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Abstract

Recurrent mutation produces multiple copies of the same allele which may be co-segregating in a population. Yet, most analyses of al
lele-frequency or site-frequency spectra assume that all observed copies of an allele trace back to a single mutation. We develop a sam
pling theory for the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in relatively small count in a 
large sample. Our results follow from the statistical independence of low-count mutations, which we show to hold for the standard neu
tral coalescent or diffusion model of population genetics as well as for more general coalescent trees. For populations of constant size, 
these counts are distributed like the number of alleles in the Ewens sampling formula. We develop a Poisson sampling model for popu
lations of varying size and illustrate it using new results for site-frequency spectra in an exponentially growing population. We apply our 
model to a large data set of human SNPs and use it to explain dramatic differences in site-frequency spectra across the range of mutation 
rates in the human genome.
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Recurrent mutation has long been recognized as an important 
factor of evolution (Fisher 1928; Haldane 1933; Wright 1938). 
This is emphasized by recent analyses of single-nucleotide poly
morphism (SNP) frequencies and variation of mutation rates 
across the human genome (Aggarwala and Voight 2016; Harpak 
et al. 2016; Seplyarskiy et al. 2021) describing how patterns of vari
ation depend on the mutation rate, particularly for rare variants. 
By a rare variant we mean an allele, such as an alternate base at a 
SNP, which is observed a relatively small number of times in a 
large sample. Unless the mutation rate is very small, indistin
guishable copies of the same allele may descend from multiple 
mutations. Here, we present a sampling theory for the numbers 
and associated frequencies of these unobserved or latent muta
tions in the ancestry of a rare variant.

Humans are on the low end of polymorphism levels among spe
cies (Leffler et al. 2012). On average, multiple mutations should be 
rare. In the 1000 Genomes Project data, about 1 in 1300 sites differ 
when two (haploid) genomes are compared, and SNPs with more 
than two bases segregating comprise only about 0.3% of the total 
SNPs observed (The 1000 Genomes Project Consortium 2015). But 
polymorphism rates vary by two or three orders of magnitude de
pending on local sequence context (Aggarwala and Voight 2016; 
Harpak et al. 2016; Seplyarskiy et al. 2021). Recurrent mutation is 
an important phenomenon for fast-mutating sites. Evidence for 
this can be found in the haplotype structure surrounding rare 

mutations (Johnson et al. 2022) and in the distribution of their fre
quencies among sites in large samples (Harpak et al. 2016; 
Seplyarskiy et al. 2021).

Here we focus on the latter, in particular on the site- 
frequency spectrum (Tajima 1989; Braverman et al. 1995; Fu 
1995). Deviations in site-frequency spectra compared to stand
ard predictions may be due to selection (Bustamante et al. 
2001; Achaz 2009; Ferretti et al. 2017), changes in population 
size over time (Eldon et al. 2015; Liu and Fu 2015; Gao and 
Keinan 2016) or population structure (Gutenkunst et al. 2009; 
Städler et al. 2009; Kern and Hey 2017). But they may also be 
due to multiple mutations, i.e. to violations of the infinite-sites 
model assumption that each polymorphism is due to a unique 
mutation (Fisher 1930a; Kimura 1969, 1971; Ewens 1974; 
Watterson 1975).

The standard site-frequency prediction, which holds for a well- 
mixed population of constant large size N and neutral mutation 
rate u at a locus, is that the number of SNPs where a variant is 
found in i copies in a sample of size n should be proportional to 
θ/i, where θ = 4Nu (Tajima 1989; Fu 1995). This dramatically un
derpredicts the abundance of rare variants in data from humans, 
which is largely due to our recent explosive population growth 
(Keinan and Clark 2012; Gazave et al. 2014; Gao and Keinan 
2016), but the standard neutral model is a useful starting point 
for modeling recurrent mutation.
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Jenkins and Song (2011) studied the occurrence of one or two 
mutations at a single site under the standard neutral coalescent 
model (Kingman 1982; Hudson 1983; Tajima 1983). They showed 
that if two mutations occur and are non-nested (meaning that 
all descendants of both mutations can be observed) there will 
be a shift away from rare variants and toward common ones. 
An earlier work focusing on the nested case is Hobolth and 
Wiuf (2009). Bhaskar et al. (2012) used a similar approach as 
Jenkins and Song (2011) to obtain results for one, two or three 
mutations, up to leading order in the mutation parameter θ. 
Sargsyan (2006, 2015) considered two mutations occurring at 
two different sites, and Jenkins et al. (2014) assumed that two 
mutations are distinguishable and yield a tri-allelic polymorph
ism. These latter works (Sargsyan 2006, 2015; Jenkins et al. 2014) 
allowed for variable population size following the general co
alescent approach of Griffiths and Tavaré (1998). None of these 
works considered rare variants in particular but their predic
tions, especially those for non-nested mutations (Jenkins and 
Song 2011; Bhaskar et al. 2012) are helpful for understanding re
current mutation.

Two recent large studies of human SNPs observed this pre
dicted shift away from rare variants and toward common ones 
at fast-mutating sites. Harpak et al. (2016) surveyed about 8 mil
lion SNPs in a sample of nearly 61 000 people in version 0.2 of 
the Exome Aggregation Consortium database (Lek et al. 2016) for 
which data were available from other primate species. Among 
these, about 93.3% of these were bi-allelic, 6.5% were tri-allelic 
and 0.2% were quad-allelic. Harpak et al. (2016) took the presence 
of identical segregating variants in different species, ranging from 
chimpanzees to baboons, as indicative of a higher mutation rate 
at a site. Consistent with the hypothesis of multiple latent muta
tions at fast-mutating sites, they found fewer rare variants at 
bi-allelic SNPs for which the minor allele was segregating in an
other species, and that this effect is stronger when the other spe
cies is closer to humans.

The work we present here builds upon the second of these stud
ies. Seplyarskiy et al. (2021) looked at rare variants in two datasets, 
one containing about 292 million variants among nearly 43 thou
sand individuals in TOPMed freeze 5 (Taliun et al. 2021) and the 
other containing about 182 million variants among 15 thousand 
individuals in gnomAD version r2.0.2 (Karczewski et al. 2020). 
Variants were divided into 192 types: each of the 3 possible base 
substitutions at the middle site of all 64 possible trinucleotides. 
A classic example of a fast-mutating site in this context would 
be ACG, which readily changes to ATG via a C to T transition at 
the CpG dinucleotide (Bird 1980; Goldman 1993). The main goals 
in Seplyarskiy et al. (2021) were to quantify how the rates of each 
kind of mutation vary across the genome and to partition this vari
ation into distinct components correlated with different muta
tional processes.

Another aim, taken up in the Supplementary Materials of 
Seplyarskiy et al. (2021), was to correct for multiple mutations con
tributing to rare variants. Recurrent mutation was modeled as a 
multi-type Poisson process where mutations with lower sample 
counts occur independently at a locus to generate the appearance 
of higher count mutations (Desai and Plotkin 2008). The expected 
counts in the absence of recurrence were taken from the 
site-frequency spectrum at slow-mutating sites. The loss of rare 
variants due to recurrent mutation at fast-mutating sites was 
quantified for sites with up to 70 copies of a rare variant. These 
were considered to have descended from up to 5 mutations. 
Slow-mutating sites, even with rates up to the genome average 
in humans, should conform fairly well to the infinite-sites 

assumption. Resampling from these as in Seplyarskiy et al. 
(2021) is a way of controlling for the myriad unknown factors af
fecting the site-frequency spectrum, including growth.

In this work, we present a sampling theory for latent mutations 
of rare variants at each given site-frequency count in a large sam
ple. We describe a mathematical population genetic framework 
for the Poisson-resampling method in Seplyarskiy et al. (2021)
and provide closed-form analytical expressions for several quan
tities of interest. In short, the distributions of latent mutations 
and counts of rare variants depend on the expected total length 
of the gene genealogy of the sample, the expected lengths of 
branches with few descendants in the sample, and of course the 
mutation rate. We obtain new large-sample results for exponen
tial growth and use these to illustrate the theory. We apply our re
sults to a different subset of the gnomAD data than Seplyarskiy 
et al. (2021), synonymous variants observed in non-Finnish 
European individuals in v2.1.1, containing about 834 thousand 
variants at about 12.3 million sites among 57 K individuals, pre
sorted into 97 bins based on estimates of mutation rate by the 
method of Seplyarskiy et al. (2022).

We develop and present these results in the next three sections. 
In “Theory for constant-size large populations,” we begin with the 
standard neutral coalescent or diffusion model of population gen
etics (Ewens 2004) and demonstrate a close connection between 
the Ewens sampling formula (Ewens 1972) and distributions of la
tent mutations. In “Theory for nonconstant populations,” we ex
tend the results to populations which have changed in size, 
using the Poisson-sampling models of Watterson (1974b) and 
Arratia et al. (1992). In “Theoretical example and data application,” 
we compare predictions for constant size to those for exponential 
growth and show how the new theory can be applied to under
stand the effects of recurrent mutation on counts of rare variants 
across the range of human per-site mutation rates.

Theory for constant-size large populations
In this section, we begin with a description of recurrent mutation 
via the well known predictions for allele frequencies in a popula
tion and in a sample at stationarity. We then use conditional 
ancestral processes to demonstrate independence of latent muta
tions of rare variants in a large sample and show that their num
bers are distributed like the numbers of alleles in the Ewens 
sampling formula.

Stationary distributions and sampling 
probabilities
Consider a single locus with parent-independent mutation among 
K possible alleles in a population which obeys the Wright–Fisher 
diffusion (Fisher 1930b; Wright 1931; Ewens 2004). Thus, the popu
lation is very large, well mixed, constant in size over time, and 
there is no selection. One unit of time in the diffusion process cor
responds to 2Ne generations (Ne generations for haploid species), 
where Ne is the effective population size. Each gene copy or genet
ic lineage experiences mutations at rate θ/2 and each mutation 
produces an allele of type i ∈ {1, . . . , K} with probability πi, with 
􏽐

i πi = 1, independent of the allelic state of the parent. At statio
narity, the joint distribution of the relative frequencies 
x1, . . . , xK−1 of alleles is given by

ϕ(x1, . . . , xK−1) = Γ(θ)
􏽙K

i=1

xθπi−1
i

Γ(θπi)
, (1) 
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in which Γ(·) is the Gamma function, and where necessarily 
xK = 1 −

􏽐
i<K xi (Wright 1931, 1949).

Conditional on the population frequencies (X1, . . . , XK), the 
sample counts of alleles (N 1, . . . , N K) are multinomially distribu
ted. A sample of size n taken from the population contains 
n1, . . . , nK−1 copies of alleles 1 through K − 1, and necessarily 
nK = n −

􏽐
i<K ni copies of allele K, with probability

p(n1, . . . , nK−1; n) ≡ P[N 1 = n1, . . . , N K−1 = nK−1; n]

=
n

n1 · · ·nK

􏼒 􏼓

E[Xn1
1 · · ·X

nK−1
K−1 ] (2) 

= n
n1 · · · nK

􏼒 􏼓

(θ(n))−1
􏽙K

i=1

(θπi)
(ni) (3) 

for ni ∈ {0, 1, . . . , n} constrained by 
􏽐

i ni = n and where k(r) denotes 

the Pochhammer function or rising factorial k(k + 1) · · · (k + r − 1) 

with k(0) = 1. The shorthand defined in (2) is used extensively in 
what follows.

In applications to DNA, K = 4 and a sample at a given site would 
contain counts n1, n2, n3, n4 of each of the four nucleotides. The as
sumption of parent-independent mutation which leads to the 
relatively simple expressions (1) and (3) is unrealistic for DNA, 
but its results are useful in the case of rare variants in very large 
samples. In this case, it is likely that the common variant, allele 
4 say, represents the ancestral state of the entire sample and 
that rare variants (alleles 1, 2 and 3) are due to recent mutations 
from the common variant. Then the mutation parameter θπi for 
i ∈ {1, 2, 3} captures the production of type-i rare alleles in a spe
cific ancestral background (allele 4).

An instructive special case is K = 2, where we have

ϕ(x) =
Γ(θ)

Γ(θπ1)Γ(θπ2)
xθπ1−1(1 − x)θπ2−1 (4) 

for the stationary distribution of the frequency of type 1 in the 
population Wright (1931), and

p(n1; n) = n
n1

􏼒 􏼓
(θπ1)(n1)(θπ2)(n−n1)

θ(n)
(5) 

for the sampling probability, i.e. that a sample of size n contains n1 

copies of allele 1 and n2 = n − n1 copies of allele 2. Any two-allele 
mutation model can be described as a parent-independent model, 
but this is not so in general for K > 2.

Figure 1 shows how the sample frequency distribution p(n1; n) 
in (5) depends on the mutation rate for a pair of alleles which differ 
by an order of magnitude in mutation rate. Three value of θ are 
shown, with the small value chosen so that the mutation rate 
for allele 2 (θπ2) is equal to the human average of about 1/1300 
(The 1000 Genomes Project Consortium 2015) and the mutation 
rate for allele 1 (θπ1) is ten times that. When θ is small, the distri
bution is U-shaped and nearly symmetric, given that the sample is 
polymorphic. When θ is around one, the distribution becomes 
J-shaped (or L-shaped if π1 < π2). When θ is large, the distribution 
has a peak around π1. Graphs of ϕ(x) (not shown) display these 
same shapes, and p(n1; n) will be very close to ϕ(x) dx when n is 
large.

Relationship to infinite-sites frequency spectra
We use θ for the per-site mutation parameter. In a collection of L 
total sites at which (5) holds, the finite-sites version of the site- 

frequency spectrum (i.e. the expected number of sites with 
n1 copies of allele 1 and n2 copies of allele 2) is given by the 
product Lp(n1; n). Note, these expected numbers of sites do 
not depend on the rate of recombination, whereas the var
iances among sites and covariances between sites do (Kaplan 
and Hudson 1985).

Infinite-sites mutation models may be obtained as limits of 
finite-sites models as L tends to infinity with the total mutation 
parameter Lθ remaining finite. So when θ is small, we expect 
finite-sites results to be close to the usual (infinite-sites) predic
tions from the diffusion model (Ewens 1979, 2004) or the coales
cent model (Fu 1995). Finite-sites models distinguish between 
kinds of mutations, subject to different mutation pressures, 
whereas infinite-sites models implicitly treat all mutations the 
same.

From Ewens (1979) equation (8.18) or Ewens (2004) equation 
(9.18)—see also Wright (1938) equation (16)—the expected num
ber of sites segregating in the population with frequencies be
tween x and x + dx under the infinite-sites model is proportional 
to 1/x. For comparison to (4) we may write

ϕISM(x) ∝
θπ1

x
(6) 

for a single site (θ small) approximately under the standard 
infinite-sites mutation model. For comparison with (5), we have

pISM(n1; n) ∝
θπ1

n1
(7) 

for the approximate single-site probability that there are n1 type-1 
alleles in a sample of size n. Equation (7) has the same form as the 
usual infinite-sites site-frequency spectrum (Fu 1995) but here it is 
for a specific mutant (allele 1) with a specific ancestral type (allele 
2 in the two-allele model).

From (4) and (5) with θ small we have

ϕ(x) = π2
θπ1

x
+ π1

θπ2

1 − x
+ O(θ2) (8) 

and

p(n1; n) = π2
θπ1

n1
+ π1

θπ2

n2
+ O(θ2) (9) 

Fig. 1. Sample frequency distribution p(n1; n) for n = 100, with π1 = 10π2 

and three values of θ. The smallest θ was chosen so that 
θπ2 = 1/1300 ∼ 0.00077, i.e. the human average value. Probabilities are 
normalized to sum to one, i.e. conditioned on the sample being 
polymorphic (1 ≤ n1 ≤ 99).
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for n1 ∈ {1, . . . , n − 1}. The diffusion result (4) does not admit 
atoms of probability at x = 0 or x = 1—see section 10.7 of Ewens 
(2004) for discussion—but we can interpret (8) intuitively as fol
lows. If θ is close to zero, most of the time the population will be 
fixed, containing only allele 1 with probability π1 and only allele 
2 with probability π2. Mutants of type 2 and type 1 are introduced 
with rates θπ2 and θπ1 in these two backgrounds, respectively. 
Then the leading terms in (8) represent a mixture of two infinite- 
sites models like (6) with the constants of proportionality speci
fied. Equation (9) has an identical interpretation, as a mixture of 
two infinite-sites site-frequency spectra. These are the key princi
ples of the boundary mutation model (Vogl and Clemente 2012; 
Vogl et al. 2020).

Although no closed-form expression like (1) is available except 
under parent-independent mutation, Burden and Tang (2016, 
2017) have shown that the stationary densities for pairs of alleles 
under general mutation models take forms identical to (8) when θ 
is small; see equation (21) in Burden and Tang (2017). See also 
Schrempf and Hobolth (2017). Similarly from a coalescent ana
lysis of general K-alleles mutation, Bhaskar et al. (2012) obtained 
leading order terms for sampling probabilities with forms identi
cal to (9) when θ is small and samples contain just two alleles. 
For K = 2, the result from Theorem 1 of Bhaskar et al. (2012) is iden
tical to (9).

Mutation and the frequencies of rare sample 
variants
Our goal here is to understand how the frequency spectra of rare 
variants depend on θ and on the number of mutation events in the 
ancestry of the sample under the standard neutral coalescent or 
diffusion model of population genetics which assumes constant 
population size (Ewens 2004). We first describe an ancestral pro
cess for the sample, then focus on rare variants in a large sample 
to obtain predictions about latent mutations.

A conditional ancestral process for rare variants
Here, we focus on ordered samples because the calculations are 
more intuitively related to the familiar rates of events in the an
cestral coalescent process. The results do not depend on the order 
and so apply equally to ordered and unordered samples. Using the 
subscript “o” for ordered and writing po(n1, . . . , nK) in place of 
po(n1, . . . , nK−1; n) to facilitate the calculations, we have

po(n1, . . . , nK) = (θ(n))−1
􏽙K

i=1

(θπi)
(ni) (10) 

which differs from the sampling probability in (3) only by the 
multinomial coefficient, or the number of ways a sample contain
ing allele counts n1, . . . , nK can be ordered.

Equation (10) is suggestive, as are (3) and (5), that the sampling 
structure of the ni copies of allele i may be related to the Ewens 
sampling formula (Ewens 1972). Specifically, from the fact that

(θπi)
(ni) =

􏽘ni

ki=1

S(ki)
ni

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπi)

ki , (11) 

where |S(ki)
ni
| is an (unsigned) Stirling number of the first kind, we 

might guess that there is a latent variable ki which is the number 
of mutations giving rise to the ni copies of allele i. As in the usual 
application of the Ewens sampling formula, in contrast to the total 
possible number of type-i mutations in the ancestry of the sample, 

these latent mutations are just those ki ∈ {1, . . . , ni} most recent 
ones which produced the observed alleles.

That is, based on (10) and (11), we suppose that the joint prob
ability of the sample counts n1, . . . , nK and their numbers of latent 
mutations k1, . . . , kK is given by

po(k1, . . . , kK, n1, . . . , nK) = (θ(n))−1
􏽙K

i=1

S(ki)
ni

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπi)

ki , (12) 

and therefore that the probability of k1, . . . , kK conditional on 
n1, . . . , nK is given by

p(k1, . . . , kK|n1, . . . , nK) =
􏽙K

i=1

S(ki)
ni

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπi)

ki

(θπi)
(ni)

(13) 

which applies to both ordered and unordered samples.
We show that (13) is true using the ancestral-process approach 

of Griffiths and Tavaré (1994a, 1994b). If sampling probabilities 
like (3) or (10) are known, this approach can be used to describe 
the conditional ancestral process of a sample given its allelic types 
(Slade 2000a, 2000b; Fearnhead 2001, 2002; Stephens and 
Donnelly 2003; Baake and Bialowons 2008). Following our analysis 
of (13) for arbitrary (n1, . . . , nK), we describe a large-n approxima
tion in which allele K is the overwhelmingly common type and 1 
through K − 1 are the rare variants.

The conditional ancestral process has the same total rate 
of mutation and coalescence as the unconditional process, 
n(θ + n − 1)/2. Lineages which must be of type i in the sample ex
perience type-i mutations at rate niθπi/2 and type-i coalescent 
events at rate ni(ni − 1)/2, but with additional weights proportional 
to the probability of (n1, . . . , nK) given each event. All other events 
have rates equal to zero because the sample could not be 
(n1, . . . , nK) if they occurred. To obtain (13), we follow ancestral 
lineages only back to the first mutation event they experience. 
The probability of a type-i mutation event is

niθπipo( . . . , ni − 1, . . . )
n(θ + n − 1)po(n1, . . . , nK)

=
ni

n
θπi

θπi + ni − 1
, (14a) 

and the probability of a type-i coalescent event is

ni(ni − 1)po( . . . , ni − 1, . . . )
n(θ + n − 1)po(n1, . . . , nK)

=
ni

n
ni − 1

θπi + ni − 1
, (14b) 

where we have used (10) to obtain the results on the right. 
Whether mutation or coalescence occurs, the number of type i 
lineages decreases by one: ni → ni − 1. This ancestral process con
tinues until there are no un-mutated ancestral lineages, that is 
until ni = 0 for all i ∈ {1, . . . , K}.

To this we add a mutation counting process which starts with 
ki = 0 for all i ∈ {1, . . . , K} then has ki → ki + 1 whenever a mutation 
occurs on a type-i ancestral lineage. Equations (14a) and (14b) 
show that each event in the ancestral process includes two 
sub-events: a choice of the allelic type involved then a choice be
tween mutation and coalescence. Depending on (n1, . . . , nK), the 
n =

􏽐
i ni choices of allelic type will result in a random ordering 

of events among types. But for every ordering, the series of choices 
between mutation and coalescence within allelic type i depends 
only on ni (and θπi) and is independent of what happens in the an
cestry of allele j ≠ i. The number of mutations of type i is the sum 
of ni Bernoulli random variables with success probabilities 
θπi/(θπi + j − 1) for j from ni down to 1. The number of latent 
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mutations counted in this way will be distributed like the number 
of alleles in the Ewens sampling formula—see Arratia et al. (1992)
and Arratia and Tavaré (1992)—with mutation parameter θπi for 
allele i, and these counts will be independent among alleles as 
in (13).

We use this conditional ancestral process below but here note 
its close relationship to models of lines of descent (Griffiths 1980; 
Watterson 1984). In particular, (13) is included in equation (3.3) 
and Theorem 4 of Donnelly (1986), who extended Watterson’s 
lines-of-descent model to the case of K-allele, parent-independent 
mutation. See also Donnelly and Tavaré (1987). Equation (3.3) in 
Donnelly (1986) in fact shows that if we were to keep track of 
the numbers of descendants of each latent mutation, the full 
Ewens sampling formula would give their distribution in the 
sample.

Before describing a large-n approximation for rare variants, we 
also note that latent mutations reckoned as in (13) include what 
Donnelly (1986) called ‘spurious mutations to one’s own type’ 
and Baake and Bialowons (2008) called ‘empty mutations’. These 
are a modeling artifact not only of parent-independent mutation 
models but of general mutation models as they are typically im
plemented (Jenkins and Song 2011; Bhaskar et al. 2012; Jenkins 
et al. 2014; Burden and Tang 2017; Burden and Griffiths 2019). 
Empty mutations have no empirical significance and should not 
be counted as mutations. To deal with them, we must keep track 
of the ancestral types of lineages when they experience muta
tions. We can do using the identity

po( . . . , ni − 1, . . . ) =
􏽘K

j=1

po( . . . , ni − 1, . . . , nj + 1, . . . ) (15) 

which decomposes our previously generic type-i mutations ac
cording to their ancestral types j ∈ {1, . . . , K}. A mutation is empty 
when j = i.

In our large-n approximation, we take K to be the overwhelm
ingly common allelic type in the sample and 1 through K − 1 to 
be the rare variants. Our goal is to model latent mutations in the 
ancestry of the rare variants, so we use (15) only for 
i ∈ {1, . . . , K − 1}. For the common allele K, we instead lump (14a) 
and (14b) together and record both mutation and coalescence as 
nK → nK − 1. Making these changes to (14a) and (14b), and again 
using (10) to simplify ratios of sampling probabilities, the condi
tional ancestral process for a sample with state (n1, . . . , nK) jumps 
to state ( . . . , ni − 1, . . . , nj + 1, . . . ) for i, j ≠ K with probability

ni

n
θπi(θπj + nj − δij)

(θ + n − 1)(θπi + ni − 1)
, (16a) 

to state ( . . . , ni − 1, . . . , nK + 1) for i ≠ K with probability

ni

n
θπi(θπK + nK)

(θ + n − 1)(θπi + ni − 1)
, (16b) 

to state ( . . . , ni − 1, . . . ) for i ≠ K with probability

ni

n
ni − 1

θπi + ni − 1
, (16c) 

and to state ( . . . , nK − 1) with probability

nK

n
(16d) 

where we have used Kronecker’s delta to accommodate empty 
mutations, i = j in (16a). Equation (16a) includes both empty and 
nonempty mutations, but only ones where the ancestral type is 
also rare. Nonempty mutations where the ancestral type is the 
common type K are in (16b). This classification of mutations by an
cestral type does not change the probabilities of coalescence, so 
(16c) only differs from (14b) by the absence of type-K coalescent 
events which are now in (16d).

If nK is large compared to n1 through nK−1, then n =
􏽐

i ni ≈ nK. 
The probabilities in (16a) will be O(1/n2

K), those in (16b) and (16c) 
will be O(1/nK), and the one in (16d) will be O(1). Empty mutations 
and other mutations with rare-variant ancestors will become neg
ligible as nK grows for fixed n1 through nK−1. Keeping only terms of 
O(1/nK) and larger gives an approximate, large-n ancestral process 
with total rate n(θ + n − 1)/2 ≈ n2

K/2 and jumps, for 
i ∈ {1, . . . , K − 1}, from state (n1, . . . , nK) to state ( . . . , ni − 
1, . . . , nK + 1) with probability

ni

nK

θπi

θπi + ni − 1
, (17a) 

to state ( . . . , ni − 1, . . . ) with probability

ni

nK

ni − 1
θπi + ni − 1

, (17b) 

and to state ( . . . , nK − 1) with probability

1 −
􏽐K−1

i=1 ni

nK
. (17c) 

This process is dominated by (17c), that is by events on lineages 
ancestral to the common allele K, which decrease the number of 
these but leave the counts of rare-allele lineages unchanged. 
Although we are not tracing the details of common-allele ances
try, we note that the overwhelming majority of these events will 
be coalescent events, since their rate is approximately equal to 

the total rate ∼ n2
K/2. The next most frequent will be empty muta

tion events at rate O(nK), followed by common-allele mutation 
events with rare-allele ancestors at rate O(1).

When one of the rarer events occurs in the ancestral process, it 
involves allele i with probability ni/nK, then is either a mutation 
event from a common allele as in (17a) or a coalescent event as 
in (17b). This process for the rare variants i ∈ {1, . . . , K − 1} has 
the same form as that found for all variants and all mutations 
in (14a) and (14b). Then by the same logic as before, the number 
of (now nonempty) latent mutations in the ancestry of the rare 
variants will be distributed like the number of alleles in the 
Ewens sampling formula, independently and with mutation par
ameter θπi for allele i ∈ {1, . . . , K − 1}. In addition if we were to 
keep track of the counts of each mutation’s descendants among 
the ni copies of rare variant i in the sample, then because every 
pair of type-i lineages is equally likely to be the one which coa
lesces when a type-i coalescent event occurs, the distribution of 
these counts should be given by the full Ewen’s sampling formula 
(Ewens 1972; Kingman 1982; Donnelly 1986; Arratia and Tavaré 
1992; Arratia et al. 1992, 2016).

The events involving the common allele in (17c) occur very 
quickly. But since only a fixed number of events involving rare al
leles are required to resolve the ancestry of latent mutation and 
coalescence, the approximation remains accurate until all the 
rare-allele events have happened, if nK is large enough. In 
Appendix section “Time-dependent conditional ancestral 
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process,” we study the joint distribution of the times of events 
among the rare alleles and the numbers of common-allele ances
tors when these rare-allele events occur. Focusing on the case of 
two alleles for simplicity, if T i is the time back to the ith event in
volving the rare allele 1, we have

E[T 1] ≈
2 log (n2)

n2
if n1 = 1

2
n2(n1−1) if n1 > 1

􏼨

(18) 

which in either case tends to zero as n2 tends to infinity. Further, if 
N 2(T i) is the random number of type-2 ancestral lineages left at 
the ith event involving the rare allele 1, we have

E[N 2(T i)] ≈ n2
n1 − i + 1

n1 + 1
(19) 

suggesting that, despite the rapid decrease of common-variant 
lineages, the approximation can hold until the entire ancestry of 
latent mutation and coalescence is resolved.

Even for the largest rare-variant site-frequency count consid
ered in Seplyarskiy et al. (2021), there will still be >1200 common- 
variant lineages left on average at T 70 for the TOPMed data 
(n2 ∼ 86, 000) and >400 left for the gnomAD data (n2 ∼ 30, 000). 
In section “Application to human SNP data,” we consider site- 
frequency counts up to 40 for synonymous exonic sites in 
gnomAD with many fewer SNPs but a larger sample size 
(n2 ∼ 114, 000) and in this case there should be about 2780 
common-variant lineages left at T 40 when the entire ancestry of 
latent mutation and coalescence among the rare variants is 
resolved.

In sum, rare alleles in a large sample will quickly coalesce and 
mutate. Their ancestors will be common alleles. If ki ∈ {1, . . . , ni} is 
the number of these latent mutations in the ancestry of allele 
i ∈ {1, . . . , K − 1}, then from the rates of mutation and coalescence 
in (17a) and (17b) we have

p(k1, . . . , kK−1|n1, . . . , nK−1; n large) ≈
􏽙K−1

i=1

S(ki)
ni

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπi)

ki

(θπi)
(ni)

. (20) 

Latent mutations of different rare variants are independent and 
distributed like the numbers of alleles in the Ewens sampling for
mula, each with its own mutation parameter.

Latent mutations and sample counts of rare alleles
Our goal in this section is to understand how predictions about the 
counts of rare variants, and hence about their site-frequency 
spectra, depend on the number of latent mutations and the muta
tion rate. In anticipation of “Application to human SNP data,” we 
focus on the marginal count of just one rare variant, which we ar
bitrarily call allele 1. From (20) we have

p(k1|n1; n large) ≈
S(k1)

n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπ1)k1

(θπ1)(n1)
, k1 ∈ {1, . . . , n1} (21) 

which we note holds for any K. Here we let K = 2 for simplicity.
To understand how the mutation rate influences the count of a 

rare variant, we apply the result for ratios of gamma functions 
with a common large parameter, 6.1.47 in Abramowitz and 

Stegun (1964) or equation (1) in Tricomi and Erdélyi (1951), to 
the terms involving n in (5) to obtain

p(n1; n) =
(θπ1)(n1)

n1!
e−θπ1 log (n) Γ(θ)

Γ(θπ2)
1 + O

1
n

􏼒 􏼓􏼔 􏼕

, (22) 

in which we have used n−θπ1 = e−θπ1 log (n) to make a connection with 
the underlying coalescent tree or gene genealogy. Specifically, 

θπ1
􏽐n−1

i=1 1/i is the expected number of type-1 mutations on the 
gene genealogy of a sample of size n, and for large n this is ap
proximately equal to θπ1( log (n) + γ) where γ = 0.5772 . . . is 
Euler’s constant. In “Theory for nonconstant populations” we ex
plore this connection in detail and explain the additional con
stants of proportionality in (22) after finding an analogous 
result for the general coalescent trees of Griffiths and Tavaré 
(1998).

Site-frequency spectra are typically defined as the proportion 
of segregating sites in each possible count in the sample 
(Braverman et al. 1995) or equivalently as the probability that a 
single mutation is in each possible count given that it is poly
morphic in the sample (Griffiths and Tavaré 1998; Nielsen 2000). 
So, to understand how n1 depends on θπ1, we may ignore the con
stants of proportionality in (22) and focus on

p(n1; n large) ∝
(θπ1)(n1)

n1!
. (23) 

Then using (23) together with (21), we have

p(n1|k1; n large) ∝
S(k1)

n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

n1!
(24) 

for the dependence of the rare-variant count, n1, on the number of 
latent mutations, k1, relevant to the site-frequency spectrum. 
Figure 2 shows site-frequency spectra computed using (23) and 
(24), and conditioning on the event that n1 ∈ {1, 2, . . . , 40}.

Figure 2a shows the dependence on the number of latent muta
tions. When all copies descend from a single mutation (k1 = 1), the 
usual predictions from the infinite-sites model hold. Thus if we 
put |S(1)

n1 | = (n1 − 1)! in (24), then consistent with (7) we have

p(n1|k1 = 1; n large) ∝
1
n1
.

The total number of such sites will depend on θπ1, and in general 

on the factor (θπ1)k1 in (21) for larger numbers of latent mutations. 
But conditional on k1, the site-frequency counts for a rare variant 
do not depend on θ, at least to leading order in the sample size n. If 
there are k1 > 1 mutations in the ancestry of the rare variant, then 
n1 cannot be less than k1. This is shown in Fig. 2a for k1 = 2 to 
k1 = 5. A key effect of recurrent mutation is to give relatively less 
weight to low site-frequency counts, as found previously by 
Jenkins and Song (2011).

Using (21) and (23) the joint distribution of n1 and k1 obeys

p(n1, k1; n large) ∝
S(k1)

n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπ1)k1

n1!
(25) 

which can be compared to the results of Jenkins and Song (2011). 
With fixed n1 and large n in our model, all mutations in the ances
try of the rare variant will be non-nested mutations; note this also 
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follows from (18) in Jenkins and Song (2011). Adapting the notation 

of Jenkins and Song (2011) in which E(1,1)
2N ,N is the event that the n1 

copies of allele 1 are due to two non-nested mutations, both 
from allele K = 2 to allele 1, their (21) becomes

p(n1, n2, E(1,1)
2N ,N ) ≈ θ2π2

1

S(2)
n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

n1!

for large n ∼ n2 (and small θ), which is identical to (25) if k1 = 2.
Numerical computations (not shown) using the unnumbered 

equation below (10) in Jenkins and Song (2011), which holds for 
any θ, reproduce the case of k1 = 2 shown in Fig. 2a when n is large. 
This is evident in Figure 3 of Jenkins and Song (2011) for the quan
tity E2NN. These computations are difficult for samples beyond the 
hundreds. Our results for k1 = 3 could potentially also be com
pared to the O(θ3) results of Bhaskar et al. (2012) using their 
Theorem 3 and summing appropriately.

Figure 2b shows how the site-frequency counts of the rare vari
ant depend on the mutation parameter of that variant, θπ1. 
Although Fig. 2a shows a dramatic effect of k1 on the site- 
frequency counts, Fig. 2b suggests that large values of k1 are un
likely. This is evident from (21) and (25) in that each additional 
mutation results in an additional factor of θπ1. Note that the smal
lest value of θπ1 in Fig. 2b is already more than twice the human 
average. From (23), we have

p(n1; n large, θ small) ∝
θπ1

n1 

which is consistent with (9) in the case where allele 1 is rare in a 
large sample. Thus, when θπ1 is small (0.002 and 0.02 in Fig. 2b) 
the site-frequency spectrum under recurrent mutation is very 
close to the standard infinite-sites model predictions. When θπ1 

is large (0.2 in Fig. 2b) the site-frequency spectrum under recur
rent mutation is noticeably different, with a dearth of 
low-frequency variants and corresponding excesses at higher fre
quencies. Figure 2b plots site frequencies on a log scale to better 
illustrate differences, especially at higher frequencies.

Theory for nonconstant populations
Here we extend our analysis to populations which deviate from 
the standard neutral site-frequency predictions. We have in 
mind populations which have changed in size, although other 

applications may be possible. Here gene genealogies are the gen
eral coalescent trees of Griffiths and Tavaré (1998), which have 
the same branching structure of standard coalescent trees but 
may have different distributions of coalescence times.

Equation (21) suggests another way to model both the number of 
copies (n1) of a variant of interest and the corresponding count of la
tent mutations (k1) when the variant is rare in a large sample. Arratia 
et al. (1992) proved that when the sample size tends to infinity, the 
numbers of alleles in small counts 1, 2, . . . , i in the Ewens distribu
tion converge to independent Poisson random variables with ex
pected values θ, θ/2, . . . , θ/i. Note that θ/i is the usual expected 
site-frequency count of mutants in i copies in the sample under the 
standard neutral model of a large constant-size population. A sem
inal result of Watterson (1974b) is that the numbers and counts of 
mutations in a sample from such a multi-type Poisson distribution 
conform to the Ewens sampling formula when conditioned on their 
total size. So we may interpret (21) and other findings in the previous 
section within this independent-Poissons sampling framework.

This is exactly the approach in the Supplementary Materials of 
Seplyarskiy et al. (2021). Again, human SNP data strongly reject the 
standard neutral model with site-frequencies ∝1/i, owing largely 
to the great excess of singletons and other rare variants due to 
our recent growth (Keinan and Clark 2012; Gazave et al. 2014). So 
we replace 1/i with E[τi]/2, where τi is the total length of branches 
with i descendants in the gene genealogy of a sample. For an ex
tension of independent-Poissons sampling to variants under se
lection, see Desai and Plotkin (2008). Our notation is different 
than in Seplyarskiy et al. (2021) because here we use the coalescent 
or diffusion time scale.

Under the standard neutral coalescent model, E[τi] = 2/i. For 
the general coalescent trees of Griffiths and Tavaré (1998), τi can 
be expressed in terms of the coalescent intervals, Tk, which are 
the lengths of time when there were k ∈ {2, . . . , n} lineages in the 
ancestry of the sample. In particular,

E[τi] =
􏽘n

k=2

kE[Tk]

n − i − 1
k − 2

􏼒 􏼓

n − 1
k − 1

􏼒 􏼓 (26) 

(Fu 1995; Griffiths and Tavaré 1998).
Watterson (1974b) studied three models. In Model 1, using our no

tation, mutations arise from a constant source at rate θ, then propa
gate or go extinct independently according to a critical branching 
process, i.e. with birth rate equal to death rate as for a neutral 

(a) (b)

Fig. 2. a) Shows the probability of observing n1 copies of allele 1 in a large sample given these are produced by k1 mutations. b) Shows the log10-probability 
of observing n1 copies of allele 1 in a large sample for three different values of θπ1. In both panels, probabilities are normalized to sum to one, that is 
conditioned on the event that n1 ∈ {1, 2, . . . , 40}.
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mutation. The number of mutations in count i has expected va
lue θμi/i, for a constant μ > 0 which converges to 1 as the duration 
of the process increases. Watterson (1974b) proved that the num
bers and counts of mutations follow the Ewens sampling formula 
when conditioned on their total size, which for Watterson 
(1974b) was equivalent to the population size. Models 2 and 3 
are the Moran model and the Wright-Fisher model (Fisher 
1930b; Wright 1931; Moran 1958, 1962) and Watterson (1974b)
proved that these have the same limit as Model 1 when the popu
lation size is large.

Model 1 is an example of a logarithmic species distribution (Fisher 
1943; Watterson 1974a; Arratia et al. 2003; Lambert 2011). 
Branching-processes have also been used to describe and infer the 
ages of rare alleles (Rannala and Slatkin 1997; Slatkin and 
Rannala 2000; Wiuf 2000); for recent developments and a review, 
see Crespo et al. (2021). Slatkin (2000) used this approach and an 
extension of Griffiths and Tavaré (1998) to model the ages of rare 
alleles in a large sample. Champagnat and Lambert (2012, 2013) 
studied the convergence of population frequencies of alleles for 
supercritical, subcritical or critical branching processes. All of 
these works assume that each allele traces back to a single mu
tation, as under the infinite-alleles mutation model.

Our approach to modeling recurrent mutation follows that of 
Watterson (1974b) to Model 1. Whereas Watterson (1974b) did 
not specify the source of mutations, here we take it to be the pro
duction of rare variants by mutation from a common variant on 
the gene genealogy of a large sample. What for Watterson 
(1974b) was the total population size is for us the total count of 
a rare variant. Allele 1 is our nominal variant of interest, but for 
simplicity for the moment, we use n, k and θ in place of n1, k1 

and θπ1. As a further notational convenience, we define

τ̅i ≡ E[τi] 

so that θ τ̅i/2 is the expected number of mutations with count i in 
this independent-Poissons sampling model.

Let (a1, a2, . . . ) be the numbers of latent mutations of the vari
ant of interest with counts (1, 2, . . . ). We assume that ai ∼ 
Poisson(θ τ̅i/2) and that ai and aj are independent for i ≠ j. Their 
joint distribution is then

P(a1, a2, . . . ) =
􏽙

i≥1

(θ τ̅i/2)ai

ai!
e−θ τ̅i/2

= e−θ
2

􏽐
i
τ̅i
􏽙

i≥1

(θ τ̅i/2)ai

ai!

(27) 

with ai ≥ 0. The total sample size is what would set the upper lim
its of the product and the sum above, but we leave these unspeci
fied for now, only imagining that the total sample size is much 
larger than the sample count of the variant of interest, so we 
can model the latter without restriction.

We are only concerned with ai for i ≤ b, where b is the largest 
rare-variant count. Thus, the assumption of independence in 
(27), which is equivalent to there being no nested mutations in 
the ancestry of a rare variant, will only need to be true for τ̅i 

with i ∈ (1, . . . , b). In Appendix section “Low-count branches of 
general coalescent trees” we prove that this holds for the trees 
of Griffiths and Tavaré (1998) for fixed b in the limit as the total 
sample size tends to infinity, and that the counts (a1, . . . , ab) con
verge to independent Poisson random variables as with expected 
values (θ τ̅1/2, . . . , θ τ̅b/2). A condition is that the total height of 

the genealogy is finite, which is a mild assumption ruling out 
pathological situations such as a populations whose sizes increase 
too quickly backward in time.

The count of the variant of interest is n =
􏽐

i iai and its number 
of latent mutations is k =

􏽐
i ai. Following Watterson (1974b), we 

consider the probability generating function of n and k, which in 
the present case simplifies to

Gn,k(x, y) =
􏽘

(a1,a2,...)

P(a1, a2, . . . )xnyk = e−θ
2

􏽐
i
τ̅i
􏽘∞

k=0

(
θ
2

)kyk

k!

􏽘

i

xi τ̅i

􏼠 􏼡k

.

For the details of this derivation, see (A29) in the Appendix. The 

coefficient of xn (and yk) can be found using

􏽘

i

xi τ̅i

􏼠 􏼡k

=
􏽘

n≥k

xn
􏽘

(i1,...,ik−1)

τ̅i1 τ̅i2 · · · τ̅ik (28) 

where the sum is over

im = 1, . . . , n − (k − m) −
􏽘m−1

g=1

ig 

for m = 1, . . . , k − 1, and with

ik = n −
􏽘k−1

m=1

im.

Returning to our notation in which n1 is the number of copies of a 
variant of interest, k1 its number of latent mutations, θπ1 its mu
tation parameter, and n is the total sample size, and further using 
τ to show the new dependence on the vector of expected times 
(̅τ1, . . . , τ̅n−1), we have

p(n1, k1; n large, τ) ≈

θπ1

2

􏼒 􏼓k1􏽐
(i1,...,ik1−1)

􏽑k1
m=1 τ̅im

k1!
e−θπ1

2

􏽐n−1

i=1
τ̅i (29) 

which is nonzero for n1 = k1 = 0 and n1 ≥ k1 ≥ 1. The sum over 
(i1, . . . , ik1−1) here is the same as in (28). It is equivalent to sum

ming over partitions of the integers 1 through n1 into k1 subsets, 
where the sizes of the subsets are (i1, . . . , ik1

).
It is convenient to decompose (29) as follows. The number of 

type-1 mutations is Poisson distributed

p(k1; n large, τ) ≈

θπ1

2
􏽐n−1

i=1 τ̅i

􏼒 􏼓k1

k1!
e−θπ1

2

􏽐n−1

i=1
τ̅i , (30) 

with parameter equal to the expected number of type-1 mutations 
on the gene genealogy of the sample. Conditional on this, the dis
tribution of the number of times allele 1 appears in the sample is 
given by

p(n1|k1; n large, τ) ≈
􏽘

(i1,...,ik1−1)

􏽙k1

m=1

τ̅im
􏽐n−1

i=1 τ̅i

, (31) 

which depends on the relative expected branch lengths but does 
not depend on θ or π1.
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Alternatively, p(n1; n large, τ) can be computed by summing 
(29) appropriately, over k1 ∈ (0, . . . , n1). Then

p(k1|n1; n large, τ) ≈
p(n1, k1; n large, τ)

p(n1; n large, τ)
(32) 

can be used to estimate the number of independent mutations 
which produced the observed copies a rare allele.

The sum over (i1, . . . , ik1−1) in (31) and (29) is straightforward to 
evaluate but will become impractical if n1 and k1 become too large. 
In what follows, we consider k1 ≤ 7 mutations at each site. 
Equation (30) suggests that this will be accurate up to about three 
expected mutations per site, because the probability of k1 greater 
than 7 is just over 1% when (θπ1/2)

􏽐n−1
i=1 τ̅i = 3. As in Fig. 2, the lar

gest value of n1 we consider is 40. These are not the upper limits of 
feasibility; it takes two minutes to evaluate (31) for all k1 ∈ 
{0, . . . , 7} and n1 ∈ {0, . . . , 40} in Mathematica version 11.2 
(Wolfram Research, Inc. 2017) on a mid-2015 MacBook Pro.

Considering the first three possible values of k1 in (31),

p(n1|0; n large, τ) ≈
1 if n1 = 0

0 if n1 ≥ 1

􏼚

(33) 

p(n1|1; n large, τ) ≈
τ̅n1

􏽐n−1
i=1 τ̅i

(34) 

p(n1|2; n large, τ) ≈
􏽐n1−1

i=1 τ̅i τ̅n1−i

􏽐n−1
i=1 τ̅i

􏼐 􏼑2 (35) 

Equation (33) says simply that if there are no type-1 mutations on 
the gene genealogy then no copies of allele-1 will be observed. 
Equation (34) is the familiar result for the site-frequency spec
trum, that it is given by the proportion of branches in the tree 
that have n1 descendants. Equation (35) extends this to two muta
tions and emphasizes that mutations in the ancestry of a rare al
lele will be non-nested when n is large.

For the constant-size model, we find new approximations

p(n1; n large, τ̅i = 2/i) ≈
(θπ1)(n1)

n1!
e−θπ1

􏽐n−1

i=1
1/i (36) 

p(n1|k1; n large, τ̅i = 2/i) ≈
S(k1)

n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌k1!

n1!

􏽘n−1

i=1

1
i

􏼠 􏼡−k1

(37) 

p(n1, k1; n large, τ̅i = 2/i) ≈
S(k1)

n1

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌(θπ1)k1

n1!
e−θπ1

􏽐n−1

i=1
1/i (38) 

corresponding to (23), (24) and (25), respectively, in which the con
dition ̅τi = 2/i should be taken to hold for all i ∈ {2, . . . , n}. Figure 2
is unchanged if (36) and (37) are used instead of (23) and (24). Also, 
the conditional probability of k1 given n1 from (36) and (38) is iden
tical to (21).

Relation to K-alleles diffusion results
From a gene-genealogical point of view, (36) is the probability of 
seeing n1 total copies of a rare variant when a random number 
of type-1 mutations occurs on the low-count branches of a stand
ard neutral coalescent tree. However, the type of the common 
variant and the ancestral states of these mutations are not speci
fied in the independent-Poissons model. Of course these should be 
allele K, as in “A conditional ancestral process for rare variants,” 
but (36) does not include this event. In contrast, the sampling 

probabilities (3) and (5) from the equilibrium diffusion model spe
cify the types of the entire sample. Implicitly, they average over 
the ancestral states of the sample. Here we focus on K = 2 and 
show how (36) is related to (5) when n is large, in particular to 
the leading order term in the expansion (22).

The type of the common ancestor of the entire sample, at the 
root of the coalescent tree, is allele 2 with probability π2. If this 
were the case, allele 2 would be the ancestral source of the low- 
count type-1 mutations. But if θ is not very small, it is possible 
for allele 2 to be the ancestral source of these mutations even if 
the common ancestor is type 1. To illustrate, dividing either (5) 
or (22) by (36) and letting n→∞ gives

eθπ1γΓ(θ)
Γ(θπ2)

= π2 + O(θ2). (39) 

Indeed when θ is small, (22) is close to (36) times π2. But the error of 
this, even as n tends to infinity, may be appreciable for larger va

lues of θ. The additional probability of order θ2 in (39) is consistent 
with the possibility that the root of the coalescent tree is type 1 
and there are two type-2 mutations, one on each of the two 
branches descending from the root.

A better guarantee that allele 2 is the ancestral source of low- 
count mutations would be to specify it not as type of the single 
most recent common ancestor but rather as the type of the pair 
of ancestors at the first time in the past when there were two an
cestral lineages. Equation (5), with sample size equal to two, gives 
the relevant probability. This accounts for both possible states at 
the root of the tree as well as for mutation during the deepest co
alescent interval, T2 in (26). Then the independent-Poissons model 
could be applied to the remainder of the tree, i.e. to coalescent in
tervals T3 through Tn.

Because latent mutations of rare variants tend to be very recent, cf. 
(18) and (19), we may extend this logic to the first time in the past when 
there were r ancestral lines of the sample, for an arbitrary r ≥ 1. The 
probability that these are all of type 2 is given by the diffusion result 
(5) with sample size r. The probability of seeing n1 copies of the rare 
variant is given by an appropriately adjusted independent-Poissons 
model, covering coalescent intervals Tr+1 through Tn. By summing 
(26) only over j ∈ {r + 1, . . . , n} it can be shown that the total length 
of branches with i descendants in this more recent part of the gene ge
nealogy differs only by 2(1 − r)/n + O(1/n2) from the full result ̅τi = 2/i. 
The product of these two probabilities is

Γ(θ)Γ(θπ2 + r)
Γ(θπ2)Γ(θ + r)

(θπ1)n1

n1!
e−θπ1

􏽐n−1

i=r
1/i (40) 

which can be compared to the leading order term in (22).
As expected from (39), if r = 1 (40) reduces to (36) times π2. Now 

dividing (5) or (22) by (40) and letting n→∞ gives

Γ(θπ2 + r)
Γ(θ + r)

e−θπ1

􏽐r−1

i=1
1/i−γ

( 􏼁

(41) 

as a measure of how well this augmented independent-Poissions 
model approximates the equilibrium diffusion result, depending 
on r and θ. Expanding (41) around θ = 0, because we do not in 
fact expect the per-site mutation parameter to be large, gives

1 +
(2 − π1)π1

2
π2

6
−
􏽘r−1

j=1

1
j2

⎛

⎝

⎞

⎠θ2 + O θ3( 􏼁
(42) 
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where the π in π2 is the usual constant (not our πi). The parenthetic 
term in (42) tends to zero quickly as r increases. It is equal to the 

trigamma function ψ(1)(r) for r ∈ {1, 2, 3, . . . }; see 6.4.2 and 6.4.3 
in Abramowitz and Stegun (1964). Even just taking r = 2 instead 
of r = 1 cuts the error by about 60%.

Similar conclusions may be drawn from the large-r expansion 
of (41), which gives 1 + (2 − π1)π1θ2/(2r) + O(1/r2). Again θ2 is the 
largest-order effect of mutation. The event that a pair of muta
tions occurs on the two lineages descending from the root of the 
coalescent tree is non-negligible in the constant-size population 
model, even as n→∞ and even for the entire population, because 
ancient coalescence times tend to be long. But the chance of this 
event will be small for most eukaryote species as θ ranges from 
about 10−4 to 10−1 with typical values around 10−2 (Leffler et al. 
2012). Based on our estimates in the next section, even the fastest- 
mutating sites in the human genome have θ ≈ 0.02. Note that this 
event will even less likely in growing populations, because in this 
case the deepest coalescence times will be relatively short, but 
could be an important phenomenon for populations which were 
much larger in the past.

Theoretical example and data application
Here we illustrate the theoretical and empirical use of (30) and 
(31). First we describe the consequences of recurrent mutation 
in an exponentially growing population compared to those in a 
population of constant size. Second we explore an entirely empir
ical application to human SNP data, which suggests that disparate 
site-frequency spectra may be explained by differences in muta
tion rate (and thus recurrent mutation).

Note that if estimates of the expected fraction of the gene ge
nealogy comprised of branches with i descendants, that is

τ̅i
􏽐n−1

i=1 τ̅i

=
E[τi]

􏽐n−1
i=1 E[τi]

, (43) 

are available, then p(n1|k1; n large, τ) can be computed using (31). 
In addition, for any estimated or supposed values of the expected 
number of mutations on the gene genealogy,

θπ1

2

􏽘n−1

i=1

τ̅i =
θπ1

2

􏽘n−1

i=1

E[τi], (44) 

the joint distribution of the number of latent mutations, k1, and 
their total count, n1, is the product of (30) and (31).

An exponentially growing population
Consider the simple model of pure exponential growth which has 
been the subject of a number of studies (Slatkin and Hudson 1991; 
Griffiths and Tavaré 1998; Polanski and Kimmel 2003; Chen and 
Chen 2013; Polanski et al. 2017): a population which has reached 
its current (haploid) size N0 by exponential growth at rate r per 
generation. On the coalescent time scale of N0 generations, look
ing backward in time and setting β = N0r,

N(t) = N0e−βt (45) 

gives the population size at time t in the past. This model is unreal
istic because the past population size approaches zero, but it can 
be taken as a rough approximation for recent dramatic growth. 

For instance, a population of current size N0 = 5 × 107 with a 

generation time of 30 years and r = 0.0064, would have 

β = 3.2 × 105. About 40,000 years ago, it would have had size 105, 
and using equation (7) in Slatkin and Hudson (1991) the pairwise 
coalescence time would be about 57,000 years.

The expectation E[τi] can be computed from (26) if the expected 
coalescent intervals E[Tk] are known. We use the large-n results of 
Chen and Chen (2013) for E[Tk] (our notation) to obtain a simple 
approximation for E[τi]. With the time scale and notation here, 
equation (11) in Chen and Chen (2013) gives

1
β

log 2β
1
k

−
1
n

􏼒 􏼓

+ 1
􏼒 􏼓

(46) 

as a large-n approximation for the cumulative expected time for 
the number of ancestral lineages of the sample to decrease from 
n to k. Writing (46) as a continuous function of x = k/n,

f (x) =
1
β

log
2β
n

1 − x
x

+ 1
􏼒 􏼓

, (47) 

we approximate the expected coalescent interval as

E[Tk] = f (x − dx) − f (x) ≈ −f ′(x) dx

=
2

x(2β(1 − x) + xn)
.

(48) 

Note that while (48) is a large-n approximation, it allows that β 
might be of the same order of magnitude as n. Applying the 
same approximation to the combinatorial coefficient in (26) gives

n − i − 1
k − 2

􏼒 􏼓

n − 1
k − 1

􏼒 􏼓 ≈
x

1 − x
(1 − x)i

. (49) 

Finally, we approximate the sum in (26) with the integral

E[τi]≈ ∫10xn
2

x(2β(1 − x) + xn)
x

1 − x
(1 − x)i dx,

=
n
β

∫10 1 − 1 −
n
2β

􏼒 􏼓

x
􏼔 􏼕−1

x(1 − x)i−1dy (50) 

=
n

βi(i + 1) 2F1 1, 2; i + 2; 1 −
n
2β

􏼒 􏼓

(51) 

which can be evaluated efficiently either as (51), in terms of the 
hypergeometric function, or as the integral (50). Slatkin and 
Hudson (1991) and others have observed that gene genealogies 
under very fast exponential growth are close to star trees. Using 
either (50) or (51) we have

E[τi] ≈
log (2β/n)−1

β/n if i = 1
1

i(i−1)β/n if i ≥ 2

􏼨

(52) 

as β/n increases. From the log (2β/n) term in (52), we confirm the 
star-tree prediction that under extreme growth essentially all var
iants will be singletons.

These results for exponentially growing populations, derived 
here using a coalescent approach, are identical in form to some re
sults for “Luria-Delbrück distributions,” especially in application 
to cancer, derived using forward-time birth-death or branching 
processes (Luria and Delbrück 1943; Lea and Coulson 1949; 
Durrett 2013, 2015; Kessler and Levine 2013; Ohtsuki and Innan 
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2017; Cheek and Antal 2018; Gunnarsson et al. 2021; Poon et al. 
2021). In particular, (50) has the same form as the approximation 
in equation (4) of Ohtsuki and Innan (2017) and as equation (33) in 
Gunnarsson et al. (2021). Equation (52) has the same form as the 
expression in Theorem 2 in Durrett (2013) if only the leading-order 
term is kept in (52) in the case i = 1.

Figure 3 shows the same quantities as Fig. 2 but for the pure ex
ponential growth model with n = 105 and β/n = 3. The value β/n = 3 
was chosen to roughly reproduce the ratio of singletons to double
tons observed for low-rate sites in the gnomAD data in section 
“Application to human SNP data.” Figure 3a is directly comparable 
to Fig. 2a, the only difference being whether E[τi] = 2/i or comes 
from (51). As Fig. 3a shows, recent rapid growth produces a single- 
mutation (k1 = 1, blue line) site-frequncy spectrum with an excess 
of rare variants and a deficit of common variants. So, compared to 
the constant-size case in Fig. 2a, there is a diminished tendency to 
observe high-frequency variants when the number of latent mu
tations is larger, and a stronger tendency for the site-frequency 
count (n1) to be equal to or close to the number of latent 
mutations.

To make Fig. 3b comparable to Fig. 2b, we used (44) with n = 105 

and E[τi] = 2/i to compute the corresponding expected numbers of 
mutations on the gene genealogy for the three values of θπ1 in 
Fig. 2 (0.002, 0.02, 0.2). The resulting expected numbers of muta
tions were 0.024, 0.24 and 2.4, the last being about equal to the va
lue for the highest-rate sites in the gnomAD data in section 
“Application to human SNP data.” We then computed 
p(n1; n large, τ) by averaging (31) over the distribution (30). 
Similar to Fig. 2b, the two smaller values of the mutation rate 
give nearly indistinguishable results for the total count n1. But 
there is a dramatic difference for the largest mutation rate. In 
Fig. 2b the prediction is distinctly L-shaped and thus similar to 
that for the lowest mutation rate, which again is 100-fold lower. 
In contrast, in Fig. 3b singletons have a much lower chance of 
being observed. In fact, doubletons are slightly more likely than 
singletons. This relative excess of doubletons is due to the fact 
when there are two latent mutations these are highly likely to pro
duce two copies of the variant under growth (Fig. 3a) than under 
constant size (Fig. 2a).

It is also of interest to know how the number of latent muta
tions in the ancestry of a rare variant depends on its count. 
Figure 4 depicts this for a series of increasing counts n1, from 1 
to 16. Figure 4a shows the results for constant size, Fig. 4b the cor
responding results for pure exponential growth. The expected 
number of mutations on the gene genealogy is 2.4 in both cases. 
Regardless of the demography, if only one copy of the variant is 
observed, it must be due to one mutation. Otherwise, the results 
differ greatly for constant size versus growth. Under constant 
size, a variant observed multiple times in the sample can easily 
be due to a single mutation. Under growth, higher variant counts 
are more likely due to multiple mutations.

Application to human SNP data
We also used (30) and (31) to account for latent mutations in the 
ancestry of rare variants in a subset of the gnomAD data 
(Karczewski et al. 2020). We took the approach described in the 
Supplementary Materials of Seplyarskiy et al. (2021), specifically 
obtaining estimates of relative branch lengths (43) from the data 
at low-rate sites, then using our new analytical result (31) to aver
age over mutation counts. Rather than categorizing variants by 
trinucleotide context as in Seplyarskiy et al. (2021), we analyzed 
data from gnomAD version v2.1.1, presorted into 109 bins based 
on estimates of mutation rate by the Roulette method of 

Seplyarskiy et al. (2022) which incorporates information from the 
six flanking bases on either side of a SNP, strand asymmetry, ex
pression level, methylation and promoter status. We did not use 
this information but simply assumed that variants within a bin 
all have the same mutation rate.

The data consist of variant counts for synonymous mutations 
in the exomes of about 57 K non-Finnish Europeans. Thus n ∼ 
114 K although this varied by about 2% among sites because we re
quired that sites were successfully genotyped in a minimum of 
112K chromosomes. Importantly for our application, the data in
clude monomorphic sites, i.e. sites with variant count equal to 
zero. The gnomAD only provides n for polymorphic sites, so we im
puted n for monomorphic sites using the nearest value at a poly
morphic site within 100 bp on either side of the focal site. After 
filtering for sequencing quality and coverage as well as removing 
mutation rate bins with fewer than 100 observed mutations, there 
are a total of 12,338,176 sites in 97 bins and 834,486 of these are 
polymorphic.

Figure 5a shows the total numbers of sites and the numbers of 
monomorphic sites in each bin. The great majority of sites are in 
bins 1 through roughly 20. These have low mutation rates, as in
dicated by their nearly equal numbers of total sites and mono
morphic sites. The widening gap between the total number of 
sites and the number of monomorphic sites reflects the fact that 
higher-number bins have larger mutation rates.

For each bin, the data are the numbers of sites where a variant 
is observed in each possible count in the sample. As in “Latent mu
tations and sample counts of rare alleles,” these are marginal with 
respect to other possible variants at the site. Sites with two (resp. 
three) rare variants appear twice (resp. three times) in the data, 
once for each rare variant. These will likely be in different bins gi
ven the fine substructure of mutation rate variation (Seplyarskiy 
et al. 2021, 2022). Although bins contain mixtures of different se
quence contexts and different nucleotide substitutions, for our 
purposes sites within a bin are all of the same type because they 
all have the same mutation rate.

Let Si be the number of sites in a given bin where i copies of the 
variant are observed in the sample. If a bin contains L total sites, 
then with reference to the notation in (2) we may write

E[Si] = LP[N 1 = i; n], i ∈ {0, . . . , n − 1}. (53) 

Thus we use a simplified notation here, with i in place of n1 to 
avoid the additional subscript when we apply the results of the 
previous sections. In addition we use “mutrate” to refer to the es
timate of the expected number of latent mutations per site for a 
given bin, i.e. (θπ1/2)

􏽐
i τ̅i for sites in that bin, as this is the rate par

ameter in the Poisson distribution (30).
We used (30) and the proportion of monomorphic sites, S0/L, to 

estimate this “mutrate” for each bin, specifically as − log (S0/L). 
Figure 5b plots these estimates across bins, on a log scale. They 
range from 0.0097 for bin 1 to 2.23 for bin 97, with a mean of 
0.083, taking the proportion of sites in each bin into account. Most 
sites have mutation rates on the lower side: bins 1 through 5 contain 
about 47% of all sites, bins 1 through 19 about 95%, and bins 60 
through 97 contain only about 2% of sites. Overall, rates vary 
230-fold from lowest to highest. Assuming that the average esti
mated mutrate of 0.083 corresponds to the genome average muta
tion rate per site, for which the usual estimate of θ from pairwise 
differences is about 1/1300 ∼ 0.00077, we can infer that the ex
pected number of mutations between a pair of (haploid) genomes 
is about 9 × 10−5 for the slowest sites and about 0.02 for the fastest 
sites.
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We compared observed and expected site-frequency counts for 
each bin based on an empirical fit of our model. First, we used (30) 
with the estimated mutrate (θπ1/2)

􏽐
i τ̅i for each bin to compute 

probabilities of k ∈ {0, 1, . . . , 7} latent mutations. Then from (34) 
and the fact the polymorphisms at sites with very low mutation rates 
likely have just one latent mutation, we used the combined data for 
bins 1 through 5 to estimate τ̅i/

􏽐
i τ̅i directly as Si/(L − S0) for 

i ∈ {1, . . . , 40}. Our estimates of the mutrate for bins 1-5 range 
from 0.0097 to 0.037 with an average of 0.021, which we note is some
what less than the smallest mutation rate in Figures 2 and 3. We as
sumed that this τ̅i/

􏽐
i τ̅i estimated from bins 1–5 holds for all bins. 

Finally, we computed the expectations E[Si], for i ∈ {0, . . . , 40} in 
each bin, multiplying the probabilities of counts obtained using (30) 
and (31) by the total number of sites in the bin, cf. (53).

The upper three panels of Fig. 6 show the observed and ex
pected variant counts, Si for i ∈ {1, . . . , 40}, for bins 9, 50 and 92, 
chosen to represent a low-rate bin, a middle-rate bin and a high- 
rate bin. Figure A2 in the Appendix gives the plots for all 97 bins. 
In making these plots, we grouped variant counts for which 
E[Si] < 1. For bin 50 for example, this was true of variant counts i ∈ 
[12, 40] as depicted in Fig. 6B and in the 50th panel of Fig. A2. The 
mutrate values in these plots are again the estimates of the ex
pected number of mutations per site on the gene genealogy, 
(θπ1/2)

􏽐
i τ̅i, for each bin.

The broad pattern from these plots is clear. For smaller muta
tion rates (e.g. Fig. 6a) the site-frequency spectrum is heavily 
weighted toward the rarest variants. For large mutation rates 
(e.g. Fig. 6c), that is when multiple latent mutations are likely, 
the site-frequency spectrum is shifted toward higher counts. 
Again from Fig. 5a, the data contain fewer sites with intermediate 
mutation rates. In this case (e.g. Fig. 6b), the site-frequency spec
trum does show the expected intermediate pattern, but subject to 
considerable sampling error. Across the range of mutation rates, 
the empirical model, which uses low-rate sites to estimate relative 
branch lengths ̅τi/

􏽐
i τ̅i and assumes these hold for all sites, fits the 

data well.
As can be seen in Fig. 6a and the first 20 or so panels of Fig. A2, 

the empirical estimates of τ̅i/
􏽐

i τ̅i include fluctuations due to 
sampling error for higher-count variants. The combined data for 
the first five bins have Si ranging from 71 to 38 for i ∈ [30, 40]. 
The presence of these fluctuations helps illustrate a subtler phe
nomenon, namely the smoothing which occurs at larger mutation 
rates (e.g. Fig. 6c). For reference, the combined data for the first 
five bins have Si in the thousands for the low-count variants. 
From these, the estimated chance that a latent mutation is a 
singleton is about 64%, followed by 13% for doubletons and 6% 
for tripletons. By comparison, the chance is less than 0.1% for 
each variant with count i ∈ [25, 40]. The predictions E[Si] are 

(a) (b)

Fig. 3. Plots of the same quantities shown in Fig. 2 but for a sample of size n = 105 under pure exponential growth with β/n = 3. a) Probability of observing n1 

copies of allele 1 in the sample given k1 = 1, 2, 3, 4, 5 latent mutations. b) log10-probability of observing n1 copies of allele 1 in the sample for three different 
mutation rates, corresponding to the values of θπ1: 0.002, 0.02 and 0.2 in Fig. 2, but here expressed in terms of expected numbers of mutations on the gene 
genealogy (44): 0.024, 0.24 and 2.4. Probabilities in both panels are normalized to sum to one for n1 ∈ {1, 2, . . . , 40}.

(a) (b)

Fig. 4. Probabilities of k1 = 1, 2, 3, 4, 5, 6, 7 latent mutations for increasing values of n1—1, 2, 4, 8, and 16—when 2.4 mutations are expected on the gene 
genealogy of a sample of size n = 105 (or equivalently θπ1 = 0.2 in the constant-size case). Panel A plots (21) with θπ1 = 0.2. Panel B shows the same 
probability computed using (30) and (31) under exponential growth with β/n = 3.
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smoothed for higher-count variants at larger mutation rates be
cause they are mixtures. For example, two latent mutations will 
come in counts 1 and i − 1, 2 and i − 2, or 3 and i − 3 with approxi
mate relative proportions 64:13:6.

The lower three panels of Fig. 6 show estimates of the probabil
ity that a variant in count i ∈ {1, . . . , 40} descends from k ∈ 
{1, . . . , 7} latent mutations, computed using (32). All singletons 
descend from single mutations. Variants in larger counts can 
have multiple latent mutations, and the probabilities of these in
crease very quickly then settle down to stable values. This sugges
tion of a limiting distribution was also seen for exponential growth 
in Fig. 4b, only there depicted differently. For very large counts of 
the variant, the distribution of k − 1 is well approximated by a 
Poisson with mean equal to the expected number of mutations 
per site on the gene genealogy, (θπ1/2)

􏽐
i τ̅i. This shifted-Poisson 

result is known already for the constant-size case (Arratia et al. 

2000; Yamato 2017). In “A remark on the total number of muta
tions for large n1” in the Appendix we argue that it should hold 
more generally. The accuracy of this shifted-Poisson result for 
the gnomAD data and i = 40 is shown by the black dots on the right 
axes of Figs. 6d–f.

For low-rate sites (e.g. Fig. 6d) there is a relatively small chance 
of multiple latent mutations. But the chance of two or more latent 
mutations is not negligible, owing to the very large sample size. 
Note that the mutrate for bin 9 is less than the genome average, 
which is 0.083 for this sample of n ∼ 114K. Thus in a very large 
sample even low-rate sites are affected by recurrent mutation. 
For the middle-rate sites (e.g. Fig. 6e) in the trough in Fig. 5a the 
chance of there being only one latent mutation is still consider
able. However, for high-rate sites (e.g. Fig. 6f) it can be more likely 
that there are two or three mutations in the ancestry of a rare vari
ant than the single unique mutation which is typically supposed.

(a) (b)

Fig. 5. a) Total numbers of sites and total numbers of monomorphic, or invariant, sites in the gnomAD data for each of the 97 bins. b) Estimated mutation 
rates—i.e. the “mutrate” or expected number of latent mutations (θπ1/2)

􏽐
i τ̅i as discussed in the text—on a log scale for bins 1 through 97.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 6. Upper three panels: Examples of model fit for a) a low-rate bin, b) a middle-rate bin, and c) a high-rate bin. Lower three panels: Stacked probabilities 
of k ∈ {1, 2, 3, 4, 5, 6, 7} latent mutations for rare variants with counts i ∈ {1, 2, . . . , 20} for the same three bins. As in Fig. 5, “mutrate” indicates an estimate 
of the expected number of latent mutations per site, (θπ1/2)

􏽐
i τ̅i. Black dots on the right in the lower three panels show the probabilities for the 

shifted-Poisson result discussed in the text.
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Finally, we explored the extent to which rare variants might be 
observed less frequently than would be expected if there were no 
recurrent mutation. Figure 7a shows the expected frequency of 
singletons, doubletons, etc., up to variants found in five copies 
in the sample, across the range of mutrates in the binned 
gnomAD data. The standard infinite-sites prediction is that the 
frequency will increase linearly with the mutation rate. 
Figure 7a is largely consistent with this but shows marked devia
tions when the mutrate becomes too large. The point at which the 
linear prediction fails depends on the count of the rare variant. 
Singletons are the first to deviate, which they do as soon as there 
is an appreciable chance of two or more mutations at a site. For 
rare variants in five copies, linearity holds even close the upper 
limit of mutation rates in the human genome.

Figure 7b shows the extent to which the infinite-sites model 
over-predicts the frequency of singletons across the 97 bins. The 
infinite-sites prediction for a bin is its mutrate (θπ1/2)

􏽐
i τ̅i times 

the proportion of singleton branches τ̅1/
􏽐

i τ̅i = 0.64 estimated 
from the first five bins. The corresponding independent-Poissons 
predictions are the same as those for i = 1 in the 97 panels of 
Fig. A2. The infinite-sites model makes reasonable predictions 
for the twenty lowest-rate bins, which contain 96% of all sites 
and have mutation rates less than twice the genome average. 
But it predicts the impossible for the seven highest-rate bins: 
more singletons than there are sites to mutate. For bins 21 
through 97, which contain 4% of all sites, the infinite-sites model 
predicts a total of 269,222 singletons compared to the 83,002 
which are actually observed.

We emphasize that the results in Fig. 7 depend on the sample 
size. The expected number of mutations at a single site, 
(θπ1/2)

􏽐
i τ̅i, is proportional to the total length of the gene geneal

ogy, which is an increasing function of the sample size. Already for 
the sample size n ∼ 114K considered here, singletons start to be af
fected by recurrent mutation at around the genome average mu
tation rate (Figs. 7 and 6d). For variants in any fixed count i there 
will be a sample size above which the infinite-sites, linear predic
tion starts to fail.

Discussion
In this work, we modeled the mutational ancestry of a rare variant 
in a large sample. Under the standard neutral model of population 
genetics with K-allele parent-independent mutation, we found 
that co-segregating rare variants may be treated independently 

and that the Ewens sampling formula gives the probabilistic 
structure of latent mutations in their ancestries. In particular, 
the number of latent mutations is distributed like the number of 
alleles in the Ewens sampling formula. We obtained more general 
results, for changing population size, by modeling latent muta
tions as independent Poisson random variates.

Our aim was to describe how the site-frequency spectra of rare 
variants in large samples are affected by recurrent mutation. The 
key parameters for a variant in count i are its expected total rate of 
mutation on the gene genealogy of the sample (here denoted 
(θπ1/2)

􏽐
i τ̅i and called “mutrate” in the previous section) and the 

expected relative lengths of branches in the gene genealogy which 
have i descendants in the sample (̅τi/

􏽐
i τ̅i). Under the standard 

neutral model ̅τi = 2/i.
We obtained new results for τ̅i under exponential population 

growth and used these to illustrate how recurrent mutation af
fects the site-frequency spectrum differently than under constant 
size. Lastly, we showed that our general results provide a good fit 
to synonymous variation among a large number of (non-Finnish 
European) individuals in the human Genome Aggregation 
Database (Karczewski et al. 2020), suggesting that, whatever the 
causes of deviations from ̅τi = 2/i might be for this sample, differ
ences in mutation rate can explain differences in site-frequency 
spectra among sites.

Our application was empirical. We did not fit a demographic 
model, but following Seplyarskiy et al. (2021) used low-mutation-rate 
sites to estimate relative branch lengths and assumed these hold for 
all sites. Site-frequency spectra are a rich source of information 
about population-genetic phenomena but are of somewhat limited 
use in disentangling their effects (Myers et al. 2008; Bhaskar and 
Song 2014; Terhorst and Song 2015; Lapierre et al. 2017; Rosen et al. 
2018). When low-mutation-rate sites are plentiful enough to provide 
stable estimates of relative branch lengths, this empirical method 
offers a way to control for myriad factors and isolate the effects of 
variation in mutation rate.

We began with a K-allele model with parent-independent 
mutation, and used its sampling probabilities in our computa
tions for constant-size populations. We conjecture that our 
findings will hold for general mutation models because condi
tioning on a rare variant in a large sample means that the com
mon allele will be the ancestral source of mutations with very 
high probability. Then the relevant mutation rate in any model 
will be the rate of the production of the rare allele from the com
mon allele.

(a) (b)

Fig. 7. a) Predicted frequencies of rare variants as a function of mutrate across the 97 bins. E[Si]/L is the expected proportion of sites at which the rare 
variant is found in i ∈ {1, 2, . . . , 5} copies in the sample. The human genome average mutation rate is −1.08 on this scale. b) Predicted frequencies of 
singletons E[S1]/L in each bin under the infinite sites mutation model and under the independent-Poissons model of recurrent mutation.
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We described our general results as being for populations which 
may have changed in size. This is appropriate for the general co
alescent model (Griffiths and Tavaré 1998) which we assumed for 
some proofs in the Appendix. Strictly speaking, the general coales
cent does not require a generative model for the times between co
alescent events. Thus our results can be applied more broadly. The 
case of a fixed tree with arbitrary τi considered in the Appendix is 
one example. The independent-Poissons model, with results (27) 
to (35), does not even require interpretation in terms of coalescence 
times. These results hold if we replace θπ1 τ̅i/2 with an arbitrary rate 
parameter λi for the production of mutants in count i. Rates of pro
duction of mutants have been obtained for under a range of demo
graphies and some types of selection (Lange and Fan 1997; Dorman 
et al. 2004; Lambert 2011; Kaj and Mugal 2016; Torres et al. 2020; 
Müller et al. 2022). Applications to selection will likely require free 
recombination between sites. Desai and Plotkin (2008) applied the 
independent-Poissons model (for all variant counts in the sample) 
for example under a version of the Poisson Random Field model 
(Sawyer and Hartl 1992).

Data availability
The data application to low-frequency synonymous polymorph
isms used allele frequencies from exome sequencing data com
piled in gnomAD v2.1.1, available here: https://gnomad. 
broadinstitute.org/downloads and basepair-resolution mutation 
rates (Seplyarskiy et al. 2022), available here: http://genetics.bwh. 
harvard.edu/downloads/Vova/Roulette/. The mutation rate model 
specifies the rate for all three possible alternative nucleotides, and 
different nucleotide mutations were counted separately when gen
erating the site-frequency spectra. The pipeline used to compile 
and annotate all potential synonymous mutations in the human 
genome is available at: https://github.com/vseplyarskiy/Roulette. 
The site-frequency spectra in different mutation rate bins is avail
able at: https://doi.org/10.6084/m9.figshare.3426251.v1.
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Appendix

Time-dependent conditional ancestral process
Here we study the conditional ancestral process in detail and pro
vide the justification for (18) and (19).

Let N 1(t) and N 2(t) be the numbers of rare alleles and common 
alleles respectively at time t. From (17a), (17b) and (17c), the stochas
tic process {(N 1(t), N 2(t))}t∈R+ 

is a continuous-time Markov chain on 
Z2

+ with total rate of events λ(n1, n2) = n2
2/2 and one-step transitions

(n1, n2)→

(n1 − 1, n2 + 1) w/prob. θπ1
θπ1+n1−1

n1
n2

(n1 − 1, n2) w/prob. n1−1
θπ1+n1−1

n1
n2

(n1, n2 − 1) w/prob. 1 − n1
n2

⎧
⎪⎨

⎪⎩
(A1) 

Let Pn be the probability measure for this process starting at 
n = (n1, n2), and define the random times

T i : = inf {t ≥ 0 : N 1(t) = n1 − i} (A2) 

to be the times at which the first coordinate of the process decreases 
to n1 − i for 1 ≤ i ≤ n1, with T 0 = 0. We have 0 = T 0 < T 1 < T 2 < · · · < 
T n1 almost surely under Pn, and the process (N 1, N 2) visits 
the following points in order (n1, n2)→ (n1 − 1, N 2(T 1))→ · · · →
(0,N 2(T n1 )).

In Theorem A1 we describe the joint distribution of the hitting 
times (T i)

n1
i=1 and the locations (N 2(T i))

n1
i=1 as n2 →∞.

Theorem A1 As n2 →∞, the random vector

n2(T i − T i−1),
N 2(T i)

n2

􏼒 􏼓n1

i=1
(A3) 

in R2n1
+ converges in distribution under Pn to the random vector

Zi

(1 − Y0)(1 − Y1) · · · (1 − Yi−1)
, (1 − Y1) · · · (1 − Yi)

􏼒 􏼓n1

i=1
, 

where Y0 = 0, and {Yi, Zi}
n1
i=1 are independent random variables 

with probability density functions

fYi
(y) = (n1 − i + 1)(1 − y)n1−i for y ∈ (0, 1)

and fZi
(z) = (n1 − i + 1)

2n1−i+1

(z + 2)n1−i+2
for z ∈ (0, ∞).

Remark A1 (Mean of T n1 ). Note that

E[Zi] =
2

(n1−i) if 1 ≤ i ≤ n1 − 1

∞ if i = n1

􏼨

.

Hence for n1 ≥ 2, Theorem A1 implies that En[T 1] is of order 1/n2 

and gives the second part of (18) in the main text. In contrast, 
when n1 = 1, E[Z1] = ∞ and En[T n1 ] is no longer of order 1/n2. 

Indeed, when n1 = 1,Pn(♯ = k) = 1
n2 

for k ∈ {0, 1, . . . n2 − 1} by (A6). 

Hence by (A4) and Fubini’s theorem,

En[T 1] =
􏽘n2−1

k=0

􏽘k

i=0

En[ξi] Pn(♯ = k)

=
􏽘n2−1

k=0

􏽘k

i=0

2

(n2 − i)2
1
n2

=
2
n2

􏽘n2−1

i=0

1
(n2 − i)

≈
2
n2

log n2 as n2 →∞.

These give (18) in the main text.

Remark A2 (Mean of N 2(T 1)). By (A5) and Theorem A1,

lim
n2→∞

E
N 2(T i)

n2

􏼔 􏼕

=
n1

n1 + 1
n1 − 1

n1
· · ·

n1 − i + 1
n1 − i + 2

=
n1 − i + 1

n1 + 1 

for 1 ≤ i ≤ n1. This gives (19) in the main text.

Proof of Theorem A1
To explain the key idea we first establish weak convergence of 
(n2 T 1, N 2(T 1)

n2
), i.e. of the marginal distribution for i = 1 in (A3). 

By definition, T 1 is given by

T 1 =
􏽘♯

i=0

ξi, (A4) 
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where ♯ is the number of downward jumps in second coordinate of 
the process starting at (n1, n2) up to the first decrease in the first 

coordinate. The variables {ξi}
♯−1
i=0 are the times between these 

downward jumps, with ξ♯ being the time to the final jump starting 

at (n1, n2 − ♯). This last jump is the one which decreases the first 
coordinate. Observe that N 2(T 1) is either n2 − ♯ or n2 − ♯ + 1. 
Given ♯, N 2(T 1) is equal to

n2 − ♯ + 1, w/conditional prob. θπ1
θπ1+n1−1

n1
n2−♯

n2 − ♯, w/conditional prob. n1−1
θπ1+n1−1

n1
n2−♯

􏼨

(A5) 

which correspond to a non-empty mutation event and a coales
cent event of type 1 respectively. These follow from (A1).

The probability mass function of ♯ is given by Pn(♯ = 0) = n1
n2 

and, 
for k ∈ {1, 2, . . . , n2 − n1},

Pn(♯ = k)

= 1 −
n1

n2

􏼒 􏼓

1 −
n1

n2 − 1

􏼒 􏼓

· · · 1 −
n1

n2 − k + 1

􏼒 􏼓
n1

n2 − k

=
n1

n2

􏽙k

j=1

n2 − n1 − j + 1
n2 − j

=
n1

n2

􏽙n1−1

j=1

n2 − k − j
n2 − j

(A6) 

≈
n1

n2
(1 − x)n1−1 (A7) 

as n2 →∞ and k
n2
→ x ∈ (0, 1). Hence Pn(♯ > n2 − n1) = 0 and, for 

k ∈ {0, 1, 2, . . . , n2 − n1 − 1},

Pn(♯ > k) = 1 −
n1

n2

􏼒 􏼓

1 −
n1

n2 − 1

􏼒 􏼓

· · · 1 −
n1

n2 − k

􏼒 􏼓

≈
􏽙n1

j=1

1 −
k + j
n2

􏼒 􏼓

≈ (1 − x)n1

(A8) 

as n2 →∞ and k
n2
→ x ∈ (0, 1).

Lemma A1. As n2 →∞, we have convergence in distribution

n2

􏽘♯

i=0

ξi,
♯

n2

􏼠 􏼡

d−→ (Z1, Y1).

with Z1 and Y1 as defined in Theorem A1.

Proof of Lemma A1. It suffices to show that the moment gener
ating function of the R2-valued random variable on the left con
verges pointwise to that on the right; that is, to show that

lim
n2→∞

En eη ♯
n2

+ ζ n2T 1
􏽨 􏽩

= n1∫10(1 − x)n1−1e{η x + 2ζx
1−x} dx (A9) 

for η ∈ R and ζ ∈ ( − ∞, 0]. See, for instance, Section 30 of 
Billingsley (2008). Since ξi ∼ Exp(λ(n1, n2 − i)),

En[eζ ξi ] =
λ(n1, n2 − i)

λ(n1, n2 − i) − ζ
=

(n2 − i)2

(n2 − i)2 − 2ζ
. (A10) 

By (A4), (A6) and (A10),

En eη ♯
n2

+ζ n2T 1
􏽨 􏽩

=
􏽘n2−n1

k=0

Pn(♯ = k) eη k
n2 En eζn2

􏽐k

i=0
ξi

􏼔 􏼕

=
􏽘n2−n1

k=0

Pn(♯ = k) eη k
n2

􏽙k

i=0

En eζ n2 ξi
􏼂 􏼃

=
n1

n2

􏽘n2−n1

k=0

eη k
n2

􏽙n1−1

j=1

n2 − k − j
n2 − j

pn2 (ζ ),

(A11) 

where

pn2 (ζ ) : =
􏽙k

i=0

λ(n1, n2 − i)
λ(n1, n2 − i) − ζn2

= exp −
􏽘k

i=0

log 1 −
2ζn2

(n2 − i)2

􏼠 􏼡􏼨 􏼩

≈ exp 2ζn2

􏽘k

i=0

1

(n2 − i)2

􏼨 􏼩

if
2ζn2

(n2 − i)2 ≈ 0

≈ exp 2ζ ∫x0
1

(1 − y)2
dy

􏼨 􏼩

= exp
2ζx

1 − x

􏼚 􏼛

(A12) 

if k
n2
→ x ∈ (0, 1) and n2 →∞. Putting (A12) and (A7) into (A11), we 

obtain the desired (A9) and thus Lemma A1.                              □

We now return to the proof of Theorem A1. Lemma A1 implies that 
(n2 T 1, N 2(T 1)/n2) converges in distribution to (Z1, 1 − Y1) as 
n2 →∞. Since Y1 < 1 almost surely, we have N 2(T 1)→∞ in the 
sense that

lim
n2→∞

Pn(N 2(T 1) > M) = 1 for all M ∈ (0, ∞). (A13) 

As in (A4), by definition, T 2 is given by

T 2 = T 1 +
􏽘♯2

i=0

ξ(2)
i , 

where ♯2 is the number of downward jumps starting in state 
(n1 − 1, N 2(T 1)) up to the second decrease in the first coordin

ate, i.e. to n1 − 2. Like before, {ξ(2)
i }♯2−1

i=0 are the times between 

these jumps, with ξ(2)
♯2 

being the time for first coordinate to hit 

n1 − 2 starting at the penultimate states (n1 − 1, N 2(T 1) − ♯2). 
As in (A5), N 2(T 2) is either N 2(T 1) − ♯2 or N 2(T 1) − ♯2 + 1.

As n2 →∞, N 2(T 1)→∞ in the sense of (A13). Hence the same 
argument that leads to Lemma 1 can be applied again, starting at 
the new location (n1 − 1, N 2(T 1)). More precisely, by computing 
moment generating functions as before, and applying the strong 
Markov property of the random walk {(N1(t), N2(t))}t∈R+ 

at the 
stopping time T 1, we obtain the joint convergence

n2

􏽘♯

i=0

ξi, (n2 − ♯)
􏽘♯2

i=0

ξ(2)
i ;

♯

n2
,

♯2

n2 − ♯

􏼠 􏼡

d−→ (Z1, Z2 ; Y1, Y2) 

under Pn as n2 →∞, where {Z1, Z2, Y1, Y2} are independent vari
ables defined in Theorem A1. This implies the convergence in 
distribution 
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n2T 1, n2(T 2 − T 1) ;
N 2(T 1)

n2
,
N 2(T 2)

n2

􏼒 􏼓

d−→ Z1,
Z2

1 − Y1
; 1 − Y1, (1 − Y1)(1 − Y2)

􏼒 􏼓

under Pn, as n2 →∞. Continuing this way, by letting ♯i be the 
number of downward jumps starting at (n1 − i + 1, N 2(T i−1)) be
fore hitting the vertical line {(n1 − i, y) : y ∈ Z+} for i ≥ 1, we obtain 
the desired convergence in Theorem A1.                                    □

Low-count branches of general coalescent trees
Here we prove the non-nestedness and Poisson-independence 
of low-count mutations, which we assumed in section “Theory for 
nonconstant populations.” We do this first for fixed trees then for 
the random, general coalescent trees of Griffiths and Tavaré 
(1998). We also present the computation of the probability generat
ing function, Gn,k(x, y), of the count of the variant of interest and its 
number of latent mutations. Our definition of nested differs from 
some previous ones (Saunders et al. 1984; Wiuf and Donnelly 1999; 
Hobolth and Wiuf 2009); here nested mutations may occur on the 
same branch of the gene genealogy.

Nested mutation on a fixed tree
Let Tn be a fixed (non random) tree with n leaves. We suppose the tree 
is ultrametric, that is the leaves have the same distance Hn from the 
root. We call Hn the height of Tn. Consistent with the main text, we 
adopt the following notation for some relevant properties of Tn, for 
the most part suppressing the dependence on n for simplicity: 

1) Tk is the length of the time during which there are exactly k 
lineages ancestral to the sample, for k ∈ {2, 3, . . . , n}.

2) τj for j ∈ {1, . . . , n − 1}, is the total length of branches in Tn 

that have j descendants. We suppose there are mj such 

branches with lengths {τ j,k}
mj

k=1. Then τj =
􏽐mj

k=1 τ j,k.

3) Ttotal is the total branch length, the sum of all the branches in 

Tn, which is equal to 
􏽐n

k=2 k Tk =
􏽐n−1

j=1 τj.

4) For a positive integer b, we define a collection {Γ(b)
i }mb

i=1 of dis

joint connected subtrees of the coalescent tree as follows: 
Each of the mb branches with b descendants in the sample 
(say the ith one) subtends b leaves in the coalescent tree 

and gives rise to a subtree Γ(b)
i which contains that branch. 

We say nested mutation up to count b occurs on Tn if there 

exist two mutations on Γ(b)
i ⊂ Tn for some i ∈ {1, 2, . . . , mb}. 

Fig. A1 illustrates this for b = 4.

We assume that mutations arise as a Poisson point process on 
the tree with constant rate θ/2 per unit length. Theorem A2 below 
holds for any fixed ultrametric tree (it can be binary or have mul
tiple mergers, or even be a star tree).

Theorem A2 (Nested mutation on fixed trees). Let Tn be a fixed 
ultrametric tree with n leaves. For any positive integer b and for 
any θ ∈ (0, ∞), the probability that nested mutation up to count 
b occurs is bounded above by

min
θ2

8
b Ttotal Hn,

θ2

8
b3
􏽘b

j=1

􏽘mj

k=1

τ2
j,k

⎧
⎨

⎩

⎫
⎬

⎭
. (A14) 

In particular, the probability that nested mutation up to count b 

occurs tends to 0, as n→∞, if θ2( max1≤k≤mj
τ j,k)τj → 0 for 1 ≤ j ≤ b.

Remark A3. There is good evidence that the upper bound 
θ2

8 Ttotal Hn is actually small for humans. For the gnomAD data we 
analyze in the main text, the expected number of mutations per 
site (θTtotal/2) is between about 0.009 and 2.13. So θTtotal/2 is not 
big with high probability. The rest of the upper bound, bθHn/4, 
should be proportional to the average pairwise difference per site 
(very nearly equal to this for random Kingman coalescent trees 
and large n) and this ranges from about 9 × 10−5 to about 0.02 for 
these same data. See section “Application to human SNP data.”

Remark A4. The simpler bound θ
2

8 bTtotalHn can be weaker than the 
other bound θ

2

8 b3 􏽐b
j=1
􏽐mj

k=1 τ2
j,k in (A14) for large n. For the Kingman 

coalescent, E[TtotalHn] = O( log n) is larger than E[
􏽐b

j=1
􏽐mj

k=1 τ2
j,k] since 

the latter tends to 0 as n→∞, by (A17). For a star tree, however, both 
bounds are approximately θ2nH2

n (up to a multiplicative constant).

Proof. The total number Mn of mutations on Tn is a Poisson vari
able with mean cn : = θ

2 Ttotal. Given the tree Tn and Mn = k, the k 
mutations are uniformly distributed on the tree. Hence the condi
tional probability that two given mutations are on the same sub
tree Γ(b)

i for some i is equal to

􏽘mb

i=1

Γ(b)
i

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
2

T2
total

, 

where |Γ(b)
i | is the total branch lengths of the subtree Γ(b)

i . Since 

there are k(k − 1)/2 ways to choose two mutations out of k,

P(there are 2 mutations on Γ(b)
i for some i ∈ {1, 2, . . . , mb})

≤
􏽘∞

k=0

e−cn
ck

n

k!

k(k − 1)
2

􏽘mb

i=1

|Γ(b)
i |

2

T2
total

=
c2

n

2

􏽘mb

i=1

|Γ(b)
i |

2

T2
total

=
θ2

8

􏽘mb

i=1

|Γ(b)
i |

2.

(A15) 

Note that |Γ(b)
i | ≤ bHn for all 1 ≤ i ≤ mb, and that 

􏽐mb
i=1 |Γ

(b)
i | ≤ Ttotal 

since the subtrees {Γ(b)
i }mb

i=1 are disjoint. Hence

􏽘mb

i=1

|Γ(b)
i |

2 ≤ bHn

􏽘mb

i=1

|Γ(b)
i | ≤ bTtotalHn.

1 1

2

112 21 1 1 1

Fig. A1. Two subtrees in {Γ(4)
i }. The subtree on the left has one mutation 

which is labeled 1 and has count four. The subtree on the right has nested 
mutations, with the mutation labeled 1 in count two and another labeled 
2 also in count two.
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Putting this into (A15), we obtained the first bound θ2

8 bTtotalHn in 

(A14). To get the second bound in (A14), note that |Γ(b)
i | ≤ bH(b)

i for 

all 1 ≤ i ≤ mb, where H(b)
i is the height of the subtree Γ(b)

i .

Furthermore, H(b)
i is the sum of at most b branch lengths, one 

from {τ j,k} for j = b, b − 1, . . . , 2, 1, and these branches are pairwise 
disjoint for different i’s (for 1 ≤ i ≤ mb). Hence

􏽘mb

i=1

|H(b)
i |

2 ≤ b
􏽘b

j=1

􏽘mj

k=1

τ2
j,k, 

where we used the general inequality |
􏽐b

k=1 ak|
2 ≤ b

􏽐b
k=1 a2

k . The 

bound in (A14) now follows by putting these into (A15).           □
A mutation on a tree (called a latent mutation in the main text) 

is said to have count j if the mutation is the most recent mutation 
in the lineages of exactly j individuals at the leaves of the tree; see 
Fig. A1.

Theorem A3 (Poisson approximation for counts on a fixed tree). 
Let Tn be a fixed coalescent tree with n leaves for n ≥ 2. Let aj be the 
number of mutations on Tn with counts j. If the probability that 
nested mutation up to count b occurs tends to 0 as n→∞, then 
for any positive integer b and any θ ∈ (0, ∞), the variables {aj}

b
j=1 

are asymptotically independent and aj ∼ Poisson( θ
2 τj) for 1 ≤ j ≤ b.

Proof. If there is no nested mutation up to count b, then aj is also 
equal to the number of mutations on the branches in Tn that have 
j descendants, for 1 ≤ j ≤ b. Since these branches have total length 
τj and they are disjoint for different j’s, the result follows from the 
assumption that mutations occur as a Poisson point process on 
the tree Tn with rate θ/2.                                                               □

Nested mutation on random trees
We now suppose the tree Tn is a random binary tree (for n ≥ 2), in 
particular the general coalescent tree of Griffiths and Tavaré 
(1998). For each n ≥ 2, {Tk}nk=2 is a sequence of positive random vari
ables representing the times during which there are k lineages in Tn. 
The branching structure of Tn is independent of the times {Tk}n

k=2. 
Looking forward in time, whenever there is a branching event, an ex
isting lineage is chosen uniformly at random to split into two.

Following Griffiths and Tavaré (1998, eqn. (2.2)) we let λ(t) be the 
the population size at time t in the past divided by the current 
population size. As in (45), λ(t) = e−βt with β > 0 corresponds to an 
exponentially growing population.

Theorem A4 (Nested mutation on random trees for fixed θ). Let 
b ∈ N. Suppose for 1 ≤ j ≤ b,

lim
n→∞

En

􏽘mj

k=1

τ2
j,k

􏼢 􏼣

= 0, (A16) 

where the expectation En averages over all realizations of Tn. Then 
the probability that nested mutation up to count b occurs is 

bounded above by Cb,nθ2, where {Cb,n}n≥2 are constants that tend 

to 0 as n→∞. Furthermore, (A16) holds for the generalized coales
cent trees of Griffiths and Tavaré (1998) when supt≥0 λ(t) < ∞ 
(which includes any growing population). 

Proof. The first statement follows directly from Theorem A2. By 
the fact 

􏽐mj

k=1 τ2
j,k ≤ ( max1≤k≤mj

τ j,k)τj and the Cauchy-Schwarz in
equality, we have

En

􏽘mj

k=1

τ2
j,k

􏼢 􏼣

≤

�����������������������������

En[τ2
j ]En max

1≤k≤mj

τ j,k

􏼠 􏼡2
⎡

⎣

⎤

⎦

􏽶
􏽵
􏽵
􏽵
􏽴 . (A17) 

Hence assumption (A16) is satisfied if

lim
n→∞

En max
1≤k≤mj

τ j,k

􏼠 􏼡2
⎡

⎣

⎤

⎦ = 0 (A18) 

lim sup
n→∞

En τ2
j

􏽨 􏽩
< ∞, (A19) 

for 1 ≤ j ≤ b. The second statement now follows from Lemmas A2, 
A3, and Proposition A1 below.                                                      □

Lemma A2 concerns assumption (A18). For reference, we note 
that it is satisfied, and hence (A18) is satisfied, if Tk are exponential 
variables with parameter λk where 

􏽐∞
k=2

1
λk

< ∞. This is true for the 
Kingman coalescent which has λk = k(k − 1)/2.

Lemma A2 Suppose lim supn→∞
􏽐n

k=2 Tk has finite pth moment, 
where p > 0. Then max1≤k≤mj

τ j,k → 0 in Lp, as n→∞.

Proof. Consider the random tree Tn and recall that Tk is the length of 
the time during which there are exactly k lineages ancestral to the sam
ple in Tn. These k lineages are segments of length Tk of the branches of 
the genealogy, and each of them is called a line of state k.

We construct the infinite sequence {Tn}n≥2 sequentially in the 
same probability space, by constructing a coupling of the two in
dependent families {Tk}k≥2 and {ιk}k≥2, where ιn ∈ {1, 2, . . . , n} is 
the index of the lineage that branches into two going from Tn to 
Tn+1.

Let A(k,n)
ℓ be the number of descendants in Tn of the ℓth line of state 

k. Note that A(k,n)
ℓ ≥ 1 for ℓ ∈ {1, 2, . . . , k}, and 

􏽐k
ℓ=1 A(k,n)

ℓ = n. By ex
changeability—in particular see Bertoin (2006, Proposition 2.8)—the 
random vector 1

n (A(k,n)
1 , . . . , A(k,n)

k ) converges almost surely to a ran
dom vector that has the symmetric Dirichlet distribution on the sim
plex {(xi)

k
i=1 ∈ Rk

+ : x1 + · · · + xk = n}. Therefore, with probability one,

lim
n→∞

A(k,n)
ℓ = +∞ for all k ≥ 1 and ℓ = 1, 2, . . . , k. (A20) 

Since 
􏽐∞

k=2 Tk is finite almost surely, the trees {Tn}n≥2 have uniformly 

bounded height almost surely. So (A20) implies that with probability 
one,

lim sup
n→∞

sup
1≤k≤mj

τ jk = 0 for all j ≥ 1.

Since max1≤k≤mj
τ j,k <

􏽐n
k=2 Tk, by the assumption on {Tk} and the 

Dominated Convergence Theorem, max1≤k≤mj
τ j,k → 0 in Lp as 

n→∞.                                                                                             □
Next consider assumption (A19). For the Kingman coalescent, τj 

is close to its mean En[τj] = 2/j because for n large enough,

Var(τj) = 4σ jj ≤
4(j + 1) log n

n
, (A21) 
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Fig. A2. Plots like those in Fig. 6 for each of the 97 mutation-rate bins. (continues on next page)
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Fig. A2. Continued
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where σ jj is defined in Fu (1995, eqns. (1)-(2)). This follows from the 
fact that Fu’s βn(j) ≈ 2 log n

n as n→∞ for each j ≥ 1 (Fu 1995, eqn. 
(5)). Hence

lim sup
n→∞

En[τ2
j ] ≤

2
j

􏼒 􏼓2

.

Lemma A3. Suppose there exists a constant C∗ ∈ (0, ∞) such that

sup
n≥2

En[T2
k ] ≤

C∗
k4 for all k ≥ 2. (A22) 

Then En[τj] ≤
���
C∗
√

j for all j ≥ 1 and limsupn→∞En[τ2
j ] < ∞.

Proof. For realized values of Tk, the argument in Fu (1995, p. 181) gives

τj =
􏽘n

k=2

􏽘k

ℓ=1

ϵk,ℓ(j) Tk =
􏽘n

k=2

Tk

􏽘k

ℓ=1

ϵkℓ(j), 

where ϵkℓ(j) = 1
{A(k,n)

ℓ
=j} 

is the indicator variable, where A(k,n)
ℓ is the 

number of descendants in Tn of the ℓth line of state k defined in 
the proof of Lemma A2.

Using the independence between {Tk}k≥2 and the branching 
structure, and following the notation in Fu (1995, eqns. 
(18)-(19)), the conditional expectation of τj, given {Tk}n

k=2, is

En[τj | {Tk}nk=2] =
􏽘n

k=2

Tk k p(k, j) (A23) 

and that of τ2
j , given {Tk}n

k=2, is

En[τ2
j | {Tk}n

k=2] =
􏽘n

k=2

T2
k(kp(k, j) + k(k − 1)p(k, j; k, j))

+ 2
􏽘

k<k′
TkTk′kk′p(k, j; k′, j),

(A24) 

where the deterministic functions p(k, j), p(k, j; k′, j) do not depend 
on {Tk}. From Fu (1995),

p(k, j) =

n − j − 1
k − 2

􏼒 􏼓

n − 1
k − 1

􏼒 􏼓 =

n − k
j − 1

􏼒 􏼓

n − 1
j

􏼒 􏼓
k − 1

j
, p(k, j; k, j) =

n − 2j − 1
k − 3

􏼒 􏼓

n − 1
k − 1

􏼒 􏼓

and for 2 ≤ k < k′ ≤ n,

p(k, j; k′, j) =
k − 1

k′(k′ − 1)
p(k′, j)

+
􏽘

t

k′ − k

t − 1

􏼒 􏼓

k′ − 1

t

􏼒 􏼓
(k − 1)(k′ − t)

tk′

j − 1

t − 1

􏼒 􏼓
n − 2j − 1

k′ − 2 − t

􏼒 􏼓

n − 1

k′ − 1

􏼒 􏼓 , 

where the sum is taken over 1 ≤ t ≤ min {j, k′ − 2, k′ − k + 1}.
The first and the second moments of τi are obtained averaging 

over {Tk}nk=2 in (A23) and (A24). The bound En[τj] ≤
���
C∗
√

j follows from 

the same calculation in Fu (1995, eqn. (22)). By (A24), the fact 

En[TkTk′ ] ≤ (En[T2
k] En[T2

k′ ])
1/2 and assumption (A22), 

lim supn→∞En[τ2
j ] < ∞ holds also for our random trees.             □

Remark A5. As in Theorem A2, we can use an alternate assump
tion than A16. For any positive integer b, the probability that 
nested mutation up to count b occurs is bounded above by 
bθ2

8 En[Ttotal Hn] which tends to 0 if θ2En[TtotalHn]→ 0. For Kingman 
coalescent trees, this would require that θ→ 0.

We now check that the assumption (A16) in Theorem A4 holds 
for the generalized coalescent tree of Griffiths and Tavaré (1998).

Proposition A1. Suppose C0 : = supt≥0 λ(t) < ∞. Then {Tk : 2 ≤ k ≤ 
n, n ≥ 2} satisfy the conditions in both Lemma A2 (with p = 2) 
and Lemma A3. In particular, (A16) is satisfied and so the conclu
sion of Theorem A4 holds.

Proof. The joint distribution of {Tk}nk=2 is determined by the func
tion λ; see Griffiths and Tavaré (1994b). We can construct {Tk}nk=2 in 
terms of λ as follows: let {Dn(t)}t∈R+ 

be a pure death process with 
rate k2 at state k ∈ {1, 2, . . . , n}, starting at Dn(0) = n, and let

D(λ)
n (t) = Dn ∫t0

1
λ(u)

du
􏼒 􏼓

(A25) 

be a time-changed pure death process. Then

Tk= ∫∞0 1{D(λ)
n (t) = k} dt = σn−k+1 − σn−k, 

for 2 ≤ k ≤ n, where σ1 < σ2 < · · · < σn−1 are the jump times of D(λ)
n (by 

convention σ0 = 0).
By (A25), the jump times of the pure death process Dn, denoted 

by 􏽥σ1 <􏽥σ2 < · · · <􏽥σn−1, are given by ∫σj

0
1
λ =􏽥σj for 1 ≤ j ≤ n − 1. Hence, 

with the convention σ0 = 0, for 0 ≤ j ≤ n − 2 we have

σ j+1 − σ j

C0
≤∫σ j+1

σj

1
λ(t)

dt =􏽥σ j+1 −􏽥σ j.

These give Tk = σn−k+1 − σn−k ≤ (􏽥σn−k+1 −􏽥σn−k)C0 for all 2 ≤ k ≤ n.
Since 􏽥σn−k+1 −􏽥σn−k is equal in distribution to the analog of Tk for the 

Kingman coalescent, Tk is stochastically dominated by C0 times an ex
ponential variable with parameter k(k − 1)/2 for all 2 ≤ k ≤ n. The de
sired statement now follows since (A18) and (A19) are satisfied.  □

Replacing τj by its mean
By using the expected coalescence times denoted τ̅i in the main 
text, we implicitly assumed that different sites have different trees 
and that these are all drawn from the same distribution. Theorem 
A5 below asserts that even though the mutant counts at each site 
are conditional on the realization of the tree at that site, we can re
place τj by its expectation En[τj] in Theorem A3 when the trees are 
random and satisfy suitable assumptions. The key reason is that τj 

is close to its mean, as made precise in Lemma A4.

Lemma A4. Suppose (A22) holds and that the covariance

Cov(Tk, Tk′ ) ≤
Cn

k(k − 1)k′(k′ − 1)
(A26) 

for 2 ≤ k < k′ ≤ n and n ≥ 2, where {Cn} is a sequence that tends to 
0 as n→∞. Then for each j ≥ 1, the variance Var(τj)→ 0 as 

n→∞. In particular, |τj − E[τj] | → 0 in L2(P) as n→∞.

Proof. By further taking expectations in (A23) and (A24) with re
spect to En, we obtain the variance

Var(τj) = En[τ2
j ] − (En[τj])

2

= 2
􏽘

k<k′
kk′(En[TkTk′ ]p(k, j; k′, j)

− En[Tk]En[Tk′ ]p(k, j)p(k′, j))

(A27) 

up to an O( log n
n ) term. This follows from Fu (1995, eqns. (24)-(25)) 

and assumption (A22) in Lemma A3. This also leads to (A21).

By assumptions (A22) and (A26), the double sum in (A27) is 
bounded above by
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Cn

􏽘

k<k′

p(k, j; k′, j)
(k − 1)(k′ − 1)

+ C∗
􏽘

k<k′

p(k, j; k′, j) − p(k, j)p(k′, j)
(k − 1)(k′ − 1)

. (A28) 

By Fu (1995, eqns. (29) and (22)), the first and second terms of (A28) 

are of order o(n) and O( log n
n ), respectively, as n→∞ for each j ≥ 1. 

The completes the proof of limn→∞ Var(τj) = 0. The latter implies, 

by Chebyshev’s inequality, that τj − E[τj]→ 0 in L2 as n→∞.   □

Theorem A5 (Poisson approximation for counts across loci). Let 
{Tn}n≥2 be a sequence of random coalescent trees which are the 
generalized coalescent trees of Griffiths and Tavaré (1998). 
Suppose supt≥0 λ(t) < ∞ and assumption (A26) holds. Let aj be the 
number of mutations on Tn with counts j. Then for any positive in
teger b and any θ ∈ (0, ∞), the variables {aj}

b
j=1 are asymptotically 

independent and aj ∼ Poisson( θ
2 En[τj]) for 1 ≤ j ≤ b, as n→∞.

Proof. By Theorem A4, the probability that nested mutation up 
to count b occurs tends to 0 as n→∞. The result then follows 
from Lemma A4 and Theorem A3.                                               □

It can be checked that exponentially growing popolations clear
ly satisfy supt≥0 λ(t) < ∞ and also assumption (A26). The conclu
sions of Theorems A4 and A5 then hold for the generalized 
coalescent trees of Griffiths and Tavaré (1998) when λ(t) = eβt for t ∈ 
R+ for some β > 0.

Equipped with Theorem A5, we write τ̅i = En[τi] as in the main 
text and compute the probability generating function Gn,k of the 
count of the variant of interest and its number of latent muta
tions. The count of the variant of interest is n =

􏽐
i iai and its num

ber of latent mutations is k =
􏽐

i ai. Hence

Gn,k(x, y) =
􏽘

(a1,a2,...)

P(a1, a2, . . . )xnyk

= e−θ
2

􏽐
i
τ̅i
􏽘

(a1,a2,...)

x
􏽐

iai y
􏽐

ai
􏽙

i≥1

(θτ̅i/2)ai

ai!

= e−θ
2

􏽐
i
τ̅i
􏽘

(a1,a2,...)

􏽙

i≥1

xiai yai (θτ̅i/2)ai

ai!

= e−θ
2

􏽐
i
τ̅i
􏽙

i≥1

􏽘

ai≥0

xiai yai (θτ̅i/2)ai

ai!

= e−θ
2

􏽐
i
τ̅i
􏽙

i≥1

exiyθτ̅i/2

= e−θ
2

􏽐
i
τ̅i e

θ
2y
􏽐

i
xi τ̅i

= e−θ
2

􏽐
i
τ̅i
􏽘∞

k=0

(
θ
2

)kyk

k!

􏽘

i

xi τ̅i

􏼠 􏼡k

(A29) 

as declared in the main text.

A remark on the total number of mutations for large n1

The stable probabilities observed in the lower three panels of 
Fig. 6 and in Fig. 4b suggest that the conditional distribution of 
k1 given n1 and a very large n will approach a distribution as n1 

gets larger. That this is the case under constant population size 
follows from the fact, here as in “A conditional ancestral process 
for rare variants,” that the number of alleles in the Ewens sam
pling formula is the sum of independent Bernoulli trials 
(Arratia et al. 1992, 2000). The limiting large-n1 distribution is 
Poisson, but shifted because there must be at least one mutation 
to produce n1 > 0 copies, so it is k1 − 1 that is Poisson. See 
Proposition 3.1 of Yamato (2017).

By the following heuristic argument, we suggest that this 
result holds more broadly, in particular for growing popula
tions or ones in which τ̅i decreases at least as fast with i as in 
the constant-size model, whatever the reason. In this case, 
when a mutation occurs it will very likely produce a low-count 
variant because τ̅i/

􏽐
i τ̅i for small i will be much greater than 

τ̅n1/
􏽐

i τ̅i for large n1. A large-n1 variant which is due for ex
ample to k1 = 2 latent mutations will very likely have a count 
pattern such as (a1 = 1, an1−1 = 1) or (a2 = 1, an1−2 = 1) and very 
unlikely to have one such as (an1/2−j = 1, an1/2+j = 1) for some 
small j.

Then we expect the probability (31) of seeing n1 copies given k1 

latent mutations to be close to

p(n1|k1; n large, τ) ≈ k1
τ̅n1

􏽐n−1
i=1 τ̅i

when n1 is large, 

because each of the k1 mutations has a small chance ̅τn1/
􏽐

i τ̅i of 
producing an appropriately large number of copies, the other 
k1 − 1 mutations being inconsequential to the total count. 
Multiplying by the Poisson distribution of k1 in (30) and re
arranging gives

p(n1, k1; n large, τ) ≈ k1
τ̅n1

􏽐n−1
i=1 τ̅i

(
θπ1

2
􏽐n−1

i=1 τ̅i)
k1

k1!
e−θπ1

2

􏽐n−1

i=1
τ̅i

=
θπ1

2
τ̅n1 ·

(
θπ1

2
􏽐n−1

i=1 τ̅i)
k1−1

(k1 − 1)!
e−θπ1

2

􏽐n−1

i=1
τ̅i 

for large n1. To the left of the · is a probability like (7). To the 
right of the · is the shifted Poisson distribution, which implicit
ly averages over the (small) sizes of the k1 − 1 additional 
mutations.

Editor: G. Coop
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