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ABSTRACT 

The spatial folding of eukar yotic g enome plays a key 

role in genome function. We report here that our re- 
centl y de veloped method, Hi-TrAC, which specializes 

in detecting chromatin loops among accessible ge- 
nomic regions, can detect active sub-TADs with a 

median size of 100 kb, most of which harbor one 

or two cell specificall y e xpressed genes and regu- 
latory elements such as super-enhancers organized 

into nested interaction domains. These active sub- 
TADs are characterized by highly enriched histone 

mark H3K4me1 and chromatin-binding proteins, in- 
cluding Cohesin complex. Deletion of selected sub- 
TAD boundaries have different impacts, such as 

decreased chromatin interaction and gene expres- 
sion within the sub-TADs or compromised insula- 
tion between the sub-TADs, depending on the spe- 
cific chr omatin envir onment. We show that knoc k- 
ing down core subunit of the Cohesin complex using 

shRNAs in human cells or decreasing the H3K4me1 

modification by deleting the H3K4 methyltransferase 

Mll4 gene in mouse Th17 cells disrupted the sub- 
TADs structure. Our data also suggest that super- 
enhancer s e xist as an equilibrium globule structure, 
while inaccessib le c hromatin regions exist as a frac- 
tal globule structure. In summary , Hi-T rAC serves 

as a highly sensitive and inexpensive approach to 

stud y d ynamic changes of active sub-TADs, pr o vid- 
ing more explicit insights into delicate genome struc- 
tures and functions. 
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INTRODUCTION 

Multi-scale and proper spatial folding of chromatin is es- 
sential f or eukary otic genome packaging and biological 
processes such as DNA replication ( 1 , 2 ), immunoglobu- 
lin heavy chain V(D)J recombination ( 3–5 ), and cell dif- 
ferentia tion ( 6–9 ). Disorganiza tion of three-dimensional 
(3D) genome structure is associated with the pathogene- 
sis of cancers and de v elopmental diseases ( 10–13 ). The de- 
velopment of powerful new technologies, including super- 
r esolution microscop y imaging methods and chromosome 
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conformation capture (3C)-deri v ed methods based on prox- 
imity ligation and high-throughput sequencing, has helped 

tremendously our understanding of the multilayer 3D ge- 
nomic structure ( 14–16 ). The initial version of genome-wide 
3C method, Hi-C, led to the discovery of large compart- 
ments at the megabase scale with a low resolution of 100 kb 

( 17 ). With deeper sequencing, topolo gicall y associating do- 
mains (TADs) at the sub-megabase scale were identified at 
a better resolution of 40 kb ( 18–20 ). With the improved in 

situ Hi-C method and with much deeper sequencing, chro- 
matin loops and hierarchically nested sub-TADs were iden- 
tified at much higher 1–5 kb resolution ( 21 ). Another Hi- 
C deri vati v e, Micro-C, was able to achieve a resolution of 
the single nucleosome le v el, although requiring billions of 
sequencing reads ( 22 , 23 ). Other sequencing-based methods 
with varying principles, such as ChIA-PET ( 24 ), GAM ( 25 ), 
SPRITE ( 26 ) and Trac-looping ( 27 ), have all been able to 

validate the existence of high-order structures of compart- 
ments , domains , and loops , advancing our understandings 
of dynamics of the 3D genome. 

Since the initial identification of TADs, domain-centric 
analysis has remained essential in interpreting genome-wide 
sequencing data and elucidating 3D genome organization 

and regula tion. Fea tures of TADs, including their exis- 
tence in a range of species ( 18 , 19 , 28 , 29 ), boundaries as- 
sociated with CTCF and Cohesin ( 18 , 30–32 ), formation 

mechanism through loop-extrusion model ( 33 ), and regu- 
latory role in gene e xpression ( 11 , 12 , 34 ), hav e been exten- 
si v ely documented with Hi-C data ( 35 , 36 ). Ther efor e, with a 

physical size of around se v eral hundred nanometers ( 16 , 37 ), 
TADs are considered as the architectural units of chro- 
ma tin, which define regula tory landscapes by framing the 
micr oenvir onment for enhancer-pr omoter interactions. Our 
recently de v eloped proximity ligation-independent tech- 
nique, Hi-TrAC ( 38 ), provides high-resolution maps of in- 
teractions between accessibility sites as loops and generic 
chromatin interactions analogous to Hi-C and variants 
as domains ( 39 ). While the loop-centric analysis provided 

comprehensi v e catalogs of promoter–enhancer interactions 
( 38 ), it is not clear how the Hi-TrAC data can be used for 
analysis of chromatin domains. 

By e xplicitly e xamining the domain featur es r e v ealed 

by modestly-sequenced Hi-TrAC data, we found that it 
can detect domains around 100 kb in size. These domains 
show cell specificity, harbor cell identity genes and super- 
enhancers; they contain enriched ChIP-seq signals of acti v e 
histone modification marks and transcription factors in- 
cluding H3K4me1 and SMC3. We observed self-similar do- 
main structures within the super-enhancers and their com- 
ponent enhancers. We found that super-enhancers interact 
with each other with a unique b lock-to-b lock pattern when 

they are in the same domain. Our data suggested that super- 
enhancers exist as an equilibrium globule structure, while 
inaccessible chromatin regions exist as a fractal globule 
structure. We further showed that knocking down RAD21 

or deleting the H3K4 methyltr ansfer ase Mll4 gene se v erely 

compromised the acti v e sub-TADs. Collecti v ely, our results 
demonstra te tha t Hi-TrAC is a highly robust and compa ti- 
ble method for studying acti v e domains at a high resolution, 
e v en with limited sequencing depth. 

MATERIALS AND METHODS 

Public data and pre-processing 

Public data used in this study, including human Hi-TrAC, 
Hi-C, HiChIP, ChIA-PET and ChIP-seq, were summarized 

in our previous work ( 38 ). Hg38 alignment BAM files of 
ENCODE ( 40 ) ChIP- seq data were obtained from EN- 
CODE w e bsite and summarized in Supplemental Table S1. 
Biological and technical replicates were merged for the same 
factor, and only unique reads were used for the follow- 
ing analyses. Human gene annotations from GENCODE 

( 41 ) (gencode.v30.basic.annotation.gtf) were used in any 

gene-related analysis. Hg38 was used in this study. If human 

data processed in other genome versions were downloaded, 
they were always converted to hg38 for analysis. GM12878 

and K562 super-enhancers were downloaded from dbSU- 
PER ( 42 ) in hg19 and converted to hg38 by UCSC liftOver. 

Segr egation scor e calculation and domain calling from Hi- 
TrAC data 

Domains from Hi-TrAC data were called based on segrega- 
tion scores. For each bin at the assigned resolution (param- 
eter) from the contact matrix, its upstream and downstream 

window size (parameter) region is used to construct the con- 
tact matrix. The contact matrix is further log 2 transformed 

then calculated as a correlation matrix by calculating the 
Pearson correla tion coef ficient between all pairs of rows and 

columns in the transformed matrix. For the up-right corner 
sub-matrix of the correlation matrix, all values smaller than 

zero are assigned as zero, and the mean value of the matrix is 
assigned as a segregation score for the bin. After calculating 

segr egation scor es for all bins in one chromosome, z -scor e 
nor malization was perfor med to the segr egation scor es, and 

bins with positi v e segregation scores were stitched together 
as candidate domains. These candidate domains further re- 
quired an enrichment score (the number of PETs within the 
domain divided by the number of PETs with only one end 

within the domain) > = 1, and the interaction density is 
higher than the two folds of chromosome-wide density. The 
scheme of the algorithm was summarized in Supplementary 

Figure S1A and implemented as the cLoops2 callDomains 
module ( 39 ). For calling sub-TADs from Hi-TrAC data, bin 

size was set to 1 kb, and windows size was set to 50 kb, de- 
tails parameters of -bs 1000 -ws 50000 -strict were used. 

Domain aggregation analysis 

For a domain with its 0.5-fold sized neighboring upstream 

and downstream regions, interacting PETs were grouped 

into a 100 × 100 bins matrix. An individual enrichment 
score for a domain is calculated as the number of PETs with 

both ends located within the domain compared to the num- 
ber of PETs with only one end located within the domain. 
The global enrichment score is the mean value of all en- 
richment scores for individual domains. Heatmap was plot- 
ted of the upper triangular matrix of the average matrix by 

default. The analysis was implemented in the cLoops2 agg 

module with the option of -domains ( 39 ), and default pa- 
rameters were used in all related analyses in this manuscript. 



6174 Nucleic Acids Research, 2023, Vol. 51, No. 12 

Deep-learning model for classification of Hi-TrAC active 
sub-TADs against background regions with ChIP-seq data 

A deep-learning model was implemented based on 85 

shared transcription factor or histone modification ChIP- 
seq datasets between GM12878 and K562 from ENCODE 

( 40 ). For the classification of Hi-TrAC acti v e sub-TADs 
against backgr ound regions, backgr ound r egions wer e de- 
fined as the same sized flanking regions as acti v e sub-TADs 
but not overlapping with any of them. ChIP-seq reads were 
quantified as RPKM values for acti v e sub-TADs and back- 
ground. All data were separated randomly into the training 

set, validation set, and test set, with a ratio of 0.8:0.1:0.1. 
The training set was used to train the model, and the model 
was selected by the lowest loss observed for the validation 

set. The test set was finally used to evaluate the performance 
of the model. Briefly, the model was built with the sequen- 
tial connected Keras ( 43 ) neuron network layers of Dense, 
Ba tchNormaliza tion, rectifier activa tion, Dropout, and fi- 
nally, a Dense la yer f or outputting classification probabil- 
ity of being putati v e domain. The categorical cr oss-entr opy 

loss and the Adam optimizer were used to train the model, 
with the settings of accuracy as metric and an early stop 

for avoiding overfitting. The scheme of the model was sum- 
marized in Supplementary Figure S5B. The high accuracy 

of the classification model should capture the important la- 
tent features for distinguishing Hi-TrAC acti v e sub-TADs 
from the background with ChIP-seq data. Ther efor e, the 
estima tion for fea ture importance was perf ormed f or each 

factor by shuffling the RPKM values for all regions 100 

times. Then the mean value of decreased accuracy was used 

as the feature importance. The deep-learning-related func- 
tions w ere pow ered by the Keras module in TensorFlow 

( 44 ), and ROC curves were powered by the scikit-learn ( 45 ). 
The scheme of the model-based feature importance evalu- 
ation was summarized in Supplementary Figure S5D. The 
code and data for the proposed model and feature impor- 
tance evaluation method are deposited at GitHub and avail- 
able with the link of https://github.com/YaqiangCao/Hi- 
TrAC acti v e subTADs supplemental . 

Calling cell- or condition-specific active sub-TADs 

Segr egation scor es of acti v e sub-TADs were quantified both 

in GM12878 and K562 with the cLoops2 quant module 
( 39 ), and segregation score difference > 1 was used to get 
GM12878 specific acti v e sub-TADs. K562-specific acti v e 
sub-TADs were called in the same way. Significantly lost 
acti v e sub-TADs after knockdown of CTCF or RAD21, or 
combined were called in the same way. 

GO terms enrichment analysis 

Gene Ontology (GO) terms enrichment analysis for genes 
was performed by findGO.pl in the HOMER package ( 46 ), 
r equiring mor e than ten overlapping genes in the terms, and 

ther e ar e fewer than 1000 genes in the terms. Only top en- 
riched terms sorted by ascending P -values were shown. 

Establishing CTCF-AID and domain boundary deletion cells 

CTCF-AID and acti v e sub-TAD boundary deletion K562 

cells were generated using the CRISPR / Cas9 system. The 

targeting sequences were cloned into the pSpCas9(BB)- 
2A-Puro (PX459) V2.0 vector (Addgene, #62988). For 
CT CF-AID cells, K562 cells wer e co-transfected with 

CRISPR and donor plasmids, which contain Hygromycin 

selection marker. After 24 h, cells were treated with 2 

�g / ml Puromycin and 200 �g / ml Hygromycin for 48 h 

to remove non-transfected cells. Surviving cells were se- 
lected further by treating with 200 �g / ml Hygromycin 

for two weeks. The survi v ed cells were sorted into 96- 
well plate with one cell per well and cultured for two to 

three weeks, then genotyped by PCR, western blotting, 
and sequencing. For generating acti v e sub-TAD boundary 

deletion cells, K562 cells were transfected with CRISPR 

plasmids. After 24 h, cells wer e tr eated with 2 �g / ml 
Puromycin for 48 h to remove non-transfected cells. Sur- 
vi v ed cells were sorted into 96-well plate with one cell per 
well, and further cultured for two to three weeks. Cell 
clones were genotyped by PCR and sequencing. Target- 
ing sequences are: CTCF , AGAAGTCCTGGCGACGCA 

CA; BHLHE40 , 1-TACTA TCTA TAGTAACTCCC, 2-TA 

CCAGA CTTCCA CCGTAT C; GATA1 , 1-GGGTCCT C 

CCGACAATCCT C, 2-TTCCGGGCACT CTGACT AT A; 
LMO2 , 1-TTTAA GTGGAA GGGCCATA G, 2-TCACAA 

CATACCTCGATGAT. 

Auxin inducible degradation of CTCF-AID and western 

blotting 

CT CF-AID K562 cells wer e infected with empty or OsTIR1 

retrovirus. After 72 h, cells were treated with 500 �M auxin 

IAA for 6 h, and then sorted for detecting the effects of 
depleting CTCF. The depletion efficiency was examined by 

western blotting. Primary antibodies used for detecting cor- 
r esponding proteins wer e: anti-CT CF (Cell Signaling Tech- 
nology, 3418S, dilution 1:1000), anti-OsTIR1 (MBL Life 
Science, PD048, dilution 1:1000), anti- �-Actin (Santa Cruz, 
sc-47778 HRP, dilution 1:5000). 

Generation of mouse Th17 cells 

Mll4 

fl/ flCD4 -Cr e+ mice wer e described pr eviously ( 47 ). 
Nai v e CD4 

+ T cells were purified from the lymph nodes 
of Mll4 

+ / + CD4 -Cre+ and Mll4 

fl/ flCD4 -Cre + mice with 

EasySep Mouse CD4 + T cell Isolation Kit (Stem- 
Cell, #19852). Cells wer e cultur ed in Th17 differ entia- 
tion medium (2 �g / ml anti-CD28, 10 �g / ml anti-IL4, 
10 �g / ml anti-IFNg, 10 �g / ml anti-IL12, 10 ng / ml TGF �, 
20 ng / ml IL6, 10 ng / ml IL1 �) on plates coated with anti- 
CD3 and anti-CD28. Cells were collected by cell sorting 

with DAPI on 24 and 72 h for RNA-seq, ChIP-seq and 

Hi-TrAC. 

ChIP-seq, RNA-seq and Hi-TrAC assays 

Hi-TrAC was performed as described previously ( 38 ). 
Briefly, cells wer e fix ed with 1% Formaldehyde at room tem- 
perature for 10 min. The biotinylated linker for bridging in- 
teracting chromatin was inserted into the genome by Tn5. 
After re v erse crosslinking, genomic DNA was purified, and 

with gaps r epair ed. After digesting with MluCI and NlaIII 
restriction enzymes, biotinylated DNA fragments were 

https://github.com/YaqiangCao/Hi-TrAC_active_subTADs_supplemental
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enriched with streptavidin beads. Uni v ersal adapters were 
ligated to DNA fragments, and the libraries were amplified 

by PCR with Illumina Multiplexing primers. 
ChIP-seq assays were performed as described previously 

( 48 , 49 ). In brief, cells were fixed with 1% formaldehyde at 
room temperature for 10 min. Chromatin was sonicated 

and immunoprecipitated with anti-H3K4me1(ab8895, 
Abcam), anti-H3K4me3 (17-614, Millipore) and anti- 
H3K27ac (ab4729, Abcam) antibodies. Purified ChIP 

DNA was r epair ed with End-It DNA End-Repair Kit 
(Epicentre). The library was then indexed and amplified 

and sequenced on an Illumina platform. For RNA-seq, 
RNA from 5000 cells were purified with QIAzol lysis 
reagent (QIAGEN) and RNeasy mini kit (QIAGEN). 
The libraries were then constructed following Smart-Seq2 

method ( 50 ). 

ChIP-seq, RNA-seq and Hi-TrAC data analysis 

Mouse sequencing data were processed to the r efer ence 
genome mm10, and human data were processed to hg38 in 

this manuscript. 
ChIP-seq data were mapped by Bowtie2 (v.2.3.5) ( 51 ). 

Only non-redundant reads with MAPQ ≥10 were used 

f or the f ollowing analysis. Sample-wise genome-wide cor- 
relation analysis was performed with multiBigwigSummary 

bins and parameter -bs 1000 in deepTools2 (v3.3.0) package 
( 52 ). Peaks were called for each ChIP-seq library first with 

the cLoops2 callPeaks module ( 39 ); specific parameters of 
-eps 300,500 -minPts 10,20 -sen were used for H3K4me1 

datasets, and -eps 150,300 -minPts 10,20 were used for 
H3K4me3 and H3K27ac datasets. Overlapped regions from 

the same histone modification’s biological replicates and 

wild-type or Mll4 knockout conditions were compiled to- 
gether as union sets (Supplemental Table S8). The over- 
lapped peaks of H3K4me1, H3K4me3, and H3K27ac were 
assigned as putati v e genomic segments with the following 

criteria (Supplemental Table S8): (i) H3K4m3 overlapped 

H3K27ac peaks at the transcription start site (TSS) as ac- 
ti v e TSS first; (ii) H3K4me3 peaks without H3K27ac peaks 
at TSS as poised TSS; (iii) H3K27ac peaks at TSS distal re- 
gion as acti v e enhancers; (i v) H3K4me1 only peaks at TSS 

distal region as poised enhancers; (v) finally, other parts 
of H3K4me1 peaks overlapped with above segments but 
not totally covered as the flank regions. Super-enhancers 
were called based on wild-type H3K27ac ChIP-seq data and 

peaks with ROSE ( 53 ). 
RNA-seq data were mapped with STAR (v2.7.3a) ( 54 ) 

and quantified with Cufflinks (v2.2.1) ( 55 ). 
Hi-TrAC raw data were pre-processed into highly-quality 

non-r edundant pair ed-end tags (PETs) with tracPr e2.p y 

in the cLoops2 package. The cLoops2 estSim module 
performed correlation analysis among replicates, and the 
cLoops2 estRes module carried out resolution estimations 
of pooled PETs. The cLoops2 callDomains module called 

acti v e sub-TADs with parameters of -bs 1000 -ws 25000 - 
mcut 1000000 -strict. Significantly decreased domains com- 
paring wild-type and Mll4 knockout cells were called in the 
same way as human data with the same segregation score 
differ ence thr eshold of 1. 

Data visualizations 

Most of the tracks were shown by the cLoops2 plot mod- 
ule. Other plots were generated by the matplotlib ( 56 ) and 

seaborn ( 57 ) with in-house code. 

Code available 

Segr egation scor e based domain-calling algorithm was 
coded as the cLoops2 callDomains module, domain ag- 
gregation analysis was coded in the cLoops2 agg module, 
domain quantification was coded in the cLoops2 quant 
module, insula tion score calcula tion was summarized as 
getIS.py in the cLoops2 package as a script, segrega- 
tion score calculation was summarized as getSS.py in the 
cLoops2 package as a script for using data besides Hi- 
TrAC, all these codes are available at: https://github.com/ 
YaqiangCao/cLoops2 . 

RESULTS 

Segr egation scor es r ev eal TADs-like domains fr om hi-TrAC 

data 

Insulation scores ( 28 , 58 ) are widely used to obtain domain 

boundaries from Hi-C and its variant data by transforming 

2D contact matrix into one-dimensional signals. Based on 

the insulation scores, the resulting domains are dependent 
on the critical parameters of resolution, sliding window 

size, and the cutoff of insulation score to define the bound- 
aries and combinations of boundaries to dictate domains. 
Especiall y w hen comparing different samples, parameter 
tuning may be further needed. In addition to these con- 
straints, we found that the insulation scores calculated from 

the Hi-TrAC data failed to accurately indicate the bound- 
aries with the local minimal values. To overcome such limi- 
tations, we proposed the segregation score to identify puta- 
ti v e domains using Hi-TrAC data (Materials and Methods) 
(Supplementary Figure S1A). These two approaches shared 

the same idea of transforming two-dimensional matrix into 

one-dimensional signals. Unlike the insulation score, with 

which the local minimal score indicates the domain bound- 
ary, genomic regions with positi v e segregation scores were 
stitched together as the chromatin domains from the Hi- 
TrAC data (Supplementary Figure S1A and B). Two other 
metrics were required to define a putati v e Hi-TrAC domain: 
( 1 ) more interacting paired-end tags (PETs) within the pu- 
tati v e domain than the PETs with only one end located 

within the domain (enrichment score (ES) > 1); ( 2 ) two- 
folds higher interaction density than chromosome-wide in- 
teraction density. 

To test this method, we performed the domain-calling al- 
gorithm based on the segregation score at a resolution of 
10 kb in GM12878 Hi-TrAC data. The resulting domains 
were TAD-like and visually similar with the TADs from Hi- 
C data ( 21 ) (Supplementary Figure S1B and C), suggesting 

tha t the segrega tion scor e is r eliable for detecting domains 
from Hi-TrAC data. We also noticed more explicit internal 
organiza tions than Hi-C da ta in these Hi-TrAC domains 
(Supplementary Figure S1B and C), demonstrating the abil- 
ity of Hi-TrAC data to re v eal fine-scale structures of smaller 
domains at higher resolution. Meanwhile, the segregation 

https://github.com/YaqiangCao/cLoops2
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score and insulation score had a similar trend around do- 
main boundaries both for Hi-TrAC and Hi-C data (Supple- 
mentary Figure S1B and C), but also had the different signs 
of values for some regions (Supplementary Figure S1B and 

C black arrows). Subtle differences of the two scores were 
observed at boundaries for Hi-TrAC data with a resolution 

of 10 kb (Supplementary Figure S1B, gray dash lines ver- 
sus solid black lines for putative domain marked as c). To 

systema tically evalua te the dif ference between the two scor- 
ing strategies, we further calculated the scores at the reso- 
lution of 1 kb in Hi-TrAC data to study subtle differences 
around boundaries. Genomic regions with positi v e segrega- 
tion scor es wer e stitched together as putati v e domains and 

boundaries were not included. Therefore, the upstream 1 kb 

bin of left boundaries and the downstream 1 kb bin of the 
right boundaries were aligned at the summit of chromatin 

accessibility peaks detected by ATAC-seq or boundary ele- 
ments bound by CTCF and cohesin (Supplementary Figure 
S1D). Meanw hile, the minim um of aggr egated segr egation 

scores was closer to the aggregated summit of ATAC-seq 

or ChIP-seq peaks than insulation scores (Supplementary 

Figure S1D), and the minimum of aggregated insulation 

scores was nearly outside of the aggregated peaks, indicat- 
ing insulation scores may not accurately mark the bound- 
aries from Hi-TrAC data at high resolution. Even though 

the two scores showed a higher genome-wide correlation 

with Hi-TrAC data than with Hi-C data (Supplementary 

Figure S1E), the local minimal values were aligned at the 
valley for putati v e boundaries, both shown from the Hi- 
C example region (Supplementary Figure S1C) and glob- 
ally (Supplementary Figure S1F), indicating the segregation 

scores can be used to call boundaries for Hi-C data. 
We noticed that segregation scores calculated at high res- 

olution as bin size set to 1 kb were highly consistent be- 
tween Hi-TrAC biological replicate experiments both for 
GM12878 and K562 cells (Supplementary Figure S1G, 
Pearson correlation coefficient > 0.9). Further, the called 

putati v e domains were highly overlapped (88% for fewer do- 
mains called from the replicate experiments) (Supplemen- 
tary Figure S1H), indicating the robustness of the proposed 

method for domain calling of Hi-TrAC data. 

Hi-TrAC detects active sub-TADs 

To check whether modestly sequenced Hi-TrAC data 

(GM12878: 116 million unique intra-chromosomal PETs; 
K562: 95 million unique intra-chromosomal PETs) can re- 
veal smaller domains at an even higher resolution than Hi- 
C, we performed the domain-calling at a resolution of 1 

kb. Among the top-ranked Hi-TrAC domains in GM12878 

sorted by segregation scores (descending ranking), we found 

multiple intriguing features (Figure 1 A and B): (i) do- 
main sizes are smaller than 200 kb; (ii) top domains con- 
tain super-enhancers; (iii) a b lock-to-b lock interaction pat- 
tern exists within and between super-enhancers (in con- 
trast to the typical dot-to-dot loop Hi-TrAC pattern) ( 38 ) 
and (iv) top-ranking domains harbor important functional 
genes in B cells. Since the GM12878 cell line is a B lym- 
phocyte cell line transformed by the Epstein-Barr virus, 
these results suggested that domains may harbor the cell 
identity genes for GM12878, which were exemplified by the 

genomic locus of B cell proliferation- and differentiation- 
related genes such as BTG2 ( 59 ) and IKZF3 ( 60 ) (Figure 
1 A and B). 

In total, we identified 820 domains with a median size 
of 93 kb in GM12878 (Figure 1 C and Supplemental Table 
S2) and 1759 domains with a median size of 87 kb in K562 

(Figure 1 D and Supplemental Table S2). As expected, both 

chroma tin domain-boundary associa ted factors CTCF ( 18 ) 
and Cohesin complex core subunit SMC3 ( 61 , 62 ) were en- 
riched at Hi-TrAC domain boundaries (Figure 1 C and D), 
indicating their roles in domain establishment or mainte- 
nance. As these domains were identified in Tn5 accessi- 
ble chromatin regions, they carried expected active chro- 
ma tin fea tures such as elevated H3K4me1, H3K4me2, 
H3K4me3 and H3K27ac signals inside the domain, as well 
as decreased H3K27me3 signals compared to flanking re- 
gions. Interestingly, H3K4me3 signals in both GM12878 

and K562 were enriched at the boundaries, consistent 
with the observation that domain boundaries are enriched 

with promoters of acti v ely transcribed genes, suggesting 

that certain promoters may also have boundary function 

( 22 , 23 , 63 , 64 ). The median size of sub-TADs is typically 

around 180 kb ( 21 ), and insulated neighborhoods, one of 
its sub-classes, has a similar size of a pproximatel y186 kb 

( 65 ). Pr eviously identified super coiling domains ar e around 

100 kb ( 66 ), coinciding with the size of recently identi- 
fied chromatin nanodomains through super-resolution mi- 
croscopy in single cells ( 14 , 67 ). Even though the domain 

sizes (around 100 kb) detected by Hi-TrAC were smaller 
than the size of sub-TADs (180 kb) and were more simi- 
lar to supercoiling domains and chromatin nanodomains, 
they still fell within the same size magnitude. Additionally, 
Hi-TrAC domains were identified in a similar way to sub- 
TADs via computational analysis of sequencing data, and 

ther efor e we coined them acti v e sub-TADs. 
We further validated Hi-TrAC acti v e sub-TADs using 

the aggregation analysis of CTCF ChIA-PET data ( 24 ), 
RAD21 ChIA-PET data ( 68 ) and H3K27ac HiChIP data 

( 69 ), but not the in situ Hi-C data ( 21 ) due to its limited 

r esolution (Figur e 1 E). The aggregated dot-to-dot interac- 
tion patterns at the acti v e sub-TAD boundaries observed 

from the CTCF and RAD21 ChIA-PET data indicate that 
Hi-TrAC acti v e sub-TADs may also be formed through 

the loop extrusion mechanism ( 33 , 70 ), which is similar to 

the establishment of insulated neighborhoods ( 65 , 71 ), al- 
beit at a smaller scale. We compared these data around 

a Hi-TrAC acti v e sub-TAD containing the genomic locus 
of the TMSB4X gene in GM12878 (Supplementary Figure 
S2A and B), further validating the observa tion tha t other 
techniques may detect the acti v e sub-TADs but not the fine 
structure within sub-TADs and their boundaries as re v ealed 

by Hi-TrAC. Together, our results indicate that Hi-TrAC is 
superior in detecting acti v e sub-TADs and their fine struc- 
tures in comparison with other methods. 

Hi-T rAC r eveals internal organizations of super -enhancers 

To follow up on our observation that the acti v e sub- 
TADs with the high segr egation scor es in GM12878 con- 
tained super-enhancers (Figure 1 A and B), we performed 

more analysis for the association between Hi-TrAC acti v e 



Nucleic Acids Research, 2023, Vol. 51, No. 12 6177 

A

0.0

6.005

H3K27ac ChIP-seq

-0.54

5.085
Segregation score

super enhancers

IKZF3

ZPBP2

GSDMB ORMDL3
LRRC3C

GSDMA PSMD3

264.74 kb, chr17:39730151-39994891
GM12878

0.1

0.5

block-to-block

dot-to-dot
H

i-T
rA

C
 5

00
 b

p 
re

so
lu

tio
n

B

0.1

0.2 CTCF

0.1

0.2 SMC3

0.25

0.50

H3K27ac

0.1

0.2 H3K4me1

0.1
0.2
0.3

H3K4me2

0.1

0.2

H3K4me3

0.04

0.06 H3K27me3

0.0

2.5 segregation score

lo
g2

(P
E

Ts
+1

)

0

2

4

                n=820
ES:1.88;median size:93 kb

GM12878
C D

0.1

0.2

0.10
0.15

0.2

0.4

0.1

0.2

0.2

0.4

0.2

0.4

0.05
0.06
0.07

0

2

0

2

lo
g2

(P
E

Ts
+1

)

              n=1,759
ES:2.27;median size:87 kb

K562

CTCF

SMC3

H3K27ac

H3K4me1

H3K4me2

H3K4me3

H3K27me3

segregation score

E

   ES:1.14

0

2

lo
g2

(P
E

Ts
+1

)

CTCF ChIA-PET

ES:7.41

0

1

lo
g2

(P
E

Ts
+1

)

RAD21 ChIA-PET

ES:1.21

0

5
lo

g2
(P

E
Ts

+1
)H3K27ac HiChIP

   Hi-C 
ES:0.25

0

5

lo
g2

(P
E

Ts
+1

)

GM12878

ag
gr

eg
at

io
n 

of
 H

i-T
rA

C
 s

ub
-T

A
D

s 
 in

 o
th

er
 d

at
a 

NPM1P40 LINC01353

LINC01136

BTG2

RNU6-487P FMOD

0.0

8.341

-0.751

14.855

138 kb, chr1:203234729-203372729
GM12878

H3K27ac ChIP-seq

Segregation score

super enhancer

0.1

0.5

H
i-T

rA
C

 5
00

 b
p 

re
so

lu
tio

n

block-to-block

Figure 1. Identification of acti v e sub-TADs by Hi-TrAC . ( A ) Example of acti v e sub-TAD containing the BTG2 gene locus detected by Hi-TrAC in 
GM12878 cells. The cLoops2 callDomains module called domains at 1kb resolution (Materials and Methods). The first exon of a gene and its name in 
the positi v e strand are indicated by b lue color, and the first e xon of a gene and its name in the negati v e strand are indicated by purple color. ENCODE 

( 40 ) H3K27ac ChIP-seq profiles and the Hi-TrAC domain segr egation scor es ar e displayed below the genomic annotations. The filled black r ectangle 
indicates the super-enhancers within the acti v e sub-TADs. Hi-TrAC interaction matrix was shown at 500 bp resolution. The interaction domain is marked 
as blue dotted frames on the heatmap. The plot was generated by the cLoops2 plot module. ( B ) Example of acti v e sub-TAD containing the IKZF3 gene 
locus detected by Hi-TrAC in GM12878 cells. ( C ) Aggregation analysis of 820 acti v e sub-TADs identified from the Hi-TrAC data in GM12878 cells 
(Supplemental Table 2). Together with 0.5-fold neighboring upstream and downstream regions, all the Hi-TrAC acti v e sub-TADs were aggregated for 
visualiza tion (Ma terials and Methods). ES stands for enrichment scor es of interacting PETs within the domains compar ed to the PETs with one end in 
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The analysis was performed with the cLoops2 agg module. ( D ) Aggregation analysis of 1759 acti v e sub-TADs identified from the K562 Hi-TrAC data 
(Supplemental Table 2). ( E ) Aggregation analysis of Hi-TrAC acti v e sub-TADs with CTCF ChIA-PET data ( 24 ), RAD21 ChIA-PET data ( 68 ), H3K27ac 
HiChIP data ( 69 ) and in situ Hi-C data ( 21 ) in GM12878 cells. 
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sub-TADs and super-enhancers. We found that around 80% 

(204 of a total 257) and 56% (413 of a total 731), respec- 
ti v ely, super-enhancers in GM12878 and K562 cells over- 
lapped with acti v e sub-TADs (Figure 2 A). Additionally, ac- 
ti v e sub-TADs with super-enhancers had higher segregation 

scor es, enrichment scor es (defined as Supplementary Figure 
S1A), and interaction densities than the acti v e sub-TADs 
without super-enhancers (Figure 2 B), indicating these do- 
mains ar e mor e insulated and interacti v e. Ev en within the 
same acti v e sub-TAD, there were b lock-to-b lock interaction 

patterns between component enhancers from both the same 
and different super-enhancers (Figure 2 C). Zooming in on 

the example domains at a 500 bp r esolution r e v ealed an in- 
ternal structure within the individual component enhancers 
of each super-enhancer (Figure 2 D). This internal struc- 
ture has not been directly observed before through con- 
tact ma trix hea tmaps due to limita tions of resolution with 

Hi-C, CTCF ChIA-PET or H3K27ac HiChIP (Supplemen- 
tary Figure S3A). Binding of SMC3 was enriched at some 
boundaries of the internal structure and thus Cohesin may 

be important for the genomic folding within the composite 
enhancers of super-enhancers (Figure 2 D). 

To further study the internal organizations of super- 
enhancer components in GM12878 cells, we manually 

classified those component enhancers longer than 5 kb 

( n = 410) into enhancers w ith internal structure (E W IS, 
n = 175, 42.68%) and enhancers with o ut internal struc- 
ture (E O IS, n = 235) through one-by-one visualization of 
the Hi-TrAC heatmap at 200 bp resolution (Supplemental 
Table S3). We also defined the genomic regions of same 
sizes either upstream or downstream to the EWIS ten- 
folds of the size away as background for comparison. The 
polymer-based equilibrium globule ( 72 , 73 ) and fractal glob- 
ule ( 17 , 74 , 75 ) models were proposed to understand and 

simulate the chromatin conformation. Simulation of the 
fractal globule model and equilibrium globule model of 
chromatin fiber folding re v eal distinct scaling values of – 

1.0 and –1.5, respecti v el y, w hich is the slope of linear fit- 
ting of the interaction probability as a function of genomic 
distance ( 17 ). The scaling of the initial Hi-C data at the 
range from 500 kb to 7 Mb fitted well the fractal globule 
model ( 17 ). We sought to explore the scaling for individ- 
ual EWIS with the internal interacting PETs from Hi-TrAC 

data (Figure 2 E) and compare the scaling distributions with 

EOIS and background (Figure 2 F). Interestingly, the scal- 
ing property was significantly different between the three 
groups (Figure 2 F). The scaling of the background regions 
is –1.009, close to a theoretical fractal globule structure as 
previously proposed based on the Hi-C data. Meanwhile, 
the scaling of EWIS regions is –1.390, significantly lower 
than that of EOIS (–1.243) and background (Figure 2 F), 
indica ting tha t EWIS has properties closer to the equilib- 
rium model and EOIS may be an intermedia te sta te be- 
tween the fractal globule model and the equilibrium globule 
model. Even though Hi-C and H3K27ac HiChIP data may 

not show the internal organization as clearly as Hi-TrAC 

(Supplementary Figure S3A), they displayed the same trend 

and difference of scaling between EWIS compared with 

EOIS and EWIS compared with background (Figure 2 F). 
The internal interaction densities measured by Hi-TrAC 

were significantly higher for EWIS compared with EOIS 

and background; howe v er, the e xternal interaction densi- 
ties with other regions for EWIS were not higher than EOIS 

(Supplementary Figure S3B). Hi-C and H3K27ac HiChIP 

da ta also valida ted the significant dif ference between EWIS 

and EOIS for internal interaction densities and the small 
external difference (Supplementary Figure S3B). 

In summary, our data show that there are internal organi- 
zations for component enhancers of some super-enhancers. 
The chromatin folding displayed distinct patterns at dif- 
ferent functional regions. While the background regions 
(mostly inaccessible chromatin regions) may exist as a ‘frac- 
tal globule’ structure, super-enhancers with internal struc- 
tures have properties closer to an ‘equilibrium globule’ 
structure and enhancers without internal structures may be 
at an intermediate state between the ‘fractal globule’ and 

‘equilibrium globule’ structures. 

Active sub-TADs associated epigenetic features 

Over 60% of active sub-TADs contained fewer than two 

genes (Figure 3 A), which exhibited significantly higher ex- 
pression le v els than other genes (Figure 3 B). This implies 
that a substantial number of highly transcribed genes are 
regulated within their own gene-specific domains. Gene on- 
tolo gy (GO) anal ysis showed that the genes harbored in ac- 
ti v e sub-TADs were related to regulation of T cell activa- 
tion, regulation of hemopoiesis, lymphocyte dif ferentia tion, 
and positi v e regulation of cytokine production, indicating 

that these domains may mark specific GM12878 cells’ cel- 
lular identity and functions as B cells (Figure 3 C). Together, 
these results suggest that acti v e sub-TADs may play impor- 
tant roles in regulating and determining cell function. 

To evaluate the regulation of gene expression by active 
sub-TADs, we deleted the boundaries of domains contain- 
ing the BHLHE40 , GATA1 and LMO2 genes in K562 cells 
using CRISPR / Cas9 (Supplementary Figure S4A). These 
target boundaries are located distally from the target gene 
promoters and bound by CTCF and RAD21 (Supplemen- 
tary Figure S4A). We gener ated Hi-TrAC libr aries to ex- 
amine the chromatin interaction alterations resulting from 

the boundary deletions (Supplemental Tab le S4). Remar k- 
ably, deleting the left boundary of the BHLHE40 active 
sub-TAD led to a decrease in both internal and external 
chromatin interactions anchored at the boundary (Figure 
3 D and E), particularly at proximal accessible sites within 

the domain (Figure 3 E), accompanied with a significant 
decrease in BHLHE40 and upstream ITPR1 gene expres- 
sion (Figure 3 F and Supplementary Figure S4B), suggest- 
ing that this CTCF / Cohesin-bound boundary acts to fa- 
cilitate nearby enhancer-promoter interactions as we pro- 
posed previously ( 76 ). By comparison, the deletion of the 
left boundary of the GATA1 acti v e sub-TAD only led to 

a modest change in a proximal accessible site (Supplemen- 
tary Figure S4C black arrow), accompanied with modest 
changes in interactions and no notable changes in gene ex- 
pr ession (Supplementary Figur e S4C). The deletion of the 
right boundary of the LMO2 acti v e sub-TAD led to a de- 
crease of the intra-domain interactions, which was accom- 
panied by a decreased in the expression of LMO2 (Supple- 
mentary Figure S4D). Howe v er, increased interactions were 
detected in the adjacent domain containing the CAPRIN1 
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Figure 3. Properties of Hi-TrAC detected acti v e sub-TADs. ( A ) Distribution of numbers of genes in an acti v e sub-TAD. ( B ) Distribution of expression levels 
for the genes located in the acti v e sub-TADs and background regions. RNA-seq data were obtained from GSE30567 ( 98 ). Background r egions wer e defined 
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rank-sum test was used to calculate P -values. ( C ) Gene ontology (GO) analysis for genes located within the Hi-TrAC acti v e sub-TADs in GM12878 cells. 
The top 5 enriched GO terms are shown. ( D ) Chromatin interaction changes re v ealed by Hi-TrAC after deleting the left boundary of the BHLHE40 
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CRISPR / Cas9. The black circles indicate the loops originating from the left boundary, which ar e decr eased after the boundary deletion. ( E ) Interaction 
changes within the BHLHE40 acti v e sub-TAD resulting from the boundary deletion. The pileup 1D profiles and interaction matrix difference from the 
Hi-TrAC data are displayed. The heatmap was generated by the plotDiffHeatmap.py script in the cLoops2 package. The region with a clear decrease 
in interaction is indicated by the black line and red arrow. ( F ) Genome browser images of RNA-seq expression from the control and BHLHE40 acti v e 
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gene, which was accompanied by incr eased expr ession of 
CAPRIN1 (Supplementary Figure S4D), suggesting that 
this boundary acts as an insulator to restrain the regula- 
tory elements to their appropriate chromatin domains. In 

conclusion, these results demonstrate that acti v e sub-TADs 
play crucial roles in regulating proper gene expression by 

maintaining a suitable chr omatin micr o-envir onment and 

tha t altera tions in their boundaries can lead to intricate 
changes in chromatin interactions and gene expressions. 

To further study the epigenetic features associated with 

acti v e sub-TADs, which may provide information on the 
potential regulators for these acti v e sub-TADs, we quanti- 
fied the enriched signals of ENCODE ( 40 ) ChIP-seq data of 
85 factors (shared between GM12878 and K562) in acti v e 
sub-TADs and flanking background regions (Supplemen- 
tary Figure S5A) in both GM12878 and K562 cells (Supple- 
mental Table S1). These 85 factors included histone modi- 
fications and transcription factors (TFs). We implemented 

a deep learning model to investigate whether epigenetic 
markers and TFs ChIP-seq signals have the classification 

power to distinguish the acti v e sub-TADs from the flank- 
ing backgrounds (Supplementary Figure S5B) (Methods). 
If the model is accurate, it should be able to capture the im- 
portant la tent fea tures and assign the high-value weights for 
them, which could then re v eal important regulatory factors. 
After training, the model was able to classify acti v e sub- 
TADs against background based on 1D ChIP-seq informa- 
tion (Supplementary Figure S5C and Figure 3 G). Even for 
the test data (10% of all data) that had ne v er been pre vi- 
ously used in model training or validation, the classification 

accuracy r emained r easonably high (0.911: the per centage 
of correctly classified items in the total item count) (Sup- 
plementary Figure S5C). The areas under the recei v er op- 
er ating char acteristic curve (AUCs) were higher than 0.96 

throughout training, validation, and test datasets, indicat- 
ing that the model was properly trained, not overfitted, 
and highly reliable (Figure 3 G). Equipped with high accu- 
racy, the model can reliably re v eal important features asso- 
ciated with acti v e sub-TADs (Supplementary Figure S5D) 
(Materials and Methods). According to the classification 

model, H3K4me1 is the most important feature in clas- 
sifying acti v e sub-TADs against background (Figure 3 H). 
SMC3 ranks top 2 as a known chromatin domain associated 

factor. Other top features including acti v e histone mar ks 
H4K20me1(top 5), H3K9ac (top 10) and transcription fac- 
tors RCOR1, YBX1, MTA2 and LARP7 e xhibited ele vated 

signals in the acti v e sub-TADs and at the boundaries (Fig- 
ure 3 I). Howe v er, it is unclear whether the enrichment of 
these features in these acti v e sub-TADs is causati v e or sim- 
ply correlati v e (Figure 3 I). 

Cell-specific active sub-TADs harbor cell identity genes 

To study the cell specificity of acti v e sub-TADs, we com- 
pared acti v e sub-TADs detected in GM12878 and K562 

cells. We identified 538 (65% of a total 820) GM12878 spe- 
cific acti v e sub-TADs, and 818 (46% of a total 1759) K562 

specific acti v e sub-TADs based on the difference in segre- 
gation scores (Figure 4 A, Supplemental Table S5, Mate- 
rials and Methods). Cell-specific acti v e sub-TADs in their 
respecti v e cells showed higher signals of the top ten im- 

portant features identified from the classification model 
(Figure 4 A). The identification of these cell-specific sub- 
TADs was validated using differ ential aggr egation analysis 
of the unbiased Hi-C da ta, and fea ture-selecti v e H3K27ac 
HiChIP and RAD21 ChIA-PET data (Figur e 4 B). Our r e- 
sults also showed that genes located in cell-specific acti v e 
sub-TADs have higher expression levels in their correspond- 
ing cell type (Figure 4 C). Consistent with a B cell trans- 
formed cell line, the top enriched KEGG terms for the genes 
in the cell-specific acti v e sub-TADs in GM12878 cells con- 
tained genes involved in the B cell receptor signaling path- 
way (log( P -value) = –18.2). For K562, a chronic myeloge- 
nous leukemia cell line, one of the most enriched GO terms 
was myeloid leukocyte mediated immunity (log( P -value) = 

–17.7). This was further exemplified by PLCG2 , a gene crit- 
ical for B cell signaling ( 77 ), which had a super-enhancer 
and was specifically expressed in an acti v e sub-TAD only 

detectable in GM12878 cells (Figure 4 D). The leukemia- 
associated gene PIM1 ( 78 ), expressed only in K562, was lo- 
calized to a cell-specific acti v e sub-TAD containing a super- 
enhancer spanning almost the entire sub-TAD (Figure 4 D). 
Although the data from other methods, such as Hi-C and 

H3K27ac HiChIP, could validate the cell specificity of sub- 
TADs using aggregate analysis (Figure 4 B), they were un- 
able to achieve high resolution in interaction heatmaps of 
specific genomic loci as shown by Hi-TrAC (Supplementary 

Figure S6). In summary, our results demonstrated that the 
specific cell-specific acti v e sub-TADs detected by Hi-TrAC 

ar e chromatin structur es critical to r egulating cell identity 

and activity. 

Active sub-TADs are disrupted by knocking down RAD21 

To test whether CTCF or Cohesin contributes to the main- 
tenance of acti v e sub-TADs, we further analyzed the Hi- 
TrAC and Hi-C data from K562 cells knocked down of 
CTCF or RAD21, a major cohesin subunit, using shRNAs. 
The results from the Hi-TrAC and Hi-C samples showed 

that knocking down RAD21 substantially impaired chro- 
matin interactions up to hundreds of kb (Figure 5 A and B), 
suggesting that the changes occur mainly at domain le v els, 
including TADs and sub-TADs. Additionally, the changes 
in interaction distance were consistent with previous results 
from Cohesin-depleted Hi-C data in which loop domains 
were eliminated but compartment domains remained ( 79 ). 
Howe v er, knocking down CTCF did not show the impair- 
ment of loop domains as caused by knocking down RAD21 

(Figure 5 A and B). Taken together, the changes in aggre- 
ga ted segrega tion scores from Hi-TrAC da ta (Figure 5 C) 
and aggregated differential interaction contact matrix from 

both Hi-TrAC and Hi-C data (Figure 5 D) indica ted tha t 
knocking down RAD21 leads to global disruption across 
Hi-TrAC sub-TADs. Analysis of segregation scores and in- 
teraction matrix from Hi-TrAC data re v ealed that knock- 
ing down RAD21 resulted in decreased intra-domain inter- 
actions (Figure 5 C) and noticeably blurred domain bound- 
aries (Figure 5 D). Compared to the shRNA control sample, 
significantly impaired acti v e sub-TADs by knocking down 

CTCF, RAD21 or both CTCF and RAD21 were called 

(Supplemental Table S6) and checked for overlaps with 

each other (Figure 5 E) and overlaps with super-enhancers 
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(Figure 5 F). This showed that RAD21 plays a much more 
critical role than CTCF in maintaining the acti v e sub-TADs 
and in the potential role of super-enhancers. As exempli- 
fied by the leukemia oncogene LMO2 ( 80 ) gene locus (Fig- 
ure 5 G), Hi-TrAC was able to detect changes in acti v e sub- 
TADs caused by the different knockdowns. Additionally, 
the resulting fiv e-fold decrease in LMO2 e xpression indi- 
ca ted tha t acti v e sub-TADs ma y also pla y an important role 
in regulating gene expression (control RPKM: 13.5 versus 
RAD21 KD RPKM:2.3, averages of two replica tes, da ta in- 
cluded in the supplemental table of ( 38 )). In T cell acute 
lymphoblastic leukemia, the proto-oncogenes LMO2 was 
found to be silent and insulated from acti v e enhancers, and 

removal of the boundary not only enhanced its chromatin 

interactions with distal region, but also activated its expres- 
sion in HEK-293T cells ( 13 ). As low le v els of CT CF ar e 
thought sufficient to maintain TADs ( 81 , 82 ), we further 
tagged CTCF with the auxin-inducible degron (AID) ( 83 ) 
system. Expression of osTIR1 and auxin treatment of the 
resulting cells ra pidl y depleted the CTCF-AID protein (Fig- 
ure 5 H and I). Hi-TrAC libraries were generated from these 
cells (Supplemental Table S4), and analysis of the Hi-TrAC 

data showed no significant changes in the genomic distance 
distribution of interacting PETs (Figure 5 J), in the aggre- 
gation of segregation scores of the acti v e sub-TADs (Fig- 
ure 5 K), or at the acti v e sub-TAD containing the LMO2 

gene (Figure 5 L). These results were consistently with the 
shRNA results. In summary, our results collecti v ely demon- 
stra ted tha t RAD21 but not CTCF plays a more important 
role in maintaining the acti v e sub-TADs detected by Hi- 
T rAC. Additionally , it is also possible that Cohesin plays a 

role in maintaining enhancer-promoter looping for proper 
gene expression control ( 68 ) and ther eby pr eserving the ac- 
ti v e sub-TAD structures. 

Interactions of active sub-TADs are decreased by deleting 

mll4 in mouse Th17 cells 

Our prediction model suggested that H3K4me1 is the most 
enriched feature associated with the Hi-TrAC acti v e sub- 
TADs (Figure 3 H), and thus we decided to further in- 
vestigate whether H3K4me1 contributes these structures. 
MLL4, also known as KMT2D, is a primary H4K4 mono- 
and di-methyltr ansfer ase in mammalian cells and its dele- 
tion significantly decreases H3K4me1 le v els on enhancers 
in T cells ( 47 ). Thus, we performed RNA-seq, ChIP-seq for 
H3K4me1, H3K4me3 and H3K27ac, and Hi-TrAC anal- 
yses of T helper 17 (Th17) cells from wild-type and Mll4 

conditional knockout mice (Supplemental Table S7). The 
deletion of Mll4 ’s exons was validated by the RNA-seq 

data (Supplementary Figure S7A). While the global pat- 
terns of the histone marks were similar between wild-type 
and Mll4 deletion cells (Supplementary Figure S7B), en- 
hancers showed significantly decreased histone modifica- 
tion signals in the Mll4 deleted cells (Supplementary Fig- 
ure S7C Supplemental Table S8). Based on the Hi-TrAC 

interaction signals, wild-type and Mll4 deleted cells were 
clustered into different groups with either 1Kb or 5Kb res- 
olution (Supplementary Figure S7D). With the limited se- 
quencing depth, both pooled wild-type and Mll4 KO Hi- 
TrAC data showed the highest estimated genome-wide res- 

olution as 1 kb (Supplementary Figure S7E). By examining 

differ ent r egulatory r egions, we found that chromatin inter- 
actions showed the highest decreases a t puta ti v e enhancers 
(Supplementary Figure S7F). By randomly checking the ge- 
nomic regions, we noticed that H3K4me1 and H3K4me3 

marks aligned well at TAD-like r egions, and decr eased in- 
teraction densities may happen at around 200 kb scale (Sup- 
plementary Figure S7G). The size coincided with the size of 
acti v e sub-TADs, indica ting tha t Hi-TrAC has the detection 

sensitivity for individual active sub-TAD with subtle inter- 
action changes. 

We called acti v e sub-TADs from Th17 cells based on the 
wild-type Hi-TrAC data (Materials and Methods and Sup- 
plemental Table S9). The Rorc locus, encoding the Th17 

master transcription factor RAR-related orphan receptor 
gamma (ROR � t) ( 84 ), was located in a ∼100 kb acti v e sub- 
TAD (Figure 6 A), which is consistent with our observation 

that acti v e sub-TADs harbor cell identity genes in human 

cells. In total, we identified 1427 acti v e sub-TADs with a 

median size of 82 kb (Figure 6 B). KEGG enrichment anal- 
ysis for the genes contained within these acti v e sub-TADs 
re v ealed interesting terms including Systemic lupus erythe- 
matosus (SLE), Th17 cell differentiation , and T cell receptor 
signaling pathway . These terms are related to Th17 cell dif- 
ferentiation, function, or potential diseases ( 85–87 ), further 
supporting our observation in human cells that acti v e sub- 
TADs may play a regulatory role in cell functions. 

We further called super-enhancers based on H3K27ac 
ChIP-seq da ta (Ma terials and Methods and Supplemental 
Table S8) and found 495 (68.18%) Th17 super-enhancers 
overlapped with active sub-TADs (Figure 6 D), consistent 
with the result that more than half super-enhancers in hu- 
man GM12878 and K562 cells were overlapped with ac- 
ti v e sub-TADs. We also observed block-to-block interac- 
tions between the two super-enhancers of the Irf4 gene lo- 
cus (Figure 6 E) and the internal structures within an indi- 
vidual super-enhancer (Figure 6 E, gray box). The interac- 
tions measured by Hi-TrAC in acti v e sub-TADs showed a 

high correlation with the le v el of H3K4me1 as the Pear- 
son Correlation Coefficient (PCC) was 0.687 (Figure 6 F). 
The decreases in H3K4me1 le v els and interactions in the ac- 
ti v e sub-TADs resulting from Mll4 deletion were also highly 

correlated (PCC = 0.762, Figure 6 G). The expression lev- 
els of genes in acti v e sub-TADs were decreased by Mll4 

deletion (Figure 6 H). We further obtained 200 significantly 

decreased acti v e sub-TADs based on changes of segrega- 
tion scor es (Figur e 6 I, Methods, and Supplemental Table 
S9). The H3K4me1 and H3K4me3 le v els wer e decr eased in 

these acti v e sub-TADs but not the H3K27ac (Figure 6 I). 
The global pattern was exemplified by the genomic locus 
of Il6ra (Figure 6 J), whose decreased expression correlates 
with reduced Th17 response ( 88 ) and affects Th17 mainte- 
nance ( 89 ). 

In summary, the Hi-TrAC data from mouse Th17 cells 
showed consistent results with the data from human cells 
regarding the size of the active sub-TADs, the high over- 
lap between acti v e sub-TADs with super-enhancers, and en- 
richment of cell function and identity genes within acti v e 
sub-TADs. Our results strongly suggest that H3K4me1 is 
important for maintaining the interaction densities within 

acti v e sub-TADs. 
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to-block interaction pattern between super -enhancers. Two super -enhancers were marked as ‘a’ and ‘b’. Super-enhancer ‘a’ was highlighted with a gray 
bo x to sho w its internal structur e. ( F ) Corr elation analysis between H3K4me1 ChIP-seq signal intensities and Hi-TrAC interaction densities for wild-type 
Th17 cells acti v e sub-TADs. PCC stands for Pearson Correla tion Coef ficient. ( G ) Correla tion analysis between the changes in H3K4me1 ChIP-seq signal 
intensity and Hi-TrAC interaction density in acti v e sub-TADs after deletion of Mll4 Th17 cells. ( H ) Distribution of expression levels for the genes located 
within the acti v e sub-TADs. ( I ) Aggregation anal ysis of significantl y decreased acti v e sub-TADs based on segr egation scor es in Th17 cells comparing 
wild-type and Mll4 knockout mice (Supplemental Table 9). ( J ) Example of a significantly decreased acti v e sub-TAD harboring the Il6ra gene important 
for Th17 function. 
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DISCUSSION 

Since TADs were first identified, domain-centric analyses 
of Hi-C data have been widely performed in uncovering 

the relationship between TADs and the 3D genome fold- 
ing ( 35 , 36 ). Here we demonstra ted tha t the domain-centric 
analysis with modestly sequenced Hi-TrAC data is a sensi- 
ti v e yet robust method for accurately identifying and study- 
ing dynamic changes of acti v e sub-TADs around 100 kb 

scale with a resolution of 1 kb. The results from our anal- 
yses re v ealed internal domain structures within multiple 
super-enhancers, which could not be explicitly observed 

from the interaction ma trix hea tmaps from current meth- 
ods such as Hi-C, CTCF ChIA-PET, or H3K27ac HiChIP 

data. Thus, Hi-TrA C holds a considera ble advantage in pro- 
filing genome organizations, especially in highly accessible 
regions at a fine-scale resolution. Howe v er, the e xact mech- 
anism of why and how the super-enhancers maintain such 

internal organizations remains elusi v e. It is currently being 

debated whether TADs reflect probabilistic pr efer ential in- 
teractions from bulk cells or stable domains ( 90–92 ), and 

this debate itself could be directly linked to a parallel debate 
surrounding the existence of super-enhancer internal struc- 
tur es. Futur e studies of single-cell le v el data may prove to 

be a worthwhile approach to address these hypotheses. 
Our integration of the ENCODE ChIP-seq data and ac- 

ti v e sub-TADs using a classification model re v ealed poten- 
tially important factors associated with acti v e sub-TADs. 
Among these factors, Cohesin and acti v e histone mar ks of 
H3K4me1 and H3K27ac were top-ranked, while CTCF was 
not on the top 10 list. Further, our knockdown experiments 
supported that Cohesin playa s more important role than 

CTCF in the maintenance of the acti v e sub-TAD struc- 
ture, partially validating the model. The model was fur- 
ther v alidated b y deletion of the Mll4 gene in mouse Th17 

cells, w hich sim ultaneousl y decreased the H3K4me1 sig- 
nals and the interaction density within the acti v e sub-TADs. 
We also belie v e that this model will serve as an excellent 
frame wor k for identifying more factors associated with ac- 
ti v e sub-TADs and will improve as the ENCODE consor- 
tium expands its high-quality datasets ( 93 ). Howe v er, there 
are two important caveats in this study to note: (i) It is still 
the correlation analysis for the signal enrichment at acti v e 
sub-TADs, which does not indicate any causality. (ii) Poten- 
tial cell-specific factors were excluded as only factors shared 

between GM12878 and K562 were used to improve the ro- 
bustness of the model. A potential solution to the first issue 
is to perform experimental perturbation and validation. For 
the second issue, a more detailed analysis focused solely on 

the K562 dataset may pro ve w orthwhile as it has much rich 

public data. 
We used a mouse strain with conditional deletion of Mll4 , 

which is a prominent writer of the H3K4me1 modification, 
to study the potential role of H3K4me1 in the maintenance 
of acti v e sub-TADs. In Th17 cells deri v ed from Mll4 dele- 
tion mice, we observed decreases of H3K4me1 signals and 

compromised acti v e sub-TADs structure, suggesting that 
H3K4me1 may contribute to the maintenance of acti v e sub- 
TADs. Howe v er, we cannot rule out the possibility that the 
MLL4-regulated H3K4me1 does not play a direct role in 

maintaining the 3D chromatin organization since MLL4 

was found to have methyltr ansfer ase-independent functions 

for regulating enhancer activity or gene expression ( 94 , 95 ). 
Thus, the deletion of Mll4 could diminish enhancer activity 

and gene expression, independently of the H3K4me1 mod- 
ification, which may in turn lead to the observed loss of 
sub-TADs. Furthermore, loss of H3K4me1 reduced bind- 
ing of chromatin remodelers at a subset of enhancers ( 96 ), 
which could also in turn lead to the loss of sub-TADs. 
MLL3, which has redundant activity with MLL4 in regu- 
lating H3K4me1 ( 97 ), may not compensate for the loss of 
MLL4 as its gene expression decreased substantially (from 

5.06 RPKM to 1.48 RPKM) in the Mll4 -deleted Th17 cells. 
Further studies are needed to understand the correlati v e or 
causati v e effects of H3K4me1 or Mll4 / Mll3 in regulating 

the acti v e sub-TADs in the future. 
With its compatibility and sensitivity in this study, Hi- 

TrAC has been shown to be an effecti v e method in study- 
ing chromatin domains covering regulatory elements at 
high resolutions, e v en with modest sequencing depths. We 
hope that Hi-TrAC will serve as a valuable tool for the 3D 

genome r esear ch community and further our understand- 
ing of chromatin domain dynamics in de v elopmental and 

disease processes. 
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