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Abstract

Recurrent mutation produces multiple copies of the same allele which may be co-segregating in a population. Yet, most analyses of al-
lele-frequency or site-frequency spectra assume that all observed copies of an allele trace back to a single mutation. We develop a sam-
pling theory for the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in relatively small countin a
large sample. Our results follow from the statistical independence of low-count mutations, which we show to hold for the standard neu-
tral coalescent or diffusion model of population genetics as well as for more general coalescent trees. For populations of constant size,
these counts are distributed like the number of alleles in the Ewens sampling formula. We develop a Poisson sampling model for popu-
lations of varying size and illustrate it using new results for site-frequency spectra in an exponentially growing population. We apply our
model to a large data set of human SNPs and use it to explain dramatic differences in site-frequency spectra across the range of mutation

rates in the human genome.
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Recurrent mutation has long been recognized as an important
factor of evolution (Fisher 1928; Haldane 1933; Wright 1938).
This is emphasized by recent analyses of single-nucleotide poly-
morphism (SNP) frequencies and variation of mutation rates
across the human genome (Aggarwala and Voight 2016; Harpak
et al. 2016; Seplyarskiy et al. 2021) describing how patterns of vari-
ation depend on the mutation rate, particularly for rare variants.
By a rare variant we mean an allele, such as an alternate base ata
SNP, which is observed a relatively small number of times in a
large sample. Unless the mutation rate is very small, indistin-
guishable copies of the same allele may descend from multiple
mutations. Here, we present a sampling theory for the numbers
and associated frequencies of these unobserved or latent muta-
tions in the ancestry of a rare variant.

Humans are on the low end of polymorphism levels among spe-
cies (Leffler et al. 2012). On average, multiple mutations should be
rare. In the 1000 Genomes Project data, about 1 in 1300 sites differ
when two (haploid) genomes are compared, and SNPs with more
than two bases segregating comprise only about 0.3% of the total
SNPs observed (The 1000 Genomes Project Consortium 2015). But
polymorphism rates vary by two or three orders of magnitude de-
pending on local sequence context (Aggarwala and Voight 2016;
Harpak et al. 2016; Seplyarskiy et al. 2021). Recurrent mutation is
an important phenomenon for fast-mutating sites. Evidence for
this can be found in the haplotype structure surrounding rare

mutations (Johnson et al. 2022) and in the distribution of their fre-
quencies among sites in large samples (Harpak et al. 2016;
Seplyarskiy et al. 2021).

Here we focus on the latter, in particular on the site-
frequency spectrum (Tajima 1989; Braverman et al. 1995; Fu
1995). Deviations in site-frequency spectra compared to stand-
ard predictions may be due to selection (Bustamante et al.
2001; Achaz 2009; Ferretti et al. 2017), changes in population
size over time (Eldon et al. 2015; Liu and Fu 2015; Gao and
Keinan 2016) or population structure (Gutenkunst et al. 2009;
Stadler et al. 2009; Kern and Hey 2017). But they may also be
due to multiple mutations, i.e. to violations of the infinite-sites
model assumption that each polymorphism is due to a unique
mutation (Fisher 1930a; Kimura 1969, 1971; Ewens 1974;
Watterson 1975).

The standard site-frequency prediction, which holds for a well-
mixed population of constant large size N and neutral mutation
rate u at a locus, is that the number of SNPs where a variant is
found in i copies in a sample of size n should be proportional to
0/1i, where 0=4Nu (Tajima 1989; Fu 1995). This dramatically un-
derpredicts the abundance of rare variants in data from humans,
which is largely due to our recent explosive population growth
(Keinan and Clark 2012; Gazave et al. 2014; Gao and Keinan
2016), but the standard neutral model is a useful starting point
for modeling recurrent mutation.
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Jenkins and Song (2011) studied the occurrence of one or two
mutations at a single site under the standard neutral coalescent
model (Kingman 1982; Hudson 1983; Tajima 1983). They showed
that if two mutations occur and are non-nested (meaning that
all descendants of both mutations can be observed) there will
be a shift away from rare variants and toward common ones.
An earlier work focusing on the nested case is Hobolth and
Wiuf (2009). Bhaskar et al. (2012) used a similar approach as
Jenkins and Song (2011) to obtain results for one, two or three
mutations, up to leading order in the mutation parameter 0.
Sargsyan (2006, 2015) considered two mutations occurring at
two different sites, and Jenkins et al. (2014) assumed that two
mutations are distinguishable and yield a tri-allelic polymorph-
ism. These latter works (Sargsyan 2006, 2015; Jenkins et al. 2014)
allowed for variable population size following the general co-
alescent approach of Griffiths and Tavaré (1998). None of these
works considered rare variants in particular but their predic-
tions, especially those for non-nested mutations (Jenkins and
Song 2011; Bhaskar et al. 2012) are helpful for understanding re-
current mutation.

Two recent large studies of human SNPs observed this pre-
dicted shift away from rare variants and toward common ones
at fast-mutating sites. Harpak et al. (2016) surveyed about 8 mil-
lion SNPs in a sample of nearly 61000 people in version 0.2 of
the Exome Aggregation Consortium database (Lek et al. 2016) for
which data were available from other primate species. Among
these, about 93.3% of these were bi-allelic, 6.5% were tri-allelic
and 0.2% were quad-allelic. Harpak et al. (2016) took the presence
ofidentical segregating variants in different species, ranging from
chimpanzees to baboons, as indicative of a higher mutation rate
at a site. Consistent with the hypothesis of multiple latent muta-
tions at fast-mutating sites, they found fewer rare variants at
bi-allelic SNPs for which the minor allele was segregating in an-
other species, and that this effect is stronger when the other spe-
cies is closer to humans.

The work we present here builds upon the second of these stud-
ies. Seplyarskiy et al. (2021) looked at rare variants in two datasets,
one containing about 292 million variants among nearly 43 thou-
sand individuals in TOPMed freeze 5 (Taliun et al. 2021) and the
other containing about 182 million variants among 15 thousand
individuals in gnomAD version 12.0.2 (Karczewski et al. 2020).
Variants were divided into 192 types: each of the 3 possible base
substitutions at the middle site of all 64 possible trinucleotides.
A classic example of a fast-mutating site in this context would
be ACG, which readily changes to ATG via a C to T transition at
the CpG dinucleotide (Bird 1980; Goldman 1993). The main goals
in Seplyarskiy et al. (2021) were to quantify how the rates of each
kind of mutation vary across the genome and to partition this vari-
ation into distinct components correlated with different muta-
tional processes.

Another aim, taken up in the Supplementary Materials of
Seplyarskiy et al. (2021), was to correct for multiple mutations con-
tributing to rare variants. Recurrent mutation was modeled as a
multi-type Poisson process where mutations with lower sample
counts occur independently at a locus to generate the appearance
of higher count mutations (Desai and Plotkin 2008). The expected
counts in the absence of recurrence were taken from the
site-frequency spectrum at slow-mutating sites. The loss of rare
variants due to recurrent mutation at fast-mutating sites was
quantified for sites with up to 70 copies of a rare variant. These
were considered to have descended from up to 5 mutations.
Slow-mutating sites, even with rates up to the genome average
in humans, should conform fairly well to the infinite-sites

assumption. Resampling from these as in Seplyarskiy et al.
(2021) is a way of controlling for the myriad unknown factors af-
fecting the site-frequency spectrum, including growth.

In this work, we present a sampling theory for latent mutations
of rare variants at each given site-frequency countin a large sam-
ple. We describe a mathematical population genetic framework
for the Poisson-resampling method in Seplyarskiy et al. (2021)
and provide closed-form analytical expressions for several quan-
tities of interest. In short, the distributions of latent mutations
and counts of rare variants depend on the expected total length
of the gene genealogy of the sample, the expected lengths of
branches with few descendants in the sample, and of course the
mutation rate. We obtain new large-sample results for exponen-
tial growth and use these toillustrate the theory. We apply our re-
sults to a different subset of the gnomAD data than Seplyarskiy
et al. (2021), synonymous variants observed in non-Finnish
European individuals in v2.1.1, containing about 834 thousand
variants at about 12.3 million sites among 57 K individuals, pre-
sorted into 97 bins based on estimates of mutation rate by the
method of Seplyarskiy et al. (2022).

We develop and present these results in the next three sections.
In “Theory for constant-size large populations,” we begin with the
standard neutral coalescent or diffusion model of population gen-
etics (Ewens 2004) and demonstrate a close connection between
the Ewens sampling formula (Ewens 1972) and distributions of la-
tent mutations. In “Theory for nonconstant populations,” we ex-
tend the results to populations which have changed in size,
using the Poisson-sampling models of Watterson (1974b) and
Arratia etal. (1992). In “Theoretical example and data application,”
we compare predictions for constant size to those for exponential
growth and show how the new theory can be applied to under-
stand the effects of recurrent mutation on counts of rare variants
across the range of human per-site mutation rates.

Theory for constant-size large populations

In this section, we begin with a description of recurrent mutation
via the well known predictions for allele frequencies in a popula-
tion and in a sample at stationarity. We then use conditional
ancestral processes to demonstrate independence of latent muta-
tions of rare variants in a large sample and show that their num-
bers are distributed like the numbers of alleles in the Ewens
sampling formula.

Stationary distributions and sampling
probabilities

Consider a single locus with parent-independent mutation among
K possible alleles in a population which obeys the Wright-Fisher
diffusion (Fisher 1930b; Wright 1931; Ewens 2004). Thus, the popu-
lation is very large, well mixed, constant in size over time, and
there is no selection. One unit of time in the diffusion process cor-
responds to 2N, generations (N, generations for haploid species),
where N, is the effective population size. Each gene copy or genet-
ic lineage experiences mutations at rate /2 and each mutation
produces an allele of type i € {1, ..., K} with probability z;, with
> ;m =1, independent of the allelic state of the parent. At statio-
narity, the joint distribution of the relative frequencies
X1, ..., Xg-1 of alleles is given by

K X(}”I_l

$(x1, ..., x¢_1) =T(0) HH( o)’ 1)
i=1 t
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in which I'() is the Gamma function, and where necessarily
xg=1->" X (Wright 1931, 1949).

Conditional on the population frequencies (X, ..., Xk), the
sample counts of alleles (N4, ..., N) are multinomially distribu-
ted. A sample of size n taken from the population contains
ni, ..., g1 coples of alleles 1 through K-1, and necessarily
Nk =n-—Y ;¢ Nn; copies of allele K, with probability

p(m, ceey NK—1;5 Yl) = P[N1 =Ny, ..., NK_1 =Nkg-1, Yl]
n

= E[X - Xped 2
(" e ) o

n O TT (6™

— nn\— i
(1 "o 0 T 0 ®)
forn; €{0, 1, ..., n} constrained by ", n; = n and where k") denotes

the Pochhammer function or rising factorial k(k +1)---(k +1—1)
with k© = 1. The shorthand defined in (2) is used extensively in
what follows.

In applications to DNA, K =4 and a sample at a given site would
contain counts ny, ny, n3, ng of each of the four nucleotides. The as-
sumption of parent-independent mutation which leads to the
relatively simple expressions (1) and (3) is unrealistic for DNA,
but its results are useful in the case of rare variants in very large
samples. In this case, it is likely that the common variant, allele
4 say, represents the ancestral state of the entire sample and
that rare variants (alleles 1, 2 and 3) are due to recent mutations
from the common variant. Then the mutation parameter x; for
1€ ({1, 2, 3} captures the production of type-i rare alleles in a spe-
cific ancestral background (allele 4).

An instructive special case is K = 2, where we have

ﬂm=ﬁ£§%5ﬁ%*a-m%* @)
for the stationary distribution of the frequency of type 1 in the
population Wright (1931), and
(m1) (n=n1)
p(ni;n) = < ,:11 ) (Om) Om) g(g;m) (5)
for the sampling probability, i.e. that a sample of size n contains n;
copies of allele 1 and n, =n —ny copies of allele 2. Any two-allele
mutation model can be described as a parent-independent model,
but this is not so in general for K > 2.

Figure 1 shows how the sample frequency distribution p(ni; n)
in (5) depends on the mutation rate for a pair of alleles which differ
by an order of magnitude in mutation rate. Three value of 6 are
shown, with the small value chosen so that the mutation rate
for allele 2 (0x,) is equal to the human average of about 1/1300
(The 1000 Genomes Project Consortium 2015) and the mutation
rate for allele 1 (0r1) is ten times that. When 6 is small, the distri-
bution is U-shaped and nearly symmetric, given that the sample is
polymorphic. When 6 is around one, the distribution becomes
J-shaped (or L-shaped if 71 < x,). When 0 is large, the distribution
has a peak around z;. Graphs of ¢(x) (not shown) display these
same shapes, and p(nq; n) will be very close to ¢(x) dx when n is
large.

Relationship to infinite-sites frequency spectra

We use 0 for the per-site mutation parameter. In a collection of L
total sites at which (5) holds, the finite-sites version of the site-

0.14-
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Fig. 1. Sample frequency distribution p(ns; n) for n = 100, with 1 = 10z,
and three values of 0. The smallest 8 was chosen so that

O, =1/1300 ~ 0.00077, i.e. the human average value. Probabilities are
normalized to sum to one, i.e. conditioned on the sample being
polymorphic (1 <n; <99).

frequency spectrum (i.e. the expected number of sites with
ny copies of allele 1 and n, copies of allele 2) is given by the
product Lp(ns; n). Note, these expected numbers of sites do
not depend on the rate of recombination, whereas the var-
iances among sites and covariances between sites do (Kaplan
and Hudson 1985).

Infinite-sites mutation models may be obtained as limits of
finite-sites models as L tends to infinity with the total mutation
parameter L@ remaining finite. So when 6 is small, we expect
finite-sites results to be close to the usual (infinite-sites) predic-
tions from the diffusion model (Ewens 1979, 2004) or the coales-
cent model (Fu 1995). Finite-sites models distinguish between
kinds of mutations, subject to different mutation pressures,
whereas infinite-sites models implicitly treat all mutations the
same.

From Ewens (1979) equation (8.18) or Ewens (2004) equation
(9.18)—see also Wright (1938) equation (16)—the expected num-
ber of sites segregating in the population with frequencies be-
tween x and x + dx under the infinite-sites model is proportional
to 1/x. For comparison to (4) we may write

B () o 22 ©)

X
for a single site (0 small) approximately under the standard
infinite-sites mutation model. For comparison with (5), we have

0,
pism(na; n) - 7)
ny

for the approximate single-site probability that there are n; type-1
alleles in a sample of size n. Equation (7) has the same form as the
usual infinite-sites site-frequency spectrum (Fu 1995) but here itis
for a specific mutant (allele 1) with a specific ancestral type (allele
2 in the two-allele model).

From (4) and (5) with 6 small we have

_ 97!'1 0712 V]
and
p(n; 1) =1 24 2 972 4 o) 9)
ni Ny
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for iy €{1, ..., n-1}. The diffusion result (4) does not admit
atoms of probability at x=0 or x = 1—see section 10.7 of Ewens
(2004) for discussion—but we can interpret (8) intuitively as fol-
lows. If 6 is close to zero, most of the time the population will be
fixed, containing only allele 1 with probability z; and only allele
2 with probability z,. Mutants of type 2 and type 1 are introduced
with rates Or; and 6Or; in these two backgrounds, respectively.
Then the leading terms in (8) represent a mixture of two infinite-
sites models like (6) with the constants of proportionality speci-
fied. Equation (9) has an identical interpretation, as a mixture of
two infinite-sites site-frequency spectra. These are the key princi-
ples of the boundary mutation model (Vogl and Clemente 2012;
Vogl et al. 2020).

Although no closed-form expression like (1) is available except
under parent-independent mutation, Burden and Tang (2016,
2017) have shown that the stationary densities for pairs of alleles
under general mutation models take forms identical to (8) when 0
is small; see equation (21) in Burden and Tang (2017). See also
Schrempf and Hobolth (2017). Similarly from a coalescent ana-
lysis of general K-alleles mutation, Bhaskar et al. (2012) obtained
leading order terms for sampling probabilities with forms identi-
cal to (9) when 6 is small and samples contain just two alleles.
For K =2, the result from Theorem 1 of Bhaskar et al. (2012) is iden-
tical to (9).

Mutation and the frequencies of rare sample
variants

Our goal here is to understand how the frequency spectra of rare
variants depend on 6 and on the number of mutation events in the
ancestry of the sample under the standard neutral coalescent or
diffusion model of population genetics which assumes constant
population size (Ewens 2004). We first describe an ancestral pro-
cess for the sample, then focus on rare variants in a large sample
to obtain predictions about latent mutations.

A conditional ancestral process for rare variants

Here, we focus on ordered samples because the calculations are
more intuitively related to the familiar rates of events in the an-
cestral coalescent process. The results do not depend on the order
and so apply equally to ordered and unordered samples. Using the
subscript “o” for ordered and writing po(n, ..., nk) in place of
Po(ni, ..., ng-1; n) to facilitate the calculations, we have

K
po(ns, .., ) = (6") 7 T (6m)™ (10)
=1

1:

which differs from the sampling probability in (3) only by the
multinomial coefficient, or the number of ways a sample contain-
ing allele counts ny, ..., ng can be ordered.

Equation (10) is suggestive, as are (3) and (5), that the sampling
structure of the n; copies of allele i may be related to the Ewens
sampling formula (Ewens 1972). Specifically, from the fact that

S8 (6my)", (11)

n
(0m)") = >

ki=1

where |S§.’f‘)\ is an (unsigned) Stirling number of the first kind, we
might guess that there is a latent variable k; which is the number
of mutations giving rise to the n; copies of allele i. As in the usual
application of the Ewens sampling formula, in contrast to the total
possible number of type-i mutations in the ancestry of the sample,

these latent mutations are just those k; € {1, ..
ones which produced the observed alleles.

That is, based on (10) and (11), we suppose that the joint prob-
ability of the sample counts ny, ..., ng and their numbers of latent
mutations kq, ..., kg is given by

., nj} most recent

K
. ) = (9@)_1
i=1

s (6m)", (12)

. kg,

po(kb ..

and therefore that the probability of ky, ..
ni, ..., Ng is given by

., kg conditional on

& |si”|(6m)"

p(kL ...,k](lnl, ...,YIK)= —_— (13)
E (6m)™)

which applies to both ordered and unordered samples.

We show that (13) is true using the ancestral-process approach
of Griffiths and Tavaré (1994a, 1994b). If sampling probabilities
like (3) or (10) are known, this approach can be used to describe
the conditional ancestral process of a sample given its allelic types
(Slade 2000a, 2000b; Fearnhead 2001, 2002; Stephens and
Donnelly 2003; Baake and Bialowons 2008). Following our analysis
of (13) for arbitrary (n4, ..., ng), we describe a large-n approxima-
tion in which allele K is the overwhelmingly common type and 1
through K — 1 are the rare variants.

The conditional ancestral process has the same total rate
of mutation and coalescence as the unconditional process,
n(@+n—1)/2. Lineages which must be of type i in the sample ex-
perience type-i mutations at rate n;fz;/2 and type-i coalescent
events atraten;(n; — 1)/2, but with additional weights proportional
to the probability of (n4, ..., ng) given each event. All other events
have rates equal to zero because the sample could not be
(n1, ..., ng) if they occurred. To obtain (13), we follow ancestral
lineages only back to the first mutation event they experience.
The probability of a type-i mutation event is

nfripo(..., =1, ...) n Om;

nO+n—Dpo(n, ....ng) nom+m—1’ (149)
and the probability of a type-i coalescent event is
ni(ni—=Dpo(...,m=1,...) m n-1 (14D)

H(9+Yl— 1)po<}’11, N VIK) _Zeﬂii +n; — 1’
where we have used (10) to obtain the results on the right.
Whether mutation or coalescence occurs, the number of type i
lineages decreases by one: n; — n; — 1. This ancestral process con-
tinues until there are no un-mutated ancestral lineages, that is
untiln;=0forallie (1, ..., K}.

To this we add a mutation counting process which starts with
ki=0forallie {1, ..., K}thenhask; — k; + 1 whenever a mutation
occurs on a type-i ancestral lineage. Equations (14a) and (14b)
show that each event in the ancestral process includes two
sub-events: a choice of the allelic type involved then a choice be-
tween mutation and coalescence. Depending on (n, ..., ng), the
n=>;n; choices of allelic type will result in a random ordering
of events among types. But for every ordering, the series of choices
between mutation and coalescence within allelic type i depends
only on n; (and 0x;) and is independent of what happens in the an-
cestry of allele j # i. The number of mutations of type iis the sum
of n; Bernoulli random variables with success probabilities
Om; /(0 +j — 1) for j from n; down to 1. The number of latent
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mutations counted in this way will be distributed like the number
of alleles in the Ewens sampling formula—see Arratia et al. (1992)
and Arratia and Tavaré (1992)—with mutation parameter 6z; for
allele 1, and these counts will be independent among alleles as
in (13).

We use this conditional ancestral process below but here note
its close relationship to models of lines of descent (Griffiths 1980;
Watterson 1984). In particular, (13) is included in equation (3.3)
and Theorem 4 of Donnelly (1986), who extended Watterson'’s
lines-of-descent model to the case of K-allele, parent-independent
mutation. See also Donnelly and Tavaré (1987). Equation (3.3) in
Donnelly (1986) in fact shows that if we were to keep track of
the numbers of descendants of each latent mutation, the full
Ewens sampling formula would give their distribution in the
sample.

Before describing a large-n approximation for rare variants, we
also note that latent mutations reckoned as in (13) include what
Donnelly (1986) called ‘spurious mutations to one’s own type’
and Baake and Bialowons (2008) called ‘empty mutations’. These
are a modeling artifact not only of parent-independent mutation
models but of general mutation models as they are typically im-
plemented (Jenkins and Song 2011; Bhaskar et al. 2012; Jenkins
et al. 2014; Burden and Tang 2017; Burden and Griffiths 2019).
Empty mutations have no empirical significance and should not
be counted as mutations. To deal with them, we must keep track
of the ancestral types of lineages when they experience muta-
tions. We can do using the identity

K
Po(-osmi=1,...)=Y po(-.,mi=1, ...,mj+1,...)  (15)
=i

which decomposes our previously generic type-i mutations ac-
cording to their ancestral typesj € {1, ..., K}. Amutation is empty
when j=1.

In our large-n approximation, we take K to be the overwhelm-
ingly common allelic type in the sample and 1 through K-1 to
be the rare variants. Our goal is to model latent mutations in the
ancestry of the rare variants, so we use (15) only for
ie{l, ...,K-1}. For the common allele K, we instead lump (14a)
and (14b) together and record both mutation and coalescence as
ng — ng — 1. Making these changes to (14a) and (14b), and again
using (10) to simplify ratios of sampling probabilities, the condi-
tional ancestral process for a sample with state (n4, ..., ng) jumps
tostate (..., m; =1, ..., n+1, ...) for i, j # K with probability

E Or; (4971:} + nj — 6U‘) (16(1)
n@+n-1)0Or+n-1)"

tostate (..., nj—1, ..., ng + 1) for i # K with probability

E 977.’1'(97[]( + HK)
n(@+n-1)(0x+n-1)’ (16)

tostate (..., n;—1, ...) for i # K with probability

N ny — 1
n 977.'1' +n; — 1’ (16C>
and to state (..., ng — 1) with probability

ng
w (16d)

where we have used Kronecker’s delta to accommodate empty
mutations, i=j in (16a). Equation (16a) includes both empty and
nonempty mutations, but only ones where the ancestral type is
also rare. Nonempty mutations where the ancestral type is the
common type K arein (16b). This classification of mutations by an-
cestral type does not change the probabilities of coalescence, so
(16¢) only differs from (14b) by the absence of type-K coalescent
events which are now in (16d).

If ng is large compared to n; through ng_1, then n=>3";n; »~ nx.
The probabilities in (16a) will be O(1/n2), those in (16b) and (16c)
will be O(1/nk), and the one in (16d) will be O(1). Empty mutations
and other mutations with rare-variant ancestors will become neg-
ligible as ng grows for fixed n; through ng_,. Keeping only terms of
O(1/nk) and larger gives an approximate, large-n ancestral process
with total rate n(@+n-1)/2~n3/2 and jumps, for
iefl, ..., K-1}, from state (n{, ...,nx) to state (...,nj—
1, ..., ng + 1) with probability

n; 4971’1'

NgOmi +n; — 1 ’ (17(1)
tostate (..., n; — 1, ...) with probability

n; n; — 1

—_— 17

nKHm+ni—1’ ( b)
and to state (..., ng — 1) with probability

X (170)

Nk

This process is dominated by (17c¢), that is by events on lineages
ancestral to the common allele K, which decrease the number of
these but leave the counts of rare-allele lineages unchanged.
Although we are not tracing the details of common-allele ances-
try, we note that the overwhelming majority of these events will
be coalescent events, since their rate is approximately equal to
the total rate ~ nZ/2. The next most frequent will be empty muta-
tion events at rate O(nk), followed by common-allele mutation
events with rare-allele ancestors at rate O(1).

When one of the rarer events occurs in the ancestral process, it
involves allele i with probability n;/ng, then is either a mutation
event from a common allele as in (17a) or a coalescent event as
in (17b). This process for the rare variants i € {1, ..., K—1} has
the same form as that found for all variants and all mutations
in (14a) and (14b). Then by the same logic as before, the number
of (now nonempty) latent mutations in the ancestry of the rare
variants will be distributed like the number of alleles in the
Ewens sampling formula, independently and with mutation par-
ameter Or; for allele i€ {1, ..., K- 1}. In addition if we were to
keep track of the counts of each mutation’s descendants among
the n; copies of rare variant i in the sample, then because every
pair of type-i lineages is equally likely to be the one which coa-
lesces when a type-i coalescent event occurs, the distribution of
these counts should be given by the full Ewen’s sampling formula
(Ewens 1972; Kingman 1982; Donnelly 1986; Arratia and Tavaré
1992; Arratia et al. 1992, 2016).

The events involving the common allele in (17c) occur very
quickly. But since only a fixed number of events involving rare al-
leles are required to resolve the ancestry of latent mutation and
coalescence, the approximation remains accurate until all the
rare-allele events have happened, if ng is large enough. In
Appendix section “Time-dependent conditional ancestral
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process,” we study the joint distribution of the times of events
among the rare alleles and the numbers of common-allele ances-
tors when these rare-allele events occur. Focusing on the case of
two alleles for simplicity, if T is the time back to the ith event in-
volving the rare allele 1, we have

2logl) - if ;=1
E[Tﬂ ~ ny 1

) .
=) ifni>1

(18)

which in either case tends to zero as n, tends to infinity. Further, if
N>(T) is the random number of type-2 ancestral lineages left at
the ith event involving the rare allele 1, we have

H1—i+1

E[N(T7)] = no o

(19)

suggesting that, despite the rapid decrease of common-variant
lineages, the approximation can hold until the entire ancestry of
latent mutation and coalescence is resolved.

Even for the largest rare-variant site-frequency count consid-
ered in Seplyarskiy et al. (2021), there will still be >1200 common-
variant lineages left on average at 77, for the TOPMed data
(ny ~ 86, 000) and >400 left for the gnomAD data (ny; ~ 30, 000).
In section “Application to human SNP data,” we consider site-
frequency counts up to 40 for synonymous exonic sites in
gnomAD with many fewer SNPs but a larger sample size
(n, ~ 114, 000) and in this case there should be about 2780
common-variant lineages left at 74 when the entire ancestry of
latent mutation and coalescence among the rare variants is
resolved.

In sum, rare alleles in a large sample will quickly coalesce and
mutate. Their ancestors will be common alleles. If k; € {1, ..., nj}is
the number of these latent mutations in the ancestry of allele
1e ({1, ..., K-1}, then from the rates of mutation and coalescence
in (17a) and (17b) we have

k=1 S\ | (0

p(ka, ..., kgoalna, ..., ke nlarge) = | [ ——F——.
L[ (6m;)™

(20)

Latent mutations of different rare variants are independent and
distributed like the numbers of alleles in the Ewens sampling for-
mula, each with its own mutation parameter.

Latent mutations and sample counts of rare alleles

Our goalin this section is to understand how predictions about the
counts of rare variants, and hence about their site-frequency
spectra, depend on the number of latent mutations and the muta-
tion rate. In anticipation of “Application to human SNP data,” we
focus on the marginal count of just one rare variant, which we ar-
bitrarily call allele 1. From (20) we have

glka)

ni

(971.’1)lel
)(m)

p(kiIng; n large) ~ , kel ., n} (21)

O 1

which we note holds for any K. Here we let K =2 for simplicity.
To understand how the mutation rate influences the count of a

rare variant, we apply the result for ratios of gamma functions

with a common large parameter, 6.1.47 in Abramowitz and

Stegun (1964) or equation (1) in Tricomi and Erdélyi (1951), to
the terms involving n in (5) to obtain

2 0™ ercg) TO) 1
p(na; n) = n11! e? lg()r(em) |:1+O<ﬁ)]' (22)

in which we have used n% = ¢=%"1192(" to make a connection with
the underlying coalescent tree or gene genealogy. Specifically,
6m; Y12 1/i is the expected number of type-1 mutations on the
gene genealogy of a sample of size n, and for large n this is ap-
proximately equal to 6mxi(log(n)+y) where y=0.5772... is
Euler’s constant. In “Theory for nonconstant populations” we ex-
plore this connection in detail and explain the additional con-
stants of proportionality in (22) after finding an analogous
result for the general coalescent trees of Griffiths and Tavaré
(1998).

Site-frequency spectra are typically defined as the proportion
of segregating sites in each possible count in the sample
(Braverman et al. 1995) or equivalently as the probability that a
single mutation is in each possible count given that it is poly-
morphic in the sample (Griffiths and Tavaré 1998; Nielsen 2000).
So, to understand how n; depends on 6r;, we may ignore the con-
stants of proportionality in (22) and focus on

(n1)

p(ny; n large) « (97;11)! . (23)
Then using (23) together with (21), we have
Sgil)

p(nilky; n large) « (24)

nq!

for the dependence of the rare-variant count, ny, on the number of
latent mutations, ki, relevant to the site-frequency spectrum.
Figure 2 shows site-frequency spectra computed using (23) and
(24), and conditioning on the event thatn; € {1, 2, ..., 40}.

Figure 2a shows the dependence on the number of latent muta-
tions. When all copies descend from a single mutation (k; = 1), the
usual predictions from the infinite-sites model hold. Thus if we
put |S$111)| =(n1 — 1)! in (24), then consistent with (7) we have

p(nilky =1; n large) « 1
ny

The total number of such sites will depend on 6z1, and in general
on the factor (6;)" in (21) for larger numbers of latent mutations.
But conditional on k1, the site-frequency counts for a rare variant
donotdepend on 6, atleast to leading order in the sample size n. If
there are k; > 1 mutations in the ancestry of the rare variant, then
n, cannot be less than kq. This is shown in Fig. 2a for k; =2 to
k1 =5. A key effect of recurrent mutation is to give relatively less
weight to low site-frequency counts, as found previously by
Jenkins and Song (2011).
Using (21) and (23) the joint distribution of n; and kq obeys

(6my)*
Yl1!

S

p(ny, ki; n large) (25)
which can be compared to the results of Jenkins and Song (2011).
With fixed n; and large n in our model, all mutations in the ances-
try of the rare variant will be non-nested mutations; note this also
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Fig. 2. a) Shows the probability of observing n; copies of allele 11in a large sample given these are produced by k; mutations. b) Shows the log,,-probability
of observing n; copies of allele 1 in a large sample for three different values of 6z1. In both panels, probabilities are normalized to sum to one, that is

conditioned on the event thatn, € {1, 2, ..., 40}.

follows from (18) in Jenkins and Song (2011). Adapting the notation
of Jenkins and Song (2011) in which E(;Nl)j\, is the event that the ny
copies of allele 1 are due to two non-nested mutations, both

from allele K =2 to allele 1, their (21) becomes

(2)
LYy o g2 2™
p(n1, na, EZN,N) ~ 0wy o

for large n ~ ny (and small 0), which is identical to (25) if k1 = 2.

Numerical computations (not shown) using the unnumbered
equation below (10) in Jenkins and Song (2011), which holds for
any 0, reproduce the case of k; = 2 shown in Fig. 2a whennislarge.
This is evident in Figure 3 of Jenkins and Song (2011) for the quan-
tity Eopn. These computations are difficult for samples beyond the
hundreds. Our results for k; =3 could potentially also be com-
pared to the O(¢°) results of Bhaskar et al. (2012) using their
Theorem 3 and summing appropriately.

Figure 2b shows how the site-frequency counts of the rare vari-
ant depend on the mutation parameter of that variant, =;.
Although Fig. 2a shows a dramatic effect of k; on the site-
frequency counts, Fig. 2b suggests that large values of k; are un-
likely. This is evident from (21) and (25) in that each additional
mutation results in an additional factor of fz;. Note that the smal-
lest value of 0, in Fig. 2b is already more than twice the human
average. From (23), we have

p(ni; n large, 6 small) iﬂ
1

which is consistent with (9) in the case where allele 1is rarein a
large sample. Thus, when 6r; is small (0.002 and 0.02 in Fig. 2b)
the site-frequency spectrum under recurrent mutation is very
close to the standard infinite-sites model predictions. When 6r;
is large (0.2 in Fig. 2b) the site-frequency spectrum under recur-
rent mutation is noticeably different, with a dearth of
low-frequency variants and corresponding excesses at higher fre-
quencies. Figure 2b plots site frequencies on a log scale to better
illustrate differences, especially at higher frequencies.

Theory for nonconstant populations

Here we extend our analysis to populations which deviate from
the standard neutral site-frequency predictions. We have in
mind populations which have changed in size, although other

applications may be possible. Here gene genealogies are the gen-
eral coalescent trees of Griffiths and Tavaré (1998), which have
the same branching structure of standard coalescent trees but
may have different distributions of coalescence times.

Equation (21) suggests another way to model both the number of
copies (n4) of a variant of interest and the corresponding count of la-
tent mutations (k1) when the variantis rare in a large sample. Arratia
et al. (1992) proved that when the sample size tends to infinity, the
numbers of alleles in small counts 1, 2, ..., i in the Ewens distribu-
tion converge to independent Poisson random variables with ex-
pected values 6, 0/2, ..., 6/i. Note that 6/i is the usual expected
site-frequency count of mutants in i copies in the sample under the
standard neutral model of a large constant-size population. A sem-
inal result of Watterson (1974b) is that the numbers and counts of
mutations in a sample from such a multi-type Poisson distribution
conform to the Ewens sampling formula when conditioned on their
total size. So we may interpret (21) and other findings in the previous
section within this independent-Poissons sampling framework.

This is exactly the approach in the Supplementary Materials of
Seplyarskiyetal. (2021). Again, human SNP data strongly reject the
standard neutral model with site-frequencies «1/i, owing largely
to the great excess of singletons and other rare variants due to
our recent growth (Keinan and Clark 2012; Gazave et al. 2014). So
we replace 1/i with E[z;]/2, where ¢; is the total length of branches
with i descendants in the gene genealogy of a sample. For an ex-
tension of independent-Poissons sampling to variants under se-
lection, see Desai and Plotkin (2008). Our notation is different
thanin Seplyarskiy et al. (2021) because here we use the coalescent
or diffusion time scale.

Under the standard neutral coalescent model, E[r;]=2/i. For
the general coalescent trees of Griffiths and Tavaré (1998), ¢; can
be expressed in terms of the coalescent intervals, Ty, which are
the lengths of time when there were k € {2, ..., n} lineages in the
ancestry of the sample. In particular,

n—-i-1
E[r] = ikww (26)
k=2

(i-)
k-1
(Fu 1995; Griffiths and Tavaré 1998).

Watterson (1974b) studied three models. In Model 1, using our no-
tation, mutations arise from a constant source at rate 6, then propa-
gate or go extinct independently according to a critical branching
process, i.e. with birth rate equal to death rate as for a neutral
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mutation. The number of mutations in count i has expected va-
lue G4l /i, for a constant u > 0 which converges to 1 as the duration
of the process increases. Watterson (1974b) proved that the num-
bers and counts of mutations follow the Ewens sampling formula
when conditioned on their total size, which for Watterson
(1974b) was equivalent to the population size. Models 2 and 3
are the Moran model and the Wright-Fisher model (Fisher
1930b; Wright 1931; Moran 1958, 1962) and Watterson (1974b)
proved that these have the same limit as Model 1 when the popu-
lation size is large.

Model 1is an example of a logarithmic species distribution (Fisher
1943; Watterson 1974a; Arratia et al. 2003; Lambert 2011).
Branching-processes have also been used to describe and infer the
ages of rare alleles (Rannala and Slatkin 1997; Slatkin and
Rannala 2000; Wiuf 2000); for recent developments and a review,
see Crespo et al. (2021). Slatkin (2000) used this approach and an
extension of Griffiths and Tavaré (1998) to model the ages of rare
allelesin a large sample. Champagnat and Lambert (2012, 2013)
studied the convergence of population frequencies of alleles for
supercritical, subcritical or critical branching processes. All of
these works assume that each allele traces back to a single mu-
tation, as under the infinite-alleles mutation model.

Our approach to modeling recurrent mutation follows that of
Watterson (1974b) to Model 1. Whereas Watterson (1974b) did
not specify the source of mutations, here we take it to be the pro-
duction of rare variants by mutation from a common variant on
the gene genealogy of a large sample. What for Watterson
(1974b) was the total population size is for us the total count of
a rare variant. Allele 1 is our nominal variant of interest, but for
simplicity for the moment, we use n, k and 6 in place of ny, ks
and Or;. As a further notational convenience, we define

7 = ]

so that 07;/2 is the expected number of mutations with count iin
this independent-Poissons sampling model.

Let (ai, az, ...) be the numbers of latent mutations of the vari-
ant of interest with counts (1,2, ...). We assume that a; ~
Poisson(#7;/2) and that g; and a; are independent for 1 #j. Their
joint distribution is then

)= 1—[ (07/2)" o072

P((h,(lg, al
il

i>1 (27)
I l—[ 011/2

i>1

with a; > 0. The total sample size is what would set the upper lim-
its of the product and the sum above, but we leave these unspeci-
fied for now, only imagining that the total sample size is much
larger than the sample count of the variant of interest, so we
can model the latter without restriction.

We are only concerned with a; for i <b, where b is the largest
rare-variant count. Thus, the assumption of independence in
(27), which is equivalent to there being no nested mutations in
the ancestry of a rare variant, will only need to be true for 7
with i€ (1, ..., b). In Appendix section “Low-count branches of
general coalescent trees” we prove that this holds for the trees
of Griffiths and Tavaré (1998) for fixed b in the limit as the total
sample size tends to infinity, and that the counts (a4, ..., a;) con-
verge to independent Poisson random variables as with expected
values (071/2, ..., 07,/2). A condition is that the total height of

the genealogy is finite, which is a mild assumption ruling out
pathological situations such as a populations whose sizes increase
too quickly backward in time.

The count of the variant of interest is n =", ia; and its number
of latent mutations is k=Y a;. Following Watterson (1974b), we
consider the probability generating function of n and k, which in
the present case simplifies to

nkXy

o kyk k
Y Planay, Xy =ty I)e!y (inﬁ) '

(a1,az,...) k=0

For the details of this derivation, see (A29) in the Appendix. The
coefficient of X" (and y*) can be found using

k
(ZX%) =YX Y mE, e (28)

MR (i)

where the sum is over

m—1
im=1 ...,n=(k—m) 219
=1

form=1, ..., k-1, and with
k=1
1k=n—2im.
m=1

Returning to our notation in which n; is the number of copies of a
variant of interest, k; its number of latent mutations, z; its mu-
tation parameter, and nis the total sample size, and further using
© to show the new dependence on the vector of expected times
(ﬁ, R fnfl), we have

k
bmy 12. . k1
2 (i1l 1) 1Im=1 %, ey xn-1

p(ni, ky; n large, 1) ~ T ez 2t (29)
1t

which is nonzero for ny =k; =0 and n; >k > 1. The sum over
(i1, ..., lg,—1) here is the same as in (28). It is equivalent to sum-
ming over partitions of the integers 1 through n; into k, subsets,
where the sizes of the subsets are (i1, ..., ,).

It is convenient to decompose (29) as follows. The number of
type-1 mutations is Poisson distributed

<97T1 n-1= >k1
5 2i=1 T e net_
) 27 -2 T., (30)

p(ka; n large, 7) » T 077 2uiat

with parameter equal to the expected number of type-1 mutations
on the gene genealogy of the sample. Conditional on this, the dis-
tribution of the number of times allele 1 appears in the sample is
given by

~ Y [t (31)

(1 iy 1) M=1 i=1 Ti

p(nilke; n large, 7)

which depends on the relative expected branch lengths but does
not depend on 6 or ;.
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Alternatively,
(29) appropriately, over kq € (0,

p(ni; n large, ) can be computed by summing
n;). Then

p(na, ky; n large, )

p(k1lng; n large, 1) ~ p(r: 1 Targe, o

(32)

can be used to estimate the number of independent mutations
which produced the observed copies a rare allele.

The sum over (i1, ..., Ig,—1) in (31) and (29) is straightforward to
evaluate but will become impractical if n, and k; become too large.
In what follows, we consider ki <7 mutations at each site.
Equation (30) suggests that this will be accurate up to about three
expected mutations per site, because the probability of k; greater
than 7 is just over 1% when (61 /2) Y1 7 = 3. As in Fig. 2, the lar-
gest value of n; we consider is 40. These are not the upper limits of
feasibility; it takes two minutes to evaluate (31) for all k€
{0,...,7} and n; €{0, ...,40} in Mathematica version 11.2
(Wolfram Research, Inc. 2017) on a mid-2015 MacBook Pro.

Considering the first three possible values of k; in (31),

1 ifm:O

p(n110; n large, 1) ~ {O s 1 (33)
p(n1]1; n large, ) ~ 111 - (34)

i=1 i

Stz
p(n1|2; n large, o) ~ % (35)

()

Equation (33) says simply that if there are no type-1 mutations on
the gene genealogy then no copies of allele-1 will be observed.
Equation (34) is the familiar result for the site-frequency spec-
trum, that it is given by the proportion of branches in the tree
thathave n, descendants. Equation (35) extends this to two muta-
tions and emphasizes that mutations in the ancestry of a rare al-
lele will be non-nested when n is large.
For the constant-size model, we find new approximations

p(ni; n large, 7 = 2/i) » % ~0m 3 i (36)
1!
: st g\
p(nilky; n large, 7, = 2/1) » i ;T (37)
1=
5517?11) (6ﬂ1>k1

pny, ke n large, 7 = 2/i) ~ MYV (3g)

nq!

corresponding to (23), (24) and (25), respectively, in which the con-
dition 7 = 2/i should be taken to hold for all i € {2, n}. Figure 2
is unchanged if (36) and (37) are used instead of (23) and (24). Also,
the conditional probability of k; given n; from (36) and (38) is iden-
tical to (21).

Relation to K-alleles diffusion results

From a gene-genealogical point of view, (36) is the probability of
seeing n; total copies of a rare variant when a random number
of type-1 mutations occurs on the low-count branches of a stand-
ard neutral coalescent tree. However, the type of the common
variant and the ancestral states of these mutations are not speci-
fied in the independent-Poissons model. Of course these should be
allele K, as in “A conditional ancestral process for rare variants,”
but (36) does not include this event. In contrast, the sampling

probabilities (3) and (5) from the equilibrium diffusion model spe-
cify the types of the entire sample. Implicitly, they average over
the ancestral states of the sample. Here we focus on K=2 and
show how (36) is related to (5) when n is large, in particular to
the leading order term in the expansion (22).

The type of the common ancestor of the entire sample, at the
root of the coalescent tree, is allele 2 with probability =,. If this
were the case, allele 2 would be the ancestral source of the low-
count type-1 mutations. But if 6 is not very small, it is possible
for allele 2 to be the ancestral source of these mutations even if
the common ancestor is type 1. To illustrate, dividing either (5)
or (22) by (36) and letting n — oo gives

eIr(9)
I'(6m))

=m +0(6%). (39)

Indeed when 6 is small, (22) is close to (36) times z,. But the error of
this, even as n tends to infinity, may be appreciable for larger va-
lues of 6. The additional probability of order 6* in (39) is consistent
with the possibility that the root of the coalescent tree is type 1
and there are two type-2 mutations, one on each of the two
branches descending from the root.

A better guarantee that allele 2 is the ancestral source of low-
count mutations would be to specify it not as type of the single
most recent common ancestor but rather as the type of the pair
of ancestors at the first time in the past when there were two an-
cestral lineages. Equation (5), with sample size equal to two, gives
the relevant probability. This accounts for both possible states at
the root of the tree as well as for mutation during the deepest co-
alescentinterval, T, in (26). Then the independent-Poissons model
could be applied to the remainder of the tree, i.e. to coalescent in-
tervals T; through Th.

Because latent mutations of rare variants tend to be very recent, cf.
(18) and (19), we may extend this logic to the first imein the past when
there were r ancestral lines of the sample, for an arbitrary r > 1. The
probability that these are all of type 2 is given by the diffusion result
(5) with sample size r. The probability of seeing n, copies of the rare
variant is given by an appropriately adjusted independent-Poissons
model, covering coalescent intervals Ty, through T,. By summing
(26) only over j € {r+ 1, ..., n} it can be shown that the total length
of branches with i descendants in this more recent part of the gene ge-
nealogy differs only by 2(1 — r)/n + O(1/n?) from the full result 7; = 2/1.
The product of these two probabilities is

L(OT (0 + 1) (071),,

—om 1
FOm)rO+1) mil ¢ (40)

which can be compared to the leading order term in (22).
As expected from (39), if r = 1 (40) reduces to (36) times z,. Now
dividing (5) or (22) by (40) and letting n — o gives

[(0ma +7) o—0m iy
e (X 1) (41)

as a measure of how well this augmented independent-Poissions
model approximates the equilibrium diffusion result, depending
on r and 0. Expanding (41) around 6=0, because we do not in
fact expect the per-site mutation parameter to be large, gives

1+(2_’”( 21:12)92+o (%) (42)
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where the nin #? is the usual constant (not our z;). The parenthetic
term in (42) tends to zero quickly as r increases. It is equal to the
trigamma function (1) for re{1,2,3, ...}; see 6.4.2 and 6.4.3
in Abramowitz and Stegun (1964). Even just taking r =2 instead
of r=1 cuts the error by about 60%.

Similar conclusions may be drawn from the large-r expansion
of (41), which gives 1+ (2 — z1)m16%/(2r) + O(1/12). Again ¢ is the
largest-order effect of mutation. The event that a pair of muta-
tions occurs on the two lineages descending from the root of the
coalescent tree is non-negligible in the constant-size population
model, even as n — oo and even for the entire population, because
ancient coalescence times tend to be long. But the chance of this
event will be small for most eukaryote species as 6 ranges from
about 10~* to 10~ with typical values around 10-2 (Leffler et al.
2012). Based on our estimates in the next section, even the fastest-
mutating sites in the human genome have § ~ 0.02. Note that this
event will even less likely in growing populations, because in this
case the deepest coalescence times will be relatively short, but
could be an important phenomenon for populations which were
much larger in the past.

Theoretical example and data application

Here we illustrate the theoretical and empirical use of (30) and
(31). First we describe the consequences of recurrent mutation
in an exponentially growing population compared to those in a
population of constant size. Second we explore an entirely empir-
ical application to human SNP data, which suggests that disparate
site-frequency spectra may be explained by differences in muta-
tion rate (and thus recurrent mutation).

Note that if estimates of the expected fraction of the gene ge-
nealogy comprised of branches with i descendants, that is

7 — IE[TI'] 43
S TE Y e )

are available, then p(ni|kq; n large, r) can be computed using (31).
In addition, for any estimated or supposed values of the expected
number of mutations on the gene genealogy,

E[zi), (44)

the joint distribution of the number of latent mutations, k1, and
their total count, ny, is the product of (30) and (31).

An exponentially growing population

Consider the simple model of pure exponential growth which has
been the subject of a number of studies (Slatkin and Hudson 1991,
Griffiths and Tavaré 1998; Polanski and Kimmel 2003; Chen and
Chen 2013; Polanski et al. 2017): a population which has reached
its current (haploid) size Ny by exponential growth at rate r per
generation. On the coalescent time scale of Ny generations, look-
ing backward in time and setting = Nor,

N(t) = Noe™# (45)

gives the population size at time tin the past. This model is unreal-
istic because the past population size approaches zero, but it can
be taken as a rough approximation for recent dramatic growth.

For instance, a population of current size No=5x 10’ with a

generation time of 30 years and r=0.0064, would have
f=3.2x10°. About 40,000 years ago, it would have had size 10°,
and using equation (7) in Slatkin and Hudson (1991) the pairwise
coalescence time would be about 57,000 years.

The expectation E[z;] can be computed from (26) if the expected
coalescent intervals E[T}] are known. We use the large-n results of
Chen and Chen (2013) for E[Ty] (our notation) to obtain a simple
approximation for E[r;]. With the time scale and notation here,
equation (11) in Chen and Chen (2013) gives

%1og(2ﬁ<% - %) + 1) (46)

as a large-n approximation for the cumulative expected time for
the number of ancestral lineages of the sample to decrease from
n to k. Writing (46) as a continuous function of x =k/n,

s = glog (21

7 + 1), (47)

we approximate the expected coalescent interval as

[T = f(x - ) — x) ~ £ (x) dx
B 2 (48)
Tx(2B(L=x)+xn)”

Note that while (48) is a large-n approximation, it allows that p

might be of the same order of magnitude as n. Applying the
same approximation to the combinatorial coefficient in (26) gives

—i-1
wzlxa-xw (49)
-1

Finally, we approximate the sum in (26) with the integral

Er]~ Iéxnm—l (1-dx,
1 )
=%jé [1 - (1 - %b))x] x(1-x)"tdy (50)
n . n
=m 2F1<1, 2,1+2,1—§> (51)

which can be evaluated efficiently either as (51), in terms of the
hypergeometric function, or as the integral (50). Slatkin and
Hudson (1991) and others have observed that gene genealogies
under very fast exponential growth are close to star trees. Using
either (50) or (51) we have

log (2p/m)-1  sc: _
E[r] ~ —1[1’/1'1 %f 1 1
g 122

(52

as B/n increases. From the log (28/n) term in (52), we confirm the
star-tree prediction that under extreme growth essentially all var-
iants will be singletons.

These results for exponentially growing populations, derived
here using a coalescent approach, are identical in form to some re-
sults for “Luria-Delbriick distributions,” especially in application
to cancer, derived using forward-time birth-death or branching
processes (Luria and Delbriick 1943; Lea and Coulson 1949;
Durrett 2013, 2015; Kessler and Levine 2013; Ohtsuki and Innan
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2017; Cheek and Antal 2018; Gunnarsson et al. 2021; Poon et al.
2021). In particular, (50) has the same form as the approximation
in equation (4) of Ohtsuki and Innan (2017) and as equation (33) in
Gunnarsson et al. (2021). Equation (52) has the same form as the
expression in Theorem 2 in Durrett (2013) if only the leading-order
term is kept in (52) in the casei=1.

Figure 3 shows the same quantities as Fig. 2 but for the pure ex-
ponential growth model with n = 10° and g/n = 3. The value g/n =3
was chosen to roughly reproduce the ratio of singletons to double-
tons observed for low-rate sites in the gnomAD data in section
“Application to human SNP data.” Figure 3ais directly comparable
to Fig. 2a, the only difference being whether E[r;] = 2/i or comes
from (51). As Fig. 3a shows, recent rapid growth produces a single-
mutation (k1 = 1, blue line) site-frequncy spectrum with an excess
of rare variants and a deficit of common variants. So, compared to
the constant-size case in Fig. 2a, there is a diminished tendency to
observe high-frequency variants when the number of latent mu-
tations is larger, and a stronger tendency for the site-frequency
count (n1) to be equal to or close to the number of latent
mutations.

To make Fig. 3b comparable to Fig. 2b, we used (44) with n = 10°
and E[r;] = 2/i to compute the corresponding expected numbers of
mutations on the gene genealogy for the three values of 6z in
Fig. 2 (0.002, 0.02, 0.2). The resulting expected numbers of muta-
tions were 0.024, 0.24 and 2.4, the last being about equal to the va-
lue for the highest-rate sites in the gnomAD data in section
“Application to human SNP data.” We then computed
p(ni; nlarge, 7) by averaging (31) over the distribution (30).
Similar to Fig. 2b, the two smaller values of the mutation rate
give nearly indistinguishable results for the total count n;. But
there is a dramatic difference for the largest mutation rate. In
Fig. 2b the prediction is distinctly L-shaped and thus similar to
that for the lowest mutation rate, which again is 100-fold lower.
In contrast, in Fig. 3b singletons have a much lower chance of
being observed. In fact, doubletons are slightly more likely than
singletons. This relative excess of doubletons is due to the fact
when there are two latent mutations these are highly likely to pro-
duce two copies of the variant under growth (Fig. 3a) than under
constant size (Fig. 2a).

It is also of interest to know how the number of latent muta-
tions in the ancestry of a rare variant depends on its count.
Figure 4 depicts this for a series of increasing counts nq, from 1
to 16. Figure 4a shows the results for constant size, Fig. 4b the cor-
responding results for pure exponential growth. The expected
number of mutations on the gene genealogy is 2.4 in both cases.
Regardless of the demography, if only one copy of the variant is
observed, it must be due to one mutation. Otherwise, the results
differ greatly for constant size versus growth. Under constant
size, a variant observed multiple times in the sample can easily
be due to a single mutation. Under growth, higher variant counts
are more likely due to multiple mutations.

Application to human SNP data

We also used (30) and (31) to account for latent mutations in the
ancestry of rare variants in a subset of the gnomAD data
(Karczewski et al. 2020). We took the approach described in the
Supplementary Materials of Seplyarskiy et al. (2021), specifically
obtaining estimates of relative branch lengths (43) from the data
at low-rate sites, then using our new analytical result (31) to aver-
age over mutation counts. Rather than categorizing variants by
trinucleotide context as in Seplyarskiy et al. (2021), we analyzed
data from gnomAD version v2.1.1, presorted into 109 bins based
on estimates of mutation rate by the Roulette method of

Seplyarskiy et al. (2022) which incorporates information from the
six flanking bases on either side of a SNP, strand asymmetry, ex-
pression level, methylation and promoter status. We did not use
this information but simply assumed that variants within a bin
all have the same mutation rate.

The data consist of variant counts for synonymous mutations
in the exomes of about 57 K non-Finnish Europeans. Thus n ~
114 X although this varied by about 2% among sites because we re-
quired that sites were successfully genotyped in a minimum of
112K chromosomes. Importantly for our application, the data in-
clude monomorphic sites, i.e. sites with variant count equal to
zero. The gnomAD only provides n for polymorphic sites, so we im-
puted n for monomorphic sites using the nearest value at a poly-
morphic site within 100 bp on either side of the focal site. After
filtering for sequencing quality and coverage as well as removing
mutation rate bins with fewer than 100 observed mutations, there
are a total of 12,338,176 sites in 97 bins and 834,486 of these are
polymorphic.

Figure 5a shows the total numbers of sites and the numbers of
monomorphic sites in each bin. The great majority of sites are in
bins 1 through roughly 20. These have low mutation rates, as in-
dicated by their nearly equal numbers of total sites and mono-
morphic sites. The widening gap between the total number of
sites and the number of monomorphic sites reflects the fact that
higher-number bins have larger mutation rates.

For each bin, the data are the numbers of sites where a variant
is observed in each possible count in the sample. Asin “Latent mu-
tations and sample counts of rare alleles,” these are marginal with
respect to other possible variants at the site. Sites with two (resp.
three) rare variants appear twice (resp. three times) in the data,
once for each rare variant. These will likely be in different bins gi-
ven the fine substructure of mutation rate variation (Seplyarskiy
et al. 2021, 2022). Although bins contain mixtures of different se-
quence contexts and different nucleotide substitutions, for our
purposes sites within a bin are all of the same type because they
all have the same mutation rate.

Let S; be the number of sites in a given bin where i copies of the
variant are observed in the sample. If a bin contains L total sites,
then with reference to the notation in (2) we may write

E[S]=LPN1=1in], i€{0,...,n-1} (53)
Thus we use a simplified notation here, with i in place of n; to
avoid the additional subscript when we apply the results of the
previous sections. In addition we use “mutrate” to refer to the es-
timate of the expected number of latent mutations per site for a
givenbin, i.e. (0r1/2) 3", 7 for sites in that bin, as thisis the rate par-
ameter in the Poisson distribution (30).

We used (30) and the proportion of monomorphic sites, So/L, to
estimate this “mutrate” for each bin, specifically as —log(So/L).
Figure Sb plots these estimates across bins, on a log scale. They
range from 0.0097 for bin 1 to 2.23 for bin 97, with a mean of
0.083, taking the proportion of sites in each bin into account. Most
sites have mutation rates on the lower side: bins 1 through 5 contain
about 47% of all sites, bins 1 through 19 about 95%, and bins 60
through 97 contain only about 2% of sites. Overall, rates vary
230-fold from lowest to highest. Assuming that the average esti-
mated mutrate of 0.083 corresponds to the genome average muta-
tion rate per site, for which the usual estimate of 6 from pairwise
differences is about 1/1300 ~ 0.00077, we can infer that the ex-
pected number of mutations between a pair of (haploid) genomes
is about 9 x 107> for the slowest sites and about 0.02 for the fastest
sites.
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We compared observed and expected site-frequency counts for
each bin based on an empirical fit of our model. First, we used (30)
with the estimated mutrate (0r1/2) Y ;7 for each bin to compute
probabilities of k€ {0, 1, ..., 7} latent mutations. Then from (34)
and the fact the polymorphisms at sites with very low mutation rates
likely have just one latent mutation, we used the combined data for
bins 1 through 5 to estimate 7;/) ;% directly as S;/(L—So) for
1e({l, ..., 40}. Our estimates of the mutrate for bins 1-5 range
from 0.0097 to 0.037 with an average of 0.021, which we note is some-
what less than the smallest mutation rate in Figures 2 and 3. We as-
sumed that this 7;/ ;7 estimated from bins 1-5 holds for all bins.
Finally, we computed the expectations E[S;], for i € {0, ..., 40} in
each bin, multiplying the probabilities of counts obtained using (30)
and (31) by the total number of sites in the bin, cf. (53).

The upper three panels of Fig. 6 show the observed and ex-
pected variant counts, S; for i € {1, ..., 40}, for bins 9, 50 and 92,
chosen to represent a low-rate bin, a middle-rate bin and a high-
rate bin. Figure A2 in the Appendix gives the plots for all 97 bins.
In making these plots, we grouped variant counts for which
E[S;] < 1. For bin 50 for example, this was true of variant countsi €
[12, 40] as depicted in Fig. 6B and in the 50th panel of Fig. A2. The
mutrate values in these plots are again the estimates of the ex-
pected number of mutations per site on the gene genealogy,
(6m1/2) Y7, for each bin.

The broad pattern from these plots is clear. For smaller muta-
tion rates (e.g. Fig. 6a) the site-frequency spectrum is heavily
weighted toward the rarest variants. For large mutation rates
(e.g. Fig. 6¢), that is when multiple latent mutations are likely,
the site-frequency spectrum is shifted toward higher counts.
Again from Fig. 5a, the data contain fewer sites with intermediate
mutation rates. In this case (e.g. Fig. 6b), the site-frequency spec-
trum does show the expected intermediate pattern, but subject to
considerable sampling error. Across the range of mutation rates,
the empirical model, which uses low-rate sites to estimate relative
branchlengthsz/)"; 7 and assumes these hold for all sites, fits the
data well.

As can be seen in Fig. 6a and the first 20 or so panels of Fig. A2,
the empirical estimates of 7;/ Y ;7 include fluctuations due to
sampling error for higher-count variants. The combined data for
the first five bins have S; ranging from 71 to 38 for i € [30, 40].
The presence of these fluctuations helps illustrate a subtler phe-
nomenon, namely the smoothing which occurs atlarger mutation
rates (e.g. Fig. 6¢). For reference, the combined data for the first
five bins have S; in the thousands for the low-count variants.
From these, the estimated chance that a latent mutation is a
singleton is about 64%, followed by 13% for doubletons and 6%
for tripletons. By comparison, the chance is less than 0.1% for
each variant with count i€ [25, 40]. The predictions E[S;] are



J. Wakeleyetal. | 13

@ -

- 6.0 .‘. - total sites

) » monomorphi

2 "-,. onomorphic

» 5.0 %

2

B

5 401 T

cT) % =) “oo'"."o...

o o000 ® > oo

£ 3.04 R e e o

g ."'-.'-':n'o:... .

o

S 2.0

o .
1 20 40 60 80 97

bin number

(b) .
0.0 .,.-'d/
[0] .‘...V."
® -0.5- '
= "
2
S ff-
o -1.0 o
) &
o K
-1.54
-2.0q «
1 20 40 60 80 97
bin number

Fig. 5. a) Total numbers of sites and total numbers of monomorphic, or invariant, sites in the gnomAD data for each of the 97 bins. b) Estimated mutation
rates—i.e. the “mutrate” or expected number of latent mutations (6z1/2) }_; 7; as discussed in the text—on a log scale for bins 1 through 97.

(@) ,
bin 9 mutrate = 0.07

(b)

(©)

bin 50 mutrate = 0.448

bin 92 mutrate = 1.631

6
* observed » observed » observed

5 — expected ol — expected 3 — expected
A 4 (7}
2 2
33 81t

2

1 o, ., . . . .

0 10 20 30 40 0O 2 4 6 8 10 [12,40] 0 10 20 30 40
rare variant count, i rare variant count, i rare variant count, i
(d) , _ e) , _ ® , _
bin 9 mutrate = 0.07 bin 50 mutrate = 0.448 bin 92 mutrate = 1.631
> 1.0 > 1.0 > 1.0
§ 0.8 (I; 0.8 c_% 0.8
o) o) k=1 ko)
206 206 © 0.6
a k=1 o} [o%
=} =} =}
2 0.4 2 0.4 . 0.4
,“E_-’ 0.2 5 0.2 k=2 E 0.2
© 3 (] . 3]
= 0.0 . . . & = 0.0 ; - - k>3 = 0.0 — — - k25|
1 10 20 30 40 1 10 20 30 40 1 10 20 30 40

rare variant count

rare variant count

rare variant count

Fig. 6. Upper three panels: Examples of model fit for a) a low-rate bin, b) a middle-rate bin, and c) a high-rate bin. Lower three panels: Stacked probabilities
ofke{1,2,3,4,5,6, 7}]latent mutations for rare variants with countsi € {1, 2, ..., 20} for the same three bins. Asin Fig. 5, “mutrate” indicates an estimate

of the expected number of latent mutations per site, (z1/2) }_; 7;. Black dots on the right in the lower three panels show the probabilities for the

shifted-Poisson result discussed in the text.

smoothed for higher-count variants at larger mutation rates be-
cause they are mixtures. For example, two latent mutations will
comein counts 1andi-1,2andi-2,or 3 andi- 3 with approxi-
mate relative proportions 64:13:6.

The lower three panels of Fig. 6 show estimates of the probabil-
ity that a variant in count ie{l, ..., 40} descends from ke
{1, ..., 7} latent mutations, computed using (32). All singletons
descend from single mutations. Variants in larger counts can
have multiple latent mutations, and the probabilities of these in-
crease very quickly then settle down to stable values. This sugges-
tion of a limiting distribution was also seen for exponential growth
in Fig. 4b, only there depicted differently. For very large counts of
the variant, the distribution of k-1 is well approximated by a
Poisson with mean equal to the expected number of mutations
per site on the gene genealogy, (6z1/2) ", 7. This shifted-Poisson
result is known already for the constant-size case (Arratia et al.

2000; Yamato 2017). In “A remark on the total number of muta-
tions for large n;,” in the Appendix we argue that it should hold
more generally. The accuracy of this shifted-Poisson result for
the gnomAD data and i = 40 is shown by the black dots on the right
axes of Figs. 6d-f.

For low-rate sites (e.g. Fig. 6d) there is a relatively small chance
of multiple latent mutations. But the chance of two or more latent
mutations is not negligible, owing to the very large sample size.
Note that the mutrate for bin 9 is less than the genome average,
which is 0.083 for this sample of n ~ 114K. Thus in a very large
sample even low-rate sites are affected by recurrent mutation.
For the middle-rate sites (e.g. Fig. 6e) in the trough in Fig. 5a the
chance of there being only one latent mutation is still consider-
able. However, for high-rate sites (e.g. Fig. 6f) it can be more likely
that there are two or three mutations in the ancestry of a rare vari-
ant than the single unique mutation which is typically supposed.
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Finally, we explored the extent to which rare variants might be
observed less frequently than would be expected if there were no
recurrent mutation. Figure 7a shows the expected frequency of
singletons, doubletons, etc., up to variants found in five copies
in the sample, across the range of mutrates in the binned
gnomAD data. The standard infinite-sites prediction is that the
frequency will increase linearly with the mutation rate.
Figure 7a is largely consistent with this but shows marked devia-
tions when the mutrate becomes too large. The point at which the
linear prediction fails depends on the count of the rare variant.
Singletons are the first to deviate, which they do as soon as there
is an appreciable chance of two or more mutations at a site. For
rare variants in five copies, linearity holds even close the upper
limit of mutation rates in the human genome.

Figure 7b shows the extent to which the infinite-sites model
over-predicts the frequency of singletons across the 97 bins. The
infinite-sites prediction for a bin is its mutrate (0z1/2) Y ; 7; times
the proportion of singleton branches 7;/) ;7 =0.64 estimated
from the first five bins. The corresponding independent-Poissons
predictions are the same as those for i=1 in the 97 panels of
Fig. A2. The infinite-sites model makes reasonable predictions
for the twenty lowest-rate bins, which contain 96% of all sites
and have mutation rates less than twice the genome average.
But it predicts the impossible for the seven highest-rate bins:
more singletons than there are sites to mutate. For bins 21
through 97, which contain 4% of all sites, the infinite-sites model
predicts a total of 269,222 singletons compared to the 83,002
which are actually observed.

We emphasize that the results in Fig. 7 depend on the sample
size. The expected number of mutations at a single site,
(6r1/2) 3" 7, is proportional to the total length of the gene geneal-
ogy, whichis anincreasing function of the sample size. Already for
the sample size n ~ 114K considered here, singletons start to be af-
fected by recurrent mutation at around the genome average mu-
tation rate (Figs. 7 and 6d). For variants in any fixed count i there
will be a sample size above which the infinite-sites, linear predic-
tion starts to fail.

Discussion

In this work, we modeled the mutational ancestry of a rare variant
in a large sample. Under the standard neutral model of population
genetics with K-allele parent-independent mutation, we found
that co-segregating rare variants may be treated independently

and that the Ewens sampling formula gives the probabilistic
structure of latent mutations in their ancestries. In particular,
the number of latent mutations is distributed like the number of
alleles in the Ewens sampling formula. We obtained more general
results, for changing population size, by modeling latent muta-
tions as independent Poisson random variates.

Our aim was to describe how the site-frequency spectra of rare
variants in large samples are affected by recurrent mutation. The
key parameters for a variantin countiareits expected total rate of
mutation on the gene genealogy of the sample (here denoted
(6r1/2) Y"; 7 and called “mutrate” in the previous section) and the
expected relative lengths of branches in the gene genealogy which
have i descendants in the sample (7;/ ;7). Under the standard
neutral model z; = 2/1.

We obtained new results for 7; under exponential population
growth and used these to illustrate how recurrent mutation af-
fects the site-frequency spectrum differently than under constant
size. Lastly, we showed that our general results provide a good fit
to synonymous variation among a large number of (non-Finnish
European) individuals in the human Genome Aggregation
Database (Karczewski et al. 2020), suggesting that, whatever the
causes of deviations from 7; = 2/1 might be for this sample, differ-
ences in mutation rate can explain differences in site-frequency
spectra among sites.

Our application was empirical. We did not fit a demographic
model, but following Seplyarskiy et al. (2021) used low-mutation-rate
sites to estimate relative branch lengths and assumed these hold for
all sites. Site-frequency spectra are a rich source of information
about population-genetic phenomena but are of somewhat limited
use in disentangling their effects (Myers et al. 2008; Bhaskar and
Song 2014; Terhorst and Song 2015; Lapierre et al. 2017; Rosen et al.
2018). When low-mutation-rate sites are plentiful enough to provide
stable estimates of relative branch lengths, this empirical method
offers a way to control for myriad factors and isolate the effects of
variation in mutation rate.

We began with a K-allele model with parent-independent
mutation, and used its sampling probabilities in our computa-
tions for constant-size populations. We conjecture that our
findings will hold for general mutation models because condi-
tioning on a rare variantin a large sample means that the com-
mon allele will be the ancestral source of mutations with very
high probability. Then the relevant mutation rate in any model
will be the rate of the production of the rare allele from the com-
mon allele.
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We described our general results as being for populations which
may have changed in size. This is appropriate for the general co-
alescent model (Griffiths and Tavaré 1998) which we assumed for
some proofs in the Appendix. Strictly speaking, the general coales-
cent does not require a generative model for the times between co-
alescent events. Thus our results can be applied more broadly. The
case of a fixed tree with arbitrary ¢; considered in the Appendix is
one example. The independent-Poissons model, with results (27)
to (35), does not even require interpretation in terms of coalescence
times. These results hold if we replace 0x17;/2 with an arbitrary rate
parameter /; for the production of mutants in count i. Rates of pro-
duction of mutants have been obtained for under a range of demo-
graphies and some types of selection (Lange and Fan 1997; Dorman
et al. 2004; Lambert 2011; Kaj and Mugal 2016; Torres et al. 2020;
Miiller et al. 2022). Applications to selection will likely require free
recombination between sites. Desai and Plotkin (2008) applied the
independent-Poissons model (for all variant counts in the sample)
for example under a version of the Poisson Random Field model
(Sawyer and Hartl 1992).

Data availability

The data application to low-frequency synonymous polymorph-
isms used allele frequencies from exome sequencing data com-
piled in gnomAD v2.1.1, available here: https:/gnomad.
broadinstitute.org/downloads and basepair-resolution mutation
rates (Seplyarskiy et al. 2022), available here: http://genetics.bwh.
harvard.edu/downloads/Vova/Roulette/. The mutation rate model
specifies the rate for all three possible alternative nucleotides, and
different nucleotide mutations were counted separately when gen-
erating the site-frequency spectra. The pipeline used to compile
and annotate all potential synonymous mutations in the human
genome is available at: https:/github.com/vseplyarskiy/Roulette.
The site-frequency spectra in different mutation rate bins is avail-
able at: https:/doi.org/10.6084/m9.figshare.3426251.v1.
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Appendix

Time-dependent conditional ancestral process
Here we study the conditional ancestral process in detail and pro-
vide the justification for (18) and (19).

Let V1(t) and NV(t) be the numbers of rare alleles and common
alleles respectively at time t. From (17a), (17b) and (17¢), the stochas-
tic process {(N1(t), N2(t))}ep, 18 @ continuous-time Markov chain on
72 with total rate of events A(n1, ny) =n3/2 and one-step transitions

(n1—1,n,+1) w/prob. fm_m

07r1+}'11—1ﬂ
(N1, my) — 3§ (11 -1, ny) w/prob. 0”1";11_12—; (A1)
(ny,np—1) w/prob. 1 -1

n

Let Pn be the probability measure for this process starting at
n = (11, ny), and define the random times

Tii=inf{t>0: Ny(t)=n;y —i) (A2)

to be the times at which the first coordinate of the process decreases
tong —iforl <i<ng, with7o=0.WehaveO0=To<T1<Tor<---<
Tn, almost surely under Pn, and the process (N4, Ny) visits
the following points in order (ni, ny) - (1 —1, No(T1)) —> -+ —
(0, N2(Tw,)).

In Theorem A1 we describe the joint distribution of the hitting
times (7)1, and the locations (N (T7))%, as ny — .

Theorem A1 Asn, — oo, the random vector

A (T")>m (A3)

<ﬂ2(Ti -Tia), T,

2 i=1

in R?™ converges in distribution under Py to the random vector

ny

Z;
((1 ey o 2 R G Rl Yi))i:{

where Yo =0, and {Y;, Z;}"; are independent random variables
with probability density functions

fr) = —i+ ) -y)"

2n1—i+1

(Z + 2)n1—i+2

forye (0, 1)

and fz(z)=(m—-1+1) for z € (0, ).

Remark A1 (Mean of 7,,). Note that

E(z] = o= %f'lsiSHl—l.
0 ifi=ny

Hence for ny > 2, Theorem Al implies that En[71] is of order 1/n,

and gives the second part of (18) in the main text. In contrast,

when n; =1, E[Z1] =0 and En[Ty,] is no longer of order 1/n,.

Indeed, when ny=1Pa(t=k) =, for ke {0,1, ...n, — 1} by (A6).

Hence by (A4) and Fubini’s theorem,

as n, — oo.

These give (18) in the main text.

Remark A2 (Mean of A»(71)). By (A5) and Theorem A1,
hm[ENZ(Tl) _ nq 711—1...n1—1:+1:n1—i+1
ny—> 00 no n+1 n N —1+2 n+1

for 1 <i<ny. This gives (19) in the main text.

Proof of Theorem Al

To explain the key idea we first establish weak convergence of
(no 71, 2274, ie. of the marginal distribution for i=1 in (A3).
By definition, 7 is given by

#
Ti=) &, (A4)
i=0
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where #is the number of downward jumps in second coordinate of
the process starting at (n4, ny) up to the first decrease in the first
coordinate. The variables {&}7) are the times between these
downward jumps, with &, being the time to the final jump starting
at (n1, np — ). This last jump is the one which decreases the first
coordinate. Observe that AN,(71) is either ny—¢ or ny —g+ 1.

Given #, N'o(7T1) is equal to

-t+1, w/conditional prob. 5t
ni—1 Ny (A5>

w/conditional prob.

ny -, Omi+m—1ny—¢

which correspond to a non-empty mutation event and a coales-
cent event of type 1 respectively. These follow from (A1).

The probability mass function of ¢ is given by Pn(# = 0) =L and,
forke{1,2,...,np—ny},
Pa(t=k)
SRR T U DU R L S L B
_(1 VI2><1 ﬂz—l) (1 Vlg—k+1) Ylg—k
I LT R (46)
Ny i1 ny —j
_Em—ly12 _k_j
_Vlg =1 ny —j
#M oyt (A7)
]
as n, — oo and % — x € (0, 1). Hence Pu(t>ny, —n1)=0 and, for

ke{0,1,2,....,np-n1 =1},

i (21 ) (2

fi6-)

asny - coand £ —» x € (0, 1).

Lemma Al. Asn; — oo, We have convergence in distribution

4
. B
(VIQ ggi, le) d— (Z1, Yl).
with Z; and Y; as defined in Theorem A1l.

Proof of Lemma A1l. It suffices to show that the moment gener-
ating function of the R?-valued random variable on the left con-
verges pointwise to that on the right; that is, to show that

lim E, [e”’zJ'("ZTl] =nyfy(1 - x)"telx+ 5 gx (A9)

ny— 00

for neR and {e€(-,0]. See, for instance, Section 30 of
Billingsley (2008). Since ¢ ~ Exp(A(n1, np — 1)),

(ny — i)’
(ny —i)? = 2¢

/l(nl, Ny — l)

Cé — _
Bl = -

(A10)

By (A4), (A6) and (A10),

Ny -1y

E I:er/,.zﬂ Y!z7’1j| - Z pn<ﬁ=k) ev% [E,{e(“? Zio(“\]
k=0
ny—nq k
= 3 Palt=R)e" [ | Ea[e™4] (A12)
k=0 i=0
—n ni—1
ny " 1”](1 Vlz—k j
= "2 n, ),
Ny g g no —J ( )
where
AN, ng =)
Pro(C Hi (n1, np —1) = {ny
k
_exp! Zlog(l— 21 )}
(n2 =) (A12)
k . 2(1’12
~e 2(n f ~0
Xp{§22n2_1>} i N
- 2
~exp{2§f oy dy] exp{ x}

if% — x € (0, 1) and n, — 0. Putting (A12) and (A7) into (A11), we
obtain the desired (A9) and thus Lemma A1. O

We now return to the proof of Theorem Al. Lemma Al implies that
(N2 T1, N2o(T1)/ny) converges in distribution to (Z;,1-7Y;) as
ny — oco. Since Yy <1 almost surely, we have N(71) - oo in the
sense that

lim Pa(NV2(T1)>M)=1

ny— o0

for all M € (0, ). (A13)

Asin (A4), by definition, T, is given by

)
To=T1+ 251(2),

i=0

where #, is the number of downward jumps starting in state
(n1 =1, N'2(T1)) up to the second decrease in the first coordin-

ate, i.e. to ny — 2. Like before, {éf )}fzo are the times between

these jumps, with g’f being the time for first coordinate to hit
n; — 2 starting at the penultimate states (ny — 1, No(T1) — ).
Asin (A5), No(T>) is either No(T1) — o or No(T1) — o + 1.

Asny — o0, N5(T1) = o in the sense of (A13). Hence the same
argument thatleads to Lemma 1 can be applied again, starting at
the new location (n1 — 1, M»(71)). More precisely, by computing
moment generating functions as before, and applying the strong
Markov property of the random walk {(N1(t), N2(t)}er, at the
stopping time 71, we obtain the joint convergence

1 it
Lo — R N TR ¢
(”224,(”2 ﬁ);fl ’le')’lz—ti) — (21, Z2; Y1, Y2)

under Pp as ny — oo, where {Z1, Zy, Y1, Y»} are independent vari-
ables defined in Theorem Al. This implies the convergence in
distribution
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N N
(VlzTL (T2 —Ta); % %)
do(z0 -2 1-v, a-v)a-Y
=z 7557 1Y - Y- Y)

under Py, as ny — oo. Continuing this way, by letting #; be the
number of downward jumps starting at (n1 —i+1, N2(Ti_1)) be-
fore hitting the vertical line {(n1 -1, y): y € Z,} for i > 1, we obtain
the desired convergence in Theorem A1l. O

Low-count branches of general coalescent trees

Here we prove the non-nestedness and Poisson-independence
of low-count mutations, which we assumed in section “Theory for
nonconstant populations.” We do this first for fixed trees then for
the random, general coalescent trees of Griffiths and Tavaré
(1998). We also present the computation of the probability generat-
ing function, G, (x, y), of the count of the variant of interest and its
number of latent mutations. Our definition of nested differs from
some previous ones (Saunders et al. 1984; Wiuf and Donnelly 1999;
Hobolth and Wiuf 2009); here nested mutations may occur on the
same branch of the gene genealogy.

Nested mutation on a fixed tree

Let T, be a fixed (non random) tree with n leaves. We suppose the tree
is ultrametric, that is the leaves have the same distance H,, from the
root. We call H, the height of T,,. Consistent with the main text, we
adopt the following notation for some relevant properties of Ty, for
the most part suppressing the dependence on n for simplicity:

1) Ty is the length of the time during which there are exactly k
lineages ancestral to the sample, fork € {2, 3, ..., n}.

2) 7 forje {1, ...,n-1}, is the total length of branches in Ty
that have j descendants. We suppose there are m; such
branches with lengths {rj’k}gl. Then 7 = Z?;l Tjk-

3) Tyotar is the total branch length, the sum of all the branchesin
Ty, which is equal to Y1, k Ty = Y11 7.

&=

For a positive integer b, we define a collection {l"fb)}ﬁb1 of dis-
joint connected subtrees of the coalescent tree as follows:
Each of the m;, branches with b descendants in the sample
(say the ith one) subtends b leaves in the coalescent tree

and gives rise to a subtree r ) which contains that branch.
We say nested mutation up to count b occurs on T, if there
exist two mutations on 1"1@ c T, for someie(l,2, ..., my}

Fig. Al illustrates this for b=4.

1 1 1 1 2 2 1

Fig. Al. Two subtrees in { } The subtree on the left has one mutation
which is labeled 1 and has Count four. The subtree on the right has nested
mutations, with the mutation labeled 1 in count two and another labeled
2 also in count two.

We assume that mutations arise as a Poisson point process on
the tree with constant rate 6/2 per unit length. Theorem A2 below
holds for any fixed ultrametric tree (it can be binary or have mul-
tiple mergers, or even be a star tree).

Theorem A2 (Nested mutation on fixed trees). Let T, be a fixed
ultrametric tree with n leaves. For any positive integer b and for
any 6 € (0, o), the probability that nested mutation up to count
b occurs is bounded above by

2
min %Mmtal m, & (A14)

In particular, the probability that nested mutation up to count b
occurs tends to 0, as n — oo, if&z(maxlsksm] Tjp)y — 0for1<j<b.

Remark A3. There is good evidence that the upper bound
%Ttotal H, is actually small for humans. For the gnomAD data we
analyze in the main text, the expected number of mutations per
site (ATiota1/2) is between about 0.009 and 2.13. SO OTa1/2 is Not
big with high probability. The rest of the upper bound, boH, /4,
should be proportional to the average pairwise difference per site
(very nearly equal to this for random Kingman coalescent trees
and large n) and this ranges from about 9 x 10~ to about 0.02 for
these same data. See section “Application to human SNP data.”

Remark A4. The simplerbound & PT a1 Hn can be weaker than the
other bound % H b3 ZJ 1 Zk . 51 In (A14) for large n. For the ngman
coalescent, [E[TtotalHn] (log n)islarger than | ZJ i Zk . 7: ] since
thelatter tendsto0asn — oo, by (Al17). For a star tree, however both
bounds are approximately §’nH? (up to a multiplicative constant).

Proof. The total number M, of mutations on T, is a Poisson vari-
able with mean ¢, : =4Toa1. Given the tree T, and M, =k, the k
mutations are uniformly distributed on the tree. Hence the condi-
tional probabﬂity that two given mutations are on the same sub-
tree F ) for some i is equal to

id
2

i=1 total

where |1"fb)| is the total branch lengths of the subtree 1"1@ Since
there are k(k — 1)/2 ways to choose two mutations out of k,

b)

P(there are 2 mutations on forsomeie{l, 2, ...

ry )
=) k my ()
<Ze‘c"cnkk 1) Z ;
i=1

total

@by (A15)
2 i=1 Tgotal
0 S )2
=g I
1=1
Note that |1“§b)| <bH, for all 1 <i<my, and that 37 |r§b)| < Trotal

since the subtrees {ng)}i’ibl are disjoint. Hence

my b my b
S Ir?P <bH, > 1Y) < bTegaHo,
i=1

i=1
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Putting this into (A15), we obtained the first bound %bTmmlHn in

(A14). To get the second bound in (A14), note that |l"§b)| < beb) for

all 1 <i<my, where Hgb) is the height of the subtree 1“1@.
Furthermore, Hfb) is the sum of at most b branch lengths, one

from {zj } forj=b,b-1, ..., 2, 1, and these branches are pairwise
disjoint for different i’s (for 1 <1 < my). Hence

my, . b m
YHP DY Y
i=1 j=1 k=1

where we used the general inequality | Y0_, azl2 <b ¥ 0_, a?. The
bound in (A14) now follows by putting these into (A15). O

A mutation on a tree (called a latent mutation in the main text)
is said to have countj if the mutation is the most recent mutation
in the lineages of exactly j individuals at the leaves of the tree; see
Fig. Al.

Theorem A3 (Poisson approximation for counts on a fixed tree).
Let T, be a fixed coalescent tree with n leaves forn > 2. Let g; be the
number of mutations on T, with counts j. If the probability that
nested mutation up to count b occurs tends to 0 as n — oo, then
for any positive integer b and any 6 € (0, ), the variables {aj}?zl
are asymptotically independent and a; ~ Poisson(§z)) for 1 <j <b.

Proof. If there is no nested mutation up to count b, then g; is also
equal to the number of mutations on the branches in T, that have
jdescendants, for 1 <j < b. Since these branches have total length
7; and they are disjoint for differentj’s, the result follows from the
assumption that mutations occur as a Poisson point process on
the tree T, with rate 6/2. O

Nested mutation on random trees

We now suppose the tree Ty, is a random binary tree (for n > 2), in
particular the general coalescent tree of Griffiths and Tavaré
(1998). For each n > 2, {TyJ;_, is a sequence of positive random vari-
ables representing the times during which there are k lineages in T;,.
The branching structure of T, is independent of the times {Ty}_,.
Looking forward in time, whenever there is a branching event, an ex-
isting lineage is chosen uniformly at random to split into two.

Following Griffiths and Tavaré (1998, eqn. (2.2)) we let A(t) be the
the population size at time t in the past divided by the current
population size. As in (45), A(t) = e with g > 0 corresponds to an
exponentially growing population.

Theorem A4 (Nested mutation on random trees for fixed 6). Let
b e N. Suppose for 1 <j < b,

m;
lim E, [Z rik] =0, (A16)

k=1

where the expectation E, averages over all realizations of T,. Then
the probability that nested mutation up to count b occurs is
bounded above by Cp,,6°, where {Cy 1}, are constants that tend
to0asn — oo. Furthermore, (A16) holds for the generalized coales-
cent trees of Griffiths and Tavaré (1998) when sup,A(t) < o
(which includes any growing population).

Proof. The first statement follows directly from Theorem A2. By
the fact Zgil sz‘k < (maxiqegn 7jk)y and the Cauchy-Schwarz in-
equality, we have

m 2
E 21 < |Eal?]E - . A17
n|:k2_1:TJ’k:| < n[TJ] n[(ﬁ}eiﬁ) ‘L'),k> :| ( )
Hence assumption (A16) is satisfied if
2

(| I

1m sup by |7 | < oo,
li pE |7 A19

n— oo

for 1 <j <b. The second statement now follows from Lemmas A2,
A3, and Proposition Al below. O

Lemma A2 concerns assumption (A18). For reference, we note
thatitis satisfied, and hence (A18)is satisfied, if T} are exponential
variables with parameter 4, where ) 2, i < o0. This is true for the
Kingman coalescent which has 4, =k(k — 1)/2.

Lemma A2 Suppose lim sup,_, . > r_, Tk has finite pth moment,
where p > 0. Then MaX; e, Tjk —> O inlP,asn— oo.

Proof. Consider the random tree T, and recall that Ty, is the length of
the time during which there are exactly k lineages ancestral to the sam-
plein Ty,. These k lineages are segments of length Ty of the branches of
the genealogy, and each of them is called a line of state k.

We construct the infinite sequence {T,},,, sequentially in the
same probability space, by constructing a coupling of the two in-
dependent families {Ty}s, and {i}s,, Where 1 €{1,2,...,n} is
the index of the lineage that branches into two going from T, to

Let Aik'“) be the number of descendants in T, of the #th line of state
k. Note that A®"” > 1 for ¢ € {1, 2, ..., k}, and 3*_, A" =n. By ex-
changeability—in particular see Bertoin (2006, Proposition 2.8)—the
random vector %(A(f’m, e A](f’")) converges almost surely to a ran-
dom vector that has the symmetric Dirichlet distribution on the sim-

plex {(xi)f:1 € RY : X1 +--- + X, = n}. Therefore, with probability one,

lim AP = 400

Nn—oco

forallk>1and ¢=1,2, ..., k. (A20)

Since ) 32, Ty is finite almost surely, the trees {Ty},,, have uniformly
bounded height almost surely. So (A20) implies that with probability
one,

lim sup sup 5, =0
n—oo  1<k<my

for all j > 1.

Since maXickam, 7jk < > r_, Tk, by the assumption on {T}} and the
Dominated Convergence Theorem, Max; g Tjk — 0 in LP as
n— . O

Next consider assumption (A19). For the Kingman coalescent, 7;
is close to its mean Ey[7] = 2/j because for n large enough,

4(j+ 1) logn
0

Var(r)-) = 40')} < (A21)
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Fig. A2. Plots like those in Fig. 6 for each of the 97 mutation-rate bins. (continues on next page)
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Fig. A2. Continued
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where o is defined in Fu (1995, egns. (1)-(2)). This follows from the
fact that Fu’s §,(j) ~ 2% as n — o for each j > 1 (Fu 1995, eqn.
(5)). Hence

N2
lim sup En[¢] < (J—) .

n— oo

Lemma A3. Suppose there exists a constant C, € (0, oo) such that
sup E,[T?] < forall k > 2. (A22)
n=2

Then Eq[5] < “/— forallj > 1 and limsup,_, ,En[z’] < 0.

Proof. Forrealized values of Ty, the argument in Fu (1995, p. 181) gives

ZkazU Tk—ZTk kai()

k=2 =1

Ak is the indicator variable, where Aﬁk’”) is the
)

number of descendants in T, of the #th line of state k defined in
the proof of Lemma A2.

Using the independence between {Ty}s, and the branching
structure, and following the notation in Fu (1995, eqns.
(18)-(19)), the conditional expectation of ¢j, given {Ti}_,, is

where ¢,(j) =1

Enlgj | {Tekeoo] ZTk kp(k, j) (A23)
k=
and that of , given {TyJi_,, is
En[7] | {Tilies) ZT2 kp(k, j) + k(k = 1)p(k, j; k, J))
k=2 (A24)
+2 3 T TekRp(k,j; K. ),

k<k’

where the deterministic functions p(k, j), p(k, j; ¥, j) do not depend
on {Ty}. From Fu (1995),

n-j-1 ﬂ—k n-2j-1
p(k))((,E;))Ejl}i;k)l R, j; kJ)((E;))

and for2 <k <k <n,

1

N .
pk.J: K. ) = =gy PK))

<k’ k) j-1\/n-2j-1
e () (B 500
+Z tk’ n-1 ’
() (v23)
where the sum is taken over 1 <t <minf{j, k¥ -2, K -k +1}.

The first and the second moments of r; are obtained averaging

over {Teh_, in (A23) and (A24). The bound Eq[g] < */TC— follows from
the same calculation in Fu (1995, eqn. (22)). By (A24), the fact

En[TiTe] < (En[T2] En[T2 )" and assumption (A22),
lim supn_mEn[r}?] < oo holds also for our random trees. O
Remark A5. Asin Theorem A2, we can use an alternate assump-

tion than A1l6. For any positive integer b, the probability that
nested mutation up to count b occurs is bounded above by
%En [Tiotal Hn] Which tends to 0 if 6?En[Tiowa1Hn] — 0. For Kingman
coalescent trees, this would require that § — 0.

We now check that the assumption (A16) in Theorem A4 holds
for the generalized coalescent tree of Griffiths and Tavaré (1998).

Proposition Al. Suppose Cp:=8up,A(t) <oo. Then {Tp: 2 <k <
n, n > 2} satisfy the conditions in both Lemma A2 (with p=2)
and Lemma A3. In particular, (A16) is satisfied and so the conclu-
sion of Theorem A4 holds.

Proof. Thejoint distribution of {T}};_, is determined by the func-
tion A; see Griffiths and Tavaré (1994b). We can construct {Ti}p_, in
terms of 1 as follows: let {Dy(t)},cz, be a pure death process with
rate k2 at state k € {1, 2, ..., n}, starting at D,(0) =n, and let

DY (t) =D, (IQT; du)

be a time-changed pure death process. Then

(A25)

Te=15 1DY () =

k}dt = op_rs1 = Ot
for2 <k <n,whereo; <o, <--- <ogy_1 are the jump times ofDﬁf') (by
convention gg = 0).

By (A25), the jump times of the pure death process D,, denoted
by &1 <% <-- <Gy, are given by [y 1 =5 for 1 <j <n - 1. Hence,
with the convention oo =0, for 0 <j <n -2 we have

0jt1—0j o, 1 ~ ~

) Cs J SI,,]J ! W dt=0'j+1 - 0j.

These give Ty = 6y_ks1 — On_k < (@nks1 — onk)Co forall 2 <k <n.
Since oy_py1 — vk i equal in distribution to the analog of T}, for the

Kingman coalescent, Ty, is stochastically dominated by Cy times an ex-

ponential variable with parameter k(k — 1)/2 forall 2 < k < n. The de-

sired statement now follows since (A18) and (A19) are satisfied. [

Replacing z; by its mean

By using the expected coalescence times denoted 7; in the main
text, we implicitly assumed that different sites have different trees
and that these are all drawn from the same distribution. Theorem
AS below asserts that even though the mutant counts at each site
are conditional on the realization of the tree at that site, we can re-
place 7; by its expectation En[z] in Theorem A3 when the trees are
random and satisfy suitable assumptions. The key reason is that z;
is close to its mean, as made precise in Lemma A4.

Lemma A4. Suppose (A22) holds and that the covariance

Cn

COV(Tk, T]@) < m

(A26)

for2 <k <k <nandn> 2, where {Cy,} is a sequence that tends to
0 as n— oo. Then for each j>1, the variance Var(;) — O as

n — oo. In particular, |z — E[5] | — 0in L*(P) as n — co.

Proof. By further taking expectations in (A23) and (A24) with re-
spect to E,, we obtain the variance

Var(z) = Eq[7] - (Enlz))’

=2 Zkk’(En[Tka,]p(k,j; k', j)

k<k’
= En[T]En[TieIp(k, j)p(K', J))

(A27)

up to an O(l"%) term. This follows from Fu (1995, eqns. (24)-(25))
and assumption (A22) in Lemma A3. This also leads to (A21).

By assumptions (A22) and (A26), the double sum in (A27) is
bounded above by
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LC Zpkjyk J) =k, j)p(R', )

k=D -1) (A28)

ka)
Czk Ik -

k<k’ k<k!

By Fu (1995, eqns. (29) and (22)), the first and second terms of (A28)
are of order o(n) and O(*%"), respectively, as n — oo for eachj > 1.

The completes the proof of lim,_,, Var(z) = 0. The latter implies,

by Chebyshev’s inequality, that 7j — E[zj] > 0inL? asn — co. [

Theorem A5 (Poisson approximation for counts across loci). Let
{Tn},», be a sequence of random coalescent trees which are the
generalized coalescent trees of Griffiths and Tavaré (1998).
Suppose sup,,, A(t) < co and assumption (A26) holds. Let g; be the
number of mutations on T, with countsj. Then for any positive in-
teger b and any 0 € (0, «), the variables {aj}b , are asymptotically
independent and a; ~ Poisson(§ Eq[g]) for 1 <j<b, asn — co.

Proof. By Theorem A4, the probability that nested mutation up
to count b occurs tends to 0 as n — oo. The result then follows
from Lemma A4 and Theorem A3. O

It can be checked that exponentially growing popolations clear-
ly satisfy sup,,,4(t) < o and also assumption (A26). The conclu-
sions of Theorems A4 and A5 then hold for the generalized
coalescent trees of Griffiths and Tavaré (1998) when A(t) = e# fort €
R, for some > 0.

Equipped with Theorem A5, we write 7; = Ey[r;] as in the main
text and compute the probability generating function G, of the
count of the variant of interest and its number of latent muta-
tions. The count of the variant of interestisn = ; ig; and its num-
ber of latent mutations is k=) "; a;. Hence

> Play, ag, .. X"y
(a1,a2,...)
0y i 07./2)"
—e ZZI’!, Z XZm(yZa,H( 1
(a1,az,...) i>1 ai!

—e i Z l—lxmzy“\ 0z:/2)"

(a1,a0,...) i1
x“‘\y H% /2
SR |3
i>1 a;>0
4 Z. 1
= 6_72! T 1_[ X yozi/2
i1

B OBLE DU

o (D
em g 8 (5

k=0

nkXy

(A29)

as declared in the main text.

A remark on the total number of mutations for large n,

The stable probabilities observed in the lower three panels of
Fig. 6 and in Fig. 4b suggest that the conditional distribution of
k1 given n, and a very large n will approach a distribution as n4
gets larger. That this is the case under constant population size
follows from the fact, here as in “A conditional ancestral process
for rare variants,” that the number of alleles in the Ewens sam-
pling formula is the sum of independent Bernoulli trials
(Arratia et al. 1992, 2000). The limiting large-n, distribution is
Poisson, but shifted because there must be at least one mutation
to produce n; >0 copies, so it is k; —1 that is Poisson. See
Proposition 3.1 of Yamato (2017).

By the following heuristic argument, we suggest that this
result holds more broadly, in particular for growing popula-
tions or ones in which 7; decreases at least as fast with i as in
the constant-size model, whatever the reason. In this case,
when a mutation occurs it will very likely produce a low-count
variant because 7;/ ) ;7 for small i will be much greater than
7.,/ > ;% for large ny. A large-n; variant which is due for ex-
ample to ki =2 latent mutations will very likely have a count
pattern such as (a1 =1, an,-.1=1) or (a2 =1, an,—» =1) and very
unlikely to have one such as (an, o =1, dn, 4 = 1) for some
small j.

Then we expect the probability (31) of seeing n; copies given kq
latent mutations to be close to

p(nilke; n large, 7) when n, is large,

n-1_
i=1 T

T
~ k1 1
2

because each of the ks mutations has a small chancez, /Y7 of
producing an appropriately large number of copies, the other
ki —1 mutations being inconsequential to the total count.
Multiplying by the Poisson distribution of k; in (30) and re-
arranging gives

Or1 n-1_-\k
7. <7 Z'—l ti) ' 0 n-1
. n 2 = D
ny, ki; n large, 1) ~ k L e 7 L=
P( 1, R1; g ,T) 1211—11?1' Kyl 1
977.'1 k
_977;1_ ( 2 i= 1 Tl) ” (/71 Z\ '

T T Ry 1)

for large n1. To the left of the - is a probability like (7). To the
right of the - is the shifted Poisson distribution, which implicit-
ly averages over the (small) sizes of the ki -1 additional
mutations.

Editor: G. Coop
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