
Barghi et al. (2019) then performed pooled sequencing, read map
ping, and genotyping on each replicate population for each of 
these timepoints. We downloaded the read counts for each allele 
at each SNP at each timepoint from https://doi.org/10.5061/dryad. 
rr137kn (the relevant .sync file is in the F0-F60SNP_CMH_ 
FET_blockID.sync.zip archive, along with its associated 
README). The data for each timepoint were converted into allele 
frequency estimates by simply taking, for each allele, the number 
of reads supporting that allele divided by the total number of 
reads mapped to that site. Net alleles frequency changes were 
then calculated by taking the allele with the largest net frequency 
increase over the course of the experiment, and the allele with the 
largest frequency of all the remaining alleles (i.e. only two alleles 
were considered at each site), and renormalizing so that these two 
allele frequency estimates summed to one for each timepoint. 
This process was repeated for each experimental replicate.

The training data for this analysis were simulated using a 
modified simulate_custom module of Timesweeper to allow for 
population-size rescaling by a factor of 100 during the burn-in, 
with recombination and mutation rates multiplied by this factor 
to compensate, followed by the remainder of the simulation (i.e. 
the 60 generations of selection) being carried out without rescal
ing. The purpose of rescaling during the burn-in only was that 

the population size was small during the experiment (N = 1000), 
but most likely dramatically larger in the ancestral population. 
The unscaled recombination rate was drawn from a uniform dis
tribution between 0 and 2 × 10−8, and the unscaled mutation rate 
was set to 5 × 10−9, with only neutral mutations occurring. The 
simulation began with a burn-in period of 20 times the scaled 
population size (N = 2,500, corresponding to an unscaled size of 
250,000), for 50,000 generations. We note that this ancestral popu
lation size is a rough estimate that we obtained by calculating nu
cleotide diversity within each replicate’s founder sample (≈0.005), 
and is likely smaller than the D. simulans population used to found 
the experimental lines as it does not account for the impact of re
petitive/low quality regions or natural selection on diversity, re
sulting in simulations with a substantially lower density of 
polymorphism than found in the real data (an average of 0.0065 
polymorphisms per base pair in our simulations, vs 0.45 for 
chromosome 2L in the empirical data). As we show in the Results 
section, Timesweeper performed well on this data set in spite of 
this difference between the training and empirical data. 
Following the burn-in, the population then contracted to 1,000 in
dividuals, where it remained for the rest of the simulation, and a 
sample was taken to represent the starting “ancestral” state of the 
replicate, following the design used by Barghi et al. (2019).

In simulations with selection, the mutation closest to the phys
ical center of the chromosome was then changed from neutral to 
beneficial with a selection coefficient drawn from a log-uniform 
distribution with a lower bound of s = 0.02 and an upper bound 
of s = 0.2—note that only SSV sweeps were generated under this 
model as the SDN model is unlikely to be relevant in such a small 
population under selection for such a short period of time. The si
mulations then proceeded for another 60 generations post- 
selection with sampling occurring every 10 generations, resulting 
in a total of 7 sampled timepoints as in Barghi et al. (2019). For 
each of these 7 timepoints in each replicate population, we 
sampled 100 diploid individuals. This was performed for a total 
of 7,500 replicate simulations for both the neutral and sweep 
SSV conditions that were then processed and used to train a 
Timesweeper network using the AFT method as described above, 
which was then used to detect sweeps in the D. simulans data using 
the find_sweeps module.

Results
Representations of population genomic 
time-series data
We devised two representations of genomic time-series data with 
the goal of capturing information that would be informative about 
the presence of selective sweeps occurring during the sampling 
period. The first of these is an l × m matrix, where l is the number 
of polymorphisms, and m is the number of sampling timepoints. 
The motivation for this format is that the frequency trajectories 
of all alleles, including that of a focal allele at the center of the 
window, can be tracked through time, along with spatial informa
tion along the chromosome. Not only should the focal allele in
crease in frequency if it is positively selected but some nearby 
alleles may also hitchhike to higher frequencies, with more dis
tant polymorphisms experiencing less of a hitchhiking effect. 
We refer to the mode of Timesweeper that uses this information 
to detect sweeps as the allele frequency tracker (AFT). The AFT 
format specifically examines, at each site in its window, the fre
quency of the allele that has increased the most from the first 
timepoint to the final timepoint. Our motivation for this is that 
this will better capture the positive shift in frequency for both 

https://doi.org/10.5061/dryad.rr137kn
https://doi.org/10.5061/dryad.rr137kn
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the sweeping and hitchhiking alleles, a signal that our network 
should have little difficulty in detecting. If we instead tracked 
the frequency of the derived alleles (or minor allele in unpolarized 
data), this would yield a mixture of both positive and negative 
changes in allele frequency in the presence of hitchhiking, which 
might be harder for the network to identify as the consequence of 
a sweep.

The second data representation is a k × m matrix, where k is the 
number of distinct haplotypes observed across all timepoints, and 
m is again the number of timepoints. The haplotypes in this ma
trix are sorted so that the haplotype with the highest net change 
in frequency across the sampling period is shown at the bottom, 
and the remaining haplotypes are sorted by similarity to this focal 
haplotype which is a priori the one most likely to be experiencing 
any positive selection. This second representation thus tracks the 
frequency changes of all haplotypes observed in the entire sam
ple, which should be especially pronounced for any haplotypes 
harboring a sweeping allele. We refer to the mode of 
Timesweeper that uses data in this format as the HFT. Both of 
these formats allow for easy input into CNNs, and the two modes 
of Timesweeper both use 1D convolutions over the time axis to 
track allele or haplotype frequency changes through time, re
spectively (see Methods).

Figure 1 shows the expected values of each entry in these ma
trices, as computed from 10,000 forward simulations of selective 
sweeps under a constant population size of 500 and a selection co
efficient, s, drawn from a uniform distribution with bounds 
[0.00025, 0.25) (see Methods). This visualization shows that the ra
pid spread of selected alleles (the central row in the sweep exam
ples shown in Fig. 1a) and haplotypes (the bottom row in Fig. 1b) is 
readily observable in this representation of the mean, and the se
lected and unselected cases are readily discernable. However, we 
note that individual selective sweeps may depart substantially 
from this expectation, and we illustrate this by showing randomly 
chosen individual examples from each class in Supplementary 
Figure 1A and B. In the next section, we investigate the extent to 
which individual examples are correctly classified as undergoing 
selective sweeps or evolving neutrally on the basis of these 
representations.

Neural networks can detect and localize sweeps 
from time-series data with high accuracy
Having constructed the data representations described above, we 
sought to train neural networks to distinguish between three dis
tinct classes: (1) neutrally evolving regions, (2) sweeps caused by 
selection on a single-origin de novo mutation (the SDN model, 
which produces classic “hard” selective sweeps; (Smith and 
Haigh 1974)), and (3) selection on standing variation (the SSV mod
el, which may produce “soft sweeps” involving multiple distinct 
haplotypes carrying the selected allele; see Orr and Betancourt 
(2001) and Hermisson and Pennings (2005)). Other approaches 
using these data are possible—for example, one could adapt exist
ing composite-likelihood ratio approaches (Nielsen et al. 2005; Vy 
and Kim 2015) to use the information in the AFT representation to 
detect sweeps from time-series data. However, a simulation- 
based CNN would allow us to model the joint distribution of all 
of the allele or haplotype frequency changes observed in the vicin
ity of a sweep. As we show below, this approach yields excellent 
inferential power.

Here and in the following sections, we show that allele fre
quency trajectories are highly informative when processed by 
1DCNNs, demonstrating high accuracy across all time-series 
schemes tested. We began by benchmarking performance on a 

scenario of 20 timepoints with 10 individuals at each timepoint 
on a test data set held out during training, and found that the 
AFT method achieves an area under the receiver operating char
acteristic (ROC) curve (AUROC) of 0.95 when selection coefficient 
s is drawn from a uniform distribution with bounds [0.00025, 
0.25), and the sweep began at a time ranging uniformly from 50 
generations prior to the first sampling timepoint to 50 generations 
after this sampling timepoint (Fig. 2a); we examine more combi
nations of these parameters in the section below. The HFT method 
is somewhat less accurate, achieving an AUROC of 0.87. 
Qualitatively similar results are shown in the precision–recall 
curves in Fig. 2b. We find that Timesweeper can estimate s with 
high accuracy across a range of selection strengths with both 
the AFT and HFT data formats (Fig. 1c and d).

The results described above were obtained by examining simu
lated test data where either the central polymorphism was se
lected, or not, and making a single classification for this focal 
site (hereafter referred to as single-locus testing). However, in 
practice, one would scan across an entire chromosome and 
make classifications at each polymorphism before moving on to 
the next. Thus, we next benchmarked the same Timesweeper 
classifiers described above on a set of 15,000 simulated chromo
somes 500 kb long—5,000 replicates each of the neutral, SSV, 
and SDN scenarios. We found that Timesweeper was not only 
able to accurately detect true sweep locations but has a low false 
positive rate across the flanking neutral regions along the 
chromosome (Supplementary Figs. 3 and 4). The HFT method, 
on the other hand, exhibits comparatively low resolution in local
izing sweeps (Supplementary Figs. 3 and 4), likely because it ex
amines a representation of haplotype frequencies that has no 
spatial information about any potentially sweeping alleles. 
Timesweeper also performs classification accurately for a variety 
of selection coefficients using the sampling scheme described 
above (Supplementary Figs. 5–7). Testing on a range of s, we found 
that AUROC is minimized at 0.79 with s = 0.01 and maximized at 
0.99 with s = 0.5.

Training each network on 21,000 replicates (7,000 of each class) 
without GPUs required roughly 1 minute on 4 CPU cores and less 
than 1 GB of RAM. Classifying a simulated test set of 1,500 repli
cates for each class with 10 diploid individuals sampled at each 
of 20 timepoints required roughly 60 seconds for each trained 
neural network, resulting in a total of 6 minutes runtime when 
both the AFT and HFT methods are utilized.

Choice of neural network architecture
There are multiple neural network architectures suited to time- 
series or sequence data (1DCNN, transformers, and RNNs) as 
well as models suited to spatial data (2DCNNs and variants). We 
initially chose a 1DCNN architecture due to its lightweight archi
tecture and demonstrated performance in population genetics 
tasks (Flagel et al. 2019). 1DCNNs have the advantage of being 
more computationally efficient than 2DCNNs and theoretically 
can capture the entire spatial axis (i.e. each of the l polymorph
isms in the l × m AFT feature matrix) at each time-step of a se
quence, as opposed to a 2DCNN that convolves over both axes 
in a blocked fashion and thus could miss associations between 
the selected site and more distant loci that would be expected if 
a sweep occurred at the target locus, thereby potentially missing 
some evidence of hitchhiking information that can only be ob
tained by observing the entire window a timepoint or set of time
points. We tested this assumption by implementing and training a 
variety of common neural network architectures to benchmark 
held-out test accuracies. We found that the 1DCNN performed 

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
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marginally better than all competing architectures while simul
taneously being the fastest by far (2-fold faster than RNN and 
over 10-fold faster than 2DCNN; Supplementary Figs. 8 and 9).

Understanding feature importance with saliency 
maps
In order to make our models more interpretable and to better 
understand what features are explicitly used by the network, we 
adopted the approach of Gower et al. (2021), who trained a CNN 
to detect adaptive introgression. We produced saliency maps for 
our 2DCNN architecture using the tf-keras-vis library (Kubota 
2022) for both the AFT and HFT data formats. We found that the 
AFT and HFT networks both have high levels of saliency in the re
gions that one might expect to be most important for identifying 
sweeps: the central-most polymorphism in the AFT format and 
the bottom-most haplotype in the HFT format, with rapid decay 
of saliency at increasing distances from the focal polymorph
ism/haplotype. In addition, we observe that saliency is highest 
at the earliest and latest timepoints in the series. Together, these 
observations suggest that the network is searching for direct evi
dence of focal alleles/haplotypes that have increased in frequency 
across the sampling interval. However, we emphasize that even 

though attention is much higher at target site in the AFT network, 
more distant loci do influence the predictions of our AFT 1DCNN, a 
point that we address in the following section.

Localization of sweeps improves when flanking 
sites are incorporated
In order to test the optimal window size (the number of poly
morphisms, l ) for training and testing a 1DCNN, we trained and 
tested sizes l = 1, 3, 11, 51, 101, and 201. For each window size, 
the focal polymorphism is located in the center of the window, 
i.e. for l = 51, the 26th polymorphism in the window is the focal 
site. When assessing classification and regression accuracy on 
these various window sizes, we applied the Timesweeper to not 
only the central polymorphism in each of 5,000 test replicates 
for each class but to all other polymorphisms within these simu
lated chromosomes as well. This allows us to address (1) how ac
curately Timesweeper detects sweeps/infers s for a given window 
size and (2) how precisely Timesweeper localizes the sweep (i.e. to 
what extent it avoids misclassifying polymorphisms closely 
linked to the selected allele as being themselves selected).

When examining only the focal polymorphism within each si
mulated example, we found that for AFT there is no noticeable 

(a) (b)

(c) (d)

Fig. 2. Timesweeper’s accuracy benchmarking. a) ROC curves and b) precision-recall (PR) curves for AFT and HFT formats for both neutral vs sweep and 
SDN vs SSV binary classification tasks. (c and d) Estimated vs true selection coefficient for c) AFT and d) HFT. Neural networks were trained on a data set of 
10,000 replicates for each of the neutral, SDN, and SSV classes, with selection coefficients for the latter two classes drawn from a uniform distribution 
with bounds [0.00025, 0.25), and sampling start drawn from a uniform distribution with bounds [−50, 50) generations from the onset of selection. Models 
were tested on 5,000 independently simulated replicates for each class that parameterized identically to the training data.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
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improvement in classification accuracy when increasing from a 
single allele to larger windows (AUROC ranges vary from 0.94 to 
0.97 across all window sizes, with no noticeable trend as l in
creases). This may be expected, as if one’s goal is only to deter
mine whether a single pre-identified polymorphism is under 
selection, adding data from flanking sites will yield little informa
tion that is not already captured by the allele frequency trajectory 
—although we note that this may not hold for smaller numbers of 
timepoints, a possibility that we did not investigate here. 
Interestingly, HFT performs worse the larger the window size be
comes (AUROC of 0.96 for l = 1 vs 0.80 for l = 201; Supplementary 
Figs. 11–13). The regression task follows a similar trend, with no 
major differences noted across the different window sizes for 
AFT and decreasing performance with larger window sizes for 
HFT (Supplementary Fig. 14).

In the context of genome-wide scans for selection, one will test 
many sites potentially affected by selection, and in this context, 
our goal is not only accurately detect sweeps but to localize 
them to a reasonably small candidate region. We found that, al
though small window sizes produced accurate inferences at the 
target sites themselves, they were much more likely to misclassify 
closely linked polymorphisms as being targets of selection 
as well than were networks trained on larger window sizes 
(Supplementary Figs. 3 and 4). Indeed, the number of linked poly
morphisms within 500 bp of the true target of selection that are 

misclassified as sweeps decreases from 50 to 39 as l increases 
from 1 to 201. We have adopted l = 51 as our default as it appears 
to reach a good balance between accuracy and computational 
speed (as larger window sizes require more trainable network 
parameters), but if users wish to use larger values when running 
Timesweeper, this is an option. We note that the optimal value 
for any given data set may depend on the density of polymorph
ism, the recombination rate, and the distribution of selection coef
ficients, so we encourage users to experiment with different 
window sizes before adopting one for their analysis.

The impact of sampling scheme and selection 
strength on accuracy to detect selection
To test effectiveness of Timesweeper under different sampling 
scenarios, we experimented with varying five parameters: the 
sample size per timepoint, the number of timepoints sampled, 
the timing of sampling relative to the onset of selection, the selec
tion coefficient, and the size of the training set. For each experi
ment described below, the parameters of the training set 
matched those of the test set. With the exception of these param
eter changes, all simulation, training, and testing were performed 
in the same manner as above. Each experimental model reported 
in this section was trained on 8,500 replicates for each class (SDN, 
SSV, and neutral classes) and tested on 1,500 held-out test repli
cates for each class for each parameter tested.

Fig. 3. ROC and PR curves comparing the performance of Timesweeper to that of competing methods on the sweep detection task. The top row shows 
performance on the binary task of discriminating between simulated test data with and without selective sweeps, with the sweep class containing equal 
numbers of SDN and SSV examples. The bottom row shows performance on distinguishing between SDN and SSV examples in the test set.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
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Sample size
We examined the effect of sample size on classification accuracy 
by training Timesweeper for each of four scenarios: 1, 2, 5, 10, and 
20 diploid individuals sampled at each of 20 timepoints. Again, the 
beginning of the sampling interval ranged from 50 generations be
fore to 50 generations after the onset of selection for both the SDN 
and SSV scenarios, and other than sample sizes all other compo
nents of the simulation were identical (example and average in
puts shown in Supplementary Fig. 2). We found that increasing 
number of samples has little effect on the performance of the 
AFT model: with one diploid individual per timepoint, the 
AUROC for the AFT method was 0.95, and with 20 individuals 
per timepoint, this had only increased to 0.96 (Supplementary 
Figs. 15–17). While HFT had a noticeable increase in accuracy 
with increased sample sizes (AUROC of 0.81 for one diploid indi
vidual per timepoint increased to 0.87 AUROC for 20 individuals), 
it was consistently less accurate than AFT across all sample sizes 
(Supplementary Figs. 15–17).

While increased sample sizes had no drastic effect for classifi
cation accuracy, there was a sizeable difference in accuracy of se
lection coefficient estimates with increased sample sizes (R2 of 
0.65 for one individual to 0.81 for 20 individuals for AFT, 0.47 to 
0.69 for HFT for SDN scenario estimates; Supplementary Fig. 18). 
These results indicate that Timesweeper is flexible enough to 
handle small sample sizes and still accurately detect sweeps, 
but will obtain more accurate estimates s when larger sample 
sizes throughout the time series are available.

Number of timepoints
Next, we tested the effect of adjusting the number of timepoints 
on Timesweeper’s accuracy. In this scenario, the total number 
of sampled individuals was 200 for every sampling scheme, so ac
curacy would be solely affected by the number of timepoints and 
their timing relative to the sweep as opposed to the total amount 
of genetic data being examined. Scenarios tested included 1, 2, 5, 
10, 20, and 40 timepoints. In all scenarios, aside from the single- 
timepoint scenario, the sampling times were evenly distributed 
across a 200-generation span starting 50 generations after the on
set of selection. For the single-timepoint scenario, only the final 
generation of this 200-generation span was sampled (i.e. a sample 
of 200 individuals was taken 250 generations after the onset of se
lection). Among time-series schemes, there is an initial accuracy 
increase from 1 (AUROC of 0.76) to 2 timepoints (AUROC of 0.94), 
however, there is only a marginal increase in performance as 
the number of timepoints increases to 40 (AUROC of 0.96; 
Supplementary Figs. 19–21). There is a similar increase in per
formance for the 3-class classification accuracy, with the majority 
of misclassifications being between SDN and SSV scenarios, and 
few false positives or negatives (sweeps labeled as neutral or 
vice versa; see confusion matrices in Supplementary Fig. 19). 
Overall 3-class classification performance improves with more 
than 1 timepoint (47% accuracy) to 69% with 2 timepoints, and 
only marginal improvement with more timepoints (71% accuracy 
for 40 timepoints). These results indicate Timesweeper is accurate 
under a variety of sampling schemes, and even small numbers of 
sampling timepoints may yield substantially better performance 
than single-timepoint data. For selection coefficient estimation, 
there is a large jump in accuracy from 1 (R2 of 0.37 for SDN s esti
mates) to 2 (0.44) to 5 timepoints (0.78), after which there are margin
al increases up to 40 timepoints (R2 of 0.83). Thus, the lion’s share of 
Timesweeper’s performance gains is achieved by adding only a rea
sonably small number of timepoints (Supplementary Fig. 22).

To determine whether the higher accuracy observed for sam
pling schemes with more timepoints was a result of their being 
more evolutionary information present in the data set or the lar
ger number of parameters in the networks trained for data with 
more timepoints, we tested two networks examining the same 
number of timepoints (20) in their input but with a large difference 
in the number of weights: one 1DCNN architecture containing 
11,321,107 parameters and another with 421,835 parameters 
(the standard 1DCNN model used elsewhere in the manuscript). 
We did not observe a substantial difference in accuracy between 
these two networks (Supplementary Figs. 8 and 9), suggesting 
that it is the number of timepoints driving the differences in per
formance seen in Supplementary Figs. 19–22.

Post-selection timing
We also simulated a set of scenarios that test the effect of varying 
when sampling occurs relative to the start the sweep. In these ex
periments, all scenarios were simulated with 20 sampled time
points each with 10 sampled individuals. The sampling window 
for each remained a span of 200 generations with the 20 time
points evenly spaced within. The starting time for the sampling 
window was set to either −100, −50, 0, 25, 50, 100, or 200 genera
tions after the onset of selection. Timesweeper performed best 
(AUROC of 0.96) on data sampled beginning −100 to 100 genera
tions post-selection (AUROC 0.94–0.96), with the lowest AUROC 
observed being 0.72 AUROC for sampling beginning 200 genera
tions post-selection. Reduced accuracy under sampling schemes 
occurring very late relative to the onset of selection is expected, 
as some sweeps may be at or near fixation prior to the completion 
of sampling—in these cases, the sojourn of the sweeping mutation 
would be largely/entirely absent from the time series, and for 
those sweeps completing prior to sampling, the sweep signature 
may even have begun to erode before sampling. In a similar 
vein, we found that Timesweeper estimated selection coefficients 
most accurately when the initial sampling time ranged from −100 
generations (R2 of 0.79 for SDN s) to 50 generations (0.85) post- 
selection, with a steep drop in accuracy at 200 generations post- 
selection (Supplementary Fig. 26).

We also found that Timesweeper was able to differentiate be
tween SDN and SSV sweeps with high accuracy (SDN vs SSV 
AUROC ranging from 0.78 to 0.82) for most starting times (−100 
to 50 generations post-selection). We hypothesize that the model 
performs so well in these cases due to the earlier starting times 
capturing the full onset of selection and the initial frequency of 
the sweeping allele. These tests show that Timesweeper can be 
trained to accurately detect sweeps that occurred at a variety of 
times relative to the sampling period, and is best able to 
differentiate between SDN and SSV sweeps when the sampling 
scheme captures as much of the sweep trajectory as possible 
(Supplementary Figs. 23–26).

Selection coefficient
We simulated training and test sets with selection coefficients of 
0.005, 0.01, 0.05, 0.1, and 0.5. For each of these simulations, we 
sampled at 20 timepoints, with the first sampling timepoint again 
occurring between 50 generations before and 50 generations after 
the onset of selection, and sampled 10 diploid individuals at each 
timepoint. We find that, for the AFT, accuracy is fairly low when 
s = 0.005 (AUROC = 0.81 for distinguishing between sweeps and 
neutrality) but increases rapidly with s (AUROC = 0.97, 0.98, and 
0.99 when s = 0.05, s = 0.1, and s = 0.5, respectively; Supplementary 
Figs. 5–7).
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Number of simulation replicates
We simulated 30,000 replicates for each scenario (neutral, SDN, 
and SSV) and trained and tested on our network on data sets of 
varying sizes (30,000, 20,000, 10,000, 5,000, 2,000, and 1,000 
replicates of each scenario). For each size, a 75/15/15% train/ 
test/validation split was performed as described in the Methods 
section. We found that the number of replicates has little effect 
on accuracy of either AFT or HFT sweep classification (0.94 to 
0.96 AUROC from 1,000 to 30,000 replicates for AFT and 0.86 to 
0.87 for HFT) (Supplementary Figs. 27–29), but had a large impact 
on s estimation. After an initial jump from 1,000 replicates (R2 of 
0.46 for SDN s estimates) to 2,000 replicates (0.75) to 5,000 (0.84), 
accuracy continued to increase, albeit at an attenuated rate, 
even at 30,000 replicates (R2 of 0.87; Supplementary Fig. 30).

Timesweeper is relatively robust to the effects 
of demographic model misspecification
As with all parametric approaches to population genetic infer
ence, the demographic model used could impact the accuracy of 
downstream inference (Johri et al. 2022a, b). To characterize 
Timesweeper’s AFT accuracy in of the presence of highly misspe
cified demographic history, we performed cross-model bench
marking between three different demographic models using the 
(see Methods): a constant-size demographic model (referred to as 
the constant model), a 3-epoch bottleneck model (the bottleneck 
model) as described in Marth et al. (2004) and the Out-of-Africa 
model (the OoA model) described in Gutenkunst et al. (2009).

We found that overall Timesweeper retains high classification 
accuracy even in the case of extreme model misspecification of 
training the classifier under the constant model and applying it 
to the OoA models, with an AUROC of 0.86 when trained on the 
constant model and tested on OoA, and an AUROC of 0.92 when 
trained on OoA and tested on the simple model. Indeed, as shown 
in Table 1 and Supplementary Fig. 32, there is almost no decrease 
in AUROC values for detecting sweeps when training on the con
stant model and testing the bottleneck and OoA models compared 
to networks that are trained on and applied to data from the same 
nonequilibrium demographic model. Thus, the reduction in ac
curacy when performing inference on the nonequilibrium models 
is a consequence of sweep signals being harder to detect in these 
models rather than misspecification. A modest reduction in the 
ability to distinguish SSV from SDN sweeps is observed, however, 
when training on the constant model and applying to the bottle
neck or OoA models. Demographic misspecification has a much 
larger impact on selection coefficient estimation, and we observe 
much larger losses in accuracy when predicting on the bottleneck 
and OoA models after training on the constant model (Table 1 and 
Supplementary Fig. 33).

Timesweeper outperforms previous methods
We compared Timesweeper to a variety of other methods created 
for the task of either detecting sweeps or estimating selection 
coefficients in both time-series and single-point data (see 
Methods). For sweep detection/classification, we benchmarked 
against two single-timepoint methods, diploSHIC (Kern and 
Schrider 2018) and Sweepfinder2 (DeGiorgio et al. 2016), and two 
time-series methods, the FIT (Feder et al. 2014) and Fisher’s exact 
test (previously implemented in PoPoolation2 for this purpose; 
(Kofler et al. 2011)). We also extended diploSHIC to work with 
time-series data, an approach we call TS-SHIC (see Methods), and 
included this method in the comparison. For the diploSHIC var
iants, we assessed accuracy in discriminating between SDN and 

SSV sweeps, and for these and all other classification methods, 
we assessed accuracy in discriminating between sweeps and neu
trally evolving regions. We found that Timesweeper’s AFT outper
formed the other methods both in discriminating between sweeps 
and neutrally evolving regions (AUROC of 0.96 for Timesweeper’s 
AFT vs 0.92 for the next-best method), and in distinguishing be
tween SDN and SSV sweeps (AUROC of 0.76 for Timesweeper’s 
AFT, 0.69 for Timesweeper’s HFT, and 0.63 or less for the 
diploSHIC variants; Table 2, Fig. 3, and Supplementary Fig. 31).

For s estimation, we compared our performance to three exist
ing time-series methods: slattice (Mathieson and McVean 2013), 
ApproxWF (Ferrer-Admetlla et al. 2016), and WFABC (Foll et al. 
2015). We also adapted the time-series implementation of 
diploSHIC to estimate s, and included this in our comparison. 
Again, we found that Timesweeper’s AFT method outperformed 
all other methods (R2 between estimated and true s of 0.77; 
Table 3), with ApproxWF being the next best performer (R2 = 0.6). 
Note that slattice obtained a negative R2 value, because the mag
nitude of error was quite large for a substantial fraction of cases, 
but visual inspection shows that many predictions by these meth
ods were quite accurate (Fig. 4). We also found that Timesweeper 
had a lower proportion of false positives than competing methods 
when scanning across a chromosome while maintaining the high
est predictive accuracy at the selected site (Fig. 5).

Detecting sweeps in an experimentally evolved 
D. simulans population
In order to assess Timesweeper’s utility on experimental evolu
tion data, we applied it to data from a publicly available D. simu
lans study published by Barghi et al. (2019). This study contains 
10 experimental replicates, each exposed to a warm environment 
for 60 generations, giving us the ability to assess our method’s per
formance on real data by examining the extent to which 
Timesweeper’s sweep candidates were replicated across these 
10 data sets. We compare our results to those obtained by 
Barghi et al., who used FET to assess the significance of the differ
ence between the starting versus final allele frequency for a target 
polymorphism within a given experimental replicate.

In brief, we simulated a training set to match the experimental 
design described in Barghi et al. and used these simulations to 
train a Timesweeper AFT classifier as described in the Methods 
section. We note that this experiment lasted for a relatively short 
period of time (60 generations), such that positively selected de 
novo mutations would rarely be expected to arise and reach 
high frequency by the end of the experiment; we therefore trained 
Timesweeper to distinguish between neutrality and the SSV mod
el (example and average inputs in Supplementary Fig. 34), and re
fer to the latter as the “sweep” model for the remainder of this 
section. We then used the resulting classifier, which we found to 
be highly accurate (AUROC = 0.96; Supplementary Fig. 35) to 
scan allele frequency estimates from the pooled-sequencing 
data from Barghi et al. for signatures of sweeps on each of the 
five major chromosome arms (see Methods). This scan was per
formed independently in each of the 10 experimental replicates. 
The resulting predictions were filtered to retain the top 1% of 
the class score distribution, and these prediction scores were 
then compared to the top 1% of the reported −log10(P-value) 
FET scores. We found that Timesweeper predictions have a 
Spearman correlation of 0.20 with FET scores. Although this 
correlation across the whole range of scores was modest, we 
found that SNPs receiving the largest sweep probabilities 
from Timesweeper have high FET scores and vice versa 
(Supplementary Tables 1 and 2).
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We next investigated the degree to which the top sweep candidate 
SNPs (the 100 highest-ranking SNPs) from a given replicate were also 
classified as sweeps in other replicates (according to a less stringent 
cutoff of whether the SNP was in the top 1% of sweep scores in the 
replicate population). This was done for both Timesweeper and 
FET’s top positive selection candidates, using the sweep class- 
membership probability as the score for Timesweeper, and the 
−log10(P-value) as the sweep score for FET. We found that 
Timesweeper replicated a larger number of hits on average than 
FET with the exception of replicate 3 (Table 4). Upon closer examin
ation, we found that this was due to the presence of a large sweep 

region on chromosome 3 where FET predicted high scores for a large 
number of polymorphisms in the surrounding region in multiple re
plicates. Importantly, Timesweeper was able to detect and replicate 
the sweep signature in this region, and it just did not classify as many 
SNPs in this region as sweeps as FET did. This illustrates that these 
numbers of replicated classifications can be somewhat inflated by 
linked SNPs receiving the same classification. One would expect 
that this is probably a greater issue for the FET (which evaluates 
each SNP independently) than Timesweeper, which evaluates a focal 
SNP while including information about flanking SNPs as well.

To more directly test the notion that Timesweeper’s replica
tion rate is less affected by linked selection, we subdivided the 
genome into adjacent 100 kb windows and asked, for each win
dow with at least one top SNP candidate, how many additional ex
perimental replicates also contained a strong selection signature 
somewhere in this window. Because each window is counted 
only once, regardless of how many significant SNPs in contains, 
this approach is less influenced by the same sweep signature 
being counted multiple times. As shown in Supplementary Fig. 
36, windows inferred by Timesweeper to contain sweeping muta
tion are much more likely to be replicated and are typically recov
ered in a larger number of experimental replicates. In summary, 
the consistent ability of Timesweeper to identify regions that 
show signals of selective sweeps across replicates underscores 
its ability to detect positive selection in real data sets.

Discussion
Detecting recent positive selection is an important problem in 
population genetics. Such efforts can help reveal the extent and 
mode of recent adaptation, as well as clues about the genetic 
and phenotypic targets of selection (Nielsen et al. 2005; Voight 
et al. 2006; Garud et al. 2015). Moreover, signatures of selective 
sweeps have been shown to co-localize with disease-associated 
mutations (Blekhman et al. 2008; Chun and Fay 2011; Schrider 
and Kern 2017), although one recent study has argued that 
Mendelian disease genes are less likely to exhibit signatures of se
lection than non-disease genes after controlling for potentially 
confounding factors such as the number of protein–protein inter
actions (Di et al. 2021). One possible explanation is that 

Table 1. Timesweeper’s classification and regression accuracy when trained on properly specified and misspecified demographic models.

Trained on constant Tested on constant Tested on bottleneck Tested on OoA

Sweep AUROC 0.94 0.94 0.86
SDN vs SSV AUROC 0.71 0.63 0.54
Sweep AUPR 0.97 0.98 0.93
SDN vs SSV AUPR 0.69 0.58 0.51
SSV R^2 0.58 0.78 −0.41
SDN R^2 0.81 0.66 −0.39

Trained on bottleneck Tested on constant Tested on bottleneck Tested on OoA
Sweep AUROC 0.93 0.94 0.85
SDN vs SSV AUROC 0.71 0.63 0.53
Sweep AUPR 0.97 0.98 0.92
SDN vs SSV AUPR 0.69 0.58 0.51
SSV R^2 0.43 0.79 −0.71
SDN R^2 0.78 0.66 −0.66

Trained on OoA Tested on constant Tested on bottleneck Tested on OoA
Sweep AUROC 0.92 0.94 0.86
SDN vs SSV AUROC 0.68 0.56 0.53
Sweep AUPR 0.96 0.98 0.93
SDN vs SSV AUPR 0.64 w 0.51
SSV R^2 0.48 0.61 0.37
SDN R^2 0.62 0.63 0.44

Table 2. Accuracy of Timesweeper and competing methods on 
the sweep detection task.

Classification 
method

Sweep vs 
neutral 
AUROC

SDN vs 
SSV 

AUROC

Sweep vs 
neutral 
AUPR

SDN vs 
SSV 

AUPR

Timesweeper 
AFT 1DCNN

0.95 0.61 0.98 0.64

Fisher’s exact test 
(FET)

0.94 0.97

Frequency 
increment test 
(FIT)

0.91 0.96

Timesweeper 
HFT 1DCNN

0.87 0.57 0.94 0.55

SHIC 0.86 0.63 0.93 0.6
TS-SHIC 0.85 0.59 0.93 0.6
Sweepfinder2 0.62 0.77

Table 3. Accuracy of Timesweeper and competing methods on 
the selection coefficient estimation task.

Selection coefficient inference method R2

Timesweeper AFT 1DCNN 0.7
ApproxWF 0.57
Timesweeper HFT 1DCNN 0.51
TS-SHIC 0.4
WFABC 0.34
slattice −1.03

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad084#supplementary-data
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deleterious alleles on the positively selected haplotype may hitch
hike to higher frequencies than they might otherwise reach (Chun 
and Fay 2011), although other potential explanations exist (Otto 
2004; Corbett et al. 2018).

For these reasons, there has been a great deal of effort to de
velop methods to detect the signatures of positive selection 

from a single sample of recently collected genomes (e.g. Kelly 
1997; Fay and Wu 2000; Kim and Stephan 2002; Sabeti et al. 
2002; Kim and Nielsen 2004; Voight et al. 2006; Li 2011b; 
Ferrer-Admetlla et al. 2014; Harris and DeGiorgio 2020). Recent ap
proaches have incorporated combinations of these tests through 
the use of machine learning (e.g. Lin et al. 2011; Ronen et al. 

Fig. 4. Comparison of Timesweeper to competing methods in the s-inference task. Each method was applied to a test set containing an equal number of 
SDN and SSV sweep examples.
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2013; Pybus et al. 2015; Schrider and Kern 2016; Sugden et al. 2018; 
Gower et al. 2021), and it may even be feasible to completely by
pass the step of computing summary statistics by training deep 
neural networks to operate directly on population genomic se
quence alignments as input, as has been done effectively for other 
problems in population genetics (Chan et al. 2018; Flagel et al. 
2019; Adrion et al. 2020b; Sanchez et al. 2021).

While the use of modern data to make inferences about the 
past is the cornerstone of evolutionary genomics, one could po
tentially achieve greater statistical power by including genomic 
samples across a variety of timepoints, allowing for a more direct 
interrogation of evolutionary history. Genomic time-series data 
has been used to great effect to find positively selected loci in ex
perimentally controlled studies (Schlötterer et al. 2015). There is 
growing interest in performing similar analyses in natural popula
tions, as the acquisition of time-series genomic data has become 
feasible both in species with short generation times such as 

Drosophila (Bergland et al. 2014; Kapun et al. 2021; Machado 
et al. 2021; Lange et al. 2022), and in those for which ancient 
DNA is available, such as humans (Allentoft et al. 2022).

With the potential benefits of time-series data and machine 
learning methods for population genetics in mind, we developed 
Timesweeper, a deep learning method for detecting selective 
sweeps and inferring selection coefficients from population gen
omic time series. We experimented with two approaches: one 
using a matrix representation of haplotype frequencies estimated 
in each sampled timepoint, and one tracking allele frequencies 
through time in a window of polymorphisms centered around a 
focal polymorphism. We found that while the HFT had decent 
power to detect selective sweeps, the AFT, when compared to 
competing methods, had superior accuracy and was able to local
ize selected variants with much higher resolution, and accurately 
infer selection coefficients. We note that while the AFT method 
was able to distinguish between the SDN and SSV selection mod
els with greater accuracy than competing methods, accuracy on 
this task was considerably lower than that for distinguishing be
tween selection and neutrality. This is partially a consequence 
of how we defined these models: the SSV model involves selection 
on a previously standing polymorphism, but if by chance only a 
single ancestral copy of the adaptive allele survives the sweep, 
then the result will be indistinguishable from the SDN model.

We also note that the next-best method for identifying sweeps 
on our initial benchmarking data set was the simplest: FET for al
lele frequency differences between the first and final timepoints. 
We note that FET’s performance dropped considerably when ap
plied to our test data sets with nonequilibrium demographic his
tories (Supplementary Fig. 32), demonstrating that this 
approach that can only be used in settings where one knows the 
degree of genetic drift over the course of the sampling interval 
will be small—scenarios involving periods of small effective popu
lations sizes, which many species experience in nature, and/or 
long sampling intervals will be inappropriate for FET. In addition, 
we found that Timesweeper is better able to narrow down the tar
get of selection, because it examines flanking polymorphisms, 

Fig. 5. Fraction of sweep class within a 500 kb region, averaged across 5,000 replicates each of neutral (top), SSV (middle), and SDN (bottom) scenarios. 
Calls are binned into 500 equally sized bins of polymorphisms along the chromosome. For the SSV and SDN scenarios, the central bin consists only of the 
polymorphism under selection.

Table 4. The numbers of top sweep candidates replicated by 
Timesweeper and Fisher’s exact test (FET) on data from 
experimental Drosophila simulans populations. SNPs among the top 
100 scoring sweep candidates for a given replicate were 
considered to be replicated if they were also found in the 
top-scoring 1% predictions by that same method in another 
replicate. Note that some candidate SNPs were replicated in more 
than one of the 9 additional experimental replicates (see 
Supplementary Fig. 36), and thus, a total number of replicated hits 
>100 is possible.

Replicate Timesweeper’s replicated hits FET’s replicated hits

1 44 11
2 97 86
3 44 144
4 43 43
5 37 17
6 43 18
7 30 46
8 20 8
9 52 18
10 47 21
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perhaps giving it some power to distinguish between the selected 
locus and linked regions containing hitchhiking alleles, whereas 
FET examines each polymorphism separately, and an allele with 
a large enough frequency change will result in a rejection of the 
null. Nonetheless, in some settings, a simple method such as 
FET may be preferable, such as experimental studies where the 
population size is held constant, and the sampling interval is suf
ficiently short (although more complex methods would be re
quired if one wishes to infer the mode of selection, or estimate s 
or other parameters of the sweep).

When evaluating the performance of model-based methods for 
population genetic inference, it is important to consider the im
pact of misspecified demographic histories (Schrider and Kern 
2016; Mo and Siepel 2023) We therefore experimented with train
ing the AFT method on simulated data with a constant population 
size history and then testing the classifier on data simulated un
der two nonequilibrium models of population contraction fol
lowed later by either instantaneous or exponential expansion 
(Marth et al. 2004; Gutenkunst et al. 2009), and vice versa. The 
AFT method was able to accurately detect sweeps even in the ex
treme scenario of unmodeled population size change, but selec
tion coefficient estimation accuracy suffered in this scenario. 
More work testing on additional demographic histories would 
be required to fully understand how our method and other 
time-series methods would perform in various scenarios of demo
graphic model misspecification. Another important, albeit intui
tive result of our analyses, is that AFT generally performs better 
on smaller samples obtained across a larger number of timepoints 
than on data sets consisting of the same total number of indivi
duals sampled from a smaller number of timepoints. This implies 
that researchers interested in detecting adaptation from longitu
dinal collections may wish to prioritize sampling individuals 
across a wider range of times, even if the number of individuals 
collected at each timepoint is fairly small—five individuals per 
timepoint may be sufficient if many timepoints are sampled.

The relative failure of our haplotype-based method may con
tain lessons for future improvements. The goal of this approach 
was to contain all of the information present in a Muller plot 
(e.g. Figure 2 from Herron and Doebeli 2013), which shows the fre
quency trajectories of each haplotype present in a (typically clo
nal) population sampled at regular intervals. Although this 
information is very useful for revealing whether a haplotype 
may have been favored by selection, it does not contain any infor
mation about the degree of dissimilarity between distinct haplo
types, nor does it contain any information about the locations of 
any variants that may be present on multiple haplotypes. The lat
ter shortcoming implies that this approach should have little 
power to distinguish between the targets of selection and closely 
linked loci, and this is supported by our findings shown in 
Supplementary Figs. 3 and 4. Future work to develop haplotype 
frequency-tracking representations that contain information 
both about the location of polymorphisms differing among haplo
types, and the degree of dissimilarity between haplotypes sharing 
a given allele, could yield improvements in detecting and localiz
ing selected polymorphisms. Such advancements could also aid in 
distinguishing between SDN and SSV models of sweeps—a prob
lem that both our HFT and AFT methods struggled with, and for 
which information about the frequencies of different haplotypes 
bearing the adaptive allele is paramount (Garud et al. 2015).

Our AFT method, on the other hand, was highly successful at lo
calizing sweeps. This is perhaps because this approach makes an in
ference for a single focal polymorphism while taking into account 
spatial information about the presence or absence of nearby 

hitchhiking variants, before sliding on to the next focal polymorph
ism. Although this method does not explicitly use haplotype informa
tion, it may implicitly be able to track linkage disequilibrium among 
polymorphisms by seeing correlated shifts in allele frequencies (see 
Fig. 1). Thus, it is possible that little information is lost by relying 
on allele frequency trajectories rather than haplotype frequencies.

An added benefit of the AFT approach is that it can be used with 
unphased data, or even pooled sequencing data. This allowed us to 
test the method on data from an E&R study that repeatedly used 
pool-seq to sample experimental populations of D. simulans over 
a period of 60 generations of selection to thermal tolerance 
(Barghi et al. 2019). We found that Timesweeper was able to detect 
regions with alleles that experienced large shifts in frequency over 
the course of this selection experiment. Moreover, Timesweeper 
often detected the same putatively sweeping alleles in multiple 
experimental replicates, suggesting that its results are accurate. 
We stress that these encouraging results were obtained in spite 
of no adjustment of our method to these data: the founder lines 
of the D. simulans experiment exhibit a very high density of poly
morphism, and thus our approach to examine 51-SNP windows 
caused us to examine only a relatively small genetic map distance 
when making each classification—incorporating a larger flanking 
window in this setting would likely yield even better performance. 
We believe that the successful application of Timesweeper to 
these data in spite of this limitation bodes well for the broad ap
plicability and robustness of our approach.

In light of Timesweeper’s strong performance on simulated and 
real genomic data, we have released the software package imple
menting it to the public. We strove to make this package easy to 
use and computationally efficient, as we believe that fast, user- 
friendly, and powerful computational tools are essential if we 
wish to realize the potential of population genomic time-series 
data. We hope that further research in this area of population gen
etic methods development, combined with the application of these 
methods to time-series data from natural populations, will help us 
better characterize the genomic targets and evolutionary import
ance of positive selection. For example, the continued development 
and analysis of these data sets can help us resolve the controversy 
over the impact of positive selection in nature (Hahn 2008; Kern and 
Hahn 2018; Jensen et al. 2019). Such work may also play an import
ant role in the genomic surveillance of both organisms relevant to 
human health (e.g. vectors and pathogens) as well as populations 
threatened by climate change or other anthropogenic disruptions.

Data availability
Timesweeper’s source code and documentation can be found at 
https://github.com/SchriderLab/Timesweeper, and it is available 
to be built from source as well as installed as a pip package. All 
scripts and workflows can be found at https://github.com/ 
SchriderLab/timesweeper-experiments to allow for a complete re
construction of all data/figures used in this manuscript. Data from 
the D. simulans evolve-and-resequence data set were obtained 
from Dryad (https://doi.org/10.5061/dryad.rr137kn) as described 
in the Methods section. Supplemental Material included at fig
share: https://doi.org/10.25386/genetics.22584583.

Supplemental material available at GENETICS online.
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