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Abstract Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, 
which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact 
with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the 
formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological 
high shear stress, flow near branch points or in curved vessels can exhibit ‘disturbed’ flow. Clinical studies as well as carefully controlled in 
vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral 
flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endo-
thelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute 
context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial me-
chanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
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1. Introduction
1.1 Endothelial Mechanobiology
Endothelial cells (ECs) in the lining of blood vessels create a selective bar-
rier for fluid and biomolecule transport. In normal development and adult 
physiology, ECs activate morphogenic programs to form vascular struc-
tures in the embryo, remodel existing vasculature, or create new blood 
vessels during tissue repair, while endothelial dysfunction leads to patho-
physiological states that contribute to vascular disorders such as athero-
sclerosis and thrombosis.1

ECs are exquisitely sensitive to fluid shear stress (FSS), which is a critical 
determinant of homeostasis but can also be an instigator of disease2,3

(Figure 1). FSS is the tangential component of frictional forces generated 
at a surface (e.g. the vessel wall) by the flow of a viscous fluid (e.g. 
blood).4–6 The blood vascular wall has three mechanical force loadings, 
i.e. shear stress (SS), normal stress, and circumferential stress. SS used in 
this article denotes wall SS, which is the component of frictional forces aris-
ing from the blood flow and acts parallel to the vessel luminal surface.5–7 SS 
is an outcome of fluid viscosity and the velocity gradient between adjacent 
layers of the flowing blood. Imposed with the pulsatile characteristic of the 
flow, SS spans a range of spatiotemporal scales. The magnitude of SS is ex-
pressed using interchangeable units (1 Pa = 1 N/m2 = 10 dynes/cm2), and 
the value is affected by changes in blood flow velocity, the inner radius 
of vessel, and the viscosity of blood. Cells face diverse physical, biochemical, 
and biomechanical environments and possess the ability to respond to 
these cues to maintain appropriate biological functions. Mechanobiology 
refers to mechanisms by which cells sense, transduce, and respond to 
mechanical forces and modulate their functions. Cells achieve this through 

mechanotransduction—the transmission of mechanical forces through 
sensing structures, which results in the induction of biochemical signals.8

Geometrical properties of arteries and pulsatile flow conditions deter-
mine the detailed blood flow patterns. Pulsatile blood flow results in a posi-
tive mean flow rate, but the velocity of the fluid oscillates with the 
frequency of the heartbeat, and the flow exerts pulsatile SS on the endo-
thelium.9 In straight segments of arteries, blood flows in ordered laminar 
patterns in a pulsatile fashion dependent on the cardiac cycle. ECs are sub-
jected to pulsatile laminar SS with fluctuations in magnitude that yields a 
mean positive SS.8,10,11 Regions of such laminar and physiological levels 
of SS are generally not prone to formation of atherosclerotic lesions. In 
the context of physiological laminar flow, ECs assume a quiescent state 
with characteristics of anti-inflammation, antiproliferation, antiapoptosis, 
antilipid infiltration, antileucocyte adhesion and migration, antithrombosis, 
and reduced endothelial to mesenchymal transition (EndMT) and glycoly-
sis.2,9,12–14 Laminar SS maintains EC quiescence and vascular homeostasis 
by inducing endothelial production of a number of factors that promote 
vasodilation [e.g. endothelial nitric oxide synthase (eNOS) and nitric oxide 
(NO)] and downregulating proatherogenic genes encoding adhesion mole-
cules and chemokines [e.g. vascular cell adhesion molecule-1 (VCAM-1), 
intracellular cell adhesion molecule-1 (ICAM-1), and monocyte chemotac-
tic protein-1 (MCP-1)], which inhibit the adherence of circulating blood 
elements.9,15 Corresponding flow-responsive mechanisms include 
Kruppel-like factor 2 (KLF2),16,17 Kruppel-like factor 4 (KLF4),18,19 nuclear 
factor (erythroid-derived 2)–like 2 (NRF2),20,21 and other protective path-
ways; these pathways synergistically contribute to the atheroprotective ef-
fects of laminar flow.22

In contrast, atherosclerosis-susceptible regions of arterial branches, bi-
furcations, and curvatures are characterized by disturbed flow and low 
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time–averaged SS.8,11,23 Disturbed flow is a complex flow pattern that in-
cludes recirculation eddies and changes in direction with space (flow sep-
aration and reattachment) and time (reciprocating flow).24 ECs in these 
atheroprone sites experience oscillatory and low SS and exhibit low NO 
production, reduced barrier function, increased proadhesive, procoagulant 
and proproliferative properties, and an enhanced endothelial to EndMT 
phenotype.2,7,25–27 Upon exposure to low and oscillatory SS, activated 
ECs express atherogenic molecules, including MCP-1, which recruits 
monocytes into the arterial wall, and platelet-derived growth factors 
(PDGFs), which stimulate EC proliferation and migration of vascular 
smooth muscle cells (VSMCs) into the subintimal space.7,25 These changes 
in vessel biology are evidently related to inflammatory and tissue repair 
programs. The mechanisms responsible for disturbed flow-mediated 
endothelial dysfunction involve activation of nuclear factor κB 
(NF-κB),28–30 Yes-associated protein (YAP)/WW domain-containing tran-
scription regulator 1 (TAZ),31–33 and hypoxia-inducible factor 1α 
(HIF-1α)34–36 among other pathways.

Importantly, exercise training is a well-established and potent physio-
logical stimulus which reduces cardiovascular events.37 Endothelial dys-
function is associated with an impaired dilatory response to increased 
blood flow-associated SS [flow-mediated dilation (FMD)].38 Exercise (e.g. 
handgrip exercise and cycling exercise) can create a sustained, contraction 
intensity-dependent increase in SS, which potentiates the subsequent bra-
chial artery FMD response to a reactive hyperaemia (RH)–induced increase 
in SS (RH-FMD; standard test, typically denoted simply as ‘FMD’).39–41 The 
mechanisms responsible for the benefits of exercise training in terms of 
endothelial function may be related to either direct hemodynamic effects, 
or secondary effects, mediated through risk factor modification.42,43 And 
perturbed flow dynamics are also induced in postsurgical neointimal hyper-
plasia and predispose to pathophysiologies such as in-stent restenosis, vein 
bypass graft failure, transplant vasculopathy, and vascular calcification.

1.2 Methodologies for studying the effects of 
FSS on ECs
To study the mechanisms of EC responses to SS, various models have been 
developed to mimic in vivo flow environments (Table 1). In vitro models can 
provide well-controlled conditions for studying endothelial biology over 

time. However, these models are limited in that they do not fully recapitu-
late vessel anatomy or mechanical properties, which is significantly more 
complicated. On the other hand, in vivo models are more relevant to dis-
ease processes, but fluid dynamics are difficult to accurately measure or 
control in animal models. Ultimately, a combination of in vivo and in vitro 
approaches has led to our current understanding of endothelial mechano-
biology and atherosclerosis.

1.2.1 In vitro approaches
Early efforts in this area used modified cone and plate viscometer systems 
to create a well-defined and constant SS44–47 (Figure 2A). In this approach, 
flow is generated using a cone, which rotates around a central axis that is 
perpendicular to a fixed plate on which the cells are seeded. Another ap-
proach to create SS is the ‘shear ring’ device, which can provide unidirec-
tional and periodic flow patterns within physiological and 
pathophysiological ranges using a shaker plate48 (Figure 2B). By restricting 
the flow pathway within a circular culture dish to the periphery through 
the placement of an inner ring, the shear ring model can effectively alleviate 
‘mixed’ cellular shear-induced phenotypes.

To more accurately control fluid exchange over the ECs, parallel plate flow 
chambers were developed. This apparatus uses a syringe pump or peristaltic 
pump to pass fluid from a reservoir through the chamber, creating steady uni-
directional, pulsatile, or oscillatory flow.26,49,50 Channels with rectangular 
cross-section and uniform height along the flow path can be used to study 
steady or pulsatile laminar flow (Figure 2C). Disturbed flow is achieved by 
introducing a vertical step expansion near the entrance, where the channel 
height suddenly increases (Figure 2D). As fluid passes the step, there is a region 
of flow separation with low SS where flow recirculation and reattachment 
occur. Downstream, the disturbed flow transits to laminar flow where the 
channel has uniform height. Thus, the step flow chamber can be used to 
examine EC responses to disturbed flow in the vicinity of the reattachment 
area and laminar flow downstream in the same device.7,26

Microfabrication techniques greatly advance the possible complexities of 
FSS models. Microfabricated channels have been used to mimic vessel branch-
ing (Figure 2E). Microfluidic devices with bifurcated channels produce regions 
with SS gradients, allowing detailed studies of the impact of chronic SS spatial 
gradients on ECs.51–53 More recently, microfluidic systems allow growth of 

Figure 1 Hemodynamic SS and its role in vessel pathophysiology. The straight part of the artery is exposed to sustained laminar flow and physiological high 
SS, while flow near branch points or in curved vessels can exhibit disturbed flow. ECs subjected to laminar flow show anti-inflammatory, antioxidant, and anti-
proliferative phenotypes accompanied by reduced EndMT and glycolysis, thereby maintaining EC quiescence and vascular homeostasis. Corresponding flow- 
responsive mechanisms include KLF2, KLF4, NRF2, and other protective pathways. By contrast, ECs in regions of disturbed flow show a proinflammatory, 
prooxidant, proproliferative response and an enhanced endothelial to EndMT phenotype. As a consequence, disturbed flow leads to EC dysfunction and 
atherogenesis. The mechanisms responsible for disturbed flow-mediated endothelial dysfunction involves activation of NF-κB, YAP/TAZ, and HIF-1 among 
other pathways. ↑: upregulation; ↓: downregulation.
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ECs in 3D microchannels with dimensions similar to vessels in vivo 
using microfabrication techniques and enable integration of important 
cells and structural properties such as mural cells, extracellular matrix 
(ECM), or mechanical deformations (e.g. vessel hoop stress). 
Microfabricated polydimethylsiloxane (PDMS) hydrogel hybrids have 
been developed using PDMS scaffolds or channels that contain hydro-
gels (Figure 2F). Cells can then be seeded on the hydrogel, providing a 
more biologically relevant substrate for studies of EC functions. 
Such systems have been widely used to investigate capillary 
sprouting in response to changes in pressure or growth factor gradi-
ents.54–56 Although the flexibility of microfabrication technology helps 
to recapitulate more realistic vascular features in vitro, further modifi-
cations are needed to reproduce the correct microanatomy of the 
vessel wall.

1.2.2 In vivo methods
Over the past decades, several animal models have been utilized for study-
ing the effects of atheroprone SS on ECs, including (i) exogenous constric-
tion of a segment of a large vessel, (ii) partial ligation of the carotid artery, 
and (iii) creation of an arteriovenous fistula (AVF).

One of the most common strategies to induce disturbed flow and the 
associated low and reciprocating SS in vivo is to introduce a local constric-
tion to recapitulate the effects of a stenosis in a segment of a large vessel 
such as the carotid artery or abdominal aorta (Figure 3A, left panel). 
Mimicking a stenosis (40–60% reduction in diameter) in this way leads to 
flow separation and low-velocity recirculation in the region immediately 
downstream from the constriction, and laminar with a relatively higher 
SS upstream of the constriction and in distal downstream segments.57,58

Computational fluid dynamics (CFD) studies for the perivascular cuff mod-
el further showed that the constrictive cuff results in three distinct regions 
of SS: relatively lower laminar shear upstream from the stenosis, relatively 
higher shear within the stenosis, and low oscillatory shear downstream 
from the stenosis59 (Figure 3A, right panel).

The partial ligation model provides a powerful approach to uncover the 
pathogenesis of disturbed flow–induced atherosclerosis (Figure 3B, left pa-
nel). By ligating three out of four branches of the left carotid artery, the par-
tial ligation model causes pathophysiologically relevant disturbed flow with 
characteristics of low and oscillatory wall SS in the common carotid ar-
tery.60 CFD models have incorporated the geometry of mouse carotid ar-
teries as determined by ultrasound imaging to predict whether partial 
ligation changes SS levels and direction. Mitra et al.61 further revealed 
that the SS level is significantly reduced during diastole compared with 
that of the right common carotid artery (RCA) and becomes negative (be-
cause of flow reversal) during diastole in the ligated left common carotid 
artery (LCA) (Figure 3B, right panel). The disturbed flow induces rapid de-
velopment of atherosclerosis in 2 weeks and advanced lesions by 4 weeks 
in apolipoprotein E-deficient (ApoE−/−) mice.60,62

AVF is another approach to obtain an experimental model of perturbed 
flow in vivo (Figure 3C, left panel). This is often created by forming a connec-
tion between the carotid artery and the jugular vein or between the femoral 
artery and the femoral vein of rodents, rabbit, or swine. CFD simulations 
showed that areas of low SS are found along the wall of the anastomotic floor, 
near the anastomosis heel on the inner wall of the vein and to a lesser extent 
on the inner wall after the curvature of the vein63 (Figure 3C, right panel). 
Despite the high flow rates present in AVF after maturation, low and oscilla-
tory SS exists in zones where flow stagnation occurs on the outer wall of the 
artery and on the inner wall of the juxta-anastomotic site, thereby resulting in 
vessel stenosis in regions with flow perturbations.64–66

Of note, AVF-induced alteration of SS causes acute and chronic struc-
tural remodelling in the artery and vein, although the vein has received 
more attention in AVF research studies. AVF leads to neointima formation 
and stenosis in the venous region of disturbed flow induced by shunting of 
arterial blood flow directly into the vein.67,68 Like arterial endothelium re-
sponses to oscillating flow, ECs in such venous segments undergo proin-
flammatory activation associated with upregulation of MCP-1 and 
induction of the proinflammatory transcription NF-κB.67,69 In addition, 
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Table 1 The pros and cons for in vitro and in vivo methods modelling SS

In vitro models Pros Cons

Cone-and-plate 

system

Readily programmable and reproduce different SS waveforms under 

controlled conditions

Has a relatively low surface area, and hence, a low number of replicate 

studies can be simultaneously performed
Shear ring model Effectively limits ‘mixed’ shear and provide unidirectional and periodic 

flow patterns within patho/physiological levels

The intrinsic inability to precisely control flow in the shear ring

Parallel plate 
chamber

The ability to generate steady unidirectional or oscillatory SS in a 
pulsatile manner in an apparatus

Relatively lengthy and complex setup time, low surface areas, 
requirements for pumps, and pressurization often requiring sealants 

and gaskets

Microfluidic 
bifurcated channel

Model gradient SS regions and changes in pressure or growth factor 
gradients

Linear rectangular channels that are optically transparent and 
permeable to gases

Microfluidic 

cylindrical channel

Incorporate ECM components and more physiologically relevant Cylindrical, linear channels fail to accurately model the effects of 

disturbed flow in bifurcating vessels

In vivo models Pros Cons

Perivascular cuff 
model

Easy to induce vortex shedding, highly turbulent regions, and 
recirculation zones

Less physiologically relevant due to the acute flow alteration and the 
dissociation of oscillatory shear from low SS. Cuff placement may 

evoke intraplaque haemorrhage and plaque rupture with 

fibrin-positive luminal thrombus
Partial ligation model More physiologically relevant due to associated chronic flow alteration 

and colocalization of both low and oscillatory SS. Allows for easy 

and rapid intimal RNA isolation and provide sufficient quantity of 
endothelial RNA for genome-wide microarray studies. Short study 

duration

The presence of thrombus, endothelial denudation, and decreased 

vessel diameter

AVF model High clinical relevance of AVF to vascular access in haemodialysis High cost and technical complexities
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the creation of AVFs induces high flow rates in the arterial segment prox-
imal to the AVF, which leads to arterial remodelling. ECs exposed to high 
flow conditions show significantly increased cell density and upregulated 
expression of vascular endothelial growth factor (VEGF), a potent angio-
genic factor that stimulates EC proliferation and migration.70

In summary, sophisticated methods for modelling shear forces in vitro 
and in vivo have greatly advanced our understanding of EC mechanics. 
The choice of a suitable model to study the effects of FSS on ECs is de-
pendent on the specific endothelial process to be studied. By character-
izing the FSS profiles generated by in vitro models and pairing them to the 
FSS profiles identified in atherosclerosis, we can characterize in more de-
tail the contribution of mechanical forces on endothelial health and 
pathophysiology.

2. Response of ECs to FSS
2.1 EC morphology
In vitro and in vivo studies have clearly identified that ECs in areas of 
high laminar SS elongate and align in the direction of flow, with the 
well organized and parallel actin stress fibres in the central re-
gion.11,15,71 Whereas static cultures or cells exposed to disturbed 
flow are randomly oriented and tend to adopt a more polygonal 
shape; their actin filaments are short and localized mainly at the cell 
periphery.7,11,72,73 It is likely that EC alignment parallel to the flow dir-
ection is an adaption response that can reduce flow resistance and in-
duce prosurvival signals in the endothelium.49,74 Disturbed flow or low 
SS results in less alignment of the ECs, thus exposing them to higher 
SS gradients and potentially priming these regions for atheroscler-
osis.75 Changes in EC morphology in response to SS are mediated 
by activation of the Rho family of small GTPases and upregulation 
of intercellular adhesion molecules, which are associated with struc-
tural reorganization of the cytoskeleton, cell-cell junctions, and focal 
adhesions (FAs).76

2.2 EC turnover
Laminar flow leads to reduced EC turnover rate and keeps ECs in a rela-
tively nonproliferative state, which is associated with DNA synthesis in-
hibition and cell cycle progression suppression with the majority of 
cells being arrested in the G0 or G1 phase.77 Mechanically, laminar flow 
enhances the activity of histone deacetylase 1 (HDAC1) and its associ-
ation with p53 resulting in deacetylation of p53 at Lys 320 and Lys 373. 
HDAC-deacetylated p53 then activates the growth arrest proteins 
GADD45 (growth arrest and DNA damage–inducible protein 45) and 
p21, which cause a decrease in cyclin-dependent kinase activity and 
then hypophosphorylation of retinoblastoma protein (Rb).77,78 Rb phos-
phorylation undergoes periodic oscillations during the cell cycle and pre-
dominates in G0/G1 phases. The hypophosphorylated Rb can bind several 
transcription factors essential for DNA synthesis to prevent their initi-
ation of transcription, thus inhibiting cell proliferation. In contrast, oscil-
latory/low SS promotes EC turnover with characteristics of increased 
DNA synthesis and proliferation via G0/G1-S transition by suppressing 
p21.7,79 Such accelerated cell turnover would lead to an enhanced macro-
molecular permeability and contribute to the increases in lipid uptake at 
regions of disturbed flow.9,80 Although involved in p53/p21 signalling in 
EC turnover and senescence, SS––induced cell turnover can be reversed, 
which differs from cellular senescence, a state of irreversible growth ar-
rest after successive cell division–induced telomere shortening that ultim-
ately triggers DNA damage responses.81,82

2.3 EC permeability
Shear force is a major determinant of EC permeability and endothelial barrier 
function. In the context of physiological high laminar SS, the adjacent ECs are 
closely connected and restrict the passage of macromolecules such as lipopro-
teins.83 Conversely, disturbed flow causes barrier disruption and increases 
permeability to macromolecules. Perturbed flow results in a large intimal clear-
ance of low-density lipoprotein (LDL) and thus a large mass influx of LDL into 

Figure 2 Methods for investigating endothelial SS in vitro. (A) Modified cone and plate viscometer system for applying spatially uniform SS. (B) Shear ring 
device constructed from petri dishes, with flow driven by placement on a shaker plate. (C ) Parallel plate flow chamber; flow is controlled by a syringe 
pump (not shown). (D) Step flow chamber. In this modification of the parallel plate flow chamber, a step expansion is introduced to produce localized 
flow separation/disturbance at the EC surface. (E) Bifurcating channel in a microfluidic device. (F ) Cylindrical channel cast in a hydrogel (e.g. collagen I) and 
then coated with ECs.
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the intima.83 Disruption of the junctional complex proteins such as connexins 
and VE-cadherins is largely responsible for flow-mediated alterations in perme-
ability.25,84 Interestingly, state-of-the-art morphological observations of human 
coronary atheroma reveal microscopic breaches in intimal endothelial 
continuity and the accumulation of erythrocyte components and polymorpho-
nuclear leucocytes within the region of flow disturbances.85 The observations 
suggest that hemodynamically related microscopic lesions are an early 

contributor to increased permeability and atherogenesis. In addition, the en-
hanced cell turnover rate, as well as the morphological changes of ECs from 
elongated to more rounded shape caused by disturbed SS, might also affect 
cell–cell junctions and contribute to the greater permeability of ECs in ather-
oprone areas.26,49,73 Low/oscillatory SS increases the permeability of the in-
ternal elastic lamella and elastic lamellae by reducing fenestrae, thus 
increasing the accumulation of macromolecules in the arterial wall.86 More 

Figure 3 In vivo methods for modulating endothelial SS. (A) In the SS–modifying cuff model, a restrictive cuff is placed around the right carotid artery (RCA) 
to modify blood flow. The resulting changes in SS can be estimated using CFD (at right).59 There is decreased laminar SS upstream and oscillatory SS down-
stream. (B) The partial ligation model. Three branches of the left carotid artery (LCA) are ligated, thus reducing SS in the LCA. (C ) AVF model. A connection is 
made between the common carotid artery (CCA) and the external jugular vein (EJV) causing disturbed flow in multiple regions near the anastomosis. Right 
panel in part A is adapted from Mohri59; right panel in part (B) is adapted from Mitra61; right panel in part (C ) is adapted from Bai.63.
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recently, a study by Lu et al. established a functional link between the activation 
of mechanosensitive Ca2+ channels, transient receptor potential vanilloid sub-
type 4 (TRPV4), and endothelial hyperpermeability through the phosphoryl-
ation and mitochondrial redistribution of eNOS mediated by PKC (protein 
kinase C).87

Moreover, the shear dependence of macromolecule uptake such as al-
bumin and LDL in the vessel wall has been reported. Compared with 
the uptake by cells under static conditions, lower SS leads to an increased 
uptake of LDL into ECs, whereas there is decreased uptake at higher SS.88

Mechanistically, the endothelial glycocalyx is involved in regulation of shear- 
dependent uptake of macromolecules into ECs, since neutralization of the 
glycocalyx induces an increase in albumin uptake by cultured ECs.89,90 It is 
thought that the size and steric hindrance as well as electrostatic charges of 
the glycocalyx and the permeating substance contribute to glycocalyx- 
dependent permeability.91

2.4 EndMT
EndMT, a complex biological process with characteristics of EC transition 
to mesenchymal phenotype, has been identified to be regulated by mech-
anical forces. While laminar SS is protective against EndMT, ECs are ex-
posed to disturbed flow undergo EndMT, contributing to 
atherogenesis.92 Extensive studies have shown that the multifunctional 
cytokine transforming growth factor-β (TGF-β) is the main inducer of 
EndMT,93 but the processes leading to activation of its signalling remain 
poorly defined. Analysis of human coronary arteries indicates a strong 
correlation among reduced fibroblast growth factor receptor 1 
(FGFR1) expression, activated TGF-β signalling, the occurrence of 
EndMT, and the severity of atherosclerosis.94 Using the parallel plate sys-
tem and partial carotid ligation model, a recent study has confirmed that 
ALK5 (TGFβR1) is a receptor responsible for mechano-EndMT and Shc 
acts as a critical downstream driver of EndMT and atherosclerosis in 
areas of disturbed SS.95 The activated TGF-β receptor complex trans-
duces its signal by phosphorylating Smad transcription factors, which sub-
sequently translocate into the nucleus and bind to promoters of EndMT 
inducing genes. These genes include the key transcription factors GATA4, 
TWIST1, and Snail.96,97 In addition to modulating transcription factors, 
induction of EndMT leads to cytoskeletal remodelling via activation of 
the Rho GTPase family (RhoA, RAC1, and CDC42) through 
Smad-dependent and Smad-independent mechanisms.98 This cytoskeletal 
reorganization alters the endothelial apicobasal polarity and the cells 
form spindle shapes with enhanced migration, thus predisposing to the 
development of atherosclerosis.99 Moreover, oscillatory SS in a three- 
dimensional microengineered human coronary-artery-on-a-chip induces 
transition of ECs into a proinflammatory EndMT phenotype and contri-
butes to atherogenesis, which is mediated by the Notch1/p38 
MAPK-NF-κB signalling pathways.92

2.5 Anticoagulant activity
Physiological laminar SS promotes anticoagulant characteristics consistent 
with an atheroprotected phenotype of ECs. Prostacyclin is the first inhibi-
tor of platelet aggregation shown to be released from ECs in response to 
shear force.100 Laminar SS–induced release of the vasodilator NO is also 
responsible for the antiplatelet aggregation properties of ECs.101 More re-
cently, studies have identified that thrombomodulin (TM), which is a key 
player in the regulation of coagulation and thrombosis, responds to shear 
force through interaction with protein C and protein S to inactivate certain 
clotting factors, thus exerting anticoagulant activity.102,103 Under laminar 
flow with high SS, KLF2-mediated upregulation of TM is an important pro-
tective antithrombotic and antiatherosclerotic mechanism in large arter-
ies.102,104 TM is reversibly regulated by mechanical forces in an 
EC-specific, magnitude-dependent, and hysteresis-free manner.105

Besides, laminar SS has been shown to stimulate expression of tissue plas-
minogen activator (tPA) and reduce secretion of plasminogen activator in-
hibitor type-1.106–108 Importantly, ECs exposed to turbulent flow fail to 
show increases in TM and tPA.109,110

2.6 Leukocyte adhesion and migration
Adhesion of circulating leukocytes to and subsequent transmigration 
across the EC monolayer are key events in atherogenesis. The adhesive in-
teractions between leukocytes and ECs are modulated by local blood 
flow.111 Circulating leukocytes tether and roll along the vessel wall by es-
tablishing transient selectin–mediated interactions with ECs.112 This initial 
contact facilitates recognition of chemoattractants (mostly chemokines), 
immobilized on the apical surface of ECs, by rolling leukocytes. Extensive 
studies have shown that laminar flow is associated with less adhesion of cir-
culating leukocytes to ECs. This process involves inhibition of expression of 
adhesion molecules and chemotactic proteins (e.g. VCAM-1 and MCP-1) in 
ECs. In contrast, disturbed flow with altered SS promotes leukocyte bind-
ing and transmigration, thus causing leukocyte accumulation in the arteries 
and increased propensity for atherogenesis.73 Increased leukocyte–EC ad-
hesion under disturbed flow may be attributed to (i) the altered expression 
of adhesive proteins such as ICAM-1, E-selectin, and MCP-1 on EC surfaces 
and (ii) the enhanced collisions and prolonged contacts between the circu-
lating leukocytes and ECs.113 Furthermore, accumulating evidence demon-
strates that shear forces participate in integrin-mediated leukocyte 
arrest.111,114 Ultimately, arrested leukocytes crawl along the endothelium 
and migrate across ECs (diapedesis or transendothelial migration), either at 
intercellular junctions (paracellular pathway), by engaging adhesion mole-
cules including platelet–endothelial cell adhesion molecule-1 (PECAM-1), 
junctional adhesion molecules (JAMs), and molecules of the cluster of dif-
ferentiation CD99 or through the EC body (transcellular route).115,116

Additionally, hemodynamic perturbations can activate neutrophils and 
induce release of neutrophil extracellular traps (NETs), which are com-
prised of web-liked DNA fibres containing histones and granular pro-
teins.117 The process of NET formation is called NETosis. During 
NETosis, neutrophils decondensate and release their nuclear DNA in 
long chromatin filaments to form NETs.118 In addition to their known 
role in the elimination of pathogens, NETs have been newly described as 
potent inducers of leukocyte extravasation at sites of inflammation.119,120

NETs can trigger neutrophil rolling, firm adhesion, and emigration in the 
microvasculature in vivo, which can be abrogated by immunoneutralization 
of P-selectin and its major counter receptor PSGL-1 (P-selectin glycopro-
tein ligand-1).120

2.7 Lipid metabolism
Lipid accumulation in the artery wall is a common clinical manifestation of 
atherosclerosis and is largely impacted by local hemodynamics.121 Laminar 
flow inhibits lipid accumulation in ECs because it decreases LDL permeabil-
ity as a result of the upregulation of growth arrest genes and the lower lipid 
uptake and synthesis as a result of the downregulation of sterol regulatory 
element binding protein 1 (SREBP1). On the contrary, disturbed flow in-
duces sustained activation of SREBP1 and hence leads to an increase in 
SRE-mediated transcriptional activation of EC genes that promote lipid up-
take and lipid synthesis.26,73 Activated SREBP1 is associated with enhanced 
expression of genes encoding for the LDL receptor, cholesterol synthase, 
and fatty acid synthase, thus increasing the intracellular sterol level.122 The 
shear-dependent activation of SREBP1 is abolished by blockade of β1 integ-
rin with AIIB2 blocking-type mAb or disruption of actin cytoskeleton with 
cytochalasin D, suggesting the importance of integrin and actin cytoskel-
eton in the modulation of EC lipid metabolism in response to SS.123,124

2.8 SS and EC interactions with neighbouring 
cells
Since ECs do not exist alone in the vessel wall, there is crosstalk between 
ECs and other cells in the vessel wall, and interactions between these cell 
types are important for proper vascular function. Previous studies suggest 
that ECs can transmit SS–induced signals to VSMCs, and VSMCs exhibit 
feedback control to ECs as well.125,126 The net arterial remodelling under 
mechanical stimulation is controlled by a dynamic interplay between 
growth inhibitory signals from ECs and growth stimulatory signals from 
VSMCs.9,127 These results highlight the significance of considering cell– 

Endothelial mechanobiology in atherosclerosis                                                                                                                                                        1661



cell communication in studying endothelial mechanobiology and vascular 
pathologies. Because these interactions are challenging to isolate in vivo, 
they may be more easily studied using in vitro systems that have the poten-
tial to integrate multiple in vivo components including circulating blood cells, 
ECM, and other vascular cells of the arterial wall (e.g. VSMCs and fibro-
blasts). For example, artificial vessels surrounded by ECM can be created 
through the self-assembly of a mixture of ECs and VSMCs. These novel en-
gineered blood vessels provide the correct configuration of lumen, an inner 
lining of ECs, and outer sheath of VSMCs and exhibit properties such as 
quiescence, perfusability, and vasoactivity expected for functional ves-
sels.128 Advances in this field will greatly improve our understanding of 
the interplay between cell types in the atherogenic vascular wall.

In summary, ECs respond to laminar and disturbed flow by structural 
and functional adaption which involves perturbations of EC morphology 
and reprogramming of gene expression to modulate cellular functions 
(e.g. proliferation, permeability, EndMT, leukocyte extravasation, coagula-
tion, and lipid accumulation) (Figure 4). These responses enable vessel sta-
bilization as well as homeostatic remodelling and are critical determinants 
of vascular architecture during development.

3. Endothelial mechanosensors
Numerous membrane-associated molecules and microdomains have been 
identified as mechanosensors in ECs and mediate conversion of mechanical 
stimuli to intracellular signals, including ion channels, FAs, receptor–tyro-
sine kinases [e.g. vascular endothelial growth factor receptor (VEGFR)], 
G-protein-coupled receptors (GPCRs), the glycocalyx, primary cilia, and 
caveolae (Figure 5). Typically, mechanosensors present on the EC mem-
brane directly sense blood flow and transduce the mechanosignal into 
the cells.11,129 Altered expression/structure of these mechanosensors 
leads to altered mechanotransduction, and the occurrence of endothelial 
dysfunction, evidenced by endothelial injury, leukocyte adhesion to acti-
vated endothelium, EndMT, heightened oxidative stress/inflammatory re-
sponse, senescence, and hyperpermeability.22,80,130 Dysfunctional status 
of ECs thus predispose to the development of atherosclerotic plaques 
and other vascular diseases.

3.1 Ion channels
Activation of mechanosensitive ion channels is one of the most rapid reac-
tions of ECs exposed to flow. Piezo1 and Piezo2 proteins are the most 
widely investigated flow-responsive cation channels. SS mechanically 
changes the conformation of Piezo1 and Piezo2, increasing ion transport, 
which then induces protease activation and cytoskeletal reorganiza-
tion.131,132 Disturbed flow, but not laminar flow, triggers Piezo1- and 
Gq/G11-mediated integrin activation, resulting in focal adhesion kinase 
(FAK)–dependent NF-κB activation. Mice with endothelium-specific defi-
ciency of Piezo1 or Gαq/Gα11 exhibit reduced integrin activation, inflam-
matory signalling, and progression of atherosclerosis in atheroprone 
areas.133 Beyond that, TRPV4, a Ca2+ entry channel, is also implicated in 
EC mechanotransduction by forming mechanosensitive heteromeric chan-
nels with other transient receptor potential channels such as TRPC1 and 
TRPP2.134 Mechanical stimulation induces dynamic microcompartmenta-
tion of caveolin-1/TRPV4/KCa in caveolae of ECs, a process that partici-
pates in regulation of flow-induced vasodilation.135

To date, the mechanism involved in shear-mediated alteration of ion 
channel activity remains controversial. Previous studies have mainly fo-
cused on direct deformation of the ion channels in response to SS. 
However, another potential mechanism involves indirect deformation of 
the channels due to their mechanical coupling to other structures that 
are strained by fluid forces, including cytoskeletal structures.136

3.2 FAs and integrins
FAs serve as linkages between the ECM and cell cytoskeleton and are essen-
tial regulators of EC responses to flow. Studies have proposed that SS acti-
vates FA signalling pathways mainly in two ways: (i) by triggering the rapid 

reorganization of FAs and the formation of aggregates of integrins and (ii) 
by directly activating FA signalling proteins.137–139 Nuclear mechanics also 
participate in FA mechanosensing, as disruption of nuclear–cytoskeletal 
connections in ECs interferes with adaption to SS.140 This is accompanied 
by altered cell–cell adhesion, barrier function, cell–matrix adhesion, and 
FA dynamics.140

Integrins, composed of α and β subunits, are major mediators of me-
chanosensing and mechanotransduction in ECs. By interacting dynamically 
with ECM proteins, the mechanosensitive integrins activate Rho small 
GTPase and many signalling events in FAs and the actin-based cytoskeleton 
to modulate vascular biology.141 Studies have demonstrated that shear- 
elicited activation of integrins and the associated RhoA small GTPase can 
induce ERK activation142 and stimulate tyrosine phosphorylation of FAK 
and paxillin,143,144 thus regulating flow-induced stress fiber formation 
and actin reorganization.

Additionally, binding of endothelial integrin α5β1 with fibronectin under 
low/oscillatory SS induced by a parallel plate flow system or partial ligation 
of ApoE−/− mice causes phosphorylation of the cytosolic nonreceptor 
protein kinase c-Abl, which then induces tyrosine phosphorylation (at 
Y357) and nuclear translocation of YAP, leading to proatherogenic gene ex-
pression and EC activation.145 Furthermore, Piezo1-dependent activation 
of endothelial annexin A2 uniquely binds to integrin α5 subunits and drives 
integrin movement into lipid rafts under partial ligation-induced oscillatory 
SS, thus mediating the translocation and activation of integrin α5β1.146

Once activated, integrin α5β1 stimulates FAK–dependent NF-κB signalling, 
which resulted in inflammation and formation of atherosclerotic pla-
ques146. Integrin α5+/− mice are viable and display significant resistance 
to disturbed flow-induced EC dysfunction and atherosclerosis.147

Currently, most studies of integrin involvement in cardiovascular disease 
(CVD) have focused on the mechanistic relationship between abluminal in-
tegrins and endothelial inflammation under flow conditions. Interestingly, 
evidence suggested that integrins localized on the apical surface of ECs 
sense and respond to SS signals as well.148 Apical β1 integrin is activated 
by unidirectional SS but not oscillatory SS, potentially contributing to 
flow direction sensing.149 The activation of luminal β1 integrins by SS in-
volves caveolae rather than cytoskeleton dynamics.150 However, the role 
of apically expressed integrins in mechanotransduction and whether there 
is coordination between luminal and abluminal integrins require further 
investigation.

3.3 Cell–cell junctions
High laminar SS promotes the formation of PECAM-1/VE-cadherin/ 
VEGFR2–mechanosignaling complex at cell–cell junctions, which 
transduces mechanical force into the activation of PI3K (phosphoinositide 
3-kinase) and AKT, stimulating NO production from eNOS.151

VE-cadherin is important for endothelial reorientation and gene expres-
sion modulation in response to flow, whereas PECAM-1 serves as a force 
transducer leading to activation of signalling by VEGFR2 and PI3K.152 The 
transmission of mechanical cues through the junctional complex is 
mediated by phosphorylation of a small pool of VE-cadherin on Y658. 
Y658 phosphorylation dissociates p120ctn, allowing binding of the polarity 
protein LGN, which is essential for multiple flow responses in vitro and in 
vivo.153 Additionally, using the in vitro flow chamber or cone-and-plate visc-
ometer system and hypercholesterolaemic ApoE−/− mice model, a novel 
mechanocomplex of plexin D1/neuropilin-1/VEGFR2 has been identified 
in ECs, which regulates flow-mediated junction signalling, integrin function, 
and downstream cellular responses, ultimately regulating the site-specific 
distribution of atherosclerosis.154

3.4 GPCRs and G-proteins
GPCRs are sensitive to mechanical stimuli and are linked to a wide range of 
signalling molecules and effector systems by coupling to G-protein. The 
Gαq/11-coupled receptor GPR68 knockdown interferes with the response 
to mechanical forces, and the mechanosensitivity of GPCRs is attributed to 
its essential structural motif c-terminal helix 8 (H8).155,156 Unidirectional 
flow applied to ECs enhances the phosphorylation of both AKT-1 and 
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Figure 4 Endothelial response to SS. ECs exposed to laminar flow are spindle shaped, aligned, and elongated parallel to the flow direction, with character-
istics of lower turnover rate, increased anticoagulant activity, hypopermeability and less lipid accumulation, reduced leukocyte adhesion and migration, and 
inhibited EndMT, hence maintaining endothelial barrier function, while disturbed flow leads to a more polygonal morphology of ECs with random orientation 
and endothelial barrier disruption, which is characterized by accelerated turnover, decreased anticoagulant activity, hyperpermeability and lipid accumulation, 
enhanced leukocyte adhesion to endothelium, and the occurrence of EndMT.

Figure 5 Mechanosensors in the endothelium that sense and convert biomechanical cues into biological signals. The glycocalyx, primary cilia, ion channels, 
cell–cell and cell–substrate adhesion complexes, G-protein–coupled sensors, caveolae, and NE proteins (e.g. LINC complexes) have been implicated in the 
transduction of fluid forces.
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its downstream effector GSK-3β (glycogen synthase kinase 3β), while silen-
cing of Gαq/11 completely abrogates this effect.157 Moreover, Gαq/11 and 
PECAM-1 form a mechanosensitive complex at the cell–cell junction under 
flow condition. The Gαq/11/PECAM-1 complex experiences a rapid dissoci-
ation and reassociation in response to temporal gradients of SS.158

Another study revealed that PECAM-1 mediates GSK-3β phosphorylation 
during SS stimulation using an orbital shaker.159 Collectively, these studies 
indicated that Gαq/11 and PECAM-1 participated in regulating flow-induced 
activation of the AKT-GSK-3β signalling pathway. Additionally, steady SS 
exerted by a conventional parallel-plate flow chamber induces rapid activa-
tion of Gαq/11 without dephosphorylation of β-arrestin-1 or internalization 
of Gαq/11 receptor S1P3, suggesting that Gαq/11 can also respond to mech-
anical force, independent of GPCR activation.160

3.5 Glycocalyx and primary cilia
The EC surface is covered with a hydrated gel-like structure called the 
glycocalyx which contributes to the integrity of the endothelial barrier.161

Endothelial glycocalyx consists of sulfated proteoglycans—transmem-
brane syndecans and membrane-bound glypicans, with their covalently 
bound glycosaminoglycans (GAGs)—heparan sulfate (HS) and chondro-
itin sulfate (CS) and the nonsulfated GAG hyaluronic acid (HA), as well 
as glycoproteins bearing sialic acids (SA) and plasma proteins.162

Multiple studies have concluded that the glycocalyx is a key mechanosen-
sor participating in endothelial mechanotransduction mechanisms and it-
self is physically modulated by the flow.163 The endothelial glycocalyx is 
relatively thick and substantially covers the endothelial surface in the 
common carotid region, where the endothelium is exposed to laminar 
flow. In contrast, flow perturbances at lesion-prone sites of arterial bifur-
cations are associated with scarce expression of glycocalyx.164,165 This 
renders the endothelium more vulnerable, resulting in disease-like cellular 
and molecular accumulation in the endothelium or within the blood ves-
sel wall.166,167

Changes in blood flow influence conformation of glycocalyx, and the sig-
nal is transmitted to cytoskeleton through the intracellular domain of gly-
cocalyx or transduced into biochemical signals through changes in local 
microenvironment. Disruption of glycocalyx affects flow-mediated actin 
cytoskeleton reorganization and FA localization.168 Researchers propose 
a ‘bumper-car’ model for the role of glycocalyx, in which the actin cortical 
web and dense peripheral actin bands (DPABs) are only loosely connected 
to basal attachment sites, allowing for two distinct cellular signalling path-
ways reacting to SS: one transmitted by glycocalyx core proteins as a tor-
que that acts on the actin cortical web (ACW) and DPAB, and the other 
emanating from FAs and stress fibres at the basal and apical membranes 
of the cell.168

Additionally, endothelial glycocalyx is intimately involved in vascular 
homeostasis, exerting multiple antiatherogenic effects by inhibiting coagu-
lation and leucocyte adhesion, by contributing to the vascular permeability 
barrier and by mediating SS–induced NO release.161 These qualities distin-
guish the glycocalyx as an essential element of a functional endothelium, 
and glycocalyx can be used to dynamically assess EC barrier function under 
flow.169 Studies to date have made great progress in imaging the glycocalyx 
under flow, its effect on barrier function, and the interplay between blood 
components (e.g. leucocytes) and the glycocalyx in both static and perfused 
in vitro models. However, ideal in vitro models that integrate all of these as-
pects have yet to be demonstrated.

Primary cilia are mechanical structures that extend from the apical sur-
face of endothelial or epithelial cells. Endothelial primary cilia–mediated SS 
sensing is coupled to Ca2+ signalling and NO production, ciliary length, and 
cilia distribution.170 Under conditions of low shear flow, endothelial cilia act 
together with bone morphogenic protein 9 (BMP9) to keep immature ves-
sels open before the onset of high SS–mediated remodeling.171 However, 
exposure of ECs to high laminar SS in a flow chamber leads to disassembly 
of primary cilia, suggesting that cilia cannot tolerate extreme levels of SS.172

Additionally, work conducted on zebrafish embryos indicates that endo-
thelial cilia actively recruit vascular mural cells to control the development 
and maturation of the vertebrate vascular system through a mechanism 

that involves ciliary regulation of Notch activation and transcription factor 
foxc1b expression.173

3.6 Caveolae
Caveolae, cell membrane invaginations that are rich in cholesterol, sphingo-
lipids, and a variety of signalling molecules, are mechanotransducers that re-
portedly respond to changes in blood flow.174–177 Signalling molecules that 
have been implicated in rapid EC response to flow include Src family tyro-
sine kinases, eNOS, Ras, and select heterotrimeric G proteins that are en-
riched in EC caveolae.178,179 The caveolae coat protein caveolin-1 knockout 
mice have impaired flow-dependent arterial remodelling, defects in 
flow-induced vasodilation, and blunted eNOS activation, which can be res-
cued with the reconstitution of endothelial specific caveolin-1.175

Compared to static conditions, exposure of ECs to atheroprotective shear 
leads to increased caveolae number, achieved by translocation of caveolin-1 
from the Golgi to the luminal plasma membrane, while also increasing ca-
veolae/caveolin-1 polarization to the portion of ECs that lies upstream of 
the flow direction.180,181 However, it remains obscure how caveolae 
mediate endothelial mechanotransduction, but these structures may 
be functionally linked to other mechanosensitive molecules. 
SS–induced integrinβ1 activation results in Src-family kinase–dependent 
phosphorylation of caveolin-1, suggesting that caveolae and integrins are 
functionally linked.150,182 Other evidence supports that both junctional 
complexes (VE-cadherin and PECAM-1) and FAK most likely collaborate 
with resident caveolar proteins (caveolin-1, VEGFR2, and eNOS) to inte-
grate flow-dependent responses in vivo.183,184 Moreover, it is reported 
that the adaptation of caveolae/caveolin-1 to protective or atherogenic 
flow may involve endothelial glycocalyx and possibly other elements.164,185

3.7 The nucleus in mechanotransduction
The cell nucleus is the storage house of genetic information and also inte-
grates epigenetic mechanisms that participate in regulation of transcription. 
This epigenetic regulation is central to mechanobiology186,187 and involves 
DNA methylation, histone modifications, and RNA-based mechanisms, 
which result in an altered chromatin structure and gene expression and 
play an important role in the pathogenesis of atherosclerosis.188–190 In 
the field of shear force transmission in ECs, a particularly exciting concept 
is the emerging role of nuclear envelope (NE) proteins in vascular mechan-
otransduction.191,192 LINC (linker of nucleoskeleton and cytoskeleton) 
complexes are the nuclear membrane proteins which cross the nuclear 
membrane and physically connect with both the cytoskeleton and the nu-
clear lamina which forms the scaffold beneath the inner nuclear mem-
brane.193 Recent studies reported that the LINC complexes and lamina 
of NE may act as direct force-responsive structures and participate in mul-
tiple cell functions, including chromatin organization, DNA replication, and 
gene transcription.194,195 Specifically, nesprins, which are KASH (Klarsicht– 
ANC-1–SYNE homology) domain proteins located on the outer nuclear 
membrane, are LINC components connected to actin filaments as well 
as to microtubules and intermediate filaments. The nesprin proteins are 
also connected directly to LINC proteins at the inner nuclear membrane 
—the SUN (Sad1p–UNC-84) domain proteins—thereby forming a phys-
ical bridge between the outer and inner nuclear membranes. The SUN do-
main proteins are in turn connected to the nuclear lamina and to chromatin 
through a number of adaptor proteins, thereby providing a direct mode of 
physical signal transmission from the cell membrane into the nu-
cleus.186,196–198 Low SS reduces the expressions of nesprin2 and lamin 
A, which affects the activation of transcription factors AP-2, TFIID, and 
Stat1, 3, 5, 6. In this way, SS regulates the mRNA levels of downstream tar-
get genes to modulate EC proliferation and apoptosis.194,199 Studies of NE 
mechanotransduction have revealed that different components sense the 
mechanical force directly from extracellular environment or via the cyto-
skeleton.194,196,199 However, this is an emerging area of study, and the de-
tails of the structure of the NE, its involvement in mechanotransduction, 
and the implications for vascular biology remain to be elucidated.

In short, mechanical cues perceived by ECs can be relayed from the cell 
membrane to nucleus via multiple flow-responsive molecular elements. 
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The cytoskeleton links the luminal surface to cell–matrix adhesion sites, 
intercellular junctions, and the nuclear membrane, providing a structural 
framework for EC mechanotransduction.200 Importantly, different me-
chanosensing elements are interconnected in the initiation of the mechan-
otransduction process, e.g. the links between integrins, GPCRs, and 
nucleus,201–203 as well as synergistic effects between Piezo1 and TRPV4 
in response to shearing.204 Hence, cellular responses to external forces 
are complex, and dynamic changes in cell phenotype are determined by in-
tegration of multiple mechanotransduction axes.

4. Mechanisms of 
mechanotransduction in ECs
Endothelial mechanosensors discussed above sense and respond to mech-
anical stresses either directly through conformational changes that alter 
protein activity or ion transport, or by initiating a complex network of sig-
nal transduction pathways that affect gene transcription, cell cycle, and 
other programs relevant to cardiovascular pathophysiology (Figure 6).

4.1 KLF2/4
Flow-responsive transcription factors KLF2/4 play an essential role in main-
taining EC quiescence. Atheroprotective laminar flow, but not disturbed 
flow, upregulates expression of KLF2 and KLF4. KLF2/4 activate anti- 
inflammatory mediators (e.g. eNOS and TM) and repress NF-κB activity, 
which decreases expression of adhesion (e.g. ICAM-1 and VCAM-1) and 
prothrombotic [e.g. plasminogen activator inhibitor 1 (PAI-1)] molecules, 
thus conferring antiatherosclerotic effects.205 Mechanically, laminar flow 
increases KLF2 expression via the MEK5/ERK5/MEF2 signalling pathway, 
while oscillatory flow downregulates KLF2 expression through SMAD1/5 
activation to mediate cell proliferation and cell cycle progression.206,207

Laminar SS modulates endothelial hyaluronan (HA) production through in-
creased KLF2 and subsequent membrane localization of hyaluronan syn-
thase 2 (HAS2) and UDP-sugar availability.165 Epigenetic modulation is 
also involved, as laminar flow stimulates HDAC5 phosphorylation and nu-
clear export in ECs, thus dissociating MEF2 to activate KLF2 and eNOS ex-
pression.208 Moreover, disturbed flow in atherosusceptible regions 
reduces Foxp (forkhead box P) transcription factor 1 (Foxp1) expression, 
which activates the NLRP3 inflammasome and promotes interleukin-1β 
(IL-1β) secretion, thereby impairing endothelial function and promoting 
monocyte adhesion and infiltration into the vessel wall to become proin-
flammatory foam cells and to facilitate atherosclerotic lesion formation.209

Studies to date suggest that there is significant overlap between the 
endothelial targets and functional effects of KLF2 and KLF4. Future studies 
should further evaluate whether KLF4 and KLF2 have competitive or co-
operative effects on the promoters they regulate and how this regulation 
changes under conditions of SS.

4.2 NRF2
Antioxidant transcription factor NRF2 is a downstream target of KLF2 and 
functions synergistically with KLF2 to induce quiescence of ECs by the re-
duction of inflammatory responses.210 Laminar SS induces binding of NRF2 
to the antioxidant response element (ARE) present in the promoters of 
many antioxidant and phase II detoxifying genes, such as 
glutathione-S-transferase, heme oxygenase-1 (HO-1), NAD(P)H: quinone 
oxidoreductase (NQO1), peroxiredoxin 1, glutamate-cysteine ligase 
modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit 
(GCLC).211 Using a parallel-plate flow chamber, a study found that 
flow-mediated NRF2 nucleus translocation and inflammation suppression 
involves inhibition of the p38 MAPK-VCAM-1 signalling axis and ERK5 ac-
tivation.212 In contrast, disturbed flow significantly diminishes the binding of 
NRF2 to the NQO1 ARE, which involves deacetylation of NRF2 by class I 
HDACs.213 However, the role of NRF2 in atherogenesis seems to be geno-
type dependent. Myeloid deletion of NRF2 in LDL receptor–deficient mice 
(Ldlr−/−) leads to increased proinflammatory gene expression and athero-
sclerosis.214 While global NRF2 knockout in ApoE−/− mice unexpectedly 

decreased atherosclerotic lesion formation compared with wild-type 
ApoE−/− mice.215,216 Consistently, the absence of NRF2 in the bone 
marrow-derived cells decreases the lesion size, exerting a protective effect 
at the advanced stage of atherosclerosis.217 Additional work is needed to 
fully elucidate the complex role of NRF2 in these various models.

4.3 YAP/TAZ
Disturbed flow in a rat abdominal aorta crossclamping model induces YAP/ 
TAZ activation to promote inflammation and atherogenesis by enhancing 
JNK (c-Jun N-terminal kinase) activity, whereas unidirectional SS inhibits 
YAP/TAZ activity by modulating the integrin–Gα13–RhoA pathway.203

Oscillatory SS by partial ligation of the carotid artery activates integrin 
α5β1 and its downstream kinase c-Abl in ECs to induce phosphorylation 
of YAP at Y357 and strong, continuous YAP nuclear translocation, thereby 
promoting the proatherogenic responses.145 Interestingly, a study using 
zebrafish embryos and an in vitro parallel plate–type apparatus found 
that short-term unidirectional laminar flow (15 dyne/cm2 for 10 min) in-
creases the nuclear localization of YAP in a LATS1/2-independent but an 
angiomotin-regulated manner.32 Furthermore, mechanoregulated YAP/ 
TAZ transcriptional activity is inhibited by interaction of the 
ARID1A-containing SWI/SNF complex and YAP/TAZ inside the nucleus, 
while nuclear F-actin competitively binds to SWI/SNF to interfere with 
the formation of the ARID1A–SWI/SNF–YAP complex and facilitates as-
sociation of YAP/TAZ with TEAD (TEA domain transcription factor 
(TEAD).218 The identification of the transcription factors YAP and TAZ 
as EC mechanotransducers has helped to clarify how mechanical cues 
are sensed and transduced at the molecular level to regulate gene expres-
sion in atherosclerosis. However, the crosstalk of YAP/TAZ activation with 
endothelial apoptosis and enhanced lipid uptake in the vessel remains 
poorly understood.

4.4 BMPs
Laminar SS inhibits expression of BMP4 in ECs to exert antiatherogenic ef-
fects, while oscillatory SS activates BMP4 in atherosclerotic lesions, associ-
ating with NF-κB–mediated increase of ICAM-1 expression and monocyte 
adhesion.219,220 In the experimentally stenosed rat abdominal aorta and a 
parallel-plate flow chamber, atheroprone flow induces sustained activation 
of bone morphogenetic protein receptor (BMPR)–specific SMAD1/5 in 
ECs through activation of mammalian target of rapamycin and p70S6 ki-
nase, leading to upregulation of cyclin A and downregulation of p21CIP1 
and p27KIP1 and, hence, EC cycle progression.221 Low SS activates 
SMAD2/3 to regulate inward remodelling in atherosclerotic vessels 
through the type I TGF-β family receptor ALK5 and the transmembrane 
protein neuropilin-1, which together increase sensitivity to circulating 
BMP9.222 Interestingly, disturbed flow by rotation of a Teflon cone stimu-
lates ECs to coexpress BMP antagonists and BMP4, the balance of which 
controls inflammation in atherosclerosis.223

4.5 Notch
Generally, laminar SS activates endothelial Notch1 and leads to polariza-
tion and Notch1 intracellular domain (NICD) translocation, thereby pro-
moting stabilization of endothelial functions.224 Independent of canonical 
Notch signalling, high SS induces the cleavage of Notch1 and formation 
of a mechanosensory junctional complex consisting of Notch 1 transmem-
brane domain (TMD), the transmembrane protein tyrosine phosphatase 
LAR, and VE-cadherin, which further recruits the RAC1 guanidine ex-
change factor TRIO and RAC1 to control downstream cortical actin, 
thus resulting in barrier reinforcement.225 Recent work examining both 
postnatal retina neovascularization and cultured ECs in a parallel plate 
flow chambers describes a novel force-responsive pathway, in which arter-
ial shear activates Notch signalling and causes upregulation of GJA4 (com-
monly known as connexin37) and the downstream cell cycle inhibitor 
CDKN1B (p27), promoting EC cycle arrest to enable arterial gene expres-
sion.226 However, evidence also showed that low SS by cast-induced sten-
osis of common carotid artery activates the Notch1 signalling pathway via 
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caveolin-1 and that inhibition of Notch1 significantly alleviates low SS– 
induced plaque formation and inflammatory response through NF-κB.227

Together, these observations suggest that the effects of flow-induced 
Notch1 activation on EC physiology are highly context dependent.

4.6 WNT
Loss of WNT5a/WNT11 enhances endothelial shear sensitivity, resulting 
in axial polarization and migration against flow under low shear condi-
tions.228 Canonical WNT signalling is implicated in oscillatory SS-induced 
angiopoietin-2 expression, which controls vascular development and re-
pair.229 Consequently, inhibition of canonical WNT signalling suppresses 
systemic inflammation and atherosclerosis progression in angiotensin II– 
infused ApoE−/− mice.230 In addition, atheroprone flow in ApoE−/− mice 
and by a cone-and-plate system constitutively induces endothelial 
β-catenin nuclear localization, T-cell-specific transcription factor (TCF) ac-
tivation and downstream expression of the proinflammatory molecule fi-
bronectin to precede atherosclerosis lesion development, acting through 
the PECAM-1/GSK-3β pathway.231 As might be expected, a recent study 
involving multiple, single laboratory microarray analyses of shear 
force-responsive endothelial gene expression suggests that there is cross 
talk among WNT, TGF-β, and Notch signalling in ECs.232

4.7 NF-κB
The transcription factor NF-κB family, consisting of RelA (p65), RelB, c-Rel, 
and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), is central 
to the cell’s response to disturbed flow and its activity regulates plaque 
progression.233 In a flow-altering, constrictive cuff model, atheroprone 
flow induces NF-κB activation, which increases the expression of proin-
flammatory molecules (e.g. ICAM-1, VCAM-1 and MCP-1). This is in 
part controlled by JNK-ATF2 signalling, which positively regulates the ex-
pression of the RelA NF-κB subunit in response to low/oscillatory SS 

and initiates focal arterial inflammation at atherosusceptible sites.234

Moreover, oscillatory SS, but not atheroprotective physiological SS, upre-
gulates miR-34a expression to promote endothelial inflammation, which 
depends on increased acetylation of RelA at residue Lys310.235

Additionally, in the partially ligated ApoE−/− mice model and in vitro orbital 
shaking or a parallel plate flow system, low SS–mediated NF-κB activation 
leads to HIF-1α accumulation, which promotes lesion initiation by enhan-
cing inflammation and inducing excessive EC proliferation.35

4.8 MAPKs
MAPK pathways are involved in converting mechanical cues into a wide 
range of cellular responses. Using a parallel-plate flow chamber, short-term 
laminar SS exerted on ECs (30 min) triggers an eightfold increase of JNK 
activity compared to cells in static culture, resulting in actin remodelling 
and cell alignment.236 However, other studies showed that laminar flow in-
hibits the activation of JNK induced by inflammatory cytokines (e.g. TNF-α 
and IL-1) through the MEK5–BMK1/ERK5 pathway, which inhibits the MAP 
kinase kinase kinase (MAPKKK) and apoptosis signal–regulating kinase 
(ASK1) by inducing thioredoxin-interacting protein.237–239 In-depth re-
search provided an explanation for this discrepancy in the response of 
JNK to laminar SS generated in a parallel plate flow chamber. Hahn et al. 
showed that JNK activation in response to laminar and long-term oscilla-
tory flow is matrix specific, preferentially occurring at high-fibronectin de-
position sites, which are regulated by the new binding of integrin with 
fibronectin as well as the downstream MAPK kinases MKK4 and 
p21-activated kinase.240

4.9 PI3K/AKT
Laminar flow in a cone–plate viscometer induces eNOS phosphorylation 
and AKT activation via a PI3K-dependent pathway and promotes NO pro-
duction and an antiatherogenic phenotype in ECs.241 There is an initial 

Figure 6 EC mechanotransduction pathways involved in FSS–mediated endothelial function.
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rapid Src kinase-dependent and VEGFR2-dependent tyrosine phosphoryl-
ation of Grb2-associated binder 1 (Gab1) in response to laminar flow 
(12 dynes/cm2). Subsequently, Gab1 interacts with PI3K subunit p85 to ac-
tivate PI3K/AKT/eNOS signalling.242 Under conditions of perturbed flow in 
a parallel-plate flow chamber, pretreating ECs with PI3K inhibitors 
LY294002 suppresses the association of HDAC-1/2/3 with NRF2 and 
HDAC-3/5/7 with MEF2 and its deacetylation, thereby upregulating 
NQO1 and KLF2 expression in ECs.213

In addition, PI3K has been implicated in SS–induced integrin activation in 
ECs. Using a monoclonal antibody Fab fragment (WOW-1) that binds se-
lectively to high-affinity αv integrins, studies revealed that treatment with 
PI3K inhibitors LY294002 and wortmannin completely blocks integrin ac-
tivation.152,243 Interestingly, the PI3K/AKT pathway can converge with the 
same integrins that the MAPKs interact with and can lead to activation of 
eNOS.123,141

Collectively, studies to date have revealed a complex signalling network 
by which different hemodynamic forces impact on EC functions and 
atherogenesis. Although informative, a long list of mechanosensors has ac-
cumulated, and the mechanisms for some of these remain to be elucidated. 
In addition, different mechanosensing elements across the cell are inte-
grated and form molecular circuits that coordinate the cellular responses 
to mechanical cues. More work is needed to deconvolve the signal trans-
duction networks to identify better targets for the treatment of vascular 
diseases.

5. Pharmacological targeting of 
mechanotransduction pathways in 
atherosclerosis
As described above, many mechanotransduction pathways are involved in 
endothelial responses to flow and SS–induced atherosclerosis. In this sec-
tion, we overview the current antiatherosclerotic agents that can alter me-
chanotransduction in ECs (Table 2).

5.1 Pharmacological targets for the KLF2 
pathway
Because KLF2 is a master regulator of SS–induced EC homeostasis, it re-
presents a promising pharmacological target for atherosclerosis treatment. 
Statins are the most widely used agents for atherosclerotic vascular dis-
eases and act by decreasing circulating lipids and inflammatory factors. 
This involves KLF2 pathways, as genetic silencing of KLF2 reduces the bene-
ficial effects of statins, including eNOS and TM production.244 Statins also 
affect ERK5 and MEF2-dependent signalling.245,246 Likewise, resveratrol 
and tannic acid promote endothelial vasoprotection in part by increasing 
KLF2 expression in a MEK5/MEF2-dependent, ERK5-independent path-
way.279–281 Laquinimod, an experimental immunomodulator, has a clinical 
potential application as an antiatherosclerotic agent. The mechanism of ac-
tion of laquinimod is to reduce the expression of adhesion molecules 
(VCAM-1 and E-selectin) and central inflammatory cytokines and chemo-
kines (IL-6 and MCP-1) via upregulating KLF2 expression in an 
ERK5-dependent manner.257

Additionally, several other well-studied drugs exert cardioprotective ef-
fects by KLF2 induction. For example, suberanilohydroxamic acid (SAHA, 
also known as vorinostat or MK0683), an approved anticancer drug, has 
been shown to activate KLF2, reduce monocyte adhesion, and limit vascu-
lar inflammation and atherosclerosis in a MEF2–dependent manner.249

Montelukast—another drug commonly used for treatment of inflamma-
tory diseases in the airway—can activate KLF2 in an ERK5–dependent 
manner, leading to reduced monocyte adhesion and suppression of adhe-
sion molecules (VCAM-1 and E-selectin) in the early stages of atheroscler-
osis.250,251 Similarly, liraglutide, a clinically approved glucagon-like peptide 1 
(GLP-1) receptor agonist, can reduce endothelial inflammation via 
ERK5-dependent KLF2 activation.252,253 Metformin pretreatment can alle-
viate endothelial inflammatory responses, partially ascribed to AMP– 

activated protein kinase (AMPK) activation–mediated HDAC5 phosphor-
ylation and KLF2 upregulation.255 Other cellular programs may also be in-
volved, as metformin-induced upregulation of KLF2 can inhibit foam cell 
formation and alleviate atherosclerosis in ApoE−/− mice by enhancing au-
tophagy.256 However, their therapeutic effectiveness for atherosclerosis 
and other vascular diseases warrants further assessment of clinical efficacy.

5.2 Pharmacological targets for the NRF2 
pathway
Despite the controversial role of NRF2 in atherogenesis in preclinical animal 
models, pharmacological activation of NRF2 appears to be generally related 
to atheroprotection. Statins activate the NRF2 pathway and induce a signifi-
cant increase of cytoprotective genes such as HO-1.247 Resveratrol en-
hances NRF2 activity in a dose-dependent manner and significantly 
upregulates its target genes NQO1, GCLC, and HO-1, thereby conferring 
endothelial protective effects.275 Sulforaphane can repress atherosclerosis 
progression and improve endothelial dysfunction.212,282–284 The 
atheroprotective mechanism involves NRF2–mediated inhibition of p38– 
VCAM-1 signalling in ECs.212 In addition, dimethyl fumarate, a drug 
commonly used in multiple sclerosis treatment, can significantly reduce 
the plaque area through the NRF2/ARE pathway.258

5.3 Pharmacological targets for the YAP/ 
TAZ/TEAD pathway
Pharmacological inhibition of YAP/TAZ signalling can prevent atheroscler-
osis, and statins are among the most potent YAP inhibitors of the 640 clin-
ically applied drugs.287 Statins suppress YAP/TAZ transactivation through 
inhibition of RhoA, an upstream activator of YAP/TAZ, thus reducing EC 
proliferation and inflammation caused by disturbed flow.203 Moreover, 
constitutive activation of YAP/TAZ in ECs can partially antagonize the 
anti-inflammatory effect of simvastatin, further supporting that YAP/TAZ 
inhibition contributes to antiatherogenic effects of statins.31 Bosutinib, a 
tyrosine kinase inhibitor, profoundly reduces YAPY357 phosphorylation 
through blunting oscillatory SS– or fibronectin-mediated activation of 
integrin α5β1 and c-Abl, hence, completely inhibiting lesion formation in 
aortic arch but not thoracic aorta in ApoE−/− mice.145 Verteporfin, a 
second-generation photosensitizer, is the first identified pharmacological 
inhibitor of YAP that acts by disrupting the interaction between YAP 
and TEAD.259 Intra-arterial administration of verteporfin concurrent 
with photoactivation can lead to rapid and high accumulation of vertepor-
fin in the plaque, which then inhibits atherosclerosis.260

In addition, methotrexate, a chemotherapeutic and anti-inflammatory 
drug used to treat rheumatoid arthritis, exhibits atheroprotective effects 
by interfering with endothelial YAP/TAZ activation under disturbed flow, 
reducing expression of YAP/TAZ–associated inflammatory genes, and de-
creasing monocyte adhesion.33 Apart from these drugs, other compounds 
such as niacin,203,261 apelin,263 and ApoA-I Milano (a mutational variant of 
ApoA1)264,265 have shown promise in preclinical and clinical studies, acting 
through YAP/TAZ to reduce inflammatory effects. However, the role of 
Apelin in atherosclerosis is controversial. Other studies have found that 
Apelin could induce adhesion of monocytes–ECs by inducing the expres-
sion of adhesion molecules and chemokines through activation of the 
PI3K and NF-κB/JNK signal pathway.288,289

5.4 Pharmacological targets for the NF-κB 
pathway
The NF-κB pathway is a representative mechanism that is enhanced by dis-
turbed flow. Hence, endothelium-restricted inhibition of NF-κB is also a 
potential therapeutic strategy against atherosclerosis. Statins can prevent 
TNF-α–induced NF-κB activation in ECs through a mechanism independ-
ent of the classical IKK cascade; the observed suppression of NF-κB de-
pends on impaired transport of the p65 subunit of NF-κB into the 
nucleus, induced by decreased endothelial AKT phosphorylation.248

Similarly, resveratrol effectively interferes with proinflammatory 
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Table 2 Pharmacological treatments based on mechanotransduction pathways

Drug Target Pathway Status Ref

Statins (+) KLF2 

(+) NRF2 

(−) YAP/TAZ 
(−) NF-κB

(+) MEK5/ERK5/MEF2 

(+) NRF2/HO-1 

(−) RhoA/YAP/TAZ 
(−) PI3K/AKT

Approved 203,244– 

248

Suberanilohydroxamic acid  

(SAHA, vorinostat)

(+) KLF2 (+) MEF2 Approved for T cell lymphoma 

Preclinical trials

249

Montelukast (singular) (+) KLF2 (+) ERK5 Approved for asthma and allergies 

Clinical trials (NCT00351364)

250,251

Liraglutide 
(Victoza, Saxenda)

(+) KLF2 
(−) NF-κB

(+) ERK5 
(−) NF-κB

Approved for diabetes and weight management 
Clinical trials (NCT04881110; NCT04146155)

252–254

Metformin (+) KLF2 (+) AMPK/HDAC5 

(+) Autophagy

Approved for diabetes 

Clinical trials (NCT03962686)

255,256

Laquinimod (+) KLF2 (+) ERK5 Clinical trials (NCT01047319) 257

Dimethyl fumarate (Tecfidera, 

Fumaderm)

(+) NRF2 (+) NRF2/ARE Approved for psoriasis, multiple sclerosis 

Preclinical trials

258

Bosutinib (−) YAP (−) Integrin α5β1/c-Abl/ 

YAP

Approved for chronic myeloid leukaemia 

Preclinical trials

145

Verteporfin (−) YAP/TAZ (−) YAP/TEAD Approved for macular degeneration 
Preclinical trials

259,260

Methotrexate (−) YAP/TAZ (−) YAP/TAZ Approved for psoriasis 

Clinical trials (NCT02312219; NCT02576067)

33

Niacin (−) YAP/TAZ 

(−) NF-κB

(−) YAP/TAZ 

(−) Notch1/NF-κB p65

Approved 203,261,262

Apelin agonist (BMS-986224) (−) YAP/TAZ (−) YAP/TAZ Clinical trials (NCT03281122) 263

ApoA-I Milano (MDCO-216) (−) YAP/TAZ (−) YAP/TAZ Clinical trials (NCT02678923) 264,265

Aspirin (−) NF-κB (−) NF-κB/CX3CL1 Approved 266–268

Canakinumab (−) IL-1β (−) Nck1/IRAK-1/NF-κB Approved for cryopyrin-associated periodic syndromes and 
Still’s disease 

Clinical trials (NCT00995930; NCT01327846)

269,270

Anakinra (−) IL-1β (−) p38 MAPK/NF-κB Approved for rheumatoid arthritis 
Clinical trials (NCT02126280)

269,271

Investigational naturally  
occurring compounds

Target Pathway Status Ref

Vinpocetine (−) NF-κB (−) IKK activity 
(+) AKT dephosphorylation

Clinical trials (NCT02878772) 272–274

Resveratrol (+) KLF2 

(+) NRF2 
(−) NF-κB

(+) AMPK/ERK5/MEF2 

(+) SIRT1/MEK5/MEF2 
(+) NRF2/ARE 

(+) SIRT1/RelA/p65 deacetylation

Approved 275–280

Tannic acid (+) KLF2 (+) MEK5/MEF2 Preclinical trials 281

Sulforaphane (+) NRF2 (−) p38/VCAM-1 Clinical trials (NCT01114399) 212,282–284

Colchicine (−) NF-κB (−) NF-κB/IκB Clinical trials 

(NCT02162303; NCT05347316)

285

Diosgenin (−) NF-κB (−) IKKβ/NF-KB Preclinical trials 286

(+), activation; (−), inhibition; KLF2/4, Krüppel-like factor 2/4; NRF2, nuclear factor erythroid 2-related factor 2; NF-κB, nuclear factor-κB; YAP/TAZ, Yes-associated protein/transcriptional 
coactivator with PDZ-binding motif; TEAD: TEA-domain transcription factor; MEK5, MAP/ERK kinase 5; ERK5, extracellular signal-regulated kinases 5; MEF2, myocyte enhancer factor 2; 
HO-1, heme oxygenase-1; PI3K, phosphoinositide 3-kinases; AKT, serine/threonine protein kinase B; AMPK, AMP-activated protein kinase; HDAC5, histone deacetylase 5; IRAK-1, 
interleukin-1 receptor–associated kinase 1; ARE, antioxidant response element; c-Abl, cytosolic nonreceptor protein kinase; IKK, IκB kinase; SIRT1, sirtuin1; VCAM-1, vascular cell adhesion 
protein-1; IKKβ, nuclear factor kappa B kinase beta subunit.
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cytokine–induced NF-κB activation through the blockade of p65 subunit 
phosphorylation and consequent prevention of NF-κB nuclear transloca-
tion.276,277 Moreover, resveratrol regulates the transcriptional activity of 
NF-κB via activation of sirtuin1 (SIRT1), which is a nicotinamide adenosine 
dinucleotide-dependent HDAC.278 SIRT1 physically interacts with the 
RelA/p65 subunit of the NF-κB complex, leading to RelA/p65 deacetylation 
at lysine 310 and NF-κB transcriptional inhibition.290

Colchicine, an anti-inflammatory compound showing potential benefits 
for CVDs, can decrease the expression of NF-κB in ECs or NF-κB in nu-
clear fraction and thereby regulates the expression of inflammatory cyto-
kines.285 Aspirin and diosgenin, antithrombotic agents that can reduce 
platelet activation, exert antiatherogenic effects through NF-κB inhib-
ition.267,268,286 Low-dose aspirin administration inhibits NF-κB activation 
and subsequent expression of fractalkine (CX3CL1), another NF-κB target 
gene important in atherosclerosis. This reduces atherosclerotic plaque size 
in hyperlipidaemic mice.266 However, high-dose aspirin usage is associated 
with gastrointestinal bleeding. GLP-1 hormone is involved in immunomo-
dulation of atherosclerosis.291 Liraglutide promotes eNOS expression and 
suppresses endothelin-1 (ET-1) expression by inhibiting NF-κB phosphor-
ylation and its translocation from the cytoplasm to the nucleus.254

Canakinumab and anakinra, immunomodulators that act through IL-1β 
suppression, reduced cardiovascular events in a high-risk patient cohort. 
The protective effects were ascribed to suppressed activation of NF-κB 
and decreased production of proinflammatory cytokines triggered by the 
Toll/interleukin-1 receptor homology domain and the adaptor protein 
myeloid differentiation primary response 88 (MyD88).269–271

Additionally, niacin, a water-soluble vitamin that acts as a broad- 
spectrum lipid-regulating medication, has been shown to inhibit inflamma-
tion by suppressing NF-κB p65 and Notch1 expression in ECs.262

Vinpocetine can attenuate high-fat diet–induced atherosclerosis in 
ApoE−/− mice.272,273 Vinpocetine inhibits NF-κB–mediated inflammatory 
responses by directly affecting IKK activity, independent of its well-known 
action on cyclic nucleotide phosphodiesterase 1 (PDE-1).274 AKT depho-
sphorylation in part contributes to the inhibitory effects of vinpocetine on 
the NF-κB cascade.273

6. Conclusions
Interactions between flowing blood and ECs play important roles in the 
regulation of vascular integrity and homeostasis. Generally, ECs maintain 
quiescence in laminar, pulsatile flow but respond to disturbed flow by ini-
tiating programs for structural and functional adaption. Specifically, sus-
tained SS alternation leads to EC dysfunction in a series of changes that 
involve the morphology, cell turnover rate (proliferation and apoptosis), 
macromolecular permeability, and inflammation.7

CVDs and their clinical sequelae remain the major cause of morbidity and 
mortality worldwide. The significance of mechanical stimuli in the physiopathol-
ogy of CVDs such as atherosclerosis has catalyzed much research in the past 
decades. However, despite our increased understanding of the effects of blood 
flow on endothelial biology, numerous questions in this field remain un-
answered. Dysregulation of mechanosensing mechanisms in ECs is implicated 
in a wide range of vascular diseases, especially in atherogenesis. Many recent 
studies discussed above indicate that drugs targeting key mechanosensitive 
transcription factors such as KLF2/4, NRF2, YAP/TAZ/TEAD, NF-κB, and 
others can produce antiatherosclerosis effects. Nevertheless, it remains challen-
ging to translate findings from mechanobiological studies into interventions that 
actively target dysregulated mechanosensing mechanisms to treat diseased vas-
culature. This may be ascribed to the existence of multiple mechanotransduc-
tion mechanisms and complex interactions between distinct mechanisms. Thus, 
the interplay of redundant or complementary mechanotransduction pathways 
has to be viewed in a ‘systems biology’ context.

The vast majority of cellular response studies have been performed on cul-
tured cells in vitro. In general, in vitro systems for studying endothelial biology 
are simplified, do not fully recapitulate the mechanics in biological systems, 
and require rigorous validation using in vivo methods. Novel experimental 
techniques such as microfabrication technology have greatly facilitated the 

study of cell mechanics and mechanobiology in vitro but still have limitations. 
For example, many of these studies use ECs adhered to artificial substrates 
such as PDMS, so vessel mechanics are not accurately reproduced. Other as-
pects of vessel mechanics are also generally lacking; ECs are exposed to not 
only FSS but also cyclic stretch, so techniques that incorporate appropriate tis-
sue mechanics and fluid forces would improve physiological relevance. There 
are additional limitations related to the ability to integrate multidimensional in 
vivo components such as the ECM, mechanical stimulus, and chemical signals. 
Efforts to recapitulate the vessel wall structure in vitro, including the anatomy of 
the smooth muscle layers and pericytes, are promising, but still in the develop-
ment stage.128 Finally, while the adhesion of circulating leukocytes, including 
monocytes, has been extensively studied using in vitro technologies, additional 
examination of the subsequent effects on the generation of foam cells and ath-
erosclerosis is needed.

For in vivo models, there are exciting advances that allow control of flow 
in the microvasculature of live animals and the monitoring of specific bio-
logical responses including microvascular permeability and intracellular cal-
cium.292,293 It is also possible to study the endothelial glycocalyx in vivo by 
using a variety of imaging methods.294 Such studies open the door for fu-
ture investigations of flow-responsive events in vivo. However, access to 
the microvasculature is considerably easier than that to the medium and 
large arteries in which atherosclerosis develops; therefore, new tools 
need to be developed in order to provide the capability of monitoring 
flow-induced EC responses in larger arteries in vivo.

Multiple mechanosignalling pathways have been implicated in the regulation 
of EC function in physio/pathological conditions. Although informative, these 
hypothesis-based studies on the mechanisms that control focal lesion forma-
tion have only partially revealed the complexity of flow-induced pathways. 
Furthermore, there is mounting evidence that different mechanosensing me-
chanisms can interact with one another to orchestrate mechanotransduction 
signalling and cell function. For example, the interactions of KLF2 with 
NRF2,210,295,296 and NF-κB with HIF-1α,34,35 as well as KLF2/4 with 
NF-κB34 have been described recently. The current challenge is to determine 
how these systems work together, and to identify specific mechanosensitive 
pathways that can be targeted to alleviate or reverse vascular pathologies. A 
useful approach could be to determine how mechanotransduction occurs as 
an intracellular ‘systems’ response for each physiological or pathological con-
text of interest, with appreciation of the potential redundancy of elements 
within the system. By discovering how ECs coordinate and integrate their re-
sponse to mechanical signals, we can identify novel therapeutic targets to slow 
or reverse the progression of atherosclerosis.

The complexities of endothelial mechanobiology present both oppor-
tunities and challenges in the battle against CVDs. On one hand, new me-
chanosensitive pathways are being discovered and implicated in 
endothelial dysfunction during atherogenesis. These pathways may re-
veal new targets for preventing or reversing CVDs. On the other 
hand, the complexity of the system requires new experimental tools 
and conceptual advances to advance our understanding of how endothe-
lial mechanobiology contributes to homeostasis in atheroprotective 
environments, but disease progression in atheroprone regions. This dis-
tinction is subtle, but key to the development of robust therapeutics 
with minimal toxicity.
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