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SpatialDMfor rapid identificationof spatially
co-expressed ligand–receptor and revealing
cell–cell communication patterns

Zhuoxuan Li1, Tianjie Wang2, Pentao Liu 1,3 & Yuanhua Huang 1,2,3

Cell-cell communication is a key aspect of dissecting the complex cellular
microenvironment. Existing single-cell and spatial transcriptomics-based
methods primarily focus on identifying cell-type pairs for a specific interac-
tion, while less attention has been paid to the prioritisation of interaction
features or the identification of interaction spots in the spatial context. Here,
we introduce SpatialDM, a statistical model and toolbox leveraging a bivariant
Moran’s statistic to detect spatially co-expressed ligand and receptor pairs,
their local interacting spots (single-spot resolution), and communication
patterns. By deriving an analytical null distribution, this method is scalable to
millions of spots and shows accurate and robust performance in various
simulations. On multiple datasets including melanoma, Ventricular-
Subventricular Zone, and intestine, SpatialDM reveals promising commu-
nication patterns and identifies differential interactions between conditions,
hence enabling the discovery of context-specific cell cooperation and
signalling.

Cell-cell communication (CCC) plays essential roles in various biolo-
gical processes and functional regulations1,2, for example, immune
cooperation in a tumour microenvironment, organ development and
stem cell niche maintenance, and wound healing. Protein interaction,
as a medium of CCC, has been widely studied in the past decades.
Despite the relatively low throughput in proteomics technologies, a
large number of ligand-receptor candidates still have been accumu-
lated through broad experimental studies and compiled into data-
bases, e.g., 1396 pairs in CellPhoneDB3, 1940 pairs in CellChatDB4 and
380 pairs in ICELLNET5.

As a more accessible surrogate, the RNAs of ligand and receptor
have been shown effective in the quantification of inter-cellular
communications1. The advancement of single-cell transcriptomics
technologies further enables LR interaction (LRI) and CCC in a cell
state-specific manner, for example in the maternal–foetal interface6

and intestinal stem cell niche7. Multiple computational methods have
soon been developed to identify the interacting cell types and the
mediating LR pairs1,8. CellPhoneDB is a prominent example that

considers multimeric proteins in manually curated LRIs and identifies
communicating cell types by comparing the null with permuted cell
type labels3,6. Another widely usedmethod, CellChat, extends the CCC
analysis onmultiple aspects, including amass actionmodel to quantify
LR co-expression, expanded LRI candidates with more detailed anno-
tations, and a set of useful plotting utilities4. Other methods, including
NicheNet9, PyMINEr10, iTALK11, ICELLNET,5 and SingleCellSignalR12,
have also been introduced in the past two or three years with their
unique features on LRI resources and/or testing methods1. A recent
study further evaluated 16 LRI resources and 7 methods on their
impact and consistency in CCC analysis from scRNA-seq data13, while
the direct assessment is generally challenging due to the lack of gold-
standard data. Moreover, one major limitation of single-cell-based
methods is the lack of spatial coordinates of cells. Therefore, it cannot
guarantee physical proximity between the putative interacting cells
and may lead to high false-positive rates8.

In recent years, spatial transcriptomics (ST) technologies have
also embraced a few major breakthroughs, on both sequencing and
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imaging-based platforms14; therefore, ST is increasingly used to
double-check the physical proximity of the LRI identified in single-cell
data. Meanwhile, a few ST-based methods have been developed to
identify CCC and LRIs directly from ST data15,16. Giotto is a toolbox for
multifaceted analyses of ST data, including detecting cell-type pairs
that have increased interactions of proximal cells than thoseat random
locations17. scHOT18 and SpatialCorr19 respectively introduced weigh-
ted Spearman’s or Pearson’s correlation to test gene correlations for
each spatial pixel and select gene pairs (or sets) with differential cor-
relation across space. SVCA is a Gaussian process-like method that
defines a universal cell-cell interaction covariance over spatially
smoothed cell embeddings and consequently identifies genes with a
high proportion of variance explained by this interaction term20.
SpaOTsc leverages an optimal transport method to quantify the like-
lihood of interaction between any two cells, with spatial distance as
one cost component21. SpaTalk is another recently proposed toolbox
to analyse spatial LRI and CCC by testing if a certain cell-type pair is
enriched in those co-expressed spots22. Although these methods
brought promise to directly analyse CCC in a spatial context, most of
them focus on identifying interacting cell types for all LRIs instead of
detecting the interacting LR pairs first, hence may over-interpret less
informative LRIs. Additionally, most of these strategies may not be
sensitive enough to identify regional CCC, as they aim to detect cell
types with enriched interactions as a whole (Fig. 1a). Moreover, the
conventional permutation test is not scalable and may slow down the
computational analysis, particularly considering the fast advances in
spatial resolution and cell numbers.

Here, to address these limitations, we introduce SpatialDM (Spa-
tial Direct Messaging, or Spatial co-expressed ligand and receptor
Detected by Moran’s bivariant extension), a statistical model and
toolbox that uses a bivariateMoran’s statistic to identify the spatial co-
expression (i.e., spatial association) between a pair of ligand and
receptor. Critically, we introduced an analytical derivation of the null
distribution, making it highly scalable to analyse millions of cells. This
method also contains effective strategies to identify interacting local
spots and the patterns shared by multiple LRIs or pathways. We eval-
uated the accuracy of SpatialDM with various simulations and
demonstrated its broad applicability in detecting LRIs and differential
interactions between conditions in melanoma and intestinal datasets
by high-throughput sequencing and in a mouse SVZ dataset by
Fluorescent In Situ Hybridization (FISH, Supplementary Fig. 1).

Results
Overview of SpatialDM method
Identification of the communicating cells and the interacting LR pairs
are the twomajor orthogonal tasks in dissectingCCC in scRNA-seq and
ST data. Most existing methods mainly aim to address the former
challenge (at cell-cluster or cell-type resolution) but omit the latter
task of feature selection simply by relying on a curated database.
However, we argue that identifying the dataset-specific interacting LR
pairs is a crucial step for ensuring quality analysis and reliable inter-
pretation of the putative CCC.

Therefore, the primary aim and the first step of SpatialDM is to
detect LR pairs that have significant spatial co-expression (i.e. ligand
and receptor transcripts are expressed within a reasonable geo-
graphical distance) in ST data. The candidate LR pairs are generally
from a comprehensively curated database, e.g. CellChatDB by default.
Figure 1a shows anexample that the LRpair B has spatial co-expression
and can be detected by SpatialDM, while pair A does not though its
cluster-level enrichment may lead to false positives in existing
approaches. Generally, this problem of spatial association between
two variables can be formulated by a regressionmodel, either via fixed
effects, e.g., SDM and SDEM23 or random effects, e.g., SVCA20. Here, we
introduce a bi-variate Moran’s R as a test statistic (Fig. 1a; “Methods”
section), which can well account for the spatial association, i.e., the

spatial co-expression of ligand and receptor here. This method is an
extension of the well-known Moran’s I in uni-variate auto-correlation
analysis24 to a bivariate setting initially by Wartenberg25 and is still
widely used in the broadfieldof spatial analysis26,27. The computational
convenience and effectiveness make it an appealing method for LRI in
ST data (see evaluation below).

As a computational toolbox, SpatialDM has major functions for
both global and local analyses (Fig. 1b). First, by leveraging this
bivariate R, we introduce a hypothesis testing to reject the null that the
ligand and receptor are spatially independent, hence allowing us to
select the spatially co-expressed LR pairs. Second, we further adapted
local Moran’s I to their bivariate format to detect local hits for each
significant LR pair (Methods). Based on the local interaction hits for
each LR pair, SpatialDM allows grouping these significant LR pairs into
a few distinct communication patterns, e.g., by the automatic
expression histology model introduced in SpatialDE28. Third, to inter-
pret the local communication patterns, it also provides an enrichment
test and visualisation of putative pathways for each local pattern. Last,
as a unique feature, SpatialDM further supports detecting LR pairs that
have differential interaction density between conditions or along a
continuous covariate, which is highly demanded for biological dis-
covery in both developmental and disease contexts.

Accurate and efficient z-score test
In order to obtain the null distribution in this hypothesis testing pro-
blem, a genericmethod is permutation as used bymost CCCmethods,
where the test statistic R will be calculated by random shuffling of
binding partners for each pair, e.g., 1000 times. On the other hand,
when the number of spatial spots is large, the permutation test often
becomes a computational bottleneck for the analysis. Therefore, we
derived the first and second moments of the null distribution to ana-
lytically obtain a z-score and its according p-value for the observed R
(see Supp. Note 1). Strikingly, the z-score-based p-value has high cor-
relations with the permutation-based p-value in datasets with different
sizes (Fig. 1c, d; Spearman’s R >0.9, local statistics correlation: Sup-
plementary Fig. 2d, e). Given the computational convenience, Spa-
tialDM (the permutation mode, 1 CPU) ranks as the fastest method
among all permutation-basedmethods, finishing testing 1000 LR pairs
within 1.5 min for a 10,000-spot dataset (even though all other meth-
ods using 50CPUs except SpaTalk and SpatialCorr). Importantly, the z-
score-based strategy further introducesover 100x speedups, therefore
is exclusively scalable to a million spots within 12 minutes (even with a
single CPU). Therefore, this innovation of analytical null distribution
can be highly valuable for the analysis of ST data with increasingly
large sizes.

To examine the accuracy of SpatialDM in detecting spatially cor-
related ligand-receptor pairs, we first generated multiple sets of
simulated ST data by adapting a recent method SVCA20. In short, SVCA
is a principled Gaussian process model that decomposes the variance
of a certain gene (a ligand here) into cell states, spatial proximity,
spatially weighted receptor (i.e., the ligand-receptor spatial interac-
tion), and residual noise (see “Methods” section).Here, basedona seed
dataset with 293 spots and 1180 LR pairs, we first generated a negative
set with 0% variance explained by ligand-receptor spatial interaction.
When applying SpatialDM to this negative data set (under the null), we
found that the p-values of both permutation and z-score are well
calibrated to a uniform distribution (Fig. 1f), despite the data being
generated by a different model. In contrast, CellChat with 2 different
parameter settings4, Giotto17, and SpaTalk22 failed to control false
positives, as they work for different purposes.

To further evaluate the power of SpatialDM and its overall per-
formance, we generated a positive set with 25% variance explained by
the spatial correlation (“Methods” section) and applied SpatialDM to
the pool of positive and negative sets. With the default cutoff of p-
value < 0.05, SpatialDM achieves a power of 74.5% and controls a false
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Fig. 1 | SpatialDM provides a LRI toolkit with high specificity and sensitivity.
a Illustration of SpatialDM method. Top: two examples of ligand-receptor pairs in
STwhere pair A are barely likely to interact due to distant location while pair B can.
Different from traditional approaches focusing on cell type enrichment, SpatialDM
aims to detect spatially co-expressed LR pairs by a bivariate Moran’s R. b The four
major utility functions in the SpatialDM toolbox for CCC analysis, including (1)
selecting LR pairs with global significance, local interaction hits and (2) pattern
classification, (3) pathway enrichment analysis and (4) detecting differential inter-
acting pairs between conditions. c, d Consistency between SpatialDM’s permuta-
tion and z-score modes in a melanoma slice (293 spots; c) and an intestine slice
(2649 spots; d), respectively. Spearman correlation coefficients (two-sided) were
specified on the top left. Fitted linear regression is in a black dashed line. Source

data are provided as a Source Data file. e Running time comparison of SpatialDM
with CellChat, Giotto, SpaTalk and SpatialCorr, where only SpatialDM (z-score
mode) is scalable to 1 million spots within 12min with one CPU core. Source data
are provided as a Source Data file. f, h Assessment by simulated datasets. Source
data are provided as a Source Data file. All methods use one-sided tests. f False
Positive Rate (FPR) comparison when no interaction is simulated; SpatialDM and
SpatialCorr calibrate with the null distribution along with the diagonal line.
g Receiver Operating Characteristic (ROC) under the 25% degree of interaction
simulation scenario. Area Under ROC (AUROC) for each method is labelled in the
legend. hComparison of AUROC under four different degrees of interactions (25%,
50%, 75%, 99% interaction respectively).
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positive rate of 8.2% with the z-score approach. By varying the p-value,
it returns an AUROC of 0.912 (z-score mode; permutation
AUROC=0.881), demonstrating its unique advantage in detecting
spatially correlated LRIs under the simulation scenario (other meth-
ods’AUROC: 0.570 to0.723; Fig. 1g). Similar resultswere alsoobserved
when generating positive samples with higher levels of variance
explained by spatial interaction from 50%, 75% to 99%, where the
AUROC increases accordingly up to 0.959 (Fig. 1h and Supplementary
Fig. 2a–c). Note, allmethods in comparisonmaynotbe favouredby the
simulation setup with the objective to capture spatially co-varying
ligand-receptor interactions. As spatial data is generally sparse and
CellChat’s Trimean mode might be too stringent to generate a high
power (Fig. 1g and Supplementary Fig. 2a–c), we excluded it for further
comparison and only kept CellChat’s Truncated-mean mode.

Detecting spatial LRI in melanoma
Next, we applied our SpatialDM to the aforementioned seed data, a
melanoma sample probed by ST platform (200μm centre-to-centre
distance), covering over 7 cell types from 293 spots29. Given the small
sample size, we employed SpatialDM’s permutation approach. When
applying to the 1180 LR pairs from CellChatDB, SpatialDM detects
103 spatially co-expressed pairs (FDR <0.1; Fig. 2a and Supplementary
Dataset 1). In contrast, other methods generated 340–874 significant
pairs except SpatialCorr (75 pairs), raising the possibility of false
positives (Supplementary Dataset 1). Indeed, all other methods suffer
from high false positives when testing on a manually generated
negative set by shuffling the ligand–receptor database to create a list

of 663 non-documented ligand–receptor pairs (e.g., 285 pairs by
Giotto as the best counterpart; Supplementary Fig. 3a and Supple-
mentary Dataset 2). However, SpatialDM and SpatialCorr have good
false-positive controls here (90 and 80 pairs, respectively; permuta-
tion p-value < 0.05), which is consistent with the simulation (Supple-
mentary Figure 3a and Fig. 1f). A similar pattern is alsoobserved on two
expected irrelevant LR pairs (FGF2_FZD8 and PHF5A_EDEM3; Fig. 2a).

Interestingly, many known melanoma-related genes like VEGF,
SPP1, and CSF1 have been included in the 103 LR pairs selected by
SpatialDM. Further, we applied SpatialDM to identify local hits of
interaction by local Moran’s R (p <0.1). Given the general low depth in
spatial transcriptomics, the method proves sensitive enough by
detecting pairs as sparse as 2 interaction spots, and also powerful by
detecting asmany as 72 spots. The 103 selectedpairswere subjected to
automatic expression histology from SpatialDE, which resulted in 3
coarse patterns (Fig 2b and Supplementary Dataset 3). We observed
that Pattern 0 corresponds to the lymphoid region, Pattern 1 simulates
the melanoma region, and Pattern 2 maps to the cancer-associated
fibroblast (CAF) region, referenced to Thrane et al.29 and the predicted
cell types from scRNA-seq by RCTD30 (Fig. 2b). Indeed, we found that
the local interaction scores are good predictors of the cell types
(Pearson’s R =0.928; linear regression; Supplementary Fig. 3b).

We then identified pathways enriched in each pattern, and found
that the melanoma region (i.e. pattern 1) shows signatures of angio-
genesis and tumour progression (Supplementary Figs. 3c and 4 and
Supplementary Dataset 3). Immunity-related pathways (including CCL
and CD23) were enriched in the lymphoid region (i.e. pattern 0, Fig 2c
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Fig. 2 | SpatialDM detects spatially co-expressed LRs in melanoma data and
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Source data are provided as a Source Data file. Right: Clustering of 103 significant
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each spatial pattern. c Dot plots of enriched pathways in pattern 0 from panel b. Y-

axis: the name of the enriched pathway; x-axis: the number of significant LR pairs in
that pathway for each pattern; dot colour: the percentage of significant pairs for
that pathway fromCellChatDB; dot size: significanceof enrichment fromOne-sided
Fisher’s Exact Test (“Methods” section). d Chord diagram summarising cell types
interacting for FCER2A_CR2 interaction. Cell types are distinguished by node col-
ours, and edge colours indicate the sender cell types. e tSNE plots of matched
melanoma scRNA data, coloured by the original cell types and expression level of
ligand FCER2 and receptor CR2, one pair of CD23 ligand-receptor interaction
pathway as highlighted in c.
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and Supplementary Fig. 4), concordant with histology annotations
provided by the authors and RCTD annotated results (Fig. 2b, c and
Supplementary Dataset 3). CD23, a less-discussed pathway in mela-
noma showed high relevance in pattern 0 (Fig. 2c), which led us to
examine the result in an annotated melanoma scRNA-seq dataset with
greater sequencing depth and resolution. CD23 (a.k.a, FCER2) could
bind with CR2 or integrin complexes to trigger immunologic
responses31,32. Consistent with the identified region (pattern 0), it was
mainly found in B cells (Fig. 2d). In another melanoma scRNA-seq data
we examined33, FCER2 and its receptors were also enriched in the B
cells, which is 20-fold higher than any other cluster, validating the
discoveries from spatial transcriptomic analyses (Fig. 2d, e and Sup-
plementary Fig. 3d). Interestingly, by examining the 65 genes differ-
entially expressed in the CD23 hot spots, we found that they are highly
enriched in immune cell activation pathways, supporting anti-tumour
functions, instead of a pro-tumour role (Supplementary Fig. 3e and
Supplementary Dataset 4). Taken together, these identified LRI and
their regional patterns may contribute to further signalling investiga-
tion and potential treatment targets.

Identifying consistent cell–cell communications in multiple
intestine samples
Human intestines originate from all three germ layers, involving a
variety of developmental cues at different post-conceptual weeks
(PCW), and sophisticated self-renewingmechanisms of the crypt-villus
structure throughout adult life. With time-stamped single-cell and
spatial transcriptomic datasets from 12 post-conceptual weeks (12
PCW: 3 colon replicates from 2 donors, A3, A8 and A9, 2 TI replicates
from one donor, A6, A7) or 19 PCW foetus sample (1 slice, A4) to adult
samples (2 replicates from 1 donor, A1 and A2, with IBD or cancer),
Corbett, et al. have identified several ligand-receptor interactions
through customised analyses (100μm spot-spot distance, Supple-
mentary Dataset 5)7. Briefly, Corbett, et al. screened through a data-
base of over 2,000 LR pairs, giving each ligand and receptor specificity
scores and expression scores across each of the 101 scRNA clusters;
then, the putative list of LR interactions with high specificity and
expression in a cluster-cluster combination was validated in spatial
transcriptome regarding LR spatial co-localisation. As a result, Corbett,
et al. have identified CEACAM1_CEACAM5 toward the crypt top in adult
samples, IL7_IL7R_IL2RG, CCL21_CCR7 and CCL19_CCR7 between Lym-
phoid Tissue Inducer (LTi) and S4, ANGPT2 in foetal vasculature, and
many others7. Considering the large sample size, we leveraged the z-
score approach in SpatialDM to re-analyse all samples in this dataset,
and identified majority of these reported interacting pairs (326 out of
414; Supplementary Dataset 6 and Supplementary Fig. 5a). More
interestingly, 220 additional LR pairs are uniquely identified by Spa-
tialDM, suggesting its potentially enhanced sensitivity in detecting
sparsely expressed LR pairs.

Thanks to the multi-sample setting, we first used this dataset to
assess the reproducibility of SpatialDM in both detecting spatially co-
expressed LR pairs and their communicating regions. When compar-
ing the globalMoran’s R, we observed high correlations between slices
from the same sample versus low correlations among slices from dif-
ferent samples (Fig. 3a). Similarly, whole-interactome clustering
revealed the dendrogram relationships that are close to the sample
kinship (e.g. A8 and A9 from one 12 PCW sample is close to another 12
PCW sample A3 but far from the adult samples A1 and A2; Supple-
mentary Fig. 5b, c).

Next, we assessed whether local hits discovered by SpatialDM are
consistent in technical or even biological replicates. The cell type
weights of local selected spots are highly correlated between technical
replicates (e.g. median Pearson’s R =0.975 for A1 vs. A2 and R = 0.862
for A8 vs. A9, Supplementary Fig. 5d–f), moderately correlated
between biological replicates (e.g. A3 vs. A9), but poorly correlated in
distinct samples (e.g. A3 vs. A7, Supplementary Figure 5g). Given the

sensitivity of SpatialDM, the consistency in local pattern detection is
observed for both ubiquitously interacting pairs and sparse ones, from
which we illustrate two concrete examples here. FN1_CD44 interacts
more ubiquitously in adult and foetus colons (Supplementary Figs. 5d
and 6 and Supplementary Dataset 6), probably due to its versatile role
during intestine development34. The interaction of PLG_F2RL1 is spar-
sely found in all foetal slices, and with consistent cell-type enrichment
in enterocytes (Fig. 3b and Supplementary Fig. 6).

EGF pathway interactions are enriched in adult crypt top
colonocytes
Seeing the consistency of SpatialDM between technical replicates, we
then zoomed into sample A1 to reveal the interaction patterns in adult
colonswith IBDor cancer. Through similar procedures as inmelanoma
analysis, the 362 significant pairs (z-score FDR <0.1, hits in at least
10 spots) were classified into 4 patterns (Supplementary Dataset 7).
Pattern 1 is mostly enriched in immune cells, pattern 2 in crypt top
colonocytes, and pattern 0, 3 in myofibroblast (Fig. 3c, d and Supple-
mentary Fig. 7a). Such cell-type enrichment patterns are consistent
with pathway enrichment. For example, interactions underMHC-II and
ICAM pathways show high relevance in pattern 1, which showed
enrichment in immune cells, suggesting an inflammatory micro-
environment in the adult colon (Supplementary Fig. 7b and Supple-
mentary Dataset 7). The EGF pathway comprises diverse ligands
(including EGF, TGFA, AREG, EREG, and HBEGF) and receptors
(including EGFR, ERBB2, ERBB3, and ERBB4), exerting distinct or
redundant functions35. In the adult sample we analysed, most EGF
interactions were detected and enriched in pattern 2 (Fig. 3e, f, Sup-
plementary Fig. 7C and Supplementary Dataset 7).

The EGF signalling plays important roles primarily in intestinal
epithelial cell proliferation and self-renewal, and has a complex inter-
play with other pathways35. Nászai, et al. have revealed that RAL
GTPases, encoded by RALA and RALB, are necessary and sufficient to
activate EGFR signalling and further MAPK signalling in the intestine36.
Interestingly, we indeed found that the upstream RALA and RALB
expression and downstreamMAPK expression have great overlap with
the local Moran selected spots (Fig. 3g and Supplementary Fig. 7d). It
highlights the potential to detect interplays with upstream or down-
stream signalling of LRI captured by SpatialDM.

SpaitalDM identifies differential interactions between foetus
and adults
Besides the sample-independent analysis, SpatialDM allows differ-
ential analysis of detailed interactive pairs between conditions or along
with a continuous covariate, accounting formultiple replicates. Briefly,
a (generalised) linear model is introduced to test if a certain covariate
affects the interactiondensity (indicatedby the z-scoreor permutation
numbers; see “Methods” section). Here, we showcase the differential
analyses among adult vs. foetal colon samples based on the z-score
inputs (Fig. 4a, b and Supplementary Dataset 8), where 146 pairs of LR
interactions are up-regulated in adult samples while 97 pairs in the
foetus (FDR <0.1; likelihood ratio test, Fig. 4b).

By pathway enrichment analysis (Fig. 4c), we first noticed the
adult-specific pairs enriched with chemokine and cytokine responses
(e.g. ICAM, CCL and CXCL) as well as inflammatory and immune sig-
natures (e.g. MHC-II, COMPLEMENT, BMP and MIF), which is con-
sistent with insights from previous comparative RNAseq analysis37. It
was known that inflammation in the foetus can be associated
with preterm parturition38, Fetal Inflammatory Response Syndrome
(FIRS)39, impaired neurological outcomes40, and other defects. In
our analysis, some pathways like COMPLEMENT are generally exclu-
sive in adults, while other interactions like TGFB and CCL can be
possibly established early in the foetus stage. For example,
TGFB3_TGFBR1_TGFBR2 was identified across each time point (Sup-
plementary Dataset 8). TGFBs are potent immunosuppressive
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cytokines, which drive the functional development of lymphocytes,
therefore reinforcing the gut barrier. Such interactions may have cri-
tical roles during early intestine development at the foetus stage.

We also observed that the foetus-enriched pathways are asso-
ciatedwith neural processes (e.g. NRXN,GDNF, PTN), newblood vessel
formation (e.g. SEMA, VEGF), and growth (e.g. GDF, MK; Fig. 4d). Such
observations of early establishment prior to 12 PCW were consistent
with Corbett, et al.7. Overall, we provide evidence that the diseased
adult intestine has a more pro-inflammatory environment, while the
foetal intestine has more development-related signatures.

Beyond pathway-level comparison, SpatialDM allows differential
analysis on a certain ligand-receptor pair (Supplementary Dataset 8).

While traditional pathway enrichmentmay have ignored BMPpathway
enrichment in adults, SpatialDM refines the adult-specific interactions
to BMP2 and its receptors (BMPR1A/B and ACVR2A, Supplementary
Dataset 6 and 8). In fact, with the function of promoting apoptosis and
inhibiting proliferation, BMP2 was previously revealed by RT-PCR and
immunoblotting to be expressed by, and act on mature colon epithe-
lial cells41. There have also been multiple reports of epithelium-
immune orchestration in the adult intestine. We have identified
NRG4_ERBB2 among various cell types in adult-specific interactions
(FDR <0.0001, Fig. 4b), but not in foetus samples. Interestingly, NRG4
was found in human breast milk, and its oral supplementation
can protect against inflammation in the intestine42. Our analysis
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consolidated that certain anti-inflammation mechanisms may only be
established after early conceptual weeks, likely at infant breastfeeding
stages as reported.

In addition to adult-only pairs, our differential analysis allows the
detection of LR pairs with a subtle but significant change in commu-
nication density between adult and foetus (Fig. 4b). CEACAM1_CEA-
CAM5 is an example that was also demonstrated in adult samples by
the authors. Although we have identified CEACAM1_CEACAM5 in A3
with a moderate signal (FDR =0.006) in addition to two adult slices,
CEACAM1_CEACAM5 was considered adult-specific in the differential
analysis (Fig. 4b, differential p <0.0001, A1 R = 0.433, A2 R =0.577). In
fact, CEACAM1_CEACAM5 is only sparsely expressed in A3 (R =0.034),
with few positive significant interaction spots (Supplementary Fig-
ure 7e). Bothmoleculeswere recognised to be highly present inhuman
colon epithelia and related to inflammation and tumorigenesis43.
Defects in CEACAM signalling in intestinal epithelial cells are asso-
ciated with Inflammatory Bowel Disease (IBD), and even Colitis-
Associated Cancer (CAC)43,44. As we revealed the interplay of various
cell types including colonocytes and cycling cells in CEACAM1_CEA-
CAM5 interaction in IBD or colorectal cancer patients, it might high-
light targeting these cells to reverse the adverse conditions.

Overall, SpatialDMhas not only validated anumberof interactions
discussed by the original report, but also uncovered multiple insights
into the inter-compartment orchestrations in the human intestine,
especially by allowing differential analyses among multiple replicates.
Therefore, SpatialDM enables the generation of new hypotheses for
further experimental studies to discovermoreunderlyingmechanisms
of intestinal disorders which are currently poorly understood.

Discussion
To tackle unaddressed questions in spatial transcriptome as to what
ligand-receptor interact and where they take place, we introduce
SpatialDM, a statisticalmodel in the formof bivariateMoran’smethod.
This method uniquely aims to effectively detect the spatially co-
expressed ligand-receptor at single-spot resolution as the primary
task, ensuring the high-quality discovery of communication patterns.
Critically, we also derived an analytical form of the null distribution,
therefore SpatialDM does not need to rely on the time-consuming
permutation test, and is scalable to millions of spots.

Following the significant LR pairs, SpatialDM further identifies the
local communicating spots and their regional patterns, facilitating
various downstream explorations. Notably, the concise framework
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also allows differential analyses under multi-sample settings with the
likelihood-ratio test of global z-scores. This facilitates spatial-temporal
analyses of cell-cell interactions in a time-series design or along with a
pseudo-time trajectory. Such differential analyses are not only helpful
in identifying disease mechanisms and potential treatment targets but
also enable the detection of subtle changes during development on an
interacting pair level instead of the pathway level.

Similar tomost CCCmethods, SpatialDM also takes a curated LR
database as input. As SpatialDM is capable of detecting dataset-
specific LR pairs, we generally recommend feeding a more com-
prehensive database, e.g., CellChatDB by default, while one can
input a customised candidate list. Of note, all analyses of ST data
here are only on themRNA level, while other factors, e.g., alternative
splicing, translation machinery, and post-translational modifica-
tions can further determine whether the interactions actually hap-
pen outside the cell. While ST datasets have been examined in this
paper given their prevalence, the same framework could, in princi-
ple, be directly applied to high-throughput spatial proteomic
datasets to facilitate more direct interpretations, particularly
considering the rapid development of spatial proteomics or
multi-omics technologies, e.g., Deep Visual Proteomics (DVP) and
DBiT-seq45,46.

Another open challenge is to identify the downstream targets of
LR interactions, which can largely enhance the interpretation of the
signalling pathway of a certain CCC. Though we showed one case that
the literature-reported downstream targets are well supported here, a
comprehensively curated database with high quality will be largely
appreciated to perform a systematic investigation; the scMLnet data-
base might be an option47. Additionally, more sophisticated methods
are desired in addressing this challenge.

Furthermore, there are also technical elements in the SpatialDM
framework worth further exploration. First, we only used the RBF
kernel for defining the spatial similarity matrix, while other kernels
may be applicable too, e.g., the Cauchy kernel or a mixture ofmultiple
kernels. Second, although we have demonstrated the effectiveness of
detecting local interaction hits, the local Moran’s R value is not nor-
malised to a fixed bound, e.g., (−1, 1), but it is refined to a reasonable
range after standardising the expression matrices (i.e., −10 to 10), and
we have further clipped the extreme values out this range. Therefore,
the standardisation of local R values makes all ligand-receptor pairs
comparable, both within and across samples. On the other hand, this
standardisation has a minor sacrifice by losing the information on the
local communication density of each pair (namely some pairs may
have higher expression than others). In certain scenarios where the
original expression level of the ligand-receptor pair is highly infor-
mative, one can turn off the standardisation when interpreting the
local R values. Nonetheless, the hypothesis testing and its p-value are
robust to the settingwith or without standardisation. Another relevant
challenge is to simulate realistic data that both holds the global
structure and the interaction patterns of each spot; we anticipatemore
sophisticated simulators will be proposed to enhance local hits
detection in near future. Third, given a small number of replicates, the
detection of differential communicating LR pairs between conditions
is generally challenging, hence a Bayesian treatment for jointly ana-
lysing all pairsmaymitigate this issue to a certain degree. Last, another
potential limitation is that the pair-independent analysis in SpatialDM
may oversimplify communication events due to potential pleiotropy
between ligands where multiple ligands interact with the same
receptor.

To conclude, themethodpresented here resolved the selection of
the spatially communicating LR pairs in ST data, allowing for effective
CCC pattern discovery in a local region and identification of condition-
specific communications.With the rapid development of spatial omics
technologies, SpatialDM opens up an efficient and reliable way to
dissect cell cooperation in a micro-environment.

Methods
Global Moran’s R for spatial co-expression
In order to analyse reliable cell-cell communication in ST data, Spa-
tialDM aims to identify ligand-receptor with significant spatial co-
expression, from a comprehensive candidate list. By default, we use LR
lists from CellChatDB v.1.1.3 (mouse: 2022 pairs, human: 1940 pairs,
zebrafish: 2774 pairs) as input4, while users can use any customised list.

Here, for detecting the spatial co-expression, we extended the
widely usedMoran’s I from a univariate to a bivariate setting. This is an
extension which is closely related to the earlier use in geography
proposed by Wartenberg25. In order to distinguish the spatial auto-
correlation in a univariate setting, we call this bivariate statistic Mor-
an’s R, as follows

Global Moran0sR =

P
i

P
j wijðxi � �xÞðyj � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðyi � �yÞ2
q , ð1Þ

where xi and yj denotes normalised and log-transformed ligand and
receptor expression at spot i and j, respectively. Spatial weight matrix
computation is based on Radial Basis Function (RBF) kernel with an
element-wise normalisation,

wð0Þ
ij = exp � d2

ij

2l2

( )
;wij =

n
W

wð0Þ
ij , ð2Þ

where dij is the geographical distance between spot i and j (i.e., Eucli-
deandistance on spatial coordinates),W is the sumofwð0Þ

ij , and n is the
number of spots. Optionally, if assuming single-cell resolution, the
diagonal of theweightmatrix can bemade0 to reduce the influence by
auto-correlations, namelywii = 0 for any i. For the analysis in this work,
the SVZ dataset is supposed to be of the single-cell resolution, while
melanoma and intestine datasets are not.

In addition to the scale factor l in the RBF kernel, alternative
options through either cut-off (co) or the number of nearest neigh-
bours (n_neighbors) can be customised to restrain secreted signalling
within certain spots’diameter distance. In themelanomadata (200μm
centre-to-centre distance) analysis, we assigned l = 1.2, co =0.2; In the
intestine data (100μmcentre-to-centre distance) analysis, we assigned
l = 75, co =0.2 (according to larger coordinate scale); In the SVZ data
(single-cell resolution), we assigned l = 130, co= 0.001. Such settings
are based on the assumption that secreted signalling can occur in
100–200μm (i.e. 1199 pairs secreted signalling in CellChatDB-human),
although signalling of longer distances may not be tracked (e.g. hor-
mone). For short-distance signalling (i.e. 421 ECM-receptor pairs or 319
cell–cell contact pairs in CellChatDB-human), another weight matrix is
implemented (nearest_neighbors) which limits the interaction to the
most adjacent cells (default 6 cells).

For ligands or receptors composed of multiple subunits, we
computed the algebraic means as inputs for SpatialDM, i.e.

xi =

PSL
s = 1 x

ðsÞ
i

SL
; yj =

PSR
s = 1 y

ðsÞ
j

SR
, ð3Þ

where s is the sth subunit for ligand xi (with SL subunits) or receptor yj
(with SR subunits). Users can also opt for geometric means for more
stringent selection results.

Hypothesis testing with global Moran’s R
In order to perform the hypothesis testing, the distribution of R sta-
tistic under the null (i.e., ligand and receptor are spatially indepen-
dent). Two methods can be adopted to approximate the null
distribution and calculate the p value: (1) Permutation method by
shuffling wij for multiple times (e.g. 1000), and then calculate the p
value as the proportion of the permutation R values that are as large as
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the observed value; (2) Analytical method by approximating the null
distribution with a normal distribution by deriving its first and second
moments (see Supp. Note 1), then a corresponding z-score can be
calculated, as follows:

z =
R� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRÞ

p , ð4Þ

where the final form of the variance can be written as:

VarðRÞ= n2 Pn
i= 1

Pn
j = 1 wijwji � 2nðPn

i= 1ð
Pn

j = 1 wij
Pn

j = 1 wjiÞ+ ð
Pn

i= 1

Pn
j = 1 wijÞ

2

n2ðn� 1Þ2
ð5Þ

Then the p-value can be obtained by the survival function in a standard
normal distribution from the z-score.

Significant interaction spots
Similar to the globalR, we also introduce localR in a bivariate setting as
a testing statistic to indicate the local interacting spots for each ligand-
receptor pair. The local Moran’s Ri for spot i is composed of sender
statistics and receiver statistics and defined as follows,

Local Moran0sRi =Ri,sender +Ri,receiver = x
0
i

Xn
j = 1

wijy
0
j + y

0
i

Xn
j = 1

wijx
0
j , ð6Þ

where x0 and y0 denotes gene-wise standardised (i.e. x0
i =

xi��x
σx

,y0i =
yi��y
σy

;
same as scanpy.pp.scale) ligand and receptor expression,
respectively.

Similar to the Global counterpart, we applied both permutation
and z-score approaches on Local Moran’s R to identify significant
interaction spots, where the variance for local Ri is derived as:

VarðRiÞ= 2
ðn� 1Þ2

n2 σ2
1σ

2
2

Xn
j = 1

w2
ij +2

ðn� 1Þ2
n2 σ2

1σ
2
2w

2
ii ð7Þ

where σ1 and σ2 are the standard deviations for ligand and receptor,
respectively (see more details in Supp Note 1).

To avoid picking interacting spotswith low sender signals and low
receiver signals in the neighbourhood, which would result in a high
positive Local Moran’s R, we adapted to the quadrant method of
Moran’s I and refined the significant spots to be thosewith higher-than-
average level for either sender signals or receiver signals, i.e. Local
pi = 1 when xi � �x ≤0 and yi � �y≤0.

Simulation
The simulation approach was adapted from SVCA20 and was based on
Thrane’s melanoma dataset with 293 spots29. In SVCA, the variance of
each gene was decomposed using a multivariate normal model into
the intrinsic factor which can be inferred from expression patterns of
all other genes, the environmental factor which can be imputed from
spatial adjacency, the noise factor, and most importantly, the inter-
action factor which is a linear combination of neighbour cell expres-
sion profiles. After fitting the model to real spatial data, SVCA rescales
the interaction factor to simulate different degrees of interaction.
Here, with the hypothesis that genes correlate more with binding
partners instead of all other genes, we adapted SVCA by replacing the
intrinsic factor modelled from all genes with corresponding receptor
subunits for each ligand gene. Please refer to SVCA for detailed
protocols20. SVCA settings were kept except the term X which was the
expression profile across all spots of all genes except the molecule of
interest (dimensions = the number of molecules −1), and adapted as
the expression profile across all spots only on the corresponding
receptor genes (dimensions = the number of receptor subunits).
Briefly, the adapted SVCAmodel was fitted for each ligand gene in the

ligand–receptor database using maximum likelihood. The cell–cell
interaction covariance was then rescaled to simulate circumstances of
no interaction (0%), 25% interaction, 50% interaction, 75% interaction,
and 99% interaction. For negatively correlated pairs observed from all
scenarios except 0% interaction, we reversed the signs for each
simulated ligand expression value.

Comparison with other models
Given limited methods serving the exact same functions to identify
ligand-receptor interactions directly from spatial omics, 4 methods
with limited degrees of overlap were included in the comparison
despite unfavourable simulation settings. We applied SpatialDM (both
approaches, non-single cell resolution, l = 1.2, cut-off=0.2), CellChat
(v.1.1.3; default trimean setting and truncatedMean with trim = 0),
Giotto (v.1.0.4; default setting), SpaTalk (v.1.0; loss option changed to
mse), and SpatialCorr (v.1.1.0; default setting) to the positive-
interaction simulations to compare the true positive rate (TPR), and
to the no-interaction simulation to compare the false positive rate
(FPR). As CellChat and Giotto results were presented on a cluster level,
we kept the lowest p-value for each ligand-receptor pair across all
cluster-cluster results. Receiver operating characteristic (ROC) was
plotted for each method, and Area Under ROC (AUROC) were com-
pared under each interaction scenario. We also compared the com-
putation time for 1000LRpairs of the aforementionedmethods. Given
the high computation efficiency of SpatialDM, 1 core was applied for
the run time. We run all other methods using 50 cores except SpaTalk
and SpatialCorr. The number of spots was varied from 1000 to 10,000
(1 million for the z-score approach of SpatialDM).

We also applied different models in the melanoma dataset with
the aforementioned settings. In addition, we shuffled the curated
ligand-receptor to generate a 663-pair negative control list. In theory,
interactions between these LR pairs were not documented before. We
applied SpatialDM and the aforementioned methods with the same
settings on the negative control list for FPR comparison.

Experimental datasets and processing settings
Three datasets of different sizes and from different sequencing plat-
forms were used to showcase the framework, including (1) Thrane’s
melanoma dataset (sample 1 rep 2, 293 spots, ST29), (2) All intestine
samples probed by Visium fromCorbett et al., containing 8 slices from
3 time points and 4 donors, respectively7 and (3) a SVZ sample (FOV of
5) slice from Eng’s48. We mainly showcased the permutation approach
in the melanoma and SVZ datasets (Global: FDR <0.1, Local: p-value <
0.1), and the z-score approach in the intestine datasets (Global:
FDR <0.1, Local: p-value < 0.1).

Cell type annotation. For the melanoma dataset, scRNA-seq and
marker gene lists of each of the 7 cell types were publicly available33.
Cell type composition in each spatial transcriptome spots were com-
puted using RCTD v.2.0.130 based on the spot mRNA expression and
the marker gene list. For the intestine and SVZ datasets, we directly
used cell type annotations from the original study7.

Verification in scRNA-seq. Dimension reduction was performed in
scRNA-seq using tSNE. Cell-type annotations were performed by Tir-
osh, et al.33. FCER2 and CR2 expressions were visualised in tSNE and
violin plots.

Additional utility analyses in SpatialDM
Histology clustering of significant pair using SpatialDE. SpatialDE
which was originally invented to distinguish and classify genes with
spatial patterns of expression variation with its automatic expression
histology module (SpatialDE.aeh), enabling expression-based tissue
histology. We simply re-implemented SpatialDE.aeh.spa-
tial_patterns function by feeding the local Moran statistics to
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cluster all selected interactions into 3 (in melanoma) or 4 (in intestine)
patterns. The input here is the binary matrix of either local permuta-
tion or z-score selected spots (0 for non-significant spots, 1 for selected
spots). Alternatively, other local statistics like local Ri can serve as
SpatialDE input to explore interaction-level histology.

Pathway enrichment. For selected pairs, we counted the number of
pairs belonging to each pathway as documented in CellChatDB v.1.1.3
which was visualised in the dot plot x-axis. We also computed the
percentage of the pairs in relation to all pairs belonging to the
respective pathway in the dataset. Notably, Fisher’s exact test calcu-
lates the probability that the association between the queried inter-
actions and the interactions belonging to a given pathway occurs
purely by chance, which is indicated by the dot size.

Chord diagram. Chord diagram has been implemented in many
ligand-receptor interaction packages. On the one hand, SpatialDM
allows the identification of interactions for each spotwithout spatial or
biological clustering. On the other hand, it is useful to integrate cell
type information when interpreting the results. We include the utility
based on HoloView49 to visualise the interacting cell types, based on
each spot’s Moran statistics and cell type decomposition value. By
running pl.chord_celltype for a selected pair, the relative edge
number for a cell type pair

nAB =
X
i,j

wijRi,senderAiRj,receiverBj , ð8Þ

where A, B denote 2 independent cell types from the annotation,
respectively. We also provide the function pl.chord_cellty-
pe_allpairs to aggregate nAB along all cell type combinations. In
addition, given a cell type combination AB, the selected interactions
can be visualised using pl.chord_LR in a similar fashion where the
relative edge number for an interaction

nk =
X
i,j

wijRk,senderAiRk,receiverBj, ð9Þ

Differential analyses. Colon samples (A1, A2 for adult, A3, A4, A8 and
A9 for foetus) and their Global Moran z-scores (1,486 pairs) were
extracted for differential analyses. If either ligand or receptor was not
detected in a sample, the z-score was forced to 0. For each pair, linear
regressionmodels were fitted to the 6 z-scores twice, with (full model)
or without (reduced model) condition information. A likelihood ratio
test was performed to calculate the p value for differential commu-
nication. Specifically, the difference between log-likelihood from the
full vs. reduced models was then subjected to Chi-Squared test for the
differential p-values50.

Correlation between local Moran statistics and cell type weights
We fitted the linear model on the local Moran p-values computed by
SpatialDM (NX k) to predict cell-type results (NXm, N: number of
spots, k: number of selected interactions, m: number of cell types,
decomposition results were performed using RCTD in the melanoma
data or by the authors in the intestine data). All data were used to train
the linear model and for testing. Pearson’s R was then computed by
comparing the predicted decomposition results with the real ones
(both of NXm shapes).

Fine tune with auto-correlation weights
With a hypothesis that spatially significant pairs will have a certain
degree of auto-correlation for the ligand or receptor, we integrated
ligand/receptor Moran’s R in simulated data.

Auto-correlation Moran’s Il (ligand) and Ir (receptor) are defined
as:

Il =
P

i

P
j
wij ðxi��xÞðxj��xÞP
i
ðxi��xÞ2

Ir =
P

i

P
j
wij ðyi��yÞðyj��yÞP
i
ðyi��yÞ2 ,

ð10Þ

where xdenotes ligand expression, ydenotes receptor expression. The
fine-tuned R =wl ∗ Il +wr ∗ Ir + Rlr. We used wl =0.17 and wr =0 in the
simulation data (learned from a logistic regression on a separate
dataset) and used wl = 0,wr =0 for all experimental datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used here are previously published and publicly available
(Raw mRNA counts, log-transformed mRNA counts, and spatial coor-
dinates of themelanoma data were obtained fromhttps://github.com/
msto/spatial-datasets, ; Raw mRNA counts and spatial coordinates of
the intestine data were obtained from https://simmonslab.shinyapps.
io/FetalAtlasDataPortal/, GEO: GSE158328 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE158328], Raw mRNA counts and spa-
tial coordinates of the SVZ data were obtained from https://github.
com/CaiGroup/seqFISH-PLUS). Source data are provided with this
paper. For easier reuse, we also included them in the SpatialDMPython
package and figshare tabs as follows, the melanoma data:spa-
tialdm.datasets.melanoma(), figshare tab:mel_adatathe intestine data
(e.g. A1):spatialdm.datasets.A1, figshare tab:A1, same for-
A2,A3,A4,A6,A7,A8, the SVZ data:spatialdm.datasets.SVZ(), figshare
tab:SVZ. The ligand-receptor databases are available from CellChat
repository (https://github.com/sqjin/CellChat/tree/master/data).
Source data are provided with this paper.

Code availability
SpatialDM is an open-source Pythonpackage freely available at https://
github.com/StatBiomed/SpatialDMand https://doi.org/10.5281/
zenodo.792081151. We make it convenient by directly integrating with
Scanpy or Anndata objects. Detailed documentation and the analysis
notebooks to reproduce results in this paper are also included in this
repository (https://spatialdm.readthedocs.io/). All data analysed in the
paper are available through the figshare linkhttps://doi.org/10.6084/
m9.figshare.22960949.
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