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Summary

The cerebellum is thought to detect and correct errors between intended and executed 

commands1,2 and is critical for social behaviors, cognition and emotion3–6. Computations 

for motor control must be performed quickly to correct errors in real time and should be 

sensitive to small differences between patterns for fine error correction while being resilient to 

noise7. Influential theories of cerebellar information processing have largely assumed random 
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network connectivity, which increases the encoding capacity of the network’s first layer8–13. 

However, maximizing encoding capacity reduces resiliency to noise7. To understand how neuronal 

circuits address this fundamental tradeoff, we mapped the feedforward connectivity in the 

mouse cerebellar cortex using automated large-scale transmission electron microscopy (EM) 

and convolutional neural network-based image segmentation. We found that both the input and 

output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast 

with prevailing models. Numerical simulations suggest these redundant, non-random connectivity 

motifs increase resilience to noise at a negligible cost to overall encoding capacity. This work 

reveals how neuronal network structure can support a trade-off between encoding capacity and 

redundancy, unveiling principles of biological network architecture with implications for artificial 

neural network design.

Seminal work in the 1960s and 70s14,15 provided the basis for influential theories of 

cerebellar information processing8,9. At the input layer, a relatively small number of mossy 

fibers (MFs, input neurons) are hypothesized to be randomly sampled by a massive numbers 

of granule cells (GrCs, parallel fibers) resulting in expansion recoding (Fig. 1a,b). Through 

non-linear activation of the GrCs, expansion recoding projects MF sensory and motor 

information into a high dimensional representation facilitating pattern separation10–13,16 

(Fig. 1c). At the output layer, each Purkinje cell (PC, readout neuron) integrates tens of 

thousands of GrC inputs to form appropriate associations8,9,17 and are the sole output of the 

cerebellar cortex (Fig. 1a,b). Association learning is hypothesized to occur through linear 

decoding17 and reinforcement learning rules6,18,19 and may help generate subnetworks 

of PCs suitable for ensemble learning20,21. This network architecture of expansion and 

re-convergence is also seen in the mushroom body of fly and the electrosensory lobe of 

electric fish13,22–24, suggesting that cerebellar architecture exemplifies a general principle 

of neuronal circuit organization critical for separating neuronal activity patterns before 

associative learning. Indeed, these input and output layers are similar to convolutional and 

linear output layers in artificial deep neural network architectures25 (Extended Data Fig. 1).

Information theoretical models usually assume that MF→GrC connectivity is random in 

order to maximize the encoding capacity of the input layer of the network8–11,13. However, 

maximizing encoding capacity makes networks less resilient to noise7. To understand 

how the cerebellar cortex balances the tradeoff between encoding capacity and resilience, 

we mapped the precise synaptic connectivity across both input (MF→GrC) and output 

(GrC→PC) layers of the feedforward circuit in the cerebellar cortex.

3D EM reconstruction

We generated a synapse-resolution EM dataset that contains a proximal portion of lobule 

V from the adult mouse vermis (Fig. 1d, Extended Data Fig. 2a). The sample was cut into 

1176 serial parasagittal sections, each ~45 nm thick and imaged at a resolution of 4 × 

4 nm2 per pixel. The dataset was aligned into a 37.2 trillion voxel volume spanning ~28 

million μm3 (Supplementary Video 1). To facilitate analysis, we densely segmented neurons 

using artificial neural networks (Fig. 1e, Extended Data Fig. 2). To process a large EM 

dataset efficiently, we developed a scalable framework to process the dataset in parallel 
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(Extended Data Fig. 2c) and a proofreading platform (Extended Data Fig. 2d) for targeted 

neuron reconstruction (Extended Data Fig. 2e). We predicted synapse locations and their 

weights using a separate artificial neural network trained to identify synapses based on 

their ultrastructural features (Extended Data Fig. 2f and 4a,b) with high accuracy (precision: 

95.4%, recall: 92.2%, f-score: 93.8%). In total, we reconstructed >5,500 neurons (Fig. 

1a,e) and analyzed >150,000 synapses (116,571 MF bouton→GrC and 34,932 GrC→PC) 

constituting >36,000 unitary connections (13,385 MF bouton→GrC and 23,365 GrC→PC).

Structured MF→GrC connectivity

We first tested the hypothesis that feedforward connectivity in the input layer (MFs→GrCs) 

was random. To do so, we densely reconstructed neurons in the GrC layer and identified 

MFs and GrCs based on morphology15 (Fig. 2a,b, Extended Data Fig. 3a,b, Supplementary 

Data 1-2, Video 2). The basic properties of GrCs and MFs were consistent with prior 

findings11,26. GrCs had 4.38 ± 1.00 (mean ± SD) dendrites (Extended Data Fig. 3c), each 

of which ended in a “claw” that wrapped around and received 10.4 ± 5.6 (mean ± SD) 

synapses from a single MF bouton (Extended Data Fig. 4). GrC dendrites measured 21.7 ± 

8.5 μm (mean ± SD) from the cell body center to the center of the presynaptic MF bouton 

(Extended Data Fig. 3d,e). Individual MF boutons were sampled by 14.8 ± 8.4 (mean ± SD) 

GrCs. Though MF collaterals give rise to multiple boutons in the GrC layer, MF boutons are 

typically spaced such that the likelihood of individual GrCs innervated by multiple boutons 

from the same MF is low11,15,27. While a subset of MF boutons in the dataset belonged to 

the same MF axons (n = 182 out of 784 boutons), we found that GrCs rarely received inputs 

from different boutons of the same MF axon (n = 20 out of 4400) in the dataset. Notably, 

our subsequent analyses did not significantly change when we considered MF boutons 

independently or combined MF boutons arising from the same reconstructed axons (data 

not shown), so for the remainder of our analysis we focus on MF boutons. Additionally, we 

found a small fraction (8.8%) of MF boutons have axon collaterals that each make one or 

two synapses onto dendrites and claws of GrCs; however, the vast majority of synapses were 

from the main MF boutons (Extended Data Fig. 5).

Recent theoretical work has assumed unstructured MF→GrC connectivity, which implies 

low levels of shared MF bouton inputs between GrCs12,13,28 even when considering 

the limited reach of their dendrites11,26. We found GrC pairs shared 2 or more MF 

bouton inputs more often than predicted by anatomically-constrained random connectivity11 

(reconstructed: 4.43 ± 3.63, shuffled: 2.34 ± 2.08, mean ± SD; p = 3.9 × 10−12, n = 211, 

two-sided Wilcoxon rank-sum test, Fig. 2c,d, Extended Data Fig. 3f–h). The distribution 

of sharing is consistently higher across different numbers of shared inputs and synapse 

prediction accuracies (Extended Data Fig. 3i–m, Extended Data Fig. 6a, Extended Data 

Fig. 7a). Oversharing of inputs among GrCs implies an overconvergence of MF boutons 

(Extended Data Fig. 6b), and suggests that GrC activity is more correlated than expected, in 

opposition to the prediction that MF→GrC encoding minimizes population correlations to 

maximize encoding capacity7–9,12,13.

Furthermore, we found that MF boutons were not sampled uniformly: the most connected 

third of MF boutons had 4 times as many postsynaptic GrCs as the least connected third of 
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MF boutons (Extended Data Fig. 3n). To rule out the possibility that MF boutons simply had 

high variability in the number of postsynaptic partners (σ2: 0.522 vs. 0.297 (reconstructed 

vs. random), p = 0.001, permutation test, n = 62), we quantified the overrepresentation of 

MF boutons by GrCs with their kurtosis and skew measuring prevalence of outliers and 

asymmetry of the distributions respectively and found each to be significantly greater than 

those of random connectivity models (kurtosis: 1.49 vs. −0.01 (reconstructed vs. random), p 
= 0.0146; skew: 0.963 vs 0.233 (reconstructed vs. random), p = 0.0178; permutation tests, 

Fig. 2e, Extended Data Fig. 3f,o, Extended Data Fig. 7b). By overrepresenting inputs from 

select MF boutons, these inputs are redundantly encoded by more GrCs, influencing more 

of the GrC coding space (Fig. 2f). Select MF boutons may be more informative or reliable, 

potentially enhancing noise resiliency of specific inputs. In summary, we found oversharing 

and overrepresentation to be two redundant wiring motifs that permit expansion coding in 

the input layer to be more robust to noise and may partially explain low dimensional GrC 

activity recently reported in vivo29–31.

Selective GrC→PC connectivity

In the output layer, given that adjacent PC dendrites share many potential GrC axon 

inputs (Fig. 1e, Fig. 3a), we hypothesized that there are redundant and non-random motifs 

within the GrC→PC connectivity that could contribute to PC synchrony32–34. Given the 

convergence of PCs to downstream deep cerebellar nuclei (DCN), we propose that structured 

GrC→PC connectivity can give rise to groups of partially redundant PCs to produce 

more accurate pattern associations. To test these hypotheses, we densely reconstructed 

the connectivity between GrC axons and PCs (Supplementary Data 2-3 and Videos 2-3). 

Reconstructed GrC axons were categorized as either “local” or “non-local”. Local GrC 

axons (n = 541) had cell bodies within the EM volume, while non-local GrC axons (n 

= 4,439) were parallel fibers without a cell body identified within the dataset. Dendrites 

of reconstructed PCs (n = 153 total, n = 28 with somas) ramified across an area of 208 

± 5.2 μm by 158 ± 19.5 μm (mean ± SD) in height and width (Supplementary Data 3), 

consistent with light microscopy15. A common assumption used in computational models 

is that all GrC-PC pairs that contact each other make synapses13,17. However, we found 

the connectivity rate was 49 ± 4.4% (mean ± SD) (Fig. 3a,c, Extended Data Fig. 8a), with 

each GrC→PC connection typically comprising one or two synapses (Extended Data Fig. 

4c), consistent with prior work35–37. The lack of all-to-all GrC→PC connectivity raised the 

question of how selective these unitary connections are and how this selectivity constrains 

information processing and plasticity mechanisms in the circuit.

To examine selectivity in GrC→PC connectivity, we compared pairs of PCs by using 

Hamming similarity as a metric to quantify the similarity in their GrC input populations, 

which accounts for both connected and non-connected GrC-PC pairs (Fig. 3b). PC input 

patterns from local and non-local GrC axons were significantly more similar than shuffled 

controls, and local GrCs have significantly more similar connection patterns onto PCs than 

non-local GrC axons (Fig. 3d; local: 0.567 ± 0.071, non-local: 0.513 ± 0.065, shuffled: 

0.503 ± 0.056 (mean ± SD); local GrC axons vs. shuffle, p = 4.9 × 10−61; non-local GrC 

axons vs. shuffle, p = 0.0043; non-local GrC axons vs. local GrC axons; p = 9.1 × 10−32; 

Kruskal-Wallis and Dunn’s post hoc tests, Bonferroni corrected for multiple comparisons), 
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suggesting that PCs exhibit input selectivity. Then, when comparing pairs of GrCs based on 

the PCs to which they provide input, we detected a small yet significant trend suggesting 

that sharing MF inputs influences GrC→PC connectivity (Extended Data Fig. 8b, p = 1.1 × 

10−4, Kruskal-Wallis test). The difference between local and non-local inputs may be related 

to the differences in dimensionality recorded from localized GrC cell bodies30,31 versus GrC 

axons in the molecular layer38.

Modeling network capacity & resilience

To explore the functional implications of the observed connectivity, we modeled pattern 

separation, a hypothesized function of the expanded representation from MFs to GrCs8–13 

(Fig. 1c). We used dimensionality12,13 to quantify network encoding capacity, and signal-to-

noise ratio (SNR) to quantify pattern separation performance and robustness to noise (Fig. 

4a). We computed the dimensionality of the GrC population for input patterns with different 

levels of variability to better understand how the system separates similar versus different 

input patterns. It has been suggested that random connectivity maximizes dimensionality7,13, 

which predicts the observed redundant and selective connectivity motifs would decrease 

dimensionality. Although the reconstructed network showed lower dimensionality than 

random connectivity when the variability between input patterns was large, overall the 

reconstructed network preserved high dimensionality, particularly for less variable input 

patterns (Fig. 4b, Extended Data Fig. 9a). We next investigated amplification of selected 

inputs and noise resiliency as two possible benefits of redundant and selective connectivity. 

Examining over- and under-represented MF inputs separately, we found that dimensionality 

for overrepresented MF inputs increased, allowing them to utilize more of the encoding 

space (Fig. 4c), and increasing their pattern separability performance (Extended Data 

Fig. 9b). This may help with discriminating similar input patterns and possibly increase 

resilience to noise7. Furthermore, we found redundant oversharing of inputs increased noise 

robustness for a subset of the GrCs (Extended Data Fig. 9c,d), which may help increase 

reliability. Finally, we explored how the observed selective GrC-PC subsampling (Fig. 

3c,d) could influence decoding from the perspective of PCs. Selective GrC-PC subsampling 

(Extended Data Fig. 9e) substantially increases pattern separability compared to random-

subsampling or all-to-all connectivity (Fig. 4d, Extended Data Fig. 9f). Interestingly, the 

observed absence of roughly half of potential GrC axon inputs only slightly decreased 

dimensionality (Extended Data Fig. 9g,h). This suggests a preservation of information across 

layers by the network that may be supported by the redundant and selective connectivity 

motifs of the input layer.

Discussion

In summary, we found two connectivity motifs in the input layer: redundant oversharing of 

inputs among GrCs (Fig. 2c), and selective overrepresentation of specific MF boutons (Fig. 

2e). Computational analyses suggest these features support a trade-off between network 

capacity and robustness, possibly to combat input variability and synaptic noise37,39. These 

findings run counter to prevailing models of random connectivity where dimensionality 

is solely maximized8–13 and may partially explain recent findings of lower-than-expected 

dimensionality of in vivo GrC activity29–31. Selective overrepresentation of MF boutons, 

Nguyen et al. Page 5

Nature. Author manuscript; available in PMC 2023 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in addition to increasing redundancy of signals from more informative inputs, could also 

be a mechanism for differential integration of multimodal MFs40,41. Our findings are 

also compatible with the hypothesis of activity-dependent synaptic plasticity underlying 

learned representational changes in MF-GrC connectivity6,42. Future studies incorporating 

long-range connectivity40,41,43 and functional characterization30,31 may reveal why some 

MF boutons are oversampled relative to others.

At the output layer, we found the connectivity rate of GrC to PCs to be ~50% (Fig. 3c) and 

observed some input similarity between adjacent PCs, consistent with learning occurring in 

the output layer8,9 (Fig. 3d). For neighboring PCs, a balance of similar, but non-identical 

inputs may serve to ensure variability and non-convergent learning, enabling a trade-off 

between specificity and generality. This may allow downstream cells in the DCN to more 

effectively implement ensemble learning, a machine learning approach where many weak 

and redundant learners (i.e. PCs) are pooled to make a more accurate prediction20,21.

In conclusion, we examined the feedforward connectivity of the cerebellum at synapse 

resolution, unveiling the role of non-random redundancy within a circuit that was 

hypothesized to rely on randomness for optimal performance. This is consistent with 

non-random biases detected in the parallel fiber system of the fruit fly44,45, suggesting a 

conserved principle of circuit architecture across species. Beyond the feedforward network, 

we expect continued analysis of the dataset will enable the comprehensive examination 

of cell types making up the cerebellar network14–16,46–49. Considering its similarities to 

modern deep learning architectures (Extended Data Fig. 1), our findings of structured 

connectivity may help to improve artificial intelligence algorithms, build and constrain more 

complete circuit models, and further our understanding of learning rules6,18,19 underlying 

cerebellar motor control and cognitive function3,6,42,50.

Methods

Experimental animals.

Experimental procedures were approved by the Harvard Medical School Institutional 

Animal Care and Use Committee and performed in accordance with the Guide for Animal 

Care and Use of Laboratory Animals and the animal welfare guidelines of the National 

Institutes of Health. The mouse (Mus musculus) used in this study was a P40 male 

C57BL/6J (Jackson Laboratory) housed on a normal light–dark cycle with an ambient 

temperature of 18–23°C with 40–60% humidity.

Sample preparation.

The specimen was prepared for EM as described previously51,52. We used an enhanced 

rOTO protocol for heavy metal staining51,53 followed by dehydration in a graded ethanol 

series and embedding in LX112 resin (Ladd Research Industries). The sample was 

polymerized at 60°C for 3 days.
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Sectioning and imaging.

The EM dataset of the cerebellum (Fig. 1d,e, Extended Data Fig. 2a) was collected 

and imaged using the GridTape pipeline for automated serial-section TEM52. In brief, 

embedded samples were trimmed (Trim 90, Diatome). Serial ~45 nm-thick sections were 

cut using a 35° diamond knife (Diatome) and collected onto LUXFilm-coated GridTape 

(Luxel Corporation). A total of 1176 sections were cut for a total of ~49.5 μm total 

sample thickness. There were 91 single-section losses, 20 instances of adjacent two-section 

losses, 5 instances of adjacent three-section losses, 2 instances of adjacent four-section 

losses, and 1 instance of an adjacent five-section loss. Folds, staining artifacts, and cracks 

occasionally occurred during section processing, but were typically isolated to section edges 

and therefore not problematic.

Sections were imaged on a JEOL 1200EX transmission electron microscope at 120 kV 

accelerating potential at 2,500× magnification using a reel-to-reel GridTape stage and a 2 × 

2 array of sCMOS cameras (Zyla 4.2, Andor) at 4.3 nm/pixel52. Imaging required 521 hours 

of acquisition on a single tape-based transmission electron microscope with a camera array. 

The EM images were then stitched together and aligned into a continuous volume using the 

software AlignTK (https://mmbios.pitt.edu/software#aligntk).

The aligned EM sections were then first imported into CATMAID54, then to Zarr 

(github.com/zarr-developers/zarr-python) and N5 containers (github.com/saalfeldlab/n5) for 

visualization and segmentation.

Automated segmentation.

We adapted an automated segmentation workflow based on a segmentation pipeline for 

TEM data55,56. In brief, the pipeline consists of three steps: (1) affinity prediction, fragment 

extraction (over-segmentation), and agglomeration. The affinity prediction uses a 3D U-net 

convolutional neural network (CNN)57 to predict a “connected-ness” probability of each 

voxel to adjacent voxels. An over-segmentation graph is then produced through a watershed 

algorithm (2D per-section), and agglomeration is performed iteratively using the “mean 

affinity” metric58 set at 0.5 threshold (segments are only joined when their immediate 

boundary has affinity greater than 0.5). We modified the original code56 (without local shape 

descriptors) to optimize for runtime performance and to adapt to our supercomputing cluster 

environment (Harvard Medical School Research Computing). The input to the network is a 

two-fold downsampled in XY images (effective resolution 8 × 8 × 40 nm); we found the 

decrease in size and performance to outweigh a minor reduction in accuracy.

Affinity CNN training.—We trained the CNN using a two-step process: bootstrapped 

ground truth (GT), and subsequent refinement based on skeleton GT. A set of bootstrapped 

GT was first created by applying a trained CREMI network (https://cremi.org/) directly 

on several subvolumes of the dataset, then applying manual corrections using Armitage/

BrainMaps (Google internal tool). Training on these bootstrapped GT volumes generated an 

over-segmenting network.
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To further improve the accuracy of the network, we scaled up the GT coverage to include 

2 regions in the GrC layer, 3 regions in the molecular layer, and 1 region in the Purkinje 

cell layer – each 6 × 6 × 6 μm (1536 × 1536 × 150 voxels) in size. To accurately and 

efficiently proofread these volumes, we developed a skeleton-based GT method where we 

used the connectivity of the manually annotated point-wise skeletons of neurons to correct 

for errors of the bootstrapped network output. First, human tracers produced dense skeletons 

of the GT volumes using CATMAID54. To correct for split errors, the bootstrapped outputs 

were agglomerated at very high thresholds (0.7–0.9) to produce an under-segmented graph. 

Then the GT skeletons are used to correct merge errors, producing an output that can be 

reviewed and used for improved network training. We iteratively performed the annotation-

train-review loop several times per volume as needed (sometimes without further annotation) 

to converge on a set of high-quality GT volumes.

Using the above GT volumes and supplementary volumes (to be described later), we trained 

the network using gunpowder (https://github.com/funkey/gunpowder). We used the CREMI 

network architecture for TEM images55. In brief, the U-net had four levels of resolution 

with downsampling factors in xyz of (3,3,1), (3,3,1), and (3,3,3). The topmost level had 12 

feature maps, with the subsequent levels increasing the number of feature maps by 5 fold. 

Each layer was composed of two convolution passes with kernel sizes of (3,3,3) followed by 

a rectified linear unit (ReLU) activation function. A final convolution of kernel size (1,1,1) 

with 3 feature maps and a sigmoid function produced the affinity probability map. The 

mini batch input size was 268 × 268 × 84 pixels, and the output size was 56 × 56 × 48 

pixels. An Adam optimizer was used with learning rate = 0.5 × 10−4, beta1 = 0.95, beta2 = 

0.999, epsilon = 10−8. Gunpowder’s built-in augmentations were used to enable more varied 

training samples – these include elastic deformation, rotation in the z-axis, artificial slip/shift 

misalignment, mirroring, transpose, and intensity scale and shift, and missing sections. We 

also wrote and added duplicated augmentation that randomly selects a section and duplicates 

it up to 5 times. This is to simulate missing sections where, during deployment, missing 

sections are replaced with adjacent non-missing data sections. We trained the network to 

350,000 iterations.

To evaluate performance of the neural network on unseen data, we further densely traced GT 

skeletons in another 9 cutouts in various regions of the GrC layer - each spanning 6 × 6 × 6 

μm (1536 × 1536 × 150 voxels) in size - and used custom code to evaluate split and merge 

errors. Compared with other metrics like VOI or RAND index, comparing the number of 

topological errors is a more direct assessment of the amount of time that proofreaders will 

take to correct split and merge errors. Plus, producing skeleton GT cutouts is faster, allowing 

us to make more GT in less time. Evaluating across different artificial neural network 

parameters, we found that our best segmentation network, at an agglomeration threshold of 

0.5, produces an average of 2.33 false merges and 27 false splits per cutout (Extended Data 

Fig. 2e). Analyzing the results in depth, we found that most false splits belong to small 

axons at locations with poorly aligned or missing sections.

Supplementary ground truth sub-volumes.—Beyond the targeted performance 

evaluation with the nine GT cutouts as described above and before deploying the network 

across the entire dataset, we had to address problems with segmenting (1) myelin that spans 
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across large regions of the dataset often resulting in merge errors, (2) broken blood vessels 

that resulted in merge errors with surrounding neurons, (3) darkly stained mitochondria that 

can make adjacent neuron membranes ambiguous, and (4) GrC axons that are sometimes 

darkly stained.

To address myelin, we produced 3 additional volumes of regions with dense myelin labeled 

and trained the network to predict low (i.e., zero) affinity for myelin-containing voxels; the 

fragment extraction step was then modified to remove fragments that have averaged affinity 

(average of x, y, z affinity values) less than 0.3. The removal of these fragments reduced 

myelin-related merge errors.

Blood vessels are relatively large structures in EM that are typically easy to segment. Broken 

capillaries (during serial sectioning), however, can produce artifacts with misalignments, 

blending with surrounding neurites and producing merge errors. To address this problem, 

we used Ilastik59 to train a machine learning model (random forest) on 32-fold XY 

downsampled EM images (effective resolution 128 × 128 × 40 nm) to detect blood vessel 

voxels and mask them out from the affinity prediction prior to the fragment extraction step.

Mitochondria are often darkly stained in the EM dataset. Because the network is trained 

to predict high affinities for electron-dense membranous structures including mitochondria, 

the network can under-predict neuron boundaries when mitochondria are right next to 

the boundaries creating conditions that can be ambiguous even to human experts. We 

sparsely annotated an additional GT cutout (3 × 6 × 3 μm in size) with dense mitochondria 

for training the segmentation network. To our surprise, this worked well without further 

masking agglomeration or other post processing steps.

Last, there were an infrequent number of GrC axons that were partially darkly stained. 

These would often be normally stained proximal to the soma but became more darkly 

stained distally before becoming normally stained again along the ascending portion of the 

axon. Human annotators can often trace these axons reliably, but they generated errors by 

the initially trained segmentation network. To mitigate this problem, we made a skeleton GT 

cutout specifically targeting a region dense with dark GrC axons and added it to the training 

procedure. Except for regions where multiple darkened axons come together to form a tight 

bundle of axons, this was effective for segmenting isolated dark axons, speeding up the bulk 

of the GrC axon reconstruction process.

Large-scale parallel processing deployment.—To efficiently run the trained CNN 

and other steps in the automated segmentation pipeline across a large dataset, we developed 

Daisy60, an open-source work scheduler that can divide the input dataset into spatial chunks 

and operate on them in parallel (Extended Data Fig. 2c). We developed Daisy with the 

following design requirements: (1) be scalable and efficient across thousands of workers, 

(2) be able to tolerate worker and scheduler failures and resumable across reboots, (3) be 

extensible to non-segmentation tasks, (4) be Python-native for ease of integration with the 

existing pipelines, and (5) be able to provide on-the-fly dependency calculation between 

computational stages. At the time of development, no existing tools met such requirements.
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Targeted neuron reconstruction and proofreading.—Although split and merge 

errors exist in the automated segmentation, such errors are usually easy for humans to 

recognize in 3D visualizations of reconstructed neurons. Thus, proofreading automated 

segmentation results is typically faster than manual tracing. That said, merge errors – 

especially between big neurons and in regions not well-represented by the GT – are 

endemic for large EM volumes, requiring a low merge-threshold (which creates more split 

errors), sophisticated un-merge algorithms, and/or exorbitant person-hours to proofread and 

diagnose where the merge errors happen. These obstacles make using automated large-scale 

segmentation inaccessible to labs with less resources.

To combat the merge error problem, we developed merge-deferred segmentation (MD-Seg) 

proofreading method, a novel workflow that pre-agglomerates fragments only in local 

blocks (4 × 8 × 8 μm in this work) and defers inter-block merge decisions to proofreaders. 

In this manner, if there is a merge error, it is limited to the local block and not automatically 

propagated to hundreds of other blocks which may contain even more merge errors. 

While deferred, inter-block merge decisions of each neuron are still computed and on-line 

accessible to proofreaders through a hot key in the user interface, which is based on 

Neuroglancer (https://github.com/google/neuroglancer) (Extended Data Fig. 2d).

By deferring merge decisions across the dataset, MD-Seg allowed us to focus proofreading, 

targeting regions and cells of interest. Although conventional proofreading can also target 

specific neurons, because agglomeration is performed globally, a generally high-quality 

assurance (QA) is needed to be performed for all neurons prior to proofreading to minimize 

excessive errors among these neurons to the neurons of interest. This pre-proofreading QA 

burden can be excessive for projects with fewer GT and resources, preventing the start of 

proofreading. In contrast, in MD-Seg, errors between non-targeted neurons do not affect 

segmentation quality of targeted neurons in most cases. Furthermore, because local blocks 

are agglomerated separately, it is easier to run segmentation for parts of the dataset, or re-

run and update segmentations for specific regions without affecting on-going proofreading 

progress.

To reconstruct neurons in MD-Seg, MFs, GrCs, and PCs were first identified manually based 

on their stereotypical morphological characteristics15 (Fig. 1f, Supplementary Data 1-3 

and Videos 2-3). Proofreaders typically started by selecting a neuron fragment (contained 

within a single block), and sequentially ‘grew’ the neuron by adding computed merge 

decisions of fragments in adjacent blocks through a hot-key. During each growth step, the 

3D morphology of the neuron was visualized and checked for errors. When merge errors 

occur, the blocks containing the merge are ‘frozen’ to prevent growth from the merged 

segment. When a neuron branch stops growing (has no continuations), the proofreader 

inspects the end of the branch to check for missed continuations (split errors). In this way, 

both split and merge errors can be corrected.

At any time during growth steps, the proofreader can associate annotations like “uncertain 

continuations” (potential split errors) as well as periodically save the partial progress of 

the reconstructed neurons into an on-line database. Upon saving, MD-Seg automatically 

checks if the neuron overlaps with any existing saved neurons, and reports a failure back 
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to the proofreader, enforcing an invariance that any single fragments can only belong to 

one neuron object. For neurons with higher complexity and overlapping branches (such 

as a Purkinje cell), to decrease cognitive load, proofreaders saved the neuron as simpler 

sub-objects (e.g., purkinje_0.axon, purkinje_0.dendrite_0, …). Once a neuron is marked as 

completed, a reviewer then loads the neuron to check for possible split or merge errors in a 

second independent review. Gallery of example reconstructions of MFs, GrCs, and PCs are 

provided (Supplementary Data 1-3 and Videos 2-3).

Using this pipeline, we reconstructed 153 PCs (total; 28 with somas), 784 MF boutons and 

2,397 GrCs based on morphology. 550 of the 784 MF boutons are from unique MFs, with 

rare instances of GrCs receiving input from different boutons belonging to the same MF 

(n = 20). 541 of the 2,397 GrCs had axons extending into the molecular layer. We also 

reconstructed 4,439 axons from GrCs whose cell bodies were not present in our volume.

Automated synapse prediction.

We adapted an artificial neural network for synapse prediction on mammalian brain datasets 

using synful61. We modified the algorithm to predict synaptic clefts from pointwise ground 

truth annotations and identified pre- and post-synaptic partners by applying the synapse 

directionality prediction on the cerebellum dataset. We used webKnossos62 to make rough 

synaptic cleft masks and trained the network to predict these cleft masks. We found that 

training the network to identify the synaptic clefts produced more generalizable results 

than either pre- or post-synaptic point predictions and removed ambiguity of one-to-many 

or many-to-one synapses if only the pre- or post-synaptic partners are predicted. For the 

network architecture, we used the “small” network size and the cross-entropy loss. We 

downsampled the GT cutouts by a factor of four in the x- and y-dimension for an effective 

resolution of 16 × 16 × 40 nm prior to training. Consequently, we reduced the downsampling 

factors of the U-Net to (2,2,1), (2,2,1), and (2,2,3).

To train and evaluate the synapse prediction network, we annotated nine GT cutouts of 

the GrC layer (GCL; previously used for evaluating the automated segmentation network, 

see above), two more of the molecular layer (ML), and one more of the PC layer (PCL) 

– all of which are 6 × 6 × 6 μm. Five of the GCL cutouts and one of the ML cutouts 

were used for training – the rest were used for evaluation. Because of the efficiency 

of pointwise GT generation, we were able to produce a large amount of GT for both 

training and evaluation. The synapse predictions exhibited excellent accuracy (precision: 

95.4%, recall: 92.2%, F-score: 0.938; Extended Data Fig. 2f), exceeding that of other TEM 

datasets52,61 (F-score: ~0.60–0.75) and FIB-SEM datasets63 (precision/recall: ~60–93%). It 

must be noted, however, that other datasets are of Drosophila, which have smaller and more 

numerous synapses that lead to disagreements even among expert annotators61,63. Inspecting 

the synapse predictions, we found that prediction “errors” are typically ambiguous GCL 

synapses consistent with errors found evaluating synapse predictions elsewhere63. In 

contrast, there were no mispredictions in the ML evaluation dataset where synapses are 

both larger and clearer in EM (Extended Data Fig. 4).

To conduct a sensitivity analysis of the automated synapse prediction, we evaluated the 

robustness of our results with different prediction thresholds to artificially add false 
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positive (FP) and false negative (FN) synapses to the predicted network connectivity 

graph (Extended Data Fig. 7). In our prediction framework, each synapse is scored by 

how confident the detected synapse is and how big it is (i.e., score is the sum of the 

confidence value of the connected components); synapses with scores above this threshold 

are recognized while those below this threshold are ignored. We can combine predictions 

from multiple thresholds together to simulate a model with specific accuracy values. For 

example, if threshold_a produced a graph with a 20% FP rate and threshold_b produced one 

with a 20% FN rate, to get an 80% accurate model that has 20% FP and 20% FN rates, we 

take the default model and subtract synapses that were not detected with threshold_a and 

add synapses that were falsely detected with threshold_b. We then tested models with FP/FN 

rates at 10%, 20%, …, 90% to represent models with 90%, 80%, …, 10% accuracy. Note, 

however, that since the lowest threshold possible can only produce 30% FP rate, models with 

less than 70% accuracy only had 30% FP rate.

Quantifying MF→GrC connectivity.

We used the reconstructed neurons and the automated synapse predictions to map the 

connectivity between MF boutons and GrCs. The center of mass of GrCs cell bodies 

were manually annotated. To accurately get the center of mass of MF boutons, we first 

collected all MF→GrC synapses (i.e., synapses onto non-GrC neurons were filtered out) 

associated with a single MF, clustered them into individual boutons through DBSCAN64 

with parameters eps = 8 μm and min samples = 2, then averaged the synapse locations of 

each bouton to get the bouton’s center of mass.

MF bouton - GrC connectivity proofreading.—Beyond optimizing the neural network 

to minimize false positive (FP) and false negative (FN) rates, we also performed 

synapse count thresholding and targeted proofreading to more accurately determine binary 

connectivity between MF boutons and GrCs. Considering that each MF bouton to GrC 

connection has multiple synapses (Extended Data Fig. 4c) and that FPs often would 

only result in connections with single synapses, simple thresholding would make binary 

connectivity identification robust even with some FNs. However, we considered two 

additional factors. First, when MF boutons are at the edge of the volume, only a partial 

number of synapses are visible, increasing the need for a lower threshold. Second, MF 

boutons can make axon collaterals that make 1 to 2 synapses onto GrC dendrites either 

without “claws”; with claws connecting to different MF boutons than the collateral; or with 

claws connecting to the same MF (Extended Data Fig. 5). Considering these factors, we set 

the minimum automatic synapse threshold of MF bouton→GrC connections to 3, and then 

manually validated 2-synapse connections.

Spatial distribution of connectivity.—To get the spatial distribution of GrC dendrites 

in Extended Data Fig. 3e, for each GrC, we quantified the spatial displacement (Euclidean 

distance) of each MF bouton connected to it. To avoid edge effects, we defined margins 

where we removed from our analysis GrCs within 200 μm of the reconstruction boundaries 

in the X-axis. We further only counted the GrCs that are either at the top (or bottom) 10 μm 

of the dataset in Z, removed connections to MFs that are above (or below) the GrC centers 

of mass in Z, then combined the two distributions together. The Y margins do not need to 
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be accounted for since they are natural boundaries. Since the dataset has a Z thickness of 

49.5 μm, this method allows unbiased measurement of dendrite distribution of up to 200 

μm in X and 39.5 μm in Z. Taken together, we found that GrCs preferentially connect 

with MF boutons spread in the dorsal-ventral axis rather than in the medial-lateral or the 

anterior-posterior axis, consistent with previous reports26.

Counting presynaptic and postsynaptic partners.—In Fig. 2e, we counted the 

number of postsynaptic GrCs connected to each MF bouton. To avoid edge effects, we 

defined margins to not include in the analysis MF boutons within 60 μm and 20 μm to 

the reconstruction boundaries in X- and Z-axis respectively (Y margins do not need to 

be accounted for since they are natural boundaries). As shown in Extended Data Fig. 3e, 

these margins capture the extent of the dendritic reach of GrC dendrites. For Fig. 2e, only 

connections from the centermost MF boutons are counted (n = 62, though we used all 

surrounding GrCs n = 4,400). Similarly, for Extended Data Fig. 3c,d and Fig. 2, we removed 

analysis GrCs that are within 60 μm and 20 μm of the reconstruction boundaries in X- and 

Z-axis respectively. Note that the reconstructed distribution is plotted as an empirical CDF 

with discrete numbers of connected neuron pairs, while the random distribution is plotted as 

CDFs with error shaded across randomly generated networks.

Counting input redundancy between GrCs.—In Fig. 2c, we analyzed the MF bouton 

input redundancy to each GrC by counting the number of other GrCs sharing 2 or more 

MF inputs. To avoid the edge effects, even though we computed input redundancy using the 

entire GrC (n = 4,400) and MF (n = 1,145) population, we only counted the sharings of the 

centermost n = 211 GrCs.

MF→GrC random connectivity models.—To compare with the observed connectivity 

in Fig. 2, we developed random connectivity models (Extended Data Fig. 3f). The “Radius” 

models are based on random spherical sampling connecting GrCs to MF boutons closest to 

a single given dendrite length11–13,26. “Radius-Average” uses the average dendrite length 

from our EM reconstructions. The “Radius-Distribution” model is similar, but it uses 

dendrite lengths drawn from the reconstructed distribution. In the “Vector-Shuffle” model, 

the dendrite targets of each GrC are drawn (with replacement) from the observed distribution 

of the spatial displacements between connected GrCs and MF boutons (Extended Data Fig. 

3e). In all models, the locations of GrCs/MF boutons and the number of dendrites per GrC 

are maintained to be the same as the reconstructed graph, the margin of searching for MF 

boutons is set to 10 μm, and there are no double connections between any MF bouton→GrC 

pair.

MF axon collaterals → GrC proofreading.—To obtain the distributions in Extended 

Data Fig. 5c–e,h, we densely proofread 68 MF boutons within a 12,000 μm3 subvolume and 

determined whether a bouton made axon collaterals of at least 10 μm in length, how many 

boutons there are within a collateral axon, and whether they made synapses onto GrCs. We 

then quantified whether the synapses are located at the GrC dendrite claws or trunks, and 

whether the dendrite made a claw or not.
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Quantification of GrC→PC connectivity.

Similar to MF→GrC connectivity analysis, we used automated segmentation and synapse 

detection to map GrC→PC connectivity.

GrC→PC connectivity proofreading.—Since the majority of GrC→PC connections 

consist of single synapses (Extended Data Fig. 4c), it was necessary to proofread GrC→PC 

synapses to minimize false negative errors. Virtually all false negatives consist of synapses 

from a GrC axon onto “orphaned” PC spines that are not connected to their PC dendrite. To 

correct these errors, we found all synapse locations between the reconstructed GrC axons to 

orphaned segments, and manually proofread them.

GrC axon to PC touches.—To find locations where GrC axons touch PCs and have 

the potential, but do not make synapses, we computed and utilized mesh representations 

of neuron segmentations, where neuron meshes consist of a reduced set of vertices that 

describe their boundaries. Touches between two neuron meshes were then determined 

through thresholding the shortest distance between the two sets of vertices; this threshold 

was set to 10 pixels (at 16 nm mesh resolution) to account for the mesh coordinate 

approximations. To reduce the number of all-to-all comparisons and improve performance, 

we simplified vertex locations through downsampling to make rough predictions of 

distances and prune vertices prior to calculating the exact distances.

GrC→PC random connectivity models.—To make the “Shuffle” model (i.e., the 

configuration model) in Fig. 3d, for each PC, we shuffled the “connected” status among 

all connected and touching GrCs preserving the total number of connected GrCs per PC. 

We shuffled only connected and touching neurons to preserve the spatial constraints on 

connectivity (i.e., PCs have limited dendrite spans and do not touch all GrC axons in the 

dataset).

Computing Hamming similarity.—To measure similarity between pairs of PCs in terms 

of their GrC input populations (Fig. 3), and pairs of GrCs in terms of the PCs to which 

they provide input (Extended Data Fig. 8b), we used Hamming similarity. We used this 

metric to give connections and the absence of connections equal influence in assessing the 

similarity of connectivity patterns. Hamming similarity is defined as the inverse of Hamming 

distance65 normalized to the length of the vectors:

Hamming similarity = 1 ‐  Hamming distance/vector length

For example, to compare the input similarity of two PCs which might have different sets 

of potential presynaptic GrC axons due to differences in the location of their dendrites, 

we first filtered out all axons that are not either connected to or touching both PCs, prior 

to computing the Hamming similarity score. Similarly for the comparing GrC pairs, we 

computed the Hamming similarity between the output vectors of two GrCs after filtering out 

all PCs that were neither connected to nor touched by both GrCs (Extended Data Fig. 8b). 

For Fig. 3d, we further filtered out PC pairs that had less than 30 common connected or 

touching GrC axons to minimize Poisson noise in the analyzed distributions.
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Numerical analyses.

We developed a simulation framework to generate modeled input and output activity 

patterns of the MF→GrC layer given the reconstructed (and randomized) MF bouton→GrC 

connectivity. In all analyses in Fig. 4 and Extended Data Fig. 9 (with the exception of 

Extended Data Fig. 9c–d), to decrease edge effects where GrCs near the edge of the 

reconstruction boundaries showed fewer inputs (e.g., GrCs that had four dendrites, but only 

one is observable) and MFs near edges showed fewer outputs (e.g., boutons with only a 

portion contained in the EM volume), we used a subset of the reconstructed MFs and GrCs 

for our simulations. We used only the GrCs within the center 200 μm in the X dimension 

and 34 μm in the Z dimension, which totaled 1459 neurons, and MF boutons within the 

center 240 μm in the X dimension and 44 μm in the Z dimension totalling 630 boutons. 

While this graph is most representative of the EM sample, the overall MF input sharing 

among GrCs was not as high as observed in Fig. 2a and Extended Data Fig. 3g–m because 

of GrCs near the edges. To better test the high MF input sharing principle in Extended Data 

Fig. 9c–d we constructed a 120 × 80 × 120 μm MF-GrC graph by taking the GrCs and MF 

boutons in the center 120 × 80 × 40 um and replicate these node positions 3 fold along the 

Z (mediolateral) axis for a graph with 2541 GrCs and 771 MF boutons. With this graph 

we tested two models, one with high MF input sharing and one with normal (as expected 

from random wiring) MF input sharing. To achieve high input sharing while preserving 

the observed distributions of GrC dendrites (Extended Data Fig. 3c), GrC dendrite lengths 

(Extended Data Fig. 3d), and MF bouton sizes (Fig. 2e), we randomly added extra dendrite 

(26% more for this graph) to achieve the observed level of sharing (Fig. 2c and Extended 

Data Fig. 3l,m) then pruned away66 those that least contributed to MF sharing. On each 

iteration, we randomized the graph by shuffling the dendrite and bouton size distributions 

and randomly connecting GrCs to MF boutons with a distance sampled from the observed 

dendrite length distribution.

We assumed the MF input pattern to be binary with a mean activity level of 50%, 

consistent with prior work12,13. Each GrC integrates its inputs with equal weights based 

on the reconstructed (or randomized) connectivity graph. We assumed a binary output 

GrC activation function12,13 but with an activity level of 30% instead of 10% to be more 

consistent with recent in vivo recordings30,31. To maintain a steady-state activity level in a 

GrC population with a varying number of dendrites per neuron (as observed in Extended 

Data Fig. 3c), we tuned the activation threshold of each GrC by simulating 512 random 

input patterns and getting the average number of spiking inputs that would produce a 30% 

activity level for this neuron. Because the MF inputs are binary, however, a single threshold 

will not produce the precise 30% activity level. As an example, in our configuration, for 

GrCs with 5 dendrites, an activation threshold of 3 produces a 54% activation rate while a 

threshold of 4 would produce a 21% activation rate. It is then necessary to further divide the 

GrC population into an x% population of “low” and a 1-x% population of “high” activation 

level. In the above example, we solved for x% where .21 * x% + .54 * (1 - x%) = .30, then 

randomly choose x% of GrCs to have an activation threshold of 3 and 1 - x% to have 4. Such 

random assignment of “low” and “high” activation levels allowed us to overcome limitations 

in previous work12,13.
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Computing dimensionality.—Dimensionality is a measure of the number of independent 

variables embedded in a population’s activity which we used to quantify network encoding 

capacity. To compute the dimensionality of the population activity matrix x = (x0, x1, …) 

describing activity of the MF or GrC population across trials, we used a previously defined 

equation13.

dim x =(Σλi)2÷Σλi
2

where λi are the eigenvalues of the covariance matrix of x. We also computed population 

correlation12 as:

popcorr x =N N‐1 × ((max( λi)÷Σ λi) − 1/N)

where N is the number of neurons in the population.

For Fig. 4b,c and Extended Data Fig. 9g, we sought to quantify the dimensionality of 

the GrC population when given a set of MF input vectors that are different by a specific 

f_variability factor, where low f_variability means highly similar input vectors and high 

f_variability means highly different input vectors. To achieve this, we constructed the input 

MF population activity matrix m as follows. For each simulation trial, a base vector m0 

was randomly generated: each element in m0 was drawn independently as a binary number 

from a Bernoulli distribution with probability p = 0.5. Derived vectors mi (n = 512 vectors) 

were then generated from m0 by randomly selecting f_variability * len(m0) elements and 

randomly rerolling their binary values. In this manner, vectors created with f_variability 
= 1.0 would be entirely uncorrelated to the base input pattern. Each data point (e.g., for 

each input pattern difference) consisted of the average of 100 such simulation trials and the 

resulting 95% confidence interval.

For Fig. 4c and Extended Data 6b, variability was restricted and normalized to the 33% 

MF subpopulation being tested (random, over-, and under-sampled). Within a trial, the 

variation of MF activity vectors mi was sampled from said fixed MF bouton subpopulations. 

This was slightly different for Fig. 4b where the variation of MF activity vectors mi was 

sampled across the entire MF population, even if the effective f_variability was the same. 

For Extended Data Fig. 9g, to measure dimensionality of a varying GrC population size with 

a parameter y%, we ran MF→GrC simulation as above, but only performed dimensionality 

analysis on a random y% subset of the GrCs. The subset is re-randomized for each trial and 

MF input variability is 100%.

For Extended Data Fig. 9a, we modeled MF inputs as continuous variables representing 

input spiking frequencies13. Like the binary input model, we also performed GrC activation 

threshold tuning to produce a precise coding level for the GrC population (i.e., 30%), 

though we did not need “low” and “high” assignments since inputs are continuous. In this 

experiment, we sought to quantify the GrC population correlation/stability when given a 

set of inputs that were the same, but corrupted by an f_noise factor (a higher population 

correlation value could denote higher noise resilience and learning generalization44). 
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Compared to Fig. 4b, besides using continuous input variables versus discrete variables, 

the other primary difference is that in this study all inputs were changed (% magnitude 

based on f_noise), while in the binary study a subset of the input was flipped (% based on 

f_variability). Specifically, for each simulation trial, we generated a random input vector m0 

with a uniform distribution from 0 to 1. Derived input vectors mi were then generated by 

adding m0 to a random noise vector ni (also using a uniform distribution) multiplied by the 

noise factor f_noise:

mi = (1 − f_noise) × m0 + f_noise × ni

The noise factor f_noise effectively controls the degree of difference between input vectors 

within the MF activity matrix m. At low f_noise, m is more static, while at high f_noise, m 
is composed of more independently drawn random input vectors.

Computing learned signal size.—We computed SNR with the signal size defined as 

the maximum linear distance of GrC representations between two input patterns and noise 

defined as the variation of the modeled binary activity12,13 of the GrC population. It is 

thought that the GrC population activity is normalized through inhibition from the Golgi 

cells8,9, and thus we tuned the GrC population to have the same mean activity across input 

MF patterns. Assuming equal weights, the presynaptic sum of GrC activations is expected to 

be the same across patterns. To differentiate patterns, it is theorized that PCs can manipulate 

their synaptic weights to affect (increase or decrease) the postsynaptic linear sum of specific 

GrC activation7–9,13,17,20,67. For simplicity, these analyses assumed that GrC inputs were 

equal in strength. However, we note that some GrC inputs may be more influential than 

others68 (cf.69,70) and that >25% of unitary connections have multiple synapses (Extended 

Data Fig. 4c) which would further improve SNR of these inputs.

For Fig. 4d and Extended Data Fig. 9c–d, we modeled the PCs linear/logistic regression 

models with multiple variables (input GrCs) and binary outputs (PC firing low/high). The 

models assumed a linear relationship between the input patterns and the outputs, hence 

the “linear sum.” The model’s predictive power is maximized when the weights/parameters 

of the model maximize the difference between the input patterns, and so we defined and 

measured “learned signal size” as the maximum difference of the linear sums.

In Fig. 4d, the objective is to measure SNR of the difference or discriminatory power of 

the GrC population when encoding MF vectors which can be similar or different based on 

a variability factor f_variability. Given two GrC activation vectors gj and gk, and a set of 

weights w, the linear sum difference is:

LearnedDiff j k = Σi gji − gki × wi
 

Given the constraints that weights are positive (GrC→PC synapses are excitatory) and that 

weights range from 0.0 to 1.0, the max learned difference from gj to gk would be:
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MaxLearnedDiff j k =Σi gji − gki  if gji > gki

Alternatively, the max learned difference from gk to gj is:

MaxLearnedDiffk→j = Σi (gki - gji) if gki > gji

For simplicity and without loss of generality we simply calculated a combined metric, which 

equates to the Hamming distance between two GrC activation vectors when GrC activation 

vectors are binary and weights are between 0.0 and 1.0:

MaxLearnedDiff =HammingDistance gj, gk

For each simulation trial, we generated a base input MF vector m0 and a set of derived 

vectors m1, .., n (n = 512) as described previously. We then computed the pairwise Hamming 

distance of the resulting GrC activation vector g0 against g1, 2, .., n to measure the average 

and variance of responses. Each data point (e.g., for each input pattern difference) consists 

of 40 such simulation trials and the resulting 95% confidence interval. For the “selective 

subsampled” model in Fig. 4d, we chose the 50% subset of GrCs that would produce the 

greatest Hamming distance across the derived activation vectors m1, .., n to m0.

In Extended Data Fig. 9c–d, the objective was to measure the robustness of the GrCs 

encoding a number of input patterns when they are corrupted by noise (f_variability). We 

then scored and ranked the GrCs with a robustness_score to show that SNR is higher 

and more concentrated in a smaller subpopulation of GrCs in the high MF input sharing 

models than in the low input sharing model. Given m1..n (n = 8 in this study) random 

input patterns, we computed the noisy patterns as described for Fig. 4b,c twenty times 

each, ten used for ranking GrCs (ranking patterns) and then for computing SNR (testing 
patterns). These input patterns are then used to compute the resulting GrC activation vectors. 

To estimate the most robust GrC subpopulation, we compute robustness_score by ranking 

each GrC by its probability to be activated across all ranking patterns - GrCs that are most 

consistently activated here should also be robust across testing patterns, and PCs that made 

synapses to these GrCs will also more reliably have a high SNR linear sum with respect 

to MF input patterns. After ranking, for each subpopulation_threshold, we computed SNR 

on the subpopulation_threshold of GrCs with the highest robustness_score: signal is the 

difference between the linear sum of activations across testing patterns and background 

patterns, and noise is the standard deviation of the activations across background patterns 

(see “Computing noise” below). Note, we included a pattern_size parameter that controls 

whether a randomly selected pattern_size subset of inputs is relevant (and kept constant 

during noise additions) and the rest of the input is irrelevant (and replaced with random 

inputs during noise additions). Extended Data Fig. 9c–d used an example pattern_size of 0.3 

but the general trend was seen in all pattern_size that we tested (data not shown).

Computing noise.—For Fig. 4d and Extended Data Fig. 9c–d, we computed noise as 

the magnitude of variation of the modeled GrC activity across random background MF 
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input patterns. To calculate the standard deviation of background activity noise, we ran 

simulations of 512 random MF input patterns and calculated the standard deviation of the 

sums of GrC outputs.

Prediction accuracy.—To evaluate prediction accuracy in Extended Data Fig. 9f,h, 

we used gunpowder (https://github.com/funkey/gunpowder), JAX71, Haiku72, Optax73, and 

Chex73. As above, we trained the output decoder as a linear layer with stochastic gradient 

descent using the output of the MF-GrC model as the input. The task was a standard binary 

classification where the network discriminates two classes of MF input patterns, where MF 

patterns were randomly varied, with different levels of variability, starting from a randomly 

chosen input vector. A standard sigmoid activation function was used. For comparison, we 

picked the number of test patterns that resulted in ~90% accuracy performance at 100% 

variability, which was 800 patterns. Each model was trained for 300 epochs with 5% 

MF noise augmentation on each batch, with a learning rate of 1 × 10−2. The models are 

evaluated with different noise than in training. Since accuracy varied from run to run, we 

ran each model 20 times to produce averages and bootstrapped 95% confidence intervals. 

To better approximate the performance of a Purkinje cell decoder, we further modified 

the weight update mechanism to restrict the input weights to be positive with a logistic/

sigmoid activation function that centers on a positive value sigmoid_center instead of on 

zero because GrC->PC synapses are excitatory and the activation of many GrCs are needed 

to influence the firing rate of PCs. We then defined max_weight, the maximum value of any 

individual synapse weight to be:

max_weigℎt = 1/num_grcs × 1/activation_rate × sigmoid_center × weigℎt_scale

The first and second term normalize max_weight to the total number of GrCs and 

activation_rate respectively. The third term scales this by the sigmoid_center value, 

essentially controlling the steepness of the sigmoid function. Lastly, the fourth term controls 

synapse strength. In these simulations, we set weight_scale to be 4, which means that at 

activation_rate = 30%, 7.5% (30% ÷ 4) of the inputs would need to be activated at max 

weight to reach the center of the sigmoid function.

Statistics and reproducibility.—We did not use statistical methods to pre-determine 

sample sizes. Technical limitations made it only feasible to analyze one mouse in this study. 

However, connectivity trends were observed for many different neurons, and significance 

was tested with statistical tests (Wilcoxon rank-sum, Kruskal-Wallis, and permutation tests). 

Our study did not contain experimental groups, so randomization and blinding do not apply.
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Extended Data

Extended Data Figure 1. Similarity between a convolutional neural network and the cerebellar 
feedforward network.
a, Diagram of a simple convolutional neural network with one convolutional layer 

(input→hidden) and one fully connected layer (hidden→output). The input (left) is made 

up of a single-channel 2D grid of neurons. The convolutional layer (middle) is made up 

of neurons each sampling a small local grid of the input (e.g., nine inputs when a 3×3 

filter is used, cyan colored circles). This is notably different from a multi-layer perceptron 

network where the input and the hidden layer are fully connected - the convolution allows 

an increase in features while decreasing computational cost. Due to the small field of 

view of each convolutional layer neuron, adjacent neurons share a significant amount of 
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inputs with each other. To increase capacity of the hidden layer, the convolutional neurons 

can be replicated by n times (typically parameterized as n features). Finally, the output 

neurons (right) are fully connected with neurons in the preceding convolutional layer. For a 

classification network, each label (class) is associated with a single binary output neuron for 

both training and inference. b, Diagram of the cerebellar feedforward network. Mossy fibers 

(MFs; left) can be considered a 2D grid of sensory and afferent command inputs typically 

of mixed modalities40,41. Granule cells (GrCs; middle) sample only ~4 MF inputs each. The 

total number of GrCs is estimated to be hundreds of times more than the number of MFs 

(Fig. 1b), represented by an expansion factor m. Finally, Purkinje cells (PCs; right) - output 

neurons of the cerebellar cortex - receive input from tens to hundreds of thousands of GrC 

axons that pass by PC dendrites.
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Extended Data Figure 2. Automated segmentation and synapse prediction
a, Serial-section electron microscopy (EM) dataset from lobule V from the cyan boxed 

region in Fig. 1d. b, The 3D reconstruction segmentation pipeline. (i) EM image data, 

(ii) boundary affinities, and (iii) automated segmentation output. c, Parallelized volume 

processing using Daisy. The input dataset is divided into small blocks, on which multiple 

workers can dynamically query and work. Block completion status and output data are 

efficiently stored into a persistent database or on disk directly from the workers without 

going through the centralized scheduler process. d, Example view of targeted neuron 

reconstruction using merge-deferred segmentation (MD-Seg). Neurons are first segmented 
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as small blocks, and inter-block merge decisions are deferred to proofreaders. This is 

illustrated by the different colored segments of the displayed neuron. The user interface 

is based on Neuroglancer, modified to provide the segment “grow” functionality, and to 

integrate an interface to the database keeping track of neuron name, cell type, completion 

status, notes, and which agglomeration threshold to use for “growing”, as well as searching 

for neurons based on different criteria and recoloring segments of a single neuron to a single 

color (“Search DB” and “Color” tabs, not shown). e, Automated segmentation evaluation; 

plot points denote agglomeration thresholds. Average number of merge and split errors of (n 

= 9) 6 μm3 test volumes. We used a threshold (star) with 2.33 merges and 27 splits per 6 μm3 

for proofreading. f, Automated synapse prediction evaluation; plot points denote connected 

component thresholds. Precision and recall curve for the synapse inference network. We 

achieved high synapse prediction accuracy with precision: 95.4% and recall: 92.2%, and an 

f-score: 93.8% (star)..
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Extended Data Figure 3. MF→GrC wiring, convergence, and null models.
a,b, 3D plot of the locations of GrC somas and centers of MF boutons reconstructed in the 

320 × 80 × 50 μm subvolume. Blue and orange dots indicate the GrCs and MF boutons 

respectively in the center 10 μm in the mediolateral axis, as plotted in Fig. 2b. c, Distribution 

of the number of dendrites per GrC (n = 542). d, Distribution of GrC dendrite lengths (n 

= 1093). e, Anisotropic positioning of MF bouton→GrC inputs (claws), showing elongated 

distribution in the dorsal-ventral axis (X) relative to both anterior-posterior (Y) and medio-

lateral (Z) axes. Contour lines represent 10% intervals in the distribution. f, MF→GrC 

random models used for comparison with the reconstructed connectivity. (Methods). g, 

Similar to Fig. 2c, but with random models from f added. h, Similar to g, but with 

Radius models of different dendrite lengths. i, Cumulative distribution of MF bouton input 

redundancy counting the number of GrC pairs sharing 1 MF bouton (similar to Fig. 2c). j, 
Similar to i, but for 2 MF boutons. k, Similar to i, but for 3 MF boutons. l, Average number 
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of GrC pairs sharing 1, 2, or 3 common MF bouton inputs, comparing reconstructed against 

the Radius random connectivity model described in d. m, Average sharing of GrCs in the 

reconstructed network as in l, but normalized to random networks. n, Average fractional 

distribution of inputs to GrCs from different MF bouton types (categorized as the top-third, 

middle-third, and bottom third most connected boutons) as a function of GrC sampling 

size. GrCs were randomly subsampled to produce input composition distributions, with error 

shadings representing SD. o, Same as Fig. 2e, but with random models from f added.

Extended Data Figure 4. MF→GrC and GrC→PC synaptic connectivity.
a, Example EM micrographs of MF (red) to GrC (blue) synapses. b, Example EM 

micrographs of GrC (blue) to PC (green) synapses. c, Distributions of the number of 

synapses per connection of the two synapse types. We analyzed (n = 9012) MF→GrC and 

(n = 19761) GrC→PC synapses in one volumetric EM dataset from one animal. The median 

of MF→GrC is nine synapses, while GrC→PC is one. Over 97% of GrC→PC unitary 

connections have 1 to 2 synapses, though instances of 3 to 6 synapses per connection, while 

rare, do occur.
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Extended Data Figure 5. MF collateral axons connectivity to GrCs.
a, 3D rendering of a MF (red) bouton, with an axon collateral making synapses onto a GrC 

(blue) dendrite near a claw. Asterisks denote the location of synapses. b, Rendering of a 

MF bouton with no axon collaterals. c, Distribution of number of collaterals per MF bouton 

(n = 63); a MF bouton can have multiple axon collaterals, and each collateral may or may 

not make synapses onto GrCs. d, Box plot (25th, 50th and 75th percentiles with whiskers 

extended to points within 1.5 IQRs) of the number of MF-GrC connections: per MF bouton 

(n = 63), per axon collateral (n = 8), and per each bouton in a collateral (n = 16). e, Box 

plot of the number of synapses in each MF-GrC connection: per MF bouton (n = 978), per 

collateral (n = 28), and per bouton in collateral axons (n = 51). Due to the low frequency of 

axon collaterals, GrC targets, and the number of synapses per GrC target, it is unlikely that 

MF axon collaterals to GrCs represent a major route of signal propagation. f, Example of 

an axon collateral making synapses to a GrC on the trunk, and with more synapses formed 

on the claw. g, Example of a connection on the trunk of the dendrite, with no claw. h, Joint 

probability distribution of the synapse location of MF axon collaterals onto GrCs (on claw 

vs. trunk) and whether or not the dendrite made a claw onto the same MF bouton, or did 

not have claws (unformed claws). These examples of MF axon collateral connections to 

GrCs could represent different states of MF→GrC rewiring, supporting the hypothesis that 

MF→GrC wiring adapts to changing MF input representation6,42. Scale bars are 10 μm.
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Extended Data Figure 6. MF→GrC oversharing and convergence vs null models.
a, GrC input sharing relative to random connectivity. The matrix shows the degree of input 

sharing between GrCs (centermost n = 550, sorted by soma position dorsoventrally). The 

color scale for each cell in the matrix uses the z-score (reconstructed # of sharing minus 

random mean divided by the SD). b, MF bouton output convergence relative to random 

connectivity. The matrix shows the degree of output convergence between MF boutons 

(centermost n = 234, sorted by soma position dorsoventrally). The color scale uses the 

z-score as in a.
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Extended Data Figure 7. Synapse prediction sensitivity analysis.
a, Cumulative distributions of MF bouton input redundancy as in Fig. 2c but across synapse 

prediction accuracies ranging from 90% to 10%. We artificially added false positives (FPs) 

and false negatives (FNs) to the network (Extended Data Fig. 2f) to achieve different 

accuracies (Methods). b, Cumulative distribution of postsynaptic GrCs per MF bouton as in 

Fig. 2e but across synapse prediction accuracies. As shown in a and b, we found that the 

results were consistent across models and only changed substantially when the FP/FN rates 

increased past 60%. We propose two reasons our results are robust across model prediction 

accuracies. First, MF-GrC connections are typically composed of multiple synapses (10 

on average, Extended Data Fig. 4c). Since we used at least 3 synapses as a threshold for 

determining connectivity, even with significant missing, undetected synapses (eg. 50%), 

the remaining synapses are still reliable to reflect binary connectivity. Second, random and 

spurious false positive predictions are unlikely to coincide to cross the 3-synapse threshold. 
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One interesting implication is that strongly selective features do not require perfect synapse 

prediction. This is consistent with connectomes in Drosophila where synapse prediction 

accuracy is ~60% and that connections are typically consist of multiple synapses which 

means that even with significant missing, undetected synapses (eg. 50%), the remaining 

synapses are sufficiently reliable to indicate connectivity.

Extended Data Figure 8. GrC→PC wiring and similarity of inputs to PCs.
a, Plot of density GrC axons and GrC→PC connectivity rate as a function of height in 

the molecular layer between the pial surface and PC layer. Across molecular heights, the 

average axon density is 3.73 ± 1.23 per μm2 (mean ± SD), and the average connection rate 

is 49.12 ± 4.39% (mean ± SD). Using these numbers and the average area of PC dendrites, 

we calculated ~125,000 GrC axons pass through the dendritic arbor of each reconstructed 

PC. At an average connectivity rate of 49%, only about 60,000 GrC axons were connected 

to each PC, 3–5× less than typically assumed in models of the cerebellar cortex17,67,74. 

b, Box plot (25th, 50th and 75th percentiles with whiskers extended to points within 1.5 

IQRs) of pairwise Hamming similarity between PC postsynaptic targets of non-local GrC 

axons, and local GrC axons with different numbers of shared MF bouton inputs. Across 

local GrCs sharing 0, 1, 2, and 3 MF boutons, Hamming similarity means = p = 0.0001137, 

Kruskal-Wallis H-test. 0-shared vs 1-shared p = 0.0132, 0-shared vs 3-shared p = 0.00797, 

1-shared vs 3-shared p = 0.0186, 2-shared vs 3-shared p = 0.0309, other pairings p > 0.05, 
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Dunn’s post hoc tests, Bonferroni corrected for multiple comparisons. c, 3D rendering of 

EM reconstructed PCs arbitrarily colored.

Extended Data Figure 9. MF-GrC-PC simulations
a, Normalized dimensionality of GrCs as a function of input variability using a continuous 

model of spike frequency13. Noise was modeled as the degree of variation of spiking 

frequency across all MF inputs (Methods). b, Modeled learned signal size (Methods) 

as a function of variability between MF input patterns, comparing pattern separation 

performance between overrepresented (top-third most connected) and underrepresented 

(bottom-third) MF boutons. Signal size from the reconstructed network is normalized 

by the random connectivity model for each population separately. c-d, SNR analyses 
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of modeled MF-GrC networks, measuring noise robustness with (Modeled) or without 

(Random) redundant oversharing of MF inputs (Fig. 2c,d). SNR was computed across GrC 

subpopulations ranked by robustness (Methods) at a 40% noise level in c, and across GrC 

subpopulations and noise levels in d (normalized to SNRs of the “random” model at each 

noise level and subpopulation). The white box in d denotes the noise level shown in c. 

Redundant oversharing helps PCs learn more reliably by encoding the most robust signals 

in a subset of more correlated GrCs. e, Binary GrC→PC selective subsampling increases 

SNR. Left: PCs (green) randomly subsample GrCs (blue) with MF (red) inputs containing 

signal (S) or noise (N). Right: PCs connect to GrCs encoding signal-relevant MFs, leading 

to a higher SNR (Fig. 4d). f, Prediction accuracy of a linear neural network trained on 

output patterns of the GrCs as a function of MF input variability, comparing performance 

of MF-GrC networks between models that were fully connected, randomly subsampled with 

50% connectivity, and selective subsampled with 50% connectivity, all as a function of MF 

input variability. g, Dimensionality of the GrC population as a function of the percentage of 

GrCs randomly removed, normalized to the dimensionality with 100% of the population. h, 

Prediction accuracy as in f comparing performance of MF-GrC networks between randomly 

and selectively subsampled models as a function of a percentage of randomly removed 

GrCs.
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Figure 1. Reconstruction of feedforward circuitry in the cerebellar cortex using large-scale 
electron microscopy.
a, Schematic depicting wiring of feedforward neurons in the cerebellar cortex. Granule 

cells (GrCs, blue circles) sample mossy fiber (MF) boutons (red) and project their axons 

into the molecular layer where they bifurcate to form parallel fibers. GrC axons make 

synaptic contacts onto Purkinje cells (PCs, green), which are the sole output of the cerebellar 

cortex. The number (n) of reconstructed objects (MF boutons and parallel fibers) or cells 

with cell bodies (GrCs and PCs) in our dataset is shown. b, Expansion and convergence 

of the cerebellar cortex feedforward network. The number of circles is proportional to 

the number of neurons in the estimated global population20. At the local circuit scale, 

however, divergence of single MF boutons to GrCs is less (ratio ~1:3), and convergence of 

GrCs to PCs is higher (ratio 50,000–200,000:1). c, Illustrative data showing how two input 

representations in 2D (left) once projected into 3D (middle) can be linearly separated (right, 

green plane). Marr & Albus8,9 hypothesize that the MF→GrC dimensionality expansion 

supports pattern separation and the GrC→PC convergence performs pattern association. 

Nguyen et al. Page 35

Nature. Author manuscript; available in PMC 2023 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d, Schematic of a parasagittal section through the vermis of mouse cerebellum with the 

location of the EM dataset (Extended Data Fig. 2a) outlined (cyan box). e, 3D rendering 

of representative EM reconstructions of PCs (green), GrCs (blue) and MFs (red). Non-

overlapping GrCs and PCs were rendered for clarity.
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Figure 2. EM reconstructions reveal GrCs redundantly sample MF boutons.
a, 3D rendering of two GrCs (blue) sharing three common MF bouton inputs (red). b, 

Locations of GrCs (top, n = 4,400, color coded to show the number of dendrites) and MF 

boutons (bottom, n = 1,145, color coded to show the number of postsynaptic GrCs per 

bouton). Only neurons in the center 10 μm in the mediolateral axis are plotted for clarity. 

Within a 320 × 80 × 50 μm subvolume, there are 2,397 GrCs and 784 MF boutons, giving 

a density of 1,870,000 GrCs and 612,000 MF boutons per mm3 and a ratio of 3.06 GrCs 

per MF bouton. c, Cumulative distribution of MF bouton input redundancy, counting the 

number of GrC pairs sharing at least 2 MF boutons for each GrC. To minimize edge-effects, 

only the centermost GrCs (n = 211, Methods) are included in this analysis. GrCs in the 

reconstructed network (red line) share significantly more MF boutons than connectomically-
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constrained random models (Radius model Extended Data Figure 3, black line; p = 3.94 

× 10−12, two-sided Wilcoxon rank-sum test, Methods). Here, and throughout the figures 

shaded regions represent the bootstrapped 95% confidence interval around data mean unless 

otherwise stated. d, Illustration of redundant sampling in c showing pairs of GrCs sharing 2 

common MF inputs (right) vs sharing 1 common MF input (left). e, Cumulative distribution 

of postsynaptic GrCs per MF bouton. The reconstructed distribution (red line) is compared 

with a random model (black line, as in c). To minimize edge effects, only connections from 

the centermost MF boutons are counted (n = 62). Kurtosis (k), a unitless measure of amount 

of distribution in the tails, is significantly higher in the reconstructed network than the 

random model suggesting over- and under-sampling of MF boutons by GrCs (p = 0.0146, n 

= 62, two-sided Permutation test, Methods). f, Selective subsampling of MF boutons by the 

GrCs in e creates underrepresented and overrepresented subpopulations.
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Figure 3. GrC input selectivity predicts PC subnetworks.
a, 3D rendering of nine GrC axons, nine PCs, and the locations of synapses (white 

lines) connecting them. Note, unlabeled axonal varicosities are presynaptic to non-PC 

neurons (e.g., molecular layer interneurons). b, Calculation of Hamming similarity as a 

pairwise metric to compare the similarity of two binary patterns. The example compares the 

postsynaptic connectivity pattern between two PCs from different parallel fibers (PFs) where 

a “1” denotes a connection and a “0” denotes the lack of connection. c, Box plot (25th, 

50th and 75th percentiles with whiskers extended to points within 1.5 IQRs) of the ratio of 

GrC→PC synapses to the total number of times a GrC axon and PC pair contact (touch) one 

another (Methods). Left: synapse ratio per GrC. Right: synapse ratio per PC. d, Similarity 

of GrC inputs between pairs of PCs with at least 30 common GrC axon contacts comparing 

shuffled input connectivity, non-local GrC axons, and local GrC axons. All three populations 

are significantly different (p = 1.25 × 10−56, Kruskal-Wallis test; p = 0.00433, shuffle vs. 

non-local GrC axons; p = 9.16 × 10−32, non-local GrC axons vs. local GrC axons; p = 4.91 

× 10−61, shuffle vs. non-local GrC axons; Dunn’s post hoc tests, Bonferroni corrected for 

multiple comparisons).
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Figure 4. Structured redundancy increases SNR of specific and small input differences.
a, Dimensionality and signal-to-noise (SNR) analysis. (i) Binary input patterns, modeled 

with different levels of variability. (ii) Input patterns are non-linearly transformed by the 

MF-GrC network to produce modeled GrC activity7,13. (iii) Output activity is analyzed 

for dimensionality13 (how correlated the activity matrix is), signal (how different each 

output pattern is from each other), and noise (SD of the linear sum of each pattern). (iv) 

Illustrative histogram of the linear sum of postsynaptic GrC-PC activity. Higher signal 

relative to noise implies better discriminability. b, Relative dimensionality of the GrC 

population as a function of variability between modeled MF input activity patterns (0% 

denotes no difference and 100% denotes uncorrelated randomized patterns) comparing 

the reconstructed (red) to connectomically-constrained randomly connected models (black) 

normalized to the random model. c, Relative dimensionality of the GrC population as a 

function of variability between MF input patterns, comparing overrepresented (top-third, 

red and black) vs underrepresented (bottom-third, magenta and gray) most connected MF 

boutons in the reconstructed (red and magenta) vs random (black and gray) connectivity 

models. Dimensionality is normalized by the underrepresented population in the random 

connectivity model. d, Modeled SNR (Methods) as a function of variability between input 

patterns, measuring separability of GrC activity between models with selective (green), no 

(blue), and random (black) subsampling (Extended Data Figure 9e).
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