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Abstract

Automated segmentation in medical image analysis is a challenging task that requires a large 

amount of manually labeled data. However, most existing learning-based approaches usually suffer 

from limited manually annotated medical data, which poses a major practical problem for accurate 

and robust medical image segmentation. In addition, most existing semi-supervised approaches 

are usually not robust compared with the supervised counterparts, and also lack explicit modeling 

of geometric structure and semantic information, both of which limit the segmentation accuracy. 

In this work, we present SimCVD, a simple contrastive distillation framework that significantly 

advances state-of-the-art voxel-wise representation learning. We first describe an unsupervised 

training strategy, which takes two views of an input volume and predicts their signed distance 

maps of object boundaries in a contrastive objective, with only two independent dropout as mask. 

This simple approach works surprisingly well, performing on the same level as previous fully 

supervised methods with much less labeled data. We hypothesize that dropout can be viewed as 

a minimal form of data augmentation and makes the network robust to representation collapse. 

Then, we propose to perform structural distillation by distilling pair-wise similarities. We evaluate 

SimCVD on two popular datasets: the Left Atrial Segmentation Challenge (LA) and the NIH 

pancreas CT dataset. The results on the LA dataset demonstrate that, in two types of labeled ratios 

(i.e., 20% and 10%), SimCVD achieves an average Dice score of 90.85% and 89.03% respectively, 

a 0.91% and 2.22% improvement compared to previous best results. Our method can be trained 
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in an end-to-end fashion, showing the promise of utilizing SimCVD as a general framework for 

downstream tasks, such as medical image synthesis, enhancement, and registration.

Index Terms—

Medical image segmentation; contrastive learning; knowledge distillation; geometric constraints

I. Introduction

Medical image segmentation is a popular task in both machine learning and medical 

imaging communities [1]–[5]. Compared to traditional segmentation approaches, deep 

neural network based segmentation methods have achieved much stronger performance 

in recent years with huge advances in representation learning [6]–[13]. However, previous 

state-of-the-art approaches are mostly trained with a large amount of labeled data, which 

pose significant practical challenges in many medical segmentation tasks where there is a 

scarcity of labeled data due to the heavy burden of annotating images.

In recent years, a wide variety of semi-supervised methods [14]–[25] have been designed 

to tackle these issues, which learn from limited labeled data along with a large amount of 

unlabeled data, achieving significant improvements in accuracy and greatly reducing the 

labeling cost. The common paradigms include adversarial learning, knowledge distillation, 

and self-supervised learning. Contrastive learning, a sub-area of self-supervised learning, has 

recently been noted as a promising direction since it has shown great promise in learning 

useful representations with limited human supervision [24], [26]–[29]. This is often best 

understood as pulling together semantically similar (positive) samples and pushing apart 

non-similar (negative) samples in a shared latent space. The representations uncovered by 

these contrastive objectives are capable of boosting the performance of any vision system 

especially in scenarios where the amount of annotated data available for the downstream 

tasks is extremely low, which is well suited for medical image analysis.

Despite advances in semi-supervised learning benchmarks, previous methods still face 

several major challenges: (1) Suboptimal performance: although prior works have achieved 

promising segmentation accuracy in the setting of limited annotations, semi-supervised 

models are usually not robust due to some information loss, compared with fully-supervised 

counterparts; (2) Geometric information loss: previous segmentation networks are poor at 

characterizing geometry, i.e., leveraging the intrinsic geometric structure of the images, such 

as the object boundary. As a consequence, it is often hard to accurately recognize object 

contours; and (3) Generalization ability: considering the limited amount of training data, 

training deep models is usually deficient due to over-fitting and co-adapting [30], [31].

In this work, we address the question: can we advance state-of-the-art voxel-wise 

representation learning in a more extreme few-annotation-setting for medical image 

segmentation? To this end, we present SimCVD, a simple contrastive voxel-wise 

representation distillation framework, which can be utilized to produce superior voxel-wise 

representations from unlabeled data for improving network performance. Our proposed 

SimCVD, built upon the mean-teacher framework [32], can address the above-mentioned 
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challenges as follows. First, SimCVD predicts the output geometric representations with 

only two different dropout [33] masks (Figure 1). In other words, we pass two views of the 

geometric representations to the mean-teacher model, obtain two representations as “positive 

pairs”, by applying two independent dropout masks, and learn effective representations 

by efficiently associating positives and disassociating negatives in the shared latent space. 

Though this unsupervised learning strategy is simple, we find this approach is strikingly 

effective compared to other common data augmentation techniques (e.g., inpainting and 

local shuffle pixel). More importantly, as we will show, it achieves comparable performance 

to previous fully-supervised approaches. Through a series of thorough analyses, we find that 

dropout can be viewed as minimal data augmentation for performance improvement, and it 

can effectively regularize the training of deep neural networks, avoid representation collapse 

and enhance model generalization.

Second, we attribute the cause of the geometric information loss to the need for geometric 

shape constraints. We address this challenge by performing multi-task learning that jointly 

predicts a segmentation map along with a signed distance map (SDM) [12], [21], [34]–

[36]. The SDM calculates the signed distance function of the object, i.e., the distance of 

a voxel from the boundary of the object, with the sign determined by whether the voxel 

is within the object. Thus, it can be viewed as a global shape constraint on the labeled 

data. Considering that the SDM can provide a more flexible geometric measure of the 

object boundary, we move beyond the supervised learning scheme and exploit the regularity 

in geometric shapes among different object classes through distilling “boundary-aware” 

knowledge via a contrastive objective among the unlabeled data. This enables the model 

to learn boundary-aware features more effectively by encouraging the networks to produce 

segmentation maps with similar distance map distributions on the entire dataset.

Third, it is challenging to train the segmentation model on small training sets since deep 

neural networks trained on a limited amount of data are prone to over-fitting. To this end, 

we propose to use knowledge distillation (KD), which has been shown to be effective 

in segmentation and classification tasks [37]–[39]. The key idea of KD is that a teacher 

model is first trained, and then used to guide the training of the student model for 

improving generalization ability. In the medical domain, most existing KD methods [40], 

[41] simply consider the segmentation problem as a pixel/voxel-level classification problem. 

In contrast, considering that medical image semantic segmentation is a structured prediction 

problem, we present a novel structured knowledge pair-wise distillation, which further use 

the structural knowledge from the mean-teacher model, while avoiding co-adapting and 

over-fitting.

Our contributions are summarized as follows. First, we propose a novel contrastive 

distillation model termed SimCVD featured by (i) boundary-aware representations that 

incorporate rich information of the object shape, (ii) a distillation objective which contrasts 

different distance map distributions jointly in the shared latent space, and (iii) a pair-

wise distillation objective to further distill pair-wise structural knowledge. Second, we 

demonstrate that, in the setting of very limited annotation, simply using dropout can deliver 

more robust end-to-end segmentation performance compared to heavily relying on a large 

amount of labeled data. Third, we conduct experiments on two popular benchmark datasets 
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to evaluate SimCVD. The results demonstrate that SimCVD significantly outperforms 

other state-of-the-art semi-supervised approaches, while achieving competitive performance 

compared to fully-supervised counterparts.

II. Related Work

A. Semi-Supervised Medical Image Segmentation

In recent years, substantial efforts [14]–[17], [20], [42]–[47] have been devoted to 

incorporating unlabeled data to improve network performance due to limited annotations. 

Yu et al. [20] investigated an uncertainty map based on the mean-teacher framework [32] 

to guide the student network to capture better features. Li et al. [21] proposed to use 

signed distance fields for boundary prediction to improve the performance. Also, Luo et 
al. [23] proposed a dual-task-consistency (DTC) model for semi-supervised medical image 

segmentation by jointly predicting the pixel-wise segmentation maps and the global-level 

level set representations on the unlabeled data. Our method aims at a more practical and 

challenging scenario: we train our model in a more extreme few-annotation setting that relies 

only on a small number of annotations, while achieving superior segmentation accuracy.

B. Contrastive Learning

Self-supervised learning (SSL) [46], [48]–[50] has provided robust benefits to vision tasks 

by learning effective visual representations from unlabeled data in an unsupervised setting. It 

is based on a commonly-held belief that superior performance gains can be achieved through 

improved representation learning. Recently, contrastive learning, a type of self-supervised 

learning, has received a lot of interests [24], [26], [29], [48], [51]–[56]. The key idea of 

contrastive learning is to learn powerful representations that optimize similarity constraints 

to discriminate similar pairs (positive) and dissimilar pairs (negative) within a dataset. The 

primary stream of subsequent work focuses on the choice of dissimilar pairs, which is 

critical to the quality of learned representations. The loss function used to quantify the 

contrast is chosen from several options, such as InfoNCE [57], Triplet [58], and so on. 

Recent studies [51], [53] introduced memory bank or momentum contrast to use more 

negative samples for contrast computation. In the context of medical imaging, Chaitanya 

et al. [24] extended a contrastive learning framework to extract global and local cues in a 

stage-wise way, which requires human intervention and extensive training time. In contrast 

to Chaitanya et al. [24], our unified work focuses on explicit modeling of the intrinsic 

geometric structure of the semantic objects in an end-to-end manner, and hence is able to 

recognize object boundaries more effectively and efficiently.

C. Knowledge Distillation

The idea of knowledge distillation is to minimize the KL-divergence between the output 

distributions of the teacher model and the student model, and thus avoid over-fitting. 

KD has been applied to a variety of tasks [59]–[62], including image classification [37], 

[63]–[65] and semantic segmentation [39], [66]. Recent works [63], [64] found that the 

student model can outperform the teacher model when they share the same network 

architecture. Zhang et al. [67] proposed to collaboratively train multiple student models 

with co-distillation, which improves performance of those individual models. At the same 
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time, in the context of medical imaging, among those existing state-of-the-art KD methods, 

the self-ensemble mean-teacher framework [32] is widely explored for image segmentation. 

Different from the existing methods that separately exploit class probabilities for each 

voxel, we consider knowledge distillation as a structured prediction problem by matching 

the relational similarity among all pairs of voxels from the encoded feature maps of the 

meanteacher model. We have found that our approach significantly improves learning better 

voxel-wise representations.

III. Method

In this section, we introduce SimCVD, a semi-supervised segmentation network, which is 

built from scratch by effectively leveraging scarce labeled data and ample unlabeled data for 

improving end-to-end voxel-wise representation learning (See Figure 1). We first overview 

our proposed SimCVD and then describe the task formulation of SimCVD. Finally, we 

detail each component of SimCVD in the following subsections.

A. Overview

We aim to construct an end-to-end voxel-wise contrastive distillation algorithm to learn 

boundary-aware representations in the setting of extremely few annotations for volumetric 

medical imaging segmentation. Although the accuracy of supervised models is usually 

higher than that of semi-supervised models, the former requires much more labeled data 

than the latter. In many clinical situations, we only have few annotated data but a large 

amount of unlabeled data. This situation necessitates a semi-supervised segmentation 

algorithm that can utilize the unlabeled data to improve the segmentation performance.

To this end, we propose a novel contrastive distillation framework to advance state-of-

the-art voxel-wise representation learning. In particular, our base multi-task segmentation 

network tackles two tasks simultaneously: classification and regression. Specifically, the 

segmentation network takes the input volume batch and jointly predicts the probability maps 

(classification) and the SDMs of the object (regression). To obtain better representations, we 

propose to perform structured distillation in the latent feature space, followed by contrasting 

the boundary-aware features in the prediction space, to learn more effective boundary-aware 

representations from 3D unlabeled data by regularizing the embedding space and exploring 

the geometric and spatial context of training voxels. At test time, we remove the mean 

teacher and two projection heads, and only the student network is deployed for the medical 

segmentation tasks.

B. Task Formulation

In this work, we consider a set of training data (3D images) including N labeled 

data and M unlabeled data, where N ≪ M. For simplicity, we denote the small set of 

labeled data as Dl = Xi, Yi, Yi
sdm

i = 1
N , and abundant unlabeled data as Du = Xi i = N + 1

N + M , where 

Xi ∈ ℝH × W × D is the volume input, Yi ∈ 0,1 H × W × D is the ground-truth label, and 

Yi
sdm ∈ ℝH × W × D is the computed ground truth SDMs from Yi, which measures the distance 
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from each voxel to the object boundary. Every 3D image Xi consists of a set of 2D image 

slices Xi = xi, 1, …, xi, D  where xi, j ∈ ℝH × W .

Our proposed SimCVD framework consists of a mean-teacher network, ℱt X; θt , and a 

student network, ℱs X; θs . Inspired by recent work [14], [32], the optimization of these 

two networks can be achieved with an exponential moving average (EMA) which uses 

a weighted combination of the parameters of the student network and the parameters of 

the teacher network to update the latter. This strategy has been widely shown to improve 

training stability and the model’s final performance. Motivated by this idea, our training 

strategy is divided into two steps. At each iteration, we first optimize the student network ℱs

by stochastic gradient descent. Then we update the teacher weights θt using an exponential 

moving average of the student weights θs.

The inputs to the two networks are perturbed versions of the same image. That is, given a 

volume input Xi, we first add different perturbations (i.e., affine transformation and random 

crop) to generate two different images Xi
t and Xi

s. We then feed ℱt and ℱs with these two 

corresponding augmented images to obtain two confidence score (probability) maps Qi
t and 

Qi
s.

Before we present our proposed SimCVD in detail, we first describe our base architecture 

below.

C. Base Architecture

Our base architecture adopts V-Net [20] as the network backbone, which consists 

of an encoder network et : ℝH × W × D ℝH′ × W ′ × D′ × De and a decoder network 

dt:ℝH′ × W ′ × D′ × De 0,1 H × W × D × − 1,1 H × W × D
 for the teacher network, and 

similarly es, ds for the student network, i.e., ℱt = dt ∘ et and ℱs = ds ∘ es . H′, W ′, D′ are the size 

of the hidden pattern and De is the encoded feature dimension. Inspired by previous work 

on medical imaging segmentation [12], [21], we incorporate multi-task learning into ℱ to 

jointly perform both classification and regression tasks.

Given input Xi, the classification branch is designed to generate the probability map 

Qi
s ∈ 0,1 H × W × D, and the regression branch is designed to predict the SDMQi

s, sdm ∈

− 1,1 H × W × D. The design of the regression branch is simple yet effective, only including 

the hyperbolic tangent function. This design brings two clear benefits: (1) we can eventually 

encode rich geometric structure information to improve segmentation accuracy, and (2) 

we can implicitly enforce continuity and smoothness terms for better segmentation maps. 

Similarly, we have outputs Qi
t and Qi

t, sdm  from the teacher network.

1) Supervised Loss Lsup: For training on labeled data, we define the supervised loss 

as:
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Lsup  = 1
N ∑

i = 1

N
Lseg  Qi

s, Yi + α
N ∑

i = 1

N
Lmse Qi

s, sdm, Yi
sdm  , (1)

where ℒseg  denotes the segmentation loss (Dice and Crossentropy) [20], and ℒmse  is the 

mean squared error loss. α is a hyperparameter. Note that the SDM loss [12] is imposed as 

geometric constraints in training.

D Boundary-Aware Contrastive Distillation

Many prior methods distill knowledge merely in the shared prediction space by delivering 

the student network that matches the accuracy of the teacher network. However, this strategy 

is not robust for the following reasons: (1) the learned voxel-wise representations from the 

mean-teacher model are usually not robust due to the lack of geometric information; (2) the 

segmentation model still suffers from generalization issues; and (3) the network performance 

needs to be further improved. Therefore, we propose to perform boundary-aware contrastive 

distillation to train our model for better segmentation accuracy.

Our method differs from previous state-of-the-art methods in three aspects: (1) SimCVD 

imposes the global consistency in object boundary contours to capture more effective 

geometric information; (2) previous methods follow the standard setting in considering the 

relations of local patches, while SimCVD aims to exploit correlations among all pairs of 

voxels to improve robustness; and (3) due to the computational cost, SimCVD does not use 

a large memory bank. SimCVD trains the contrastive objective as an auxiliary loss during 

the volume batch updates. To specify our voxel-wise contrastive distillation algorithm on 

unlabeled sets, we define two discrimination terms: boundary-aware contrastive loss and 

pair-wise distillation loss.

1) Boundary-Aware Contrastive Loss Lcontrast:  We describe our unsupervised 

boundary-aware contrastive objective as follows. Our key idea is to make use of “boundary-

aware” knowledge by a contrastive learning objective that enforces the consistency of 

the predicted SDM outputs on the unlabeled set during training. The key ingredient to 

working with two views of input images is to apply dropout as mask. Specifically, given 

the collection of an input volume Xi, the student SDM Qi
s, sdm , the teacher SDM Qi

t, sdm , 

we first directly add them up to build two boundary-aware features: Qi
s, ba = Xi + Qi

s, sdm  and 

Qi
t, ba = Xi + Qi

t, sdm . Then, we feed them into the projection heads with two independent 

dropout masks zi
s, zi

t, and contrast positives and negatives by using the InfoNCE loss. We 

denote the same slice from the two boundary-aware features as positive, and slices at 

different locations or from different inputs as negative.

The boundary-aware features are created by adding the original 3D volume to the SDM 

because we want to fuse both the distance and the intensity information. Another way to 

achieve this is concatenation — adding another dimension to the feature tensor — requires 

a more complex projection head which is more prone to over-fitting. Thus, the projection 

head ℋ:ℝH × W × D ℝDℎ × D encodes each 2D slice to a Dℎ-dimensional feature vector. 

The implementation is simple, which includes an alpha dropout [71], an adaptive average 
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pooling, and a 3-layer multilayer perceptron (MLP). Here the MLP is designed to convert 

each 2D slice to a vector.

Denoting the output of the projection head as Hi
s = ℋ Qi

s, ba ; zi
s , Hi

t = ℋ Qi
t, ba ; zi

t , and the jth 

row of Hi as hi, j, the InfoNCE loss [57] is defined by:

ℒ hi, j
t , hi, j

s = − log exp hi, j
t ⋅ hi, j

s /τ
k, l exp hi, j

t ⋅ hk, l
s /τ , (2)

where τ is a temperature hyperparameter. The indices k and l in the denominator are 

randomly sampled from a mini-batch of images such that B 2D slices are sampled in 

total. i and j denote the 3D image index and slice index, respectively. The hk, l
s  ’s in the 

denominator that are not hi, j
s  are called negative samples. Inspired by the recent success [24], 

our boundary-aware contrastive loss is defined as:

Lcontrast  = 1
N+ ∑

∀ i, j ∈ N+
L hi, j

t , hi, j
s + L hi, j

s , hi, j
t , (3)

where N+ = i, j : i = N + 1, …, N + M, j = 1, …, D  denotes a collection of the positive 2D 

slice pairs. Note that the index i in N+ is over all the unlabeled data, hence these data affect 

the training of ℱs and ℱt.

2) Pair-Wise Distillation Loss Lpd: On one hand, boundarya-ware contrastive 

objectives uncover distinctive global boundary-aware representations that benefit the training 

of downstream tasks, e.g. object classification, when limited labeled data is available. 

On the other hand, dense predictive tasks, e.g. semantic segmentation, may require more 

discriminative spatial representations. As complementary to boundary-aware contrastive 

objectives, a promising local pair-wise strategy is vital for the medical image segmentation 

tasks. With this insight, we propose to perform voxel-to-voxel pair-wise distillation to 

explicitly explore structural relationships between voxel samples to improve spatial labeling 

consistency.

In our implementation, we enforce such a constraint on the hidden patterns from the 

encoders et and es. Specifically, let Vi
t ∈ ℝH′W ′D′ × De and Vi

s ∈ ℝH′W ′D′ × De be the first-3-

dimension-flattened hidden patterns of et Xi  and es Xi  respectively, and vi, j be the jth row of 

Vi. The pair-wise distillation loss is defined as:

Lpd = − 1
M ∑

i = N + 1

N + M
∑
j = 1

H′W ′D′
log exp s vi, j

s , vi, j
t

∑k exp s vi, j
s , vi, k

t , (4)

where s v1, v2 = v1 ⋅ v2
∥ v1 ∥ ∥ ∥2 ∥  measures the cosine of the angle between two v ’s as their 

similarity. Note again that this loss also involves all the unlabeled data.
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3) Consistency Loss Lcon: : Inspired by recent work [14], [32], consistency is designed 

to further encourage training stability and performance improvements on the unlabeled set. 

In our implementations, we first perform different perturbation operations on the unlabeled 

input volume Xi, i.e., adding noise ηi, and then define the consistency loss as:

ℒcon  = 1
M i = N + 1

N + M
ℒmse  ℱs Xi

s + ηi
s , ℱt Xi

t + ηi
t . (5)

4) Overall Training Objective: SimCVD is a general semi-supervised framework for 

combining contrastive distillation with geometric constraints. In our experiments, we train 

SimCVD with two objective functions — a supervised objective and an unsupervised 

objective. For the labeled data, we define the supervised loss in Section III-C. For 

the unlabeled data, the unsupervised training objective consists of the boundary-aware 

contrastive loss, pair-wise distillation loss, and consistency loss in Section III-D. The overall 

loss function is:

ℒ = ℒsup  + λℒcontrast  + βℒpd  + γℒcon , (6)

where λ, β, γ are hyperparameters that balance each term.

IV. Experimental Setup

A. Dataset and Pre-Processing

We evaluated our approach on two popular benchmark datasets: the Left Atrium (LA) 

MR dataset from the Atrial Segmentation Challenge,1 and the NIH pancreas CT dataset 

[72]. For the Left Atrium dataset, it comprises 100 3D gadoliniumenhanced MR imaging 

scans (GE-MRIs) with expert annotations, with an isotropic resolution of 0.625 × 0.625 × 

0.625mm3. Following the experimental setting in [20], we use 80 scans for training, and 

20 scans for evaluation. We employ the same pre-processing methods by cropping all the 

scans at the heart region and normalizing the intensities to zero mean and unit variance. All 

the training sub-volumes are augmented by random cropping to 112 × 112 × 80mm3. For 

the pancreas dataset, it contains 82 contrast-enhanced abdominal CT scans. Following the 

experimental settings in [23], we randomly select 62 scans for training, and 20 scans for 

evaluation. In the pre-processing, we first truncate the intensities of the CT images into the 

window [−125, 275] HU [73], and then resample all the data into a fixed isotropic resolution 

of 1.0 × 1.0 × 1.0mm3. Finally, we crop all the scans centering at the pancreas region, and 

normalize the intensities to zero mean and unit variance. All the training sub-volumes are 

augmented by random cropping to 96 × 96 × 96mm3. In this study, we compare all the 

methods on LA and the pancreas dataset with respect to 20% labeled ratio. To emphasize the 

effectiveness of SimCVD, we further validate all the methods with respect to 10% labeled 

ratio on LA dataset.

1 http://atriaseg2018.cardiacatlas.org/ 
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B. Implementation Details

In this study, all evaluated methods are implemented in PyTorch, and trained for 6000 

iterations on an NVIDIA 1080Ti GPU with a batch size of 4. For data augmentation, we 

use standard data augmentation techniques (i.e., random rotation, flipping, and cropping). 

We set the hyper-parameters α, λ, β, γ, τ as 0.1, 0.5, 0.1, 0.1, 0.5, respectively. For the 

projection head, we set p = 0.1 in the AlphaDropout layer, and output size 128 × 128 for 

AdaptiveAvgPool2d. We use SGD optimizer with a momentum of 0.9 and a weight decay 

of 0.0005 to optimize network parameters. The initial learning rate is set as 0.01 and 

divided by 10 every 3000 iterations. For EMA updates, we follow the experimental setting 

in [20], where the EMA decay rate α is set to 0.999. We use the time-dependent Gaussian 

warming-up function Ψcon t = exp −5 1 − t/tmax
2  to ramp up parameters, where t and tmax

denote the current and the maximum training step, respectively. For fairness, we do not 

adopt any post-processing step.

In the testing stage, we adopt four metrics to evaluate the segmentation performance: Dice 

coefficient (Dice), Jaccard Index (Jaccard), 95% Hausdorff Distance (95HD), and Average 

Symmetric Surface Distance (ASD). Following [20] and [23], we adopt a sliding window 

strategy, which uses a stride with 18 × 18 × 4 for the LA and 16 × 16 × 16 for the pancreas.

V. Results

A. Experiments: Left Atrium

We compare SimCVD with published results from previous state-of-the-art semi-supervised 

segmentation methods, including V-Net [7], MT [32], DAN [15], CPS [68], Entropy Mini 

[69], UA-MT [20], ICT [70], SASSNet [21], DCT [23], and Chaitanya et al. [24] on the LA 

dataset in two labeled ratio settings (i.e., 10% and 20%).

The quantitative results on the LA dataset are shown in Table I. SimCVD substantially 

improved the segmentation accuracy in both 10% and 20% labeled cases. The results 

are visualized in Fig 2. Specifically, in the setting of 20% labeled ratio, our proposed 

SimCVD raises the previous best average results from 89.94% to 90.85% and from 81.82% 

to 83.80% in terms of Dice and Jaccard, even achieving comparable performance to the 

fully supervised baseline. Using the 10% labeled ratio, SimCVD further advances the state-

of-the-art results from 87.49% to 89.03% in Dice. The gains in Jaccard, ASD, and 95HD 

are also substantial, achieving 80.34%, 2.59, and 8.34, respectively. This suggests that: 

(1) taking voxel samples with a contrastive objective yields better voxel embeddings; (2) 

incorporating pair-wise spatial labeling consistency can boost the performance by accessing 

more structural knowledge; and (3) utilizing a geometric constraint (i.e., SDM) is capable 

of helping identify more accurate boundaries. Leveraging all these aspects, we can observe 

consistent performance gains.

B. Experiments: Pancreas

To further evaluate the effectiveness of SimCVD, we compare our model on the pancreas 

CT dataset. Experimental results on the pancreas CT dataset are summarized in Table II. 

We observe that our model consistently outperforms all previous methods, achieving up to 
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6.72% absolute improvements in Dice. As shown in Figs. 2 and 3, our method is capable 

of predicting high-quality object segmentation, considering the fact that the improvement 

in such a setting is difficult. This demonstrates: (1) the necessity of comprehensively 

considering both boundary-aware contrast and pair-wise distillation; and (2) the efficacy of 

global shape information. Compared to the previous strong models, our approach achieves 

large improvements on all the datasets, demonstrating its effectiveness.

VI. Ablation Study

In this section, we conduct extensive studies to better understand SimCVD. We justify 

the inner working of SimCVD from two perspectives: (1) boundary-aware contrastive 

distillation (Section VI-A), and (2) the projection head (Section VI-B). In these studies, 

we evaluate our proposed method on the LA dataset with 10% labeled ratio (8 labeled and 

72 unlabeled).

A. Analysis on Boundary-Aware Contrastive Distillation

1) Ablation on Model Component: In the model formulation, our motivation is to 

advance state-of-the-art voxel-wise representations by capturing the geometric and semantic 

information in 3D space. Rather than transferring knowledge across confidence score maps 

directly, our SimCVD distills “boundary-aware” knowledge from the teacher network. 

To validate the idea of boundary-aware contrastive distillation, we compare SimCVD to 

an ablative baseline (i.e., SimCVD w/o SDM). Table III (a) compares each component 

of SimCVD in the 10% labeled setting. First, we observe that removing the SDMs in 

training hurts the segmentation performance by −0.79%,−1.27%,−1.6, and −3.09 absolute 

differences in terms of Dice, Jaccard, ASD, and 95HD. This confirms our intuition that the 

learned boundary-aware representations provide a good prior for improving segmentation 

accuracy. We also find that using adaptive max pooling strategy (i.e., SimCVD w/ adaptive 

max pooling) largely degrades the segmentation performance. Our segmentation results 

demonstrate that SimCVD is an effective approach, outperforming the best previous method 

with +0.71%,+1.08%, +1.20, and +6.35 absolute differences in terms of Dice, Jaccard, ASD, 

and 95HD. We hypothesize that it is because “w/ adaptive max pooling” leads to information 

loss during training.

2) Ablation on Loss Formulation: In the loss formulation, our main idea is to pull 

closer similar (positive) pairs upon the same threshold, while pushing apart dissimilar 

(negative) pairs. Our learning objective is designed to jointly exploit effective correlations in 

the prediction and feature space in an informative way. To evaluate the effectiveness of each 

objective term, we conduct ablation studies by removing each term separately. As shown 

in Table III (b), we observe that SimCVD outperforms the ablative baseline “SimCVD w/o 

ℒcontrast” by a large margin and achieves a +3.90% increase in Dice. It clearly demonstrates it 

can effectively capture global context structure and local cues of 3D shapes. Next, we study 

whether enforcing similarity constraints in the feature space is effective enough to exploit 

structured knowledge in practice. We find that, under the 10% labeled setting, removing ℒpd

leads to a performance drop, and the accuracy measures decreases by −0.92% and −1.45% 

in Dice and Jaccard, respectively. Our qualitative results confirm that pair-wise distillation 
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is effective for SimCVD in improving the network performance. When we remove ℒsdm , 

the network performance does not drop significantly. We speculate that our boundary-aware 

contrastive distillation framework is capable of eliciting “boundary-aware” knowledge from 

the teacher model with high accuracy. This further highlights the effectiveness of our 

proposed SimCVD. To further verify the robustness of SimCVD, we perform pair-wise t-test 

between SimCVD and the other methods, using the per-case test Dice score as samples. 

The null hypothesis states that the test scores come from the same distribution, and thus the 

methods do not differ; whereas the alternative hypothesis is that SimCVD yields higher Dice 

score. For all the alternative methods in the Table below, the p-values are close to or less 

than 0.05. Small p-values indicates that we are confident in rejecting the null hypothesis and 

conclude that SimCVD indeed outperforms the baseline models.

B. Analysis on Projection Head

To further understand how different aspects of our projection head contribute to the superior 

model performance, we conduct extensive experiments and discuss our findings below.

1) How to Interpret Dropout?: Our experimental results have shown that SimCVD is 

an effective approach. In the following, we aim to answer two questions. First, how can 

we interpret SimCVD’s dropout training strategy? Can we view dropout as a form of data 

augmentation? Second, is it capable of exploiting additional informative cues in practice?

First, we examine whether removing dropout during training can achieve comparable 

performance. Table IV shows the ablation result of our dropout on LA. As shown in Table 

IV, we observe that using dropout achieves a much better result on LA dataset. Compared 

to the setting p = 0.1, we find that “no dropout” p = 0  leads to a dramatic performance 

degradation by −1.34%,−2.11%,−1.71,−2.69 absolute differences in terms of Dice, Jaccard, 

ASD, and 95HD, respectively. While in the case of p = 0.5, it also significantly hurts the 

network performance. On the other hand, we observe slight improvements on the other p
settings, compared to “no dropout”, but eventually underperform SimCVD. This clearly 

demonstrates the superiority of our dropout strategy to learn better representations with 

respect to different pairs of augmented images. We speculate that adding dropout can be 

interpreted as a minimal form of data augmentation, in which the positive pair takes two 

views of the same images, and their representations make a clear difference in dropout 

masks.

2) Effect of Augmentation Techniques: To further examine our hypothesis, we 

compare common data augmentation techniques (i.e., local shuffle pixel, non-linear 

transformation, in-painting, out-painting) in Table V. As is shown, the quantitative results 

reveal interesting behavior of different data augmentation: adding more data augmentation 

does not further contribute to the good model performance. We note that, somewhat 

surprisingly, it hurts the final prediction performance, and none of them outperforms the 

basic dropout mask. This suggests that by including these data augmentation techniques, it 

is possible to introduce additional noise during training, which leads to the representation 

collapse.
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3) Effect of Pooling Size: In Table III, we demonstrate the network improvements from 

using adaptive mean pooling instead of adaptive max pooling. We investigate the effects 

of different pooling sizes in Table IV. Empirically, we observe that using a larger pooling 

size clearly improves performance consistently. However, we find that the results can not be 

improved further by increasing the pooling size to 256. In our implementation, we set the 

pooling size as 128.

VII. Conclusion

In this work, we propose SimCVD, a simple contrastive distillation learning framework, 

which largely advances state-of-the-art voxel-wise representation learning on medical 

segmentation tasks. Specifically, we present an unsupervised training strategy, which takes 

two views of an input volume and predicts their signed distance maps of their object 

boundaries in a contrastive objective, with only two different dropout masks. We further 

conduct extensive analyses to understand the state-of-the-art performance of our approach, 

and demonstrate the importance of learning distinct boundary-aware representations and 

using dropout as the minimal data augmentation technique. We also propose to perform 

structural distillation by distilling pair-wise similarities, which achieves good performance 

improvements. Our experimental results show that SimCVD obtained new state-of-the-art 

results on two benchmarks in an extreme few-annotation setting.

We believe that our unsupervised training framework provides a new perspective on data 

augmentation along with unlabeled 3D medical data. We also plan to extend our method to 

solve multi-class medical image segmentation tasks.
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Fig. 1. 
Overview of our SimCVD in training. Given a 3D input volume, our SimCVD jointly 

predicts the 3D probability maps and the SDMs of the object using a student network and 

a teacher network. The student network is trained by stochastic gradient descent using two 

supervised losses ℒseg , ℒsdm  and three unsupervised terms ℒcontrast , ℒpd , ℒcon . Specifically, 

ℒcontrast  is designed to distill “boundary-aware” knowledge by contrastive learning in the 

shared latent space, and ℒpd is designed to exploit structural relationships among location-

paired voxel representations from the encoders. The teacher network’s weights are updated 

with a “momentum update” (exponential moving average) of the student network’s weights.
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Fig. 2. 
Visual comparisons with other methods on LA dataset. As observed, SimCVD achieves 

superior performance with more accurate borders and shapes. We train all the evaluated 

methods in the setting of 8 annotated images. Red and blue denote the predictions and 

ground truths, respectively.
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Fig. 3. 
Visual comparisons with other methods on the pancreas dataset. We train all the evaluated 

methods in the setting of 12 annotated images. Red and blue denotes the predictions and 

ground truths, respectively.
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TABLE III

Ablation on (A) Model Component: SimCVD w/o SDM; SimCVD w/o Adaptive Max Pooling; (B) Loss 

Formulation: SimCVD w/o ℒCONTRAST ; SimCVD w/o ℒpd ; SimCVD w/o ℒSDM , Compared to the Baseline and 

Our Proposed SimCVD

Method
Metrics

p-value (vs. SimCVD, [%])
Dice[%] Jaccard[%] ASD[voxel] 95HD[voxel]

Baseline (UA-MT) 84.24 73.26 2.71 1941 0.019

(a)
SimCVD w/o SDM 88.24 79.07 4.19 11.43 2.47

SimCVD w/ Adaptive Max Pooling 88.32 79.26 3.79 14.69 0.33

(b)

SimCVD w/o Lcontrast  + Lsdm 84.97 74.49 6.13 19.98 0.018

SimCVD w/o Lcontrast  85.13 74.57 5.97 16.61 2.9e-6

SimCVD w/o Lpd  88.11 78.89 2.89 12.58 2.02

SimCVD w/o Lsdm 88.85 80.03 2.71 9.02 5.14

SimCVD 89.03 80.34 2.59 8.34 -
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TABLE IV

Ablation on Dropout Rates p and Pooling Size

Method
Metrics

Dice[%] Jaccard[%] ASD[voxel] 95HD[voxel]

Dropout

p = 0.0 87.69 78.23 2.49 11.03

p = 0.01 87.98 78.69 3.08 11.17

p = 0.02 87.99 78.70 2.60 9.03

p = 0.05 88.01 78.71 2.78 10.60

p = 0.1 89.03 80.34 2.59 8.34

p = 0.2 88.10 78.86 3.28 12.70

p = 0.5 86.67 76.59 4.20 14.89

Pooling Size

16 × 16 87.04 77.22 3.69 14.28

32 × 32 87.53 77.98 3.13 11.56

64 × 64 88.37 79.27 2.75 8.84

128 × 128 89.03 80.34 2.59 8.34

256 × 256 87.99 78.71 2.82 9.97
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TABLE V

Ablation on Different Data Augmentations on the LA Dataset. All of Them Include the Dropout Masks 

p = 0.1

Method
Metrics

Dice[%] Jaccard[%] ASD[voxel] 95HD[voxel]

SimCVD 89.03 80.34 2.59 8.34

 + Local Shuffle Purel 88.15 78.97 1.96 8.66

 + Non-linear Intensity Transformation 88.02 78.80 2.68 10.29

 + In-painting 88.37 79.26 2.84 10.97

 + Out-painting 88.24 79.07 2.58 10.62
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