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It has been postulated that the brain is organized by “metamodal,” sensory-independent cortical modules capable of perform-
ing tasks (e.g., word recognition) in both “standard” and novel sensory modalities. Still, this theory has primarily been tested
in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general princi-
ple of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful
metamodal processing at the level of neural representations. Specification at this level may be particularly important in neu-
rotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense.
Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus represen-
tations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral audi-
tory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory
words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme
of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group
did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling
between them and somatosensory areas. Our results advance our understanding of brain organization by providing new
insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devi-
ces that aim to tap into existing processing streams in the brain.

Key words: auditory; cross-modal; fMRI; metamodal; sensory-substitution; vibrotactile

Significance Statement

It has been proposed that the brain is organized by “metamodal,” sensory-independent modules specialized for performing
certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind
individuals “to see” by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal
engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the
encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to rec-
ognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were
matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching
encoding schemes is critical to unlocking the brain’s metamodal potential.

Introduction
The dominant view of brain organization revolves around corti-
cal areas dedicated for processing information from specific sen-
sory modalities. However, emerging evidence over the past two
decades has led to the idea that cortical areas are defined by task-
specific computations that are invariant to sensory modality
(Pascual-Leone and Hamilton, 2001). Evidence for this comes
from studies in sensory-deprived populations (Sadato et al.,
1996; Lomber et al., 2010; Bola et al., 2017), which show that
areas that traditionally perform unisensory processing can be
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recruited by stimuli from another sensory modality to perform
the same task. This ability of a novel sensory modality stimuli to
engage a cortical area the same way as the standard sensory mo-
dality stimulus is called metamodal engagement. Importantly,
there is evidence (Renier et al., 2005, 2010; Amedi et al., 2007;
Siuda-Krzywicka et al., 2016) for metamodal engagement of tra-
ditionally unisensory areas, even in neurotypical individuals,
thereby opening the door for novel sensory modalities to recruit
established sensory processing pathways. This idea has given rise
to promising therapeutic applications, such as sensory substitu-
tion devices. These devices can, for instance, enable blind indi-
viduals to process visual information by translating camera input
to sounds (Meijer, 1992; Bach-y-Rita and Kercel, 2003). Still,
other studies (Fairhall et al., 2017; Twomey et al., 2017; Benetti et
al., 2020; Mattioni et al., 2020; Vetter et al., 2020) failed to find or
found less robust evidence of cross-modal engagement in neuro-
typical subjects. This calls into question the conditions under
which a cortical area can be successfully recruited by stimuli
from a novel sensory modality.

Current theories emphasize that metamodal engagement of a
cortical area depends on a task-level correspondence regardless
of the stimulus modality and the presence of task-relevant con-
nectivity (Heimler et al., 2015). Thus, metamodal theories are
specified at the level of computation (i.e., shared task) and imple-
mentation (i.e., sufficient connectivity), the first and third levels
of Marr’s levels of analysis (Marr, 1982). However, consideration
of these two levels alone cannot explain the failure of certain
studies to find metamodal engagement. We argue that metamo-
dal engagement depends on not just an abstract correspondence
between standard and novel modality stimuli, but also on a cor-
respondence between their encoding in the target area. This cor-
respondence at the level of encoding corresponds to Marr’s
second level, the algorithmic level. For instance, since auditory
cortex in neurotypical adults is sensitive to the temporal dynam-
ics of auditory speech (Yi et al., 2019; Penikis and Sanes, 2023),
metamodal engagement of this area by novel modality stimuli
depends on their ability to match the temporal dynamics of spo-
ken words. Failure to do so may favor alternate learning mecha-
nisms, such as paired associate learning (McClelland et al., 1995;
Eichenbaum et al., 1996).

In the present study, we tested the hypothesis that metamodal
engagement of a brain area in neurotypical individuals depends
on matching the encoding schemes between stimuli from the
novel and standard sensory modalities. We used fMRI data from
an independent auditory scan to identify target auditory speech
areas for metamodal engagement in the bilateral superior tempo-
ral gyrus (STG). We then built on prior behavioral studies to train
two groups of neurotypical adults to recognize words using one
of two auditory-to-vibrotactile (VT) sensory substitution algo-
rithms. Critically, while both algorithms preserved behavioral
word similarities, one encoding (“vocoded”) closely matched the
temporal dynamics of auditory speech, whereas the other (“to-
ken-based”) did not. Our results show that, while subjects in both
algorithm groups learned to accomplish the word recognition
task equally well, only those trained on the similarity-preserving
vocoded VT representation exhibited metamodal engagement of
the bilateral STG. Consistent with these findings, only subjects in
the vocoded VT group exhibited increased functional connectiv-
ity between the auditory and somatosensory cortex after training.
These findings suggest that metamodal engagement of a cortical
area in neurotypical adults depends not only on a correspondence
between standard and novel modality stimuli at the task-level but
also at the neural representational level.

Materials and Methods
Participants
We recruited a total of 22 right-handed, healthy, native English speakers in
this study (ages 18-27, 12 females). Georgetown University’s Institutional
Review Board approved all experimental procedures, and written informed
consent was obtained from all subjects before the experiment. We excluded
4 subjects from the auditory scan because of excessive motion (.20% of
volumes), resulting in a total of 18 subjects. In the VT scans, subjects were
alternately assigned to one of the two VT algorithm groups (see below),
resulting in 11 subjects per group. However, 2 of the 22 subjects, 1 from
each VT algorithm group, were excluded because they failed to complete
the training. Thus, a total of 20 subjects were analyzed for the VT scans (10
per group). An effect-size sensitivity analysis was performed using an a of
p=0.05, power of 0.8, and a two-tailed one-sample or two-sample t test for
auditory and VT scans, respectively, using G*Power (Faul et al., 2007).
This calculation yielded a minimum detectable effect size of 0.7 and 0.99
for the auditory and VT scans, respectively.

Stimuli and materials
Stimulus selection. A set of word stimuli (Table 1) was developed

according to the following criteria: (1) short monosyllabic stimuli (;4
phonemes); (2) only contain phonemes from a limited subset of English
consonants (8 consonants and 6 vowels); (3) set containing items pre-
dicted to be perceptually unique and therefore learnable; and (4) words
that span the VT vocoder perceptual space (see below). To develop the
set meeting these criteria, we used a computational modeling approach
based on the methods described by Auer and Bernstein (1997). Existing
tactile consonant and vowel perceptual identification data (Bernstein,
unpublished) were used in combination with the PhLex lexical database
(Seitz et al., 1998) to model the lexical perceptual space. In outline, the
modeling steps are as follows: (1) transform phoneme identification data
into groupings of phonemes as a function of a set level of dissimilarity;
(2) re-transcribe a phonemically transcribed lexical database so that all
the words are represented in terms of only the phonemic distinctions
across groupings; and (3) collect words that are identical under the re-
transcription and count how many are in each collection. In this study,
the lexical equivalence class size, the number of words in a collection,
was set to three. Only words that were accompanied by three or fewer
other words following re-transcription were considered candidates for
the study. Words in smaller lexical equivalence classes are predicted to
be perceptually easier (more unique) than words in larger lexical equiva-
lence classes, which offer more opportunities for confusions.

The set of words meeting the first three criteria was further examined
as a function of consonants and vowel patterns to identify the largest
pool of potential stimulus words. Three consonant (C) and vowel (V)
segment patterns (CVC, CCVC, and CVCC) were selected for the final
stimulus set. The words with these segment patterns were then examined
in relation to the predicted VT vocoder perceptual space. The tactile
identification confusion matrices were transformed into phoneme dis-
tance matrices using a f -square transform (Iverson et al., 1998). Within
a segment pattern, all word-to-word distances were computed as the
sum of the pairwise phoneme distances. The word distance matrix was
then submitted to multidimensional scaling to facilitate two-dimensional
visualization of the lexical space. Close pairs were selected with goal of
achieving distributed coverage in each of the three lexical spaces (CVC,
CVCC, and CCVC). For each close pair, a third more distant word was
chosen that provided a bridge to other pairs in the space. Final selection
was based on the word-to-word computed distances using f -square

Table 1. Breakdown of word stimuli presented to participants

All stimuli

Trained CVCC Sand, tanned, mask, teams, toads, dense, most, nest, dance
CCVC Spit, spin, stoop
CVC Meat, peace, nose

Untrained CVCC Send, tend, max, seems, zones, nets, meant, mist, maps
CCVC Snip, skin, stoke
CVC Peat, knees, soak
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distances rather than the multidimensional space as clear warping was
present because of the reduction of dimensionality.

This resulted in 60 total words (or 20 sets of triplets). We trained
subjects to associate 30 words (10 triplets) with their corresponding VT
tokens. In the fMRI scans, we used 15 (5 triplets) of these trained words,
of which 9 belonged to the CVCC, 3 to the CCVC, and 3 to the CVC lex-
ical classes (Table 1).

Description of VT stimulus system. Custom hardware and software
were used to present the VT stimuli. The system that vocoded the acous-
tic speech for VT stimuli had been developed and used previously for
real-time speech analysis and stimulus presentation (Bernstein et al.,
1991; Iverson et al., 1998; Eberhardt et al., 2014). The vocoder filters
were as described as the “GULin” vocoder algorithm (Bernstein et al.,
1991). Their vocoder implemented 15 sixth-order bandpass filters with
frequencies centered at 260, 392, 525, 660, 791, 925, 1060, 1225, 1390,
1590, 1820, 2080, 2380, 2720, and 3115Hz, with respective bandwidths
of 115, 130, 130, 130, 130, 130, 145, 165 190, 220, 250, 290, 330, 375, and
435Hz. The 16th channel was a high-pass filter with a 3565 Hz cutoff.
Because the energy in speech rolls off by 6 dB per octave, and because
the skin has a narrow dynamic range, the energy passed by each of the
filters was linearly scaled, resulting in a good representation of the
speech formant patterns across a range of signal intensities (Bernstein et
al., 1991). Because new MRI-compatible hardware was built for the cur-
rent study (therefore, new driver software was needed), the VT drive sig-
nals of the old vocoder system were sampled to drive the new system
(thus guaranteeing that the underlying acoustic analysis remained the
same), to maintain timing and output channel information. Then at pre-
sentation time, before each stimulus, the stimulus timing record that
specified the onset time of each pulse on each channel was uploaded to
the VT control system.

The hardware transducer was an updated version of the one used by
Malone et al. (2019). The stimulator hardware comprised piezoelectric
bimorph transducers (Fig. 1A). During operation, a constant 57 V
applied to all stimulators retracted the contactors into the surround, and

each applied�85 V pulse drove the contactor into the skin. The display’s
control system comprised the power supplies (�85 V, 57 V), high volt-
age switching circuits to apply these voltages to the piezoelectric
bimorphs, and a digital control system that accepted from a controlling
computer’s serial COM port the digital records specifying a stimulus
(comprising the times and channels to output pulses on), and a com-
mand to initiate stimulus output. All pulses were identical. The drive sig-
nal was a square wave, with a pulse time of 2ms and a maximum pulse
rate of 150 pulses per second.

The 16-channel (20 cm � 11.0 cm) array was organized as 2 rows of
8 stimulators (Fig. 1A), with center-to-center stimulator spacing of
2.54 cm, which was worn on the volar forearm. This spacing is greater
than the average distance on the volar forearm at which participants
achieved at least 95% correct discrimination on a tactile spatial acuity
task (Tong et al., 2013). Transducers were arranged so that similar
frequencies were mapped to similar locations along the forearm.
Specifically, low frequencies mapped to transducers near the wrist,
and higher frequencies mapped to transducers near the elbow (Fig.
1C). To ensure that the stimulators would maintain contact with the
volar forearm, the transducer array comprised four rigid modules
connected with stiff plastic springs. Velcro straps were used to
mount the device to the arm firmly while bending the array to con-
form to the arm’s shape. With no applied voltage to the piezoelectric
bimorphs, the contactors were flush with the circuit board surface
facing the skin.

Token-based VT speech encoding. The same 16-channel VT device
was used to present subjects with the token-based stimuli. Token-based
stimuli were constructed based on prior work (Reed et al., 2019) and
reflected the idea that spoken words can be described as a string of pho-
nemes. Phonemes in turn can be uniquely described by a set of phonetic
features. Therefore, each phonetic feature was assigned a unique VT pat-
tern. In this study, we used place, manner, and voicing features to
describe phonemes (Fig. 1B). Place was coded as patterns that occurred
either proximal or distal to the wrist. Stop and fricative manner features

Figure 1. VT hardware, speech-to-tactile transformation algorithms, stimuli, fMRI experimental design, and model dissimilarity matrix. A, Sixteen-channel MRI-compatible VT stimulator. B,
The token-based algorithm for transforming spoken words into VT patterns. It assigns each phoneme a distinct VT pattern (for more details, see Materials and Methods). C, The vocoding algo-
rithm which focuses on preserving the temporal dynamics between the auditory and VT stimuli. D, The auditory (top) and VT (bottom) fMRI one-back paradigms used in the study. In both
paradigms, subjects focused on a central fixation cross, and pressed a button in their left hand if they heard or felt the same stimulus twice in a row. Green frame (not shown in task) indicates
such a one-back trial. ITI, Intertrial interval; TA, acquisition time.
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were codded as patterns that occurred either medial or lateral to the
body, respectively. The nasal manner feature was distinguished by driv-
ing two channels instead of one for stops and fricatives. Voicing was
coded as either driving high-frequency vibrations (250Hz) or low-fre-
quency vibrations (100Hz). Vowels were coded in a similar feature-
based manner but were dynamic stimuli (e.g., swirls and sweeps),
whereas consonants were static. Importantly, all consonant patterns
lasted 120ms and all vowel stimuli lasted 220ms; and there was a 100ms
gap between each pattern. As a result, token-based stimuli were either
660- or 880-ms-long. CVCC trained token-based stimuli used in fMRI
analyses were 880-ms-long, while their VT-vocoded counterparts had a
mean duration of 727ms and SD of 91.6ms. A paired t test revealed that
token-based stimuli were significantly longer (t(8) = 4.99; p=0.001) than
their vocoded counterparts. Thus, not only did VT-vocoded but not to-
ken-based stimuli preserve the temporal dynamics found in auditory
speech, but they also conveyed more information per unit time.

Experimental design
In the current study, subjects participated in two pretraining fMRI ses-
sions and one post-training session on successful completion of six be-
havioral training sessions. The final post-training session was followed
by a 10-AFC experiment to assess whether subjects retained the trained
associations between VT stimuli and the words. The two pretraining
fMRI sessions consisted of an auditory scan followed by a VT scan and
were done on separate days. After the pretraining VT scan, subjects per-
formed six sessions of behavioral training in which they learned to asso-
ciate patterns of VT stimulation with words. Subjects could only
perform one training session per day. A subject was considered to have
successfully completed the training and thus was eligible for the post-
training scan if he or she completed all six training sessions.

Behavioral training
Subjects performed a total of six training sessions and could only per-
form one training session per day. Each session took place in a quiet
room while the subject was seated and listened to an auditory white
noise stimulus through over-the-ear headphones. Auditory white noise
was presented to mask the mechanical sound of the VT stimulation.
During a training session, the subject performed five blocks of an N-al-
ternative forced choice (N-AFC) task consisting of 60 trials with self-
paced breaks between blocks. During the training sessions, only the 15
stimuli to be trained were presented. At the beginning of each trial, the
orthographic labels for the word choices were displayed on the screen,
and a VT stimulus was played after a short delay. Participants then indi-
cated which label corresponded to the VT stimulus using a numerical
key. The keys 1 to 0 corresponded to the left-to-right progression of the
word choices displayed on the screen. Feedback was given after each
trial, as well as an opportunity to replay any of the word choices. To
facilitate training progression, the training paradigm used a leveling sys-
tem organized in sets of three levels. The level of the participant deter-
mined the similarity of the stimuli on each trial as well as the number of
choices (N) in the N-AFC task. In a set of three levels, the number of
choices (N) was kept constant, but the choices themselves were increas-
ingly confusable. For example, in Level 1, subjects may have to distin-
guish “sand” and “meat,” but in Level 3, they may have to distinguish the
more similar pair “sand” and “tanned.” Subjects started on Level 1,
which used a 2-AFC, and the number of choices N was increased by 1
when progressing between each set of three levels (e.g., Level 3 to Level
4). An accuracy of 80% was required to advance to the next level. After
the completion of all six training sessions, subjects were invited to per-
form a post-training fMRI scan. Then on a separate day from the post-
training scan, subjects were brought back to perform a 10-AFC task.
Stimuli presented in the 10-AFC task consisted only of the 15 trained
words and, like the training sessions, consisted of five self-paced blocks
of 60 trials each.

fMRI experimental procedures
EPI images were collected from nine event-related runs in the auditory
scan and six runs in each of the VT scans. A sparse acquisition paradigm
was used in the auditory scan. Each run contained either 30 auditory

vocoded, 30 VT-vocoded, or 30 VT token-based stimuli. The same words
were used in all the scans, but subjects were only trained to recognize VT
versions of 15 of them. In both scans, subjects performed a 1-back task
that was used to maintain attention: Subjects were asked to press a button
in their left hand whenever the same stimulus was presented on two con-
secutive trials. These catch trials comprised 10% of the trials in each run.
Furthermore, an additional 10% of trials were null trials.

In the auditory scan, each trial was 3 s long and started with 1.5 s of
volume acquisition followed by the auditory word (during the silent pe-
riod, see Data acquisition; Fig. 1D). There were 118 trials per run plus an
additional 15 s fixation at the start of the run for a total run length of 369
s and session length of 43min. In the VT scan, each trial was 4 s long
(Fig. 1D), and there was a total of 111 trials per run plus an additional 10
s fixation at the start and end of the run for total run length of 464 s and
a session length of 46min.

fMRI data acquisition
MRI data were acquired at the Center for Functional and Molecular
Imaging at Georgetown University on a 3.0 Tesla Siemens Trio Scanner
for both the auditory and VT scans. We used whole-head EPI sequences
(flip angle = 90°, TE=30ms, FOV=205, 64� 64 matrix) with a 12-chan-
nel head coil. For the auditory scan, we used a sparse acquisition para-
digm (TR=3000ms, acquisition time = 1500ms) in which each image
was followed by an equal duration of silence before the next image was
acquired. Twenty-eight axial slices were acquired in descending order
(thickness = 3.5 mm, 0.5 mm gap; in-plane resolution = 3.0� 3.0 mm2).
This sequence was used in previous auditory studies from our laboratory
(Chevillet et al., 2013). For the VT scan, we used a continuous acquisi-
tion paradigm (TR=2000ms) and collected 33 interleaved descending
slices at the same resolution as in the auditory scan. A T1-weighted
MPRAGE image (resolution 1 � 1 � 1 mm3) was also acquired for each
subject.

fMRI data preprocessing
Image preprocessing was performed in SPM12 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm12/) and AFNI version 20.1.03 (Cox,
1996; Cox and Hyde, 1997). The first four acquisitions of each run
were discarded to allow for T1 stabilization, and the remaining EPI
images were slice-time corrected to the middle slice for the VT scans.
No slice-time correction was performed for the auditory scans
because of using a sparse acquisition paradigm because of temporal
discontinuities between successive volumes (Perrachione and Ghosh,
2013). These images were then spatially realigned and submitted to
the AFNI align_epi_anat.py function to coregister the anatomic EPI
images for each subject. This was used because, on inspection, it pro-
vided better registration between the anatomic and functional scans
than the corresponding SPM12 routine.

Anatomical preprocessing
Freesurfer version 6.0 (Fischl et al., 1999) was used to reconstruct corti-
cal surface models, including an outer pial and inner white-matter sur-
face using the standard recon-all function. These surfaces were then
brought into the SUMA environment (Argall et al., 2006; Saad and
Reynolds, 2012) and fit to a standardized mesh based on an icosahedron
with 64 linear divisions using AFNI’s MapIcosehedron command
(Oosterhof et al., 2011; Saad and Reynolds, 2012). This procedure
yielded 81,924 nodes for each participant’s whole-brain cortical surface
mesh. Each node on the standard mesh corresponds to the same location
across subjects, thereby allowing node-wise group-level analysis. This
improved the spatial resolution of our analyses since interpolation of the
functional data are unnecessary (Oosterhof et al., 2011). Finally, we used
the CoSMoMVPA toolbox (Oosterhof et al., 2016), and the Surfing
Toolbox (Oosterhof et al., 2011) to construct searchlights around each
surface node by selecting the 30 closest voxels measured by geodesic
distance.

Univariate analyses
We fit a GLM to each subject’s preprocessed functional images. For both
the auditory and VT studies, we specified 38 regressors in for each run:
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30 regressors, 1 for each word, 1 regressor for button press, and 6 motion
regressors of no interest, For the all scans, a “Stimuli-Baseline” contrast
image was generated for each subject. The contrast maps were smoothed
using an 8 mm FWHM smoothing kernel and then mapped to the corti-
cal surface using 3dVol2Surf. For each scan, a one-sample t test was used
to compare “Stimuli-Baseline” versus 0. Finally, a paired t test was used
to compare pretraining versus post-training scans.

Defining ROIs
In the current study, we tested evidence for metamodal engagement in
specific ROIs. These ROIs were defined either functionally or structur-
ally. Functional ROIs were defined by applying whole-brain representa-
tional similarity analysis (RSA) (Kriegeskorte et al., 2008; Kriegeskorte
and Kievit, 2013) to auditory fMRI data (see below). This revealed statis-
tically significant bilateral STG clusters that were then used in the main
analyses with VT data. We also hypothesized that learning to recognize
VT stimuli as words might rely on routes other than metamodal recruit-
ment in the STG, specifically through paired-associate learning in the
hippocampus (Eichenbaum et al., 1996, 2007; Gilbert and Kesner, 2003;
Treder et al., 2021). We therefore defined bilateral hippocampal ROI
using the HCP-MMP1.0 (Glasser et al., 2016) atlas.

RSA
Constructing model representational dissimilarity matrices (mRDMs).

Three mRDMs were generated: an auditory mRDM, a VT-vocoded
mRDM, and a VT token-based mRDM. Entries in these mRDMs corre-
sponded to distances between words. The distance metric that was used
was the edit distance between the words where the edits were weighted
by the perceptual confusability of the phonemes to be substituted. Edit
distances are frequently used with highly intelligible speech, for which
there are no phoneme-to-phoneme dissimilarity data, and when more
refined segment-to-segment distances are not available as was the case
for the VT token-based algorithm. Furthermore, recent work (Kell et al.,
2018) has shown that the representational format captured by the edit
distance matched those found in both higher-order STG speech regions
and speech recognition-specific representations learned in later layers of
a deep neural network. Auditory phoneme confusability was derived
from a behaviorally measured perceptual auditory vocoded phoneme
identification task. For both VT algorithms, phoneme confusability was
generated using the last training block of N-AFC training data collected
in this study. This procedure involved constructing word confusion mat-
rices and using it to extract phoneme-level confusion matrices. Vowel
confusions were extracted directly from the monosyllabic word confu-
sion data. Consonant confusions were extracted by collapsing over pre-
vocalic and postvocalic positions. In addition, a simplifying assumption
was made for incorrect responses where single consonants were matched
with consonant clusters. The implemented procedure resulted in credit
for correct identifications of individual consonants in clusters while

attributing incorrect responses to both consonants in a cluster. Once the
phoneme-level confusability was computed for auditory and VT condi-
tions, it was transformed into a distance measure using a f -square
transform (Iverson et al., 1998). Word-to-word distances were computed
as the sum of the pairwise phoneme distances for all the position-specific
phoneme pairs in each of the possible pairs of stimulus words. Given the
difficulty of estimating a distance swap between consonants and vowels
as well as between segments of different lengths, we restricted our analy-
ses to CVCC words, which were our most common segmental class
(Table 1). This resulted in a 9-by-9 auditory vocoded, VT-vocoded, and
VT token-based mRDMs for the CVCC trained words (Fig. 2). These
representational spaces are highly correlated (r=0.94) and reflect the
close representational congruence at the behavioral level between audi-
tory and VT stimuli generated by both algorithms.

Whole-brain searchlight RSA. RSA (Kriegeskorte et al., 2008;
Kriegeskorte and Kievit, 2013) were performed using the CoSMoMVPA
toolbox (Oosterhof et al., 2016) and custom MATLAB scripts. Within a
given searchlight, the activity (t statistic) in the voxels for each condition
constituted its pattern. A cocktail-blank removal was performed on this
condition-by-voxel data matrix whereby the mean pattern of activity across
conditions was removed for each voxel (Walther et al., 2016). A neural dis-
similarity matrix (nRDM) was then computed in each searchlight by com-
puting the pairwise Pearson correlation distance (1-Pearson correlation)
between the patterns of all pairs of conditions. To assess whether a given
region represented stimuli in a hypothesized format, the nRDM was com-
pared with the mRDM. This was done by taking the Spearman correlation
between the vectorized lower triangles of the nRDM and mRDM. This cor-
relation was then Fischer z-transformed to render the correlations more
amenable to parametric analyses (Kriegeskorte et al., 2008).

ROI-based RSA. ROI-based RSA analyses were performed in the VT
scans to test whether, following training, VT stimuli engaged auditory
speech representations. To do so, we averaged the Fischer z-transformed
correlations of searchlights in each ROI for the four groups (pre/post �
vocoded/token). We then fit these average ROI correlations with a linear
mixed effects model in R using the Lme4 Package. This model included
three main effects: TrainingPhase (0 for pretraining, 1 for post-training),
Algorithm (0 for token, 1 for vocoded), and Hemi (0 for right, 1 for left).
It also included all interaction terms, as well as a random slope and inter-
cept. The random effects terms allowed us to model the subject-specific
variability in the pretraining and the training-related change in correla-
tion. The final model is shown below:

Correlation; 11TrainingPhase�Algorithm�Hemi

þ ðTrainingPhase j SubjÞ

The reference group corresponding to the intercept was specified
as pretraining, token-based, right-hemisphere. All b s reported reflect

Figure 2. Behavioral level correspondence between auditory and VT stimuli. The auditory and the two VT perceptual mRDMs for the nine CVCC trained words are highly correlated (r= 0.94)
demonstrating a correspondence of stimulus similarities at the behavioral level.
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deviations from this reference group given the other effects. The model
was estimated using REML, and degrees of freedom were adjusted using
the Satterthwaite approximations. Post hoc contrasts were computed
using the emmeans package, and all reported p values were corrected for
multiple comparisons using Sidak’s method.

Task-regressed functional connectivity
The metamodal theory critically hypothesizes that metamodal engage-
ment consists in linking a brain area performing a particular computa-
tion (e.g., word representation) in a standard modality with an input
stream from a novel modality. We therefore performed functional con-
nectivity analyses to test for learning-induced changes in functional con-
nectivity between the somatosensory and auditory ROI. Specifically, we
used the CONN-fMRI toolbox (Whitfield-Gabrieli and Nieto-Castanon,
2012) to perform smoothing, segmentation, and cleaning of the data as
well as to compute seed-to-voxel correlation maps. Native-space func-
tional data were smoothed using an 8 mm FWHM smoothing kernel.
Next, anatomic scans were segmented to identify regions of white matter
and CSF. We then regressed out the signals from these regions using
CompCor (Behzadi et al., 2007) as well as the main effect of task.
Whole-brain seed-to-voxel correlation maps were then computed within
each subject. Finally, we mapped each subject’s correlation maps to a
standard cortical mesh using 3dVol2Surf to perform group analyses.

Whole-brain statistical correction
We tested the group-level significance of whole-brain RSA analyses as
well as functional connectivity differences by first computing a t statistic
at each node on the standard surface. To correct these t-statistic maps
for multiple comparisons, we first estimated the smoothness of the
data for each analysis in each hemisphere using the AFNI/SUMA
SURFFWHM command. We then used this smoothness estimate to
generate noise surface maps using the AFNI/SUMA slow_surf_clust-
sim.py command. This then allowed us to generate an expected clus-
ter size distribution at various thresholds that we compared clusters
in our actual data to. For the whole-brain analyses, a two-tailed clus-
ter-defining threshold of a = 0.005 was used. Since the auditory RSA
scan was used as an independent localizer scan in which to investigate
neural effects of VT training, a stricter cluster-defining threshold (a
= 0.001) was applied in the auditory RSA scan to isolate more spa-
tially restrictive clusters. All resulting clusters were corrected at the
p� 0.05 level. Tables 1-3 report the coordinates of the center of mass
of clusters in MNI space and their location as defined by the HCP-
MMP1.0 (Glasser et al., 2016) and Talairach-Tournoux Atlases.

Results
Analysis overview
We first examined univariate engagement of cortical areas by VT
and auditory stimuli. Next, we used RSA to identify areas encod-
ing auditory speech, and then tested whether VT stimuli were
encoded like the auditory speech stimuli in those areas following
training. We also examined training-related changes in func-
tional connectivity between somatosensory and auditory areas to
provide complementary evidence for learning-related differen-
ces. Finally, we examined whether token-based stimuli, which
failed to show metamodal engagement in auditory areas, were
encoded in the hippocampus which is known to play a role in
associative learning.

Behavior
Subjects (n=22) were trained to recognize stimuli derived from
either a token-based of vocoded auditory-to-VT sensory substitu-
tion algorithm, but 2 subjects were excluded because of a failure to
complete the training paradigm. Importantly, the performance for
all subjects was markedly above chance on the 10-AFC session
performed after the post-training fMRI scan. Participants in both
vocoded and token-based groups achieved progressively higher

levels in the behavioral training paradigm across training sessions
(Fig. 3A). The median final levels achieved were 8 and 7 for the to-
ken-based and vocoded VT groups, respectively. After the final
post-training fMRI scan, subjects completed a 10-AFC test on the
trained words (Fig. 3B). All subjects performed better than chance
(10%), and the median accuracies were 35.3% and 48.5% for the
token-based and vocoded VT groups, respectively. A two-sample t
test revealed no significant difference in accuracy between algo-
rithm groups (t(18) = 0.386, p=0.704).

Univariate fMRI analysis
In the auditory scan, the contrast of “All Words . Baseline”
revealed bilateral STG activation (Table 2; Fig. 4A). In the VT scans,
unpaired two-sample t tests revealed no significant differences
between the vocoded and token-based groups in either the pretrain-
ing or post-training phase. Therefore, subjects were combined
within training phase to test for the cortical common response to
VT stimulation. The contrast “All Vibrotactile Words . Baseline”
revealed several regions, including bilateral supplementary motor
area, precentral gyri (Table 2; Fig. 4B,C). No significant clusters
were identified for the post-training versus pretraining contrast. To
gain a better picture of the neuronal representations underlying
these responses, we performed a series of RSA analyses.

Whole-brain searchlight analysis reveals bilateral STG
regions are engaged in the perception of spoken vocoded
words
We conducted a whole-brain searchlight RSA to identify regions
engaged by auditory vocoded words (Fig. 5). This revealed left
(x = �58, y = �18, z=5; a = 0.001; p=0.001) and right mid-
STG (x= 58, y = �14, z= 3; a = 0.001; p=0.016) clusters. There
is strong evidence (Hamilton et al., 2018, 2021) that these regions
are involved in processing complex temporal patterns found in
auditory speech.

Vocoded but not token-based VT stimuli are encoded
similarly to auditory spoken words in the mid-STG following
VT speech training
Next, we conducted ROI-based RSA analyses to test the predic-
tion that trained VT stimuli would be encoded similarly to audi-
tory words in the mSTG. To do so, we used a linear mixed-
effects model (see Materials and Methods) to test the effects of
training phase, algorithm, hemisphere, as well as the interaction
among them on the correlations between neural and model
RDMs (Fig. 6).

This revealed a significant interaction effect between training
phase and algorithm (b = 0.240, t(31.09) = 2.679, p=0.012). Post
hoc tests revealed a significant training effect in the right mSTG
for the vocoded (t(31.1) = 3.380, p=0.008 Sidak-adjusted; d= 2.09,
95% CI = [0.78, 3.40]) but not the token-based group (t(31.1) =
�0.408, p= 0.990 Sidak-adjusted; d = �0.25, 95% CI = [�1.51,
1.00]). Furthermore, post hoc tests did not reveal a significant
increase between the pretraining and post-training correlations
in the left mSTG for either the vocoded (t(31.1) = 1.781, p=0.298
Sidak-adjusted; d= 1.10, 95% CI = [�0.17, 2.38]) or the token-
based (t(31.1) = 0.250, p=0.999 Sidak-adjusted; d= 0.15, 95% CI =
[�1.11, 1.42]) group. Analyses were repeated for the VT token-
based group using its corresponding behavioral mRDM (Fig. 2),
which still showed a nonsignificant training effect in both the left
(t(30) = 0.025, p= 0.989 Sidak-adjusted; d= 0.267, 95% CI =
[�1.042, 1.58]) and right mSTG (t(30) = �0.008, p=0.999 Sidak-
adjusted; d =�0.091, 95% CI = [�1.399, 1.217]).
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Although there was no significant three-way interaction, we
performed exploratory analyses to compare the correlation
between the left versus right mid-STG. This revealed significantly
(t(36) = 2.396, p=0.011 uncorrected; d= 1.07, 95% CI = [0.15,
2.00]) higher correlations post-training in the right than left
mSTG. In addition, there was a nonsignificant (t(9) = 2.185,
p=0.057 uncorrected; d= 0.61, 95% CI = [�0.03, 1.25]) differ-
ence when the difference between pretraining and post-training
correlations were compared between the right and left mid-STG.

Finally, since training on VT stimuli may induce changes
in high-level somatosensory areas, we also examined training-
related changes in S2 representations using the OPI/SII HCP-
MMP1.0 ROI (Glasser et al., 2016). However, there were no sig-
nificant interactions or main effects. These results indicate that
trained VT stimuli based on vocoded speech were encoded simi-
larly to auditory speech in the mid-STG while token-based VT
stimuli were not.

Training with vocoded VT speech stimuli increases
functional connectivity between somatosensory and auditory
regions
Previous studies showed that learning is accompanied by
increased functional connectivity between cortical areas (Lewis
et al., 2009; Urner et al., 2013; Siuda-Krzywicka et al., 2016).
Therefore, we tested the hypothesis that training on the vocoded

VT word stimuli was associated with increased functional con-
nectivity of somatosensory regions and the auditory word encod-
ing right mid-STG ROI (Fig. 5). To do so, we computed the
training-related changes in the right mid-STG seed-to-voxel
functional connectivity in the vocoded group (Fig. 7A; Table 3).
This revealed two clusters: one in the left STG (a = 0.005;
p= 0.044) and another in the left secondary somatosensory (SII)
(a = 0.005; p=0.026). Furthermore, reasoning that VT stimula-
tion on the right arm would engage the left SII region, we per-
formed an additional seed-to-voxel analysis using the left SII
seed defined by the HCP-MMP1.0 atlas (Glasser et al., 2016).
This complementary analysis (Fig. 7B) revealed two clusters: one
in the right insula and Heschl’s gyrus (a = 0.005; p=0.001) and
another in the right STG (a = 0.005; p=0.001). The left SII also
showed an increase in connectivity to the left central sulcus (a =
0.005; p= 0.001) (Table 3). Similar seed-to-voxel analyses also
using the left hippocampus or the bilateral mid-STG ROIs as
seeds revealed no significant training-related differences in the
token-based group. This pattern of training-related functional
connectivity between somatosensory and auditory areas for VT-
vocoded but not token-based stimuli was also found when calcu-
lating ROI-to-ROI functional connectivity (Fig. 7C,D). These
results support a model in which vocoded VT speech training
leads to increased functional connectivity between somatosen-
sory areas and auditory speech areas.

Figure 3. Progression of learning VT stimuli as speech. A, The performance of individuals on the behavioral training paradigm across sessions. Training progression for subjects in the token-
based (left) and vocoded VT (right) groups, respectively. Data for the final training sessions for 2 subjects, one per group, are missing because of technical error. Shaded lines connect the same
individual across sessions. Data for the final session of 2 subjects were lost because of technical error. B, The performance of subjects by algorithm group on 10-AFC task completed after the
final post-training fMRI scan. A two-sample t test reveals no significant difference in performance between the groups (t(18) = 0.386, p= 0.704). Dashed red line indicates chance performance.
Horizontal lines in the violin plots indicate the median.
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Training increases encoding of the VT token-based stimuli
in the left hippocampus
The noteworthy difference in the encoding of VT-vocoded ver-
sus token-based speech in the mid-STG raised the question:
what other pathway underlies subjects’ ability to learn the to-
ken-based VT stimuli as words (Fig. 3). As mentioned in the
Introduction, it is possible that a poor match between the tem-
poral dynamics of VT token-based stimuli and auditory speech
precludes metamodal engagement in the mSTG and instead
favors alternate strategies to learn associations between arbi-
trary pairs of stimuli. A key region involved in learning such
associations is the hippocampus (McClelland et al., 1995;
Eichenbaum et al., 1996, 2007; O’Reilly and Rudy, 2001).

We therefore used a linear mixed effect model to test whether
the hippocampus encoded token-based stimuli after training
(Fig. 8). This analysis revealed a significant two-way interaction
between training phase and hemisphere (b = 0.095, t(36) =
2.696, p= 0.011; Fig. 8) as well as a significant three-way inter-
action effect between training phase, algorithm, and hemi-
sphere (b = �0.151, t(36) = �3.027, p= 0.005). The three-way
interaction suggests that the relationship between training
phase and hemisphere varied depending on the algorithm. In
the left hemisphere, post hoc tests revealed a significant (t(30.7) =
3.232, p= 0.012 Sidak-adjusted; d = 2.022, 95% CI = [0.70,
3.35]) training-related increase in correlations for the token-
based but not vocoded (t(30.7) = �0.785, p= 0.901 Sidak-
adjusted; d = 0.49, 95% CI = [�0.79, 1.77]) VT group. In the
right hemisphere, there was a trending increase in correlation
for the vocoded group (t(30.7) = 2.387, p= 0.0902 Sidak-adjusted;
d = 1.49, 95% CI = [0.19, 2.80]) but not the token-based (t(30.7)
= 0.506, p= 0.9783 Sidak-adjusted; d = 0.32, 95% CI = [�0.96,
1.60]) VT group. Of note, using the vocoded and token-based
mRDMs for the corresponding groups also resulted in the same
significant two-way (b = 0.071, t(36) = 2.139, p= 0.039) and

three-way (b = 0.108, t(36) = 2.287, p= 0.028) interaction
effects. Furthermore, there was also a significant training effect
for VT token-based stimuli in the left hippocampus (t(28.2) =
2.598, p= 0.015); d= 1.76, 95% CI = [0.359, 3.172]).

Discussion
Metamodal theories of brain organization (Pascual-Leone
and Hamilton, 2001; Heimler et al., 2015) propose that cort-
ical areas are best described by their task-specific sensory
modality-invariant function. However, mixed evidence for
metamodal brain organization in neurotypical individuals
(Sadato et al., 1996; Ptito et al., 2005; Amedi et al., 2007;
Siuda-Krzywicka et al., 2016; Bola et al., 2017) has called
into question the conditions under which metamodal engage-
ment occurs. We argue that metamodal engagement in neuro-
typical individuals requires not just correspondence at the task
level (Marr, 1982) but also between stimuli at the level of neural
encoding. In the current study, we investigated this hypothesis
by training subjects on the same word recognition task using
one of two auditory-to-VT transformation algorithms. One
algorithm (vocoded) preserved the temporal dynamics of audi-
tory speech while the other algorithm (token-based) did not.
First, using whole-brain RSA and an independent auditory
scan, we identified auditory speech areas in the bilateral mSTG
that served as putative targets for metamodal engagement by
VT stimuli. We then showed that, after training, only VT-
vocoded stimuli engaged this area like auditory vocoded words.
Importantly, subjects in both groups achieved comparable lev-
els of proficiency on the post-training recognition task and had
similar behavioral confusions. This eliminates performance dif-
ferences as a reason for the different training effects at the neu-
ral level. We then showed that only VT-vocoded but not token-
based stimuli were associated with a significant training-related

Table 2. Location for all regions with significant activation versus baselinea

Scan Hemi HCP-MMP1.0 ROI (Talairach-Tournoux Atlas) Cluster p

Center of mass coordinates (MNI)

x y z

Auditory RH Parabelt complex (STG) 0.001 57 �13 3
LH Parabelt complex (STG) 0.001 �56 �19 5

Auditory 5 complex (STG) 0.001 �62 �36 7
Pretraining RH Area PF complex (inferior parietal lobule) 0.001 55 �25 24

Anterior intraparietal area (inferior parietal lobule) 0.001 39 �39 42
Supplementary and cingulate eye field (medial frontal gyrus) 0.001 8 13 52
Premotor eye fields (middle frontal gyrus) 0.001 51 2 41
Anterior ventral insular area (insula) 0.001 30 25 3

LH Area OP1/SII (inferior parietal lobule) 0.001 �52 �27 23
Rostral area 6 (precentral gyrus) 0.001 �50 2 28
Supplementary and cingulate eye field (superior frontal gyrus) 0.001 �8 9 54
Anterior intraparietal area (inferior parietal lobule) 0.001 �45 �38 42
Anterior ventral insular area (insula) 0.001 �30 25 7
Frontal eye fields (middle frontal gyrus) 0.002 �30 �3 48

Post-training RH Retroinsular cortex (inferior parietal lobule) 0.001 53 �32 25
Supplementary and cingulate eye field (medial frontal gyrus) 0.001 7 15 49
Area PF opercular (postcentral gyrus) 0.003 57 �16 22
Area posterior 24 prime (medial frontal gyrus) 0.019 7 2 65

LH Rostral area 6 (precentral gyrus) 0.001 �48 2 29
Area PF opercular (postcentral gyrus) 0.001 �59 �22 25
Area PF complex (inferior parietal lobule) 0.001 �50 �40 26
Supplementary and cingulate eye field (medial frontal gyrus) 0.001 �9 14 49
Area 6 anterior (middle frontal gyrus) 0.001 �29 �5 48
Anterior intraparietal area (inferior parietal lobule) 0.002 �47 �35 42
Anterior intraparietal area (inferior parietal lobule) 0.002 �35 �44 40

aClusters are thresholded at a voxel-wise a , 0.001 and cluster-level p, 0.05, FWE-corrected.
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increase in functional connectivity between the mid-STG and
secondary somatosensory areas. Finally, both algorithms, to dif-
ferent degrees, engaged hippocampal areas previously impli-
cated in paired-associate learning.

In this study, we show that adequately capturing (and eventu-
ally harnessing) the metamodal potential of cortex requires not
only the right task and sensory modalities but also an under-
standing of the information representation in these regions.
Prior work has primarily investigated metamodal engagement in
congenitally sensory-deprived individuals (Lomber et al., 2010;
Reich et al., 2011; Bola et al., 2017). In such cortical areas, given
the right task-relevant connectivity, bottom-up input from
another sensory modality can conceivably drive the de novo learn-
ing of task-relevant representations, even for encoding schemes
very different from those in neurotypical individuals (Striem-Amit
et al., 2012). However, in neurotypical adults, existing representa-
tions in traditionally unisensory areas reflect the task-relevant fea-
tures of the typical sensory input (Simoncelli and Olshausen,
2001; Lewicki, 2002). Therefore, for metamodal engagement to
occur, information partially processed in one sensory hierarchy
needs to interface with preexisting representations derived from
the typical modality. The lack of evidence for metamodal engage-
ment of the mid-STG by token-based VT stimuli in our study and

the mixed evidence in prior studies of neurotypical
individuals may reflect a failure to successfully per-
form this interface mapping.

The ability to map between sensory hierarchies
likely depends on both anatomic and functional con-
vergence. Anatomical (Schroeder et al., 2003; Mothe
et al., 2006; Smiley et al., 2007) and functional studies
in humans and nonhuman primates (Schroeder et al.,
2001; Foxe et al., 2002; Kayser et al., 2009; Ro et al.,
2013) have established convergence points between
somatosensory and auditory cortices, such as the
belt and parabelt areas. Given this connectivity,
prior computational studies have shown that the
mapping between different representational formats
can be learnt through simple biologically plausible
learning rules (Pouget and Snyder, 2000; Davison

and Frégnac, 2006). Still, while it is simple to learn the mapping
between static features, it is nontrivial to match the temporal dy-
namics between functional hierarchies (Pouget and Snyder,
2000; Davison and Frégnac, 2006). In the auditory cortex, studies
(Overath et al., 2015; Moore and Woolley, 2019) have shown
that auditory stimuli that do not preserve the same temporal
modulations found in conspecific communication signals subop-
timally drive higher-order auditory cortex and preclude learning.
This is supported by our current results, that only VT-vocoded
stimuli that preserve these fast temporal dynamics can drive au-
ditory perceptual speech representations in the mid-STG.

The token-based algorithm was based on a previously pub-
lished algorithm (Reed et al., 2019) where stimulus durations
were chosen to optimize recognizability. In this study, the token-
based algorithm generated longer stimuli than those generated
by the vocoded algorithm. Given this difference, it is remarkable
that words were recognized equally well in both algorithms,
although the vocoded stimuli were shorter (therefore requiring
more information processed per unit time). Thus, although both
algorithms were similarly learnable, effective metamodal engage-
ment may facilitate more efficient learning. Yet, differences in
stimulus length between the two algorithms could lead to a trivial

Figure 4. Univariate activity for “Stimuli-Baseline” in the auditory and VT scans. A, The group-level speech perception network revealed by the contrast of all auditory words. baseline. B,
The pretraining group-level VT perception network revealed by the contrast of all VT words. baseline. C, Same as in B, but for post-training scans. Results are rendered on a SUMA-derived
standard surface. All results are presented at a cluster-defining two-tailed a = 0.005 and p� 0.05. LH, Left hemisphere; RH, right hemisphere.

Figure 5. Auditory scan-RSA of vocoded auditory words. RSA revealed that neural RDMs in bilateral STG
regions significantly correlated with the predicted auditory perceptual mRDM (Fig. 2) (n= 18; a = 0.001;
p� 0.05). The center of mass of the left STG cluster was centered on MNI:�58,�18, 5. The center of mass
of the right STG cluster was centered on MNI: 58,�14, 3. Colors represent across-subject t statistics.
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difference in BOLD contrast responses, making our within-sub-
ject before/after experimental design essential for controlling
stimulus differences and isolating the neural effects of training.

Intriguingly, we find stronger evidence of metamodal engage-
ment by VT-vocoded stimuli in the right rather than left mid-
STG. A significant body of work (Boemio et al., 2005; Obleser et
al., 2008; Giraud and Poeppel, 2012; Flinker et al., 2019; Albouy
et al., 2020) suggests that the left and right STG are differentially
sensitive to spectrotemporal content of auditory stimuli. Specifically,
it has been proposed (Flinker et al., 2019) that the left STG sam-
ples auditory information on fast and slow timescales while the
right preferentially does the latter. In the current study, our VT-
vocoded stimuli preserve the coarse temporal dynamics of audi-
tory speech, but because of hardware limitations have a lower
temporal resolution than the auditory source signal. Also, the
temporal resolution of VT perception is lower than that of audi-
tory processing, since receptors in the skin act as additional low
pass filters (Bensmaïa and Hollins, 2005). Thus, the observed
metamodal engagement of the right more than the left STG pro-
vides support for the asymmetric spectrotemporal modulation
theory of hemispheric processing (Flinker et al., 2019).

Given that subjects were able to learn token-based and
vocoded VT stimuli as words with roughly equal proficiency,
how does the former group accomplish this task? We initially
hypothesized that the slower temporal dynamics of token-based
stimuli would engage more anterior STG areas that are thought
to integrate information on longer timescales (Overath et al.,
2015; Hullett et al., 2016). However, we did not find evidence for
this in the current study. This may be because of insufficient con-
nectivity between somatosensory and anterior STG (Mothe et al.,
2006). However, we did find evidence that token-based stimuli
engage neural representations in the left hippocampus. This fits
with previous proposals that learned associations can be retrieved
using paired-associate recall circuits in the medial temporal lobe
(Miyashita, 2019). A more thorough understanding of this process
through future studies will shed additional insight into which
pathways and mechanisms are leveraged to learn different types of
associations.

The present study has some limitations. For instance, token-
based stimuli may be encoded in the mSTG in a format that may
be captured by an alternative mRDM. Still, we did not find a sig-
nificant training effect in the mSTG even when using an mRDM

Figure 6. Vocoded but not token-based VT stimuli are encoded similarly to auditory spoken words in the mid-STG following VT speech training. Linear mixed-effects analysis revealed a sig-
nificant two-way interaction between training phase and algorithm (b = 0.240, t(31.1) = 2.679, p= 0.012). To investigate this interaction, we created interaction effects plots. A, Opaque lines
indicate the mean Fisher-transformed Pearson correlation between neural and model RDMs estimated from the mixed-effects model for the vocoded group. For the VT-vocoded group, post hoc
tests show a significant difference between pretraining and post-training in the right (t(31.1) = 3.380, p= 0.008 Sidak-adjusted) but not the left STG (t(31.1) = 1.781, p= 0.298 Sidak-adjusted).
B, Same as in A, but for the token-based group. Post hoc tests show no significant difference in the right (t(31.1) = �0.408, p= 0.990 Sidak-adjusted) or left STG (t(31.1) = 0.250, p= 0.999
Sidak-adjusted). Values above each violin reflect the uncorrected p value from a one-sample t test against 0. Semitransparent lines indicate raw individual subject correlations from either the
left (teal) or right (orange) STG. Horizontal lines in the violin plots indicate the median. Green asterisk represents significant (p� 0.05) differences after multiple comparisons correction.

Table 3. Location for all regions with significant training-related changes in seed-to-voxel functional connectivity in the VT-vocoded groupa

Seed ROI Hemi HCP-MMP1.0 ROI (Talairach-Tournoux Atlas) Cluster p

Center of mass coordinates (MNI)

x y z

lS2 RH Insular granular complex (insula) 0.001 40 �17 11
Auditory 5 complex (STG) 0.001 63 �22 7

LH Primary motor cortex (precentral gyrus) 0.012 �40 �19 42
lSTG RH Lateral belt complex (STG) 0.001 53 �18 6
rS2 RH Posterior insular area 2 (insula) 0.017 37 �8 6

LH Area OP2-3/VS (insula) 0.026 �42 �16 20
rSTG LH Area PFcm (postcentral gyrus) 0.026 �55 �28 21

Lateral belt complex (STG) 0.044 �50 �19 7
aClusters are thresholded at a voxel-wise a , 0.001 and cluster-level p, 0.05, FWE-corrected.
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Figure 7. Training with vocoded VT speech stimuli increases functional connectivity between somatosensory and auditory regions. A, Using the right mid-STG ROI (Fig. 5) as a seed revealed
two significant clusters of increased functional connectivity after training in the left STG (MNI: �50, �19, 7) and in the left supramarginal gyrus (MNI: �55, �28, 21). B, Using the left SII
seed derived from the HCP-MMP1.0 atlas (Glasser et al., 2016) revealed a significant cluster in the left central sulcus (MNI:�40,�19, 42). It also identified two significant clusters in the right
hemisphere. The first encompassed right insula and Heschl’s gyrus (MNI: 40, �17, 11). The other is on the right STG (MNI: 63, �22, 7). All whole-brain results shown are corrected at two-
tailed voxel-wise a = 0.005 and cluster p� 0.05. Colors represent across-subject t statistics. C, D, The post-pre training correlations for the VT-vocoded and token-based groups, respectively,
using an ROI-to-ROI functional connectivity. Color bar represents the post-pre training difference in functional connectivity between ROIs. A paired t test was performed to compare changes in
functional connectivity post-pre training. Green asterisks represent p� 0.05 FDR-corrected.

Figure 8. Training increases encoding of the VT token-based stimuli in the left hippocampus. Linear mixed-effects analysis revealed a significant three-way interaction between training
phase, algorithm, and hemisphere (b =�0.151, t(36) =�3.027, p= 0.005). To investigate this interaction, we created interaction effects plots. A, The mean Fisher-transformed Pearson cor-
relation between neural and model RDMs estimated from the mixed-effects model for the vocoded group are represented by the opaque lines. For the VT-vocoded group, post hoc tests show a
trending difference between pretraining and post-training in the right (t(30.7) = 2.387, p= 0.0902 Sidak-adjusted) but not the left hippocampus (t(30.7) = 0.785, p= 0.901 Sidak-adjusted). B,
Same as in A, but for the token-based group. Post hoc tests show no significant difference in the right (t(30.7) = 0.506, p= 0.978 Sidak-adjusted), but do show a significant difference in the
left hippocampus (t(30.7) = 3.232, p= 0.012 Sidak-adjusted). Values above each violin indicate the uncorrected p value from a one-sample t test against 0. Semitransparent lines indicate raw
individual subject correlations from either the left (teal) or right (orange) hippocampus. Horizontal lines in the violin plots indicate the median. Green asterisk and orange tilde represent signifi-
cant (p� 0.05) and trending (p� 0.1) differences, respectively, after multiple comparisons correction.
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derived specifically for token-based stimuli. Likewise, our hy-
pothesis that only the vocoded encoding led to multimodal
engagement was supported by the functional connectivity analy-
ses that revealed significant training-related changes in connec-
tivity between somatosensory and auditory areas only for the
VT-vocoded but not the token-based group. This acts as comple-
mentary evidence that VT token-based stimuli are unable to
“engage” the mSTG. Next, despite evidence for a training-related
effect for VT token-based stimuli in the hippocampus, this result
should be interpreted with caution since the post-training corre-
lation was not significantly greater than 0. Finally, a limitation of
the present study is the modest sample size used. This is espe-
cially true in the VT scans, in which only large effect sizes could
be detected. In the current study, the crucial hypothesis was that
VT-vocoded stimuli engaged auditory word representations in
the STG after training better than token-based VT stimuli.
Mixed-effects analysis was able to detect this significant pre-
dicted interaction. Yet, it is possible that token-based stimuli
might also exhibit small training-related changes that may have
been missed because of the small sample size.

In conclusion, ours is the first study to use two different sen-
sory substitution algorithms to demonstrate that metamodal
engagement in neurotypical individuals relies on a correspon-
dence between the encoding schemes of novel and standard sen-
sory modality stimuli. This extends metamodal theories (Heimler
et al., 2015) that only emphasize a correspondence at the task level
(Heimler et al., 2015). Consideration of these correspondences
may provide insight into how the brain maps between various lev-
els of different functional hierarchies, such as sublexical and lexical
orthography and phonology (Share, 1999). It also suggests that
therapeutic sensory substitution devices might benefit from differ-
ent algorithms for patients with acquired rather than congenital
sensory deprivation. For the former, careful consideration should
be given to the type of sensory substitution algorithm to best inter-
face with spared sensory representations. The ability to “piggy-
back” onto an existing processing hierarchy (e.g., auditory speech
recognition) may facilitate the rapid learning of novel stimuli pre-
sented through a spared sensory modality (e.g., VT). Future work
should explore whether this observed integration into existing
processing streams leads to improved generalization and transfer
of learning.
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