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MOBILE pipeline enables identification of
context-specific networks and regulatory
mechanisms

Cemal Erdem 1, Sean M. Gross2, Laura M. Heiser 2 &
Marc R. Birtwistle 1,3

Robust identification of context-specific network features that control cellular
phenotypes remains a challenge. We here introduce MOBILE (Multi-Omics
Binary Integration via Lasso Ensembles) to nominate molecular features
associated with cellular phenotypes and pathways. First, we use MOBILE to
nominate mechanisms of interferon-γ (IFNγ) regulated PD-L1 expression. Our
analyses suggest that IFNγ-controlled PD-L1 expression involves BST2, CLIC2,
FAM83D, ACSL5, and HIST2H2AA3 genes, which were supported by prior lit-
erature. We also compare networks activated by related family members
transforming growth factor-beta 1 (TGFβ1) and bonemorphogenetic protein 2
(BMP2) and find that differences in ligand-induced changes in cell size and
clustering properties are related to differences in laminin/collagen pathway
activity. Finally, we demonstrate the broad applicability and adaptability of
MOBILE by analyzing publicly available molecular datasets to investigate
breast cancer subtype specific networks. Given the ever-growing availability of
multi-omics datasets, we envision that MOBILE will be broadly useful for
identification of context-specific molecular features and pathways.

The availability of large-scale multi-omics datasets across cell
types, tissues, and organisms is rapidly increasing with the
development of new technologies1–7. The challenge now is in
analyzing them, not individually, but rather together to leverage
the fact that signals are encoded across multiple modalities8–11.
Examples of individual methods include: principal components
analysis12, statistical approaches13–15, clustering16–19, unsupervised
learning20, and supervised/machine learning10,21–24. Often, such
analyses are used to generate networks where genes (or other
biomolecules) are nodes, and edges between them denote sta-
tistical or functional relationships. Integrating data frommultiple
modalities can give rise to novel biological insights that cannot be
obtained through the analysis of single datasets25–27. To date, data
integration methods have produced systems-level biological
insights, including genetic and protein–protein interactions28–30,

disease-gene relationships24,31, drug response predictions30,32, and
context-specific associations29,31,33.

A central problem in network biology is the identification of
“context-specific” networks. Here we define context-specificity as a
biological relationship (i.e., edge in a network) that applies only to a
certain cell type, ligand perturbation, extracellularmatrix component,
or time point. Data integration has the potential to lead to significant
advances in our understanding of such context-specific biology by
identifying biological signals evident across multiple modalities8. For
instance, why does insulin, but not insulin-like growth factor I (IGF1),
regulate glucose metabolism despite their textbook signaling path-
ways being essentially identical34–36? Why does IGF1 activate ERK or
AKT signaling only in certain cell types37,38? Identifying and studying
context-specific observations is important because most diseases are
tissue-specific39, and this knowledge can enable understanding of how
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different cell types respond to varied perturbations, which is key to
targeted therapeutic intervention.

Multiple data integration methods have been implemented using
bioinformatics tools, including kernels40,41, correlation analysis42–45,
and others46. These methods were applied -but not limited- to pro-
cessing genomic and epigenomic datasets to cluster and classify the
input data. Published methods also include network (protein–protein
or genomic interaction) inference using omics datasets, including
Bayesianapproaches47,48 andnatural languageprocessing49. One group
ofdata integrationapproaches useprior literature/network knowledge
as an essential first step28–33,50–53. For example, a prior knowledge-
informed network analysis may limit exploration to curated pathways
and remove analytes (measured features) with no known interactions,
or may impose biological structure into the underlying network
models29,30. These literature-driven approaches assemble available
tissue-specific expression data into gene correlation networks30,54,55 or
overlay the data on global (non-specific) interaction networks9,28,56. For
instance, employing a network/graph theory-based approach coupled
with prior literature information, differential network analysis56–63

tools showed promise in identifying context-specific knowledge and
highlighted genes and pathways for clinical impact11,59,64–69. While
informative, the drawback of such “literature-first” data integration
methods is that they only allow the study of knownconnections,which
omits the substantial number of regulatory interactions not annotated
in the literature30,56,70. Importantly, these approaches cannot identify
novel interactions or associations in the datasets.

Another group of data integration approaches are prior knowl-
edge agnostic, which circumvents the limitations of literature-first
methods24,44,71–73. These methods rely on extracting features from the
input data and constructing models to discriminate between condi-
tions. For instance, Zhang et al. used deep learning to integrate gene
expression and copy number variance data from two different data-
bases to identify distinct prognostic subtypes24. However, the trade-off
of these methods is that they are more challenging to interpret
because they lack direct incorporation of a biological structure (e.g.,
central dogma) into the data integrationmethodology and also do not
take advantage of the wealth of available prior knowledge11,74,75.

Despite progress, there remains a need for new tools andmethods
for biologically informed multi-omics integration without literature-
driven pre-selection. Here, we introduce Multi-Omics Binary Integra-
tion via Lasso Ensembles (MOBILE) to integrate multi-omic datasets
and identify context-specific interactions and pathways. Our approach
does not eliminate data based on prior knowledge and also uses a well-
established central dogma structure to aid biological interpretation.
Robust associations are inferred between pairs of chromatin accessi-
bility regions, mRNA expressions, and protein/phosphoprotein levels.
By imposing this high-level structure, MOBILE is neither network
structure agnostic (for better interpretability) nor heavily prior
knowledge bound (for higher rates of novelty). We demonstrate the
method using a recentmulti-omic dataset generated by the NIH LINCS
Consortium76. In that project, non-tumorigenic breast epithelial
MCF10A cells were assayed for proteomic, transcriptomic, epige-
nomic, and phenotypic changes in response to six growth factor per-
turbations (EGF, HGF, OSM, IFNγ, TGFβ1, and BMP2; synapse.org/
LINCS_MCF10A). We apply MOBILE to this dataset and obtain candi-
date context-specific associations.We thenuse these associations (i) to
propose sub-networks of regulation for therapeutically important
genes and (ii) to identify pathways preferentially activated by pairs of
ligands from similar signaling families. First, MOBILE identifies reg-
ulatory mechanisms for IFNγ-controlled PD-L1 expression that have
independent literature support. Secondly, MOBILE reveals–and inde-
pendent experiments validate–that TGFβ1 but not BMP2 induces
laminin pathway genes (especially laminin 5), causing stronger cell-to-
cell and cell-to-surface adhesion through interactions with extra-
cellular collagen, which leads to larger and more separated cells.

Finally, we use MOBILE to explore breast cancer subtype-specific
pathways by integrating patient-level transcriptomic and proteomic
datasets from The Cancer Genome Atlas (TCGA)1. The biologically
structured and data-driven MOBILE pipeline outlined here is widely
applicable to integrate omics datasets for extracting context-specific
network features and insights.

Results
A multi-omics LINCS perturbation dataset for integrative
analysis
The NIH LINCS Consortium recently released a unique and compre-
hensive multi-omics dataset (synapse.org/LINCS_MCF10A) that con-
sists of molecular and phenotypic responses of MCF10A cells to
multiple ligand perturbations over time76. Spanning a compendium of
canonical receptor signaling classes, EGF, HGF, and OSM induced
growth, while BMP2, IFNγ, and TGFβ1 inhibited growth. The
cellular responses were measured using live-cell imaging, immuno-
fluorescence (IF), and cyclic immunofluorescence77. The bulk mole-
cular responses were assessed across five platforms. The proteomic
assay was reverse phase protein array (RPPA78), where specific phos-
pho- or total protein levels were measured at 1, 4, 8, 24, and 48 h. The
RNAseq transcriptomic dataset was single-end sequencing at 24 and
48 h. Chromatin accessibility was profiled by Assay for Transposase-
Accessible Chromatin using sequencing (ATACseq), also at 24 and 48 h
after stimulation. A pretreatment (T0 control) was quantified for all
assay types. Overall, the MCF10A dataset provides an excellent tem-
plate for applying the proposed data integration strategies, namely
ATACseq, RNAseq, and RPPA as “big data” to be integrated, and the
live-cell imaging / IF as assays informing associated cellular
phenotypes.

The MOBILE integrator
We here integrated data from this LINCS dataset to identify context-
specific pathways and regulatory mechanisms that control cellular
phenotypes. The overall approach is summarized in Fig. 1 and pre-
sented in greater detail in Figs. 2, 3. The availability of epigenomic,
transcriptomic, and proteomic datasets inspired a central-dogmatic
view for data integration (Fig. 1). For compatibility across datasets and
operability of themethod, theMOBILEpipeline input included all three
datasets with all ligands at 24 and 48 h only.

Following the central dogma that information flows from DNA to
RNA to protein, we paired ATACseq-RNAseq and RNAseq-RPPA matri-
ces. First,we calculated robust andparsimonious statistical associations
between features of input data (Fig. 2a, see Methods) using replicated
penalized regressionmodels (Fig. 2b and Supplementary Data 1, 2). We
applied Lasso (least absolute shrinkage and selection operator37,79)
regression to infer sets of sparse matrices that can be interpreted as
statistical networks connecting biochemical species, such as mRNAs,
chromatin peaks, or total protein and phosphorylation levels. The
repetitive application of Lasso, called the Lasso module, yielded an
ensemble of matrices, from which we picked one as the robust asso-
ciations matrix. When we used all the ligand conditions from the LINCS
dataset as input, the Lasso module output is called the FULL-data
matrix. To finalize the data integration and generate data-driven net-
works,wemerged the robust associationsmatricesobtained fromRPPA
+RNAseq and RNAseq+ATACseq input pairs into an Integrated Asso-
ciation Network (IAN) (Fig. 2c). The IANs are coalesced gene-level net-
works, where nodes represent genes of the assay analytes (genes from
input matrix rows) and edges represent robust Lasso coefficients cal-
culated between the analyte levels (Supplementary Fig. 1).

We then systematically excludeddifferent ligand conditions (both
24- and 48-h data) from the training input and ran the LOGO (leave-
one-group-out) module (Fig. 3). The input data with a smaller number
of columnswere thenprocessed via a regular Lassomodule (Fig. 2b, c),
and new Robust Lasso Coefficient Matrices were generated. Next, by
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comparing the FULL-data associations matrix to the newly inferred
LOGO-condition associations matrix, we identified associations
dependent on the exclusion/inclusion of that specific condition’s data.
This “ligand”-specific association list is used to create the ligand-LOGO-
IAN. Repeating the process for each ligand condition in the dataset, we
obtained six ligand-specific IANs (Fig. 3).

We hypothesized that the robust associations that change as a
result of this LOGO analysis will have information regarding the
context-specificity of the left-out ligand condition. The ligand-specific
IANs, together with the FULL IAN were the major data-integration
products of the MOBILE. Comparison of pairs of ligand IANs nomi-
nated differentially activated networks and ligand-specific regulatory
mechanisms spanning DNA states to protein levels. To facilitate bio-
logical interpretation, we performed gene-set enrichment analysis
(GSEA80) using the Reactome database81 that enabled us to identify
pathways linked to ligand-specific IANs. We then nominated ligand-
specific pathways andnovel edges associatedwith distinct phenotypes
observed in the image data.

MOBILE identifies known biology
We investigated the robustness of the MOBILE predictions by per-
forming a gene-set enrichment analysis (GSEA) for pathways using the
FULL and ligand-specific integrated associations networks (IANs) and
asking whether our approach can capture canonical biological obser-
vations. First, we identified ligand-dependent association lists by com-
paring each ligand IAN to the FULL IAN. Next, these association lists
were coalesced into gene-level networks and the nodes were ranked
basedon the sumof edgeweights (associationmagnitudes)of that node
(Supplementary Data 3). We ran GSEA on these eight (FULL, PBS, EGF,
HGF, OSM, IFNG*, BMP2*, and TGFB1*) pre-ranked gene-lists and found
that the top enriched pathwayswere cell cycle in all conditions (p <0.05
and FDR <0.1, Fig. 4a and Supplementary Data 4). Indeed, eight of the
top 15 pathway enrichments across conditions are cell cycle-related,
affirming the fact that the LINCS dataset was generated using combi-
nations of pro/anti-growth factors and cells continue to grow after all
perturbations (Supplementary Fig. 2 and Supplementary Data 5).

Other highly enriched pathways in the HGF dependent gene-list
were Rho GTPase related (Fig. 4a). It was shown before that Rho
GTPase activity is required for HGF-induced cell scattering82. OSM-
dependent pathway enrichments included cytokine/interleukin and
ECM pathways (Fig. 4a). The top four highly enriched pathways of

IFNG* condition were interferon signaling, in line with the fact that
IFNγ had a strong signal in the LINCS dataset76. BMP2-dependent top
pathways were ECM, interferon, and interleukin related in addition to
the cell cycle. Finally, the TGFB1* condition had transcriptional and
DNA regulatory pathways enriched (Fig. 4a). These observations con-
firmed that our approach can recover known biology and also that it
can extract meaningful ligand-specific associations.

Next, we asked whether MOBILE-inferred associations (edges) are
consistent with prior knowledge. The highest magnitude associations
of the FULL analysis are the most robust across all perturbations and
time points (Fig. 4b, Supplementary Data 1, 2). Among them, the top
candidate interaction is the connection between PPFIA4 (Protein Tyr-
osine Phosphatase Receptor Type F Polypeptide-Interacting Protein
Alpha-4) and HIF1A (Hypoxia Inducible Factor 1 Subunit Alpha). The
PPFIA4 gene was shown to be upregulated in response to hypoxia
(through HIF1) in all types of breast cancer cell lines and normal-like
epithelial cells, including MCF10A83. The highest association between
ATACseq and RNAseq data is the SLC2A1 (Solute Carrier Family 2
Member 1) and CASP14 (Caspase 14). Interestingly, these two genes
were also part of the hypoxia-induced genes list83. There exists litera-
ture evidence for the other highest-ranking associations (Fig. 4b).
Some were (i) shown to be part of prognostic markers (SLC12A4-
CHEK284), (ii) differentially expressed together in response to pertur-
bations (SEMA3C-TCEAL185, IGFBP2-SIX186, TINCR-POU2AF187, NTSR1-
TOMM688), and (iii) part of gene signatures for different classes of
tumors (SNORA73A-MAPK89, FDCSP-GJA190). A few of the associations
had related mechanistic interactions as well (CDC42-MTOR91,92, IGFBP2-
SIX186, WTAP-STAT393,94, TINCR-POU2AF187). The remaining associations
are either Self: same gene, different data type, Unknown: non-curated
gene(s), or Novel: no known interactions to the best of our knowledge.
These pieces of information from the literature, in part, verify that the
MOBILE inferred associations have biological meaning.

Identification of associations between IFNγ stimulation and PD-
L1 regulation
After establishing that MOBILE can recapitulate known biological
interactions, we askedwhether it could identify regulatorymechanisms
within a single IAN.We focusedon IFNγ, which had a strong signal in the
LINCS dataset76 and is a critical part of the immune response within the
tumor microenvironment95,96. The cytokines within the environment,
especially IFNγ, can induce transient PD-L1 (gene name: CD274)
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expression (Fig. 5a)97–100. PD-L1 is a transmembraneprotein thatbinds to
its receptor PD-1 expressed in T cells and inhibits immunological tumor
clearance. Both PD-L1 and PD-1 belong to a class of so-called “check-
point” proteins;98,101 immune checkpoint inhibitors are a new class of
immunotherapeutic anti-cancer drugs100,102. However, PD-L1 expression
is not correlatedwith patient response and is highly variable depending
on tumor stage, site, and type. Consequently, predicting tumor
responses to PD-1/PD-L1 blockade remains a challenge, and better
biomarkers are needed to stratify patients. Therefore, an in-depth
understanding of the regulatory mechanism of PD-L1 expression is still
needed to provide new immunotherapeutic insights and potentially

identify new drugs103. To investigate this question, we decided to
explore sub-networks between IFNγ signaling and PD-L1 expression
within the data-driven IFNγ integrated associations network.

In the LINCS dataset, IFNγwas tested in combination with EGF, so
we isolated the IFNγ response by comparing the IFNγ condition
(IFNγ + EGF) to EGF-only samples. We confirmed that IFNγ stimulation
uniquely upregulated canonical downstream elements, including IRF1,
interferon regulatory factor, and PD-L1 (CD274 gene) (Fig. 5b). Next, we
identified a set of nine genes (IFNG, IFNGR1, IFNGR2, STAT1, STAT3,
JAK1, JAK2, IRF1, and IRF9) from the canonical IFNγ pathway (REAC-
TOME R-HSA-877300) and filtered the connections of the genes

NES:

RNAseq gene RPPA gene FULL IAN 
assoc. value Notes

PPFIA4 HIF1A 0.6811 [83]
SERPINE1 SERPINE1 0.5458 Self
SNORA73A MAPK1, MAPK3 -0.4849 [89]
CDC42EP2 MTOR 0.4713 ~[91,92]

AXL AXL 0.4511 Self
FDCSP GJA1 0.4429 [90]
ACSL5 CD274 0.4087 Novel

SLC12A4 CHEK2 0.4077 [84]
DUSP4 DUSP4 0.3925 Self
ACKR3 TGM1 0.3860 Novel

RNAseq gene ATACseq gene FULL IAN 
assoc. value Notes

SLC2A1 CASP14 0.5886 [83]
SEMA3C TCEAL1 0.5880 ~[85]
IGFBP2 SIX1 0.5840 [86]

ENSG00000223544 DEFA5 -0.5405 Unknown
FST CLCN4 -0.5396 Novel

OR2A1-AS1 LRP1B -0.5380 Novel
STAT3 WTAP 0.5370 [93,94]
TINCR POU2AF1 0.5327 ~[87]
NTSR1 TOMM6 -0.5273 [88]

ENSG00000233250 ACVR2A 0.5247 Unknown

b Highest magnitude MOBILE associations
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genes. The top ten magnitude-wise associations between RPPA-RNAseq and
RNAseq-ATACseqof the FULL IANarepresented.More thanhalf of the associations
have prior literature evidence, while some are “Self” associations of the same gene
in different assays. Two associations include non-annotated gene products labeled
as “Unknown”. At least four of the associations are “Novel” predictions of the
MOBILE pipeline. ~ denotes references not showing a direct (causative) relation-
ship between the genes but co-mentioning them as biomarkers of different cancer
subtypes or with relationships of candidates’ isoforms. The MOBILE inferred
association values are between −1 and 1.
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appearonly inLOGO IANandcoefficients that are present only inFULL-data IAN) to
create the final ligand-specific associations list. Repeating the process for each
ligand treatment condition, we obtained six ligand-LOGO IANs.
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together with PD-L1 (CD274) and PD-1 (CD279) from IFNG-IAN (Fig. 5c).
The resulting sub-network had 297 nodes and 321 edges (Fig. 5d and
Supplementary Data 6, 7). The hubs in that sub-network were from the
input gene-list, including IRF1, STAT1, STAT3, and CD274 (PD-L1). We
examined the connections between IRF1 and PD-L1 (Fig. 5e) and
identified five nodes: BST2, CLIC2, FAM83D, ACSL5, and HIST2H2AA3.
The mRNA levels of these five genes were elevated in the IFNγ + EGF
condition compared to EGF-only samples (Fig. 5f). Of the five genes,
three had strong literature support. BST2 was recently shown to be
part of a gene signature for anti-CTLA4 response inmelanoma104.CLIC2
is co-expressed with PD-L1/PD-1 in breast cancer and is a biomarker
candidate for favorable prognosis105. And although not directly linked
to IFNγ/PD-L1 axis, FAM83D was shown to regulate cell growth and
proliferation and was implicated as a prognostic marker in breast and
gastric cancers106–108. Moreover, its FAM83A isoform was shown to
affect PD-L1 expression109.We couldnot find any literature data for two
genes (ACSL5 andHIST2H2AA3) and their relationships to IFNγ and PD-
L1 function, suggesting potentially novel diagnostic or therapeutic
targets for immunotherapy. Importantly, the concordance of some
findings with recent literature reinforces the notion that MOBILE-
based nomination of interactions has biological value.

TGF-β superfamily members TGFβ1 and BMP2 induce different
morphological phenotypes via collagen-laminin signaling
Both BMP2 and TGFβ1 are members of the TGF-β superfamily and
share most downstream pathways, including canonical SMAD

signaling110,111. Both ligands induce cell differentiation and show anti-
growth/anti-proliferative effects, whereas SMAD signaling shows
immense versatility and specificity, mostly affected by the cross-talk
mechanisms and the cellular context110–118.

Imaging data of cells grown on collagen-coated culture plates
from LINCS76 indicated that BMP2 induces a significantly higher
number of cells in clusters as compared to that induced by TGFβ1
(Fig. 6a, top). Correspondingly, TGFβ1 induced morphologically lar-
ger cells119,120 that occupy more surface area (Fig. 6a, bottom). We
used the ligand-specific IANs (Supplementary Fig. 3) and subsequent
pathway enrichment analyses to find non-canonical mechanisms that
underly the differential phenotypes caused by these two highly
similar ligands. We ranked the nodes of the TGFβ1 and BMP2 IANs
(SupplementaryData 8, 9) based on the sumof edgeweights entering
that node (Supplementary Data 10, 11) and ran GSEA on these pre-
ranked gene-lists80,121. We then looked for curated Reactome
pathways81 significantly enriched (p < 0.05 and FDR <0.1) in either
gene-list (TGFβ1 or BMP2 IAN genes) (Fig. 6b). Seven of the enriched
pathways under BMP2 and TGFβ1 treatment conditions are shared
(Fig. 6c gray circles, and Supplementary Data 12, 13). The shared
pathways are all cell cycle and proliferation-related. Multiple path-
ways are specific to a single condition (Fig. 6b, BMP2: purple and
TGFβ1: gold). BMP2-enriched pathways include DNA regulation and
G1/S transition. The TGFβ1-only group has DNA damage and ECM
regulation-related clusters of pathways. It is important to note that
pathway enrichment analyses on shuffled data-derived TGFβ1 and
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expression through JAK/STAT/IRF1 and other canonical pathways (black arrows).
The PD-L1 on the cell surface then interacts with PD-1 on the immune cells to induce
tumor cell death. However, the PD-1/PD-L1 therapy yields inter- and intratumor
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(represented by red arrows). b The IFNγ induces IRF1 and PD-L1 production in
MCF10A cells. Data shown are from three independent biological replicates and
error bars represent the standard error of the mean. Source data are provided as a
Source Data file. c The IFNG associations' network (IFNγ-IAN) is a data-driven large-
scale network of connections. The associations are coalesced into gene-level nodes,
and associations with greater than 0.01 absolute value are shown. d The sub-

network of the IFNγ – PD-L1 relationship is significantly smaller than the IFNγ-IAN.
The sub-network is generated by filtering for 14 genes and has seven hubs (PD-L1
(CD274), IFNGR1, IRF1, IRF9, JAK2, STAT1, STAT3) connected to 290 other genes.
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(ATACseq). The data shown are the average values from three independent bio-
logical replicates. Source data are provided as a Source Data file.
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BMP2-specific IANs did not yield any pathways (p value <0.05, and
FDR <0.1).

The laminin interactions (REACTOME R-HSA-3000157) is among
the TGFβ1-only enriched pathways. Laminins are a family of proteins
that regulate cell-to-cell and cell-to-matrix interactions122–127, by bind-
ing to collagen128 and integrin receptors129. Depletion of ECM laminin
or collagen disrupts cellular attachment122,130. Differential regulation of
these processes might offer a candidate mechanism for the observed
TGFβ1 and BMP2 phenotypic difference: only TGFβ1 induces laminin
gene expression that then interacts with the collagen-coating of the
culture plate, which induces tighter cell-to-cell and cell-to-ECM inter-
actions leading tomore spreading and stretching cells. So,we analyzed
the activity of the laminin pathway under TGFβ1 and BMP2 stimulation
by comparing themRNA levels (theMOBILE input data) of the pathway

genes (Fig. 6c). The mRNA levels of laminin, collagen, and integrin
subunits were elevated at 24 and 48 h (Fig. 6c, left), and corresponding
transcription binding sites were more accessible in TGFβ1 stimulated
cells (Fig. 6c, ATACseq data, right).

In the LINCS dataset, cells were cultured and treated on collagen-
coated plates76 and both ligands inhibited cell proliferation as com-
pared to EGF-only control (Fig. 6d, left panel). Additionally, BMP2
induced more cell clustering compared to TGFβ1 (Fig. 6d, middle
panel), but TGFβ1 was shown to cause significantly larger distances to
second nearest neighbors (Fig. 6d, right panel). To test the hypothesis
that TGFβ1-specific phenotypes depend on activation of laminin-
collagen (in ECM) interactions (Fig. 6e), we cultured cells on non-
collagen-coated plates and stimulated them with TGFβ1 or BMP2
(+EGF, as done in the LINCS dataset76). Removal of the collagen caused
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ferentially activating collagen-laminin signaling. a TGFβ1 and BMP2 induce
phenotypically different responses at 48h after ligand treatment76. Representative
images are adapted examples from eight biological replicates. b Both TGFβ1 and
BMP2 networks are enriched in cell cycle and proliferation-related pathways (gray
circles). TGFβ1 alone is shown to regulate ECM-related pathways, whereas BMP2
network genes are linked to other membrane receptor-related signaling pathways
and cell cycle checkpoints. Node size is proportional to the enrichment scores and
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condition. Transcriptomic and epigenomic data shown are the average values from
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of cells in clusters compared to TGFβ1 (cells per cluster, shaded region, p value =
0.0175). TGFβ1 causes cells to spread and have a longer distance to their second
nearest neighbors (distance to secondneighbors, shaded region,p value = 9.4032E-
06). Cells grown in non-collagen-coated regular tissue-culture plates show phe-
notype reversal of cells per cluster and distance-to-second-neighbor metrics
(unshaded regions, middle and right box plots), with no significant cell number
differences between BMP2 and TGFβ1. The box edges correspond to the 25th−75th
percentiles, the horizontal black lines represent the median, and the dots are
individual data points. The whiskers extend to the non-outlier extremes. ns: not
significant, asterisk: p value <0.05, three asterisks: p value <0.001. Significance
using two-sided Student’s t-test with unequal variance. Data shown are from N = 6,
6, 8, and 4 biological replicates respectively. Source data are provided as Source
Data file. e The schematic of TGFβ1 specific regulation of a non-SMAD pathway,
inferred by the MOBILE pipeline. TGFβ1 induces laminin pathway gene expression
and leads to cell scattering and cell spreading with larger cells, when compared to
BMP2 stimulation.
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a reversal of the TGFβ1-induced phenotype. The number of cells per
cluster and distance to the second nearest neighbors are similar in
BMP2 and TGFβ1 stimulated cells in the absence of collagen-coating
(Fig. 6d, middle and right panels). Overall, these analyses confirmed
that MOBILE identified a context-specific network that explains dif-
ferential phenotype between two highly similar ligands.

Finally, although MOBILE analysis identified the laminin pathway
as potentially explanatory for differential phenotype, we wondered
whether such a conclusion could be reached by standard differential
expression analysis. Considering the same list of pre-filtered 3062
transcripts that were input to the MOBILE pipeline, we determined
BMP2 or TGFβ1 up and downregulated genes at 24- or 48-h conditions.
Next, we ranked the genes based on the fold-change (BMP2 vs TGFβ1
or TGFβ1 vs BMP2) and, similar to post-MOBILE enrichment analysis,
we ran GSEA on these pre-ranked lists of genes (Supplementary
Data 14). We then compared MOBILE results with the differential
expression analysis results. The BMP2 upregulated, TGFβ1 upregu-
lated, BMP2 downregulated, and TGFβ1 downregulated gene-lists
alone did not yield any significant pathway enrichments (p value <0.05
and FDR <0.1). However, we obtained a single significantly enriched
pathway (REACTOME Extracellular Matrix Organization, R-HSA-
1474244) whenwe looked at the combined list of TGFβ1 up- and down-
regulated genes. The combined BMP2 regulated gene-list yielded
10 significantly enriched pathways, including ECM Organization
(Supplementary Data 15), whereas the MOBILE pipeline yielded 39
(TGFβ1, Supplementary Data 12) and 20 (BMP2, Supplementary
Data 13) enriched pathways using TGFβ1- and BMP2-specific IANs. This
indicates that the MOBILE inferred ligand-specific association net-
works and their analyses extract more information about differential
pathway enrichments as compared to standard methods.

MOBILE infers subtype-specific and differentially activated
pathways using paired-omics datasets from TCGA samples
MOBILE is agnostic to data sources and can be applied to a variety of
datasets when structured correctly. We show the applicability of the
pipelinebyusing tumor transcriptomic (RNAseq) andproteomic (RPPA)
data from the TCGA database1. In short, 878 samples were identified to

have both transcript and protein data from the primary breast tumor
site. Analysis of receptor expression was used to stratify these samples
into clinically-relevant subtypes: 89 HER2-amplified (HER2-amp), 129
triple-negative (TNBC), and 308 estrogen and progesterone receptor
positive (ER+/PR+) (see Methods and Supplementary Fig. 4).

Following the MOBILE Lasso Module procedure (Fig. 2b) and
using all samples (878 cases), we generated a FULL breast cancer
integrated association network (FULL-TCGA-IAN). Next, we calculated
subtype-specific IANs with the LOGO module (Fig. 3). Then, the sub-
type IANs are pair-wise compared to each other and enriched Reac-
tome pathways are determined (Fig. 7a, Supplementary Fig. 5, and
Supplementary Data 16–18). Specifically, the HER2-amplified subtype
was enriched in membrane trafficking, lipid/steroid metabolism, and
adaptive immune response-related pathways (Fig. 7a, purple and dark
gray). In support of these observations, the literature data shows that
HER2-amplified cell lines and tumor samples both have elevated FASN
and ACAT1 function (fatty acid synthesis), leading to poor
prognosis131–134 and inhibitors to such targets enhance the efficacy of
anti-HER2 therapies135. HER2-amplified cells were also shown to have
high levels of endocytic and extracellular vesicle trafficking136.

TNBC is a subtypewith poor prognosis and aggressive phenotype.
The MOBILE inferred TNBC-specific enriched pathways include
receptor signaling pathways like Wnt and VEGF, keratinization, TCA
cycle, and innate immune response-related pathways (Fig. 7a, gold and
dark gray). In the literature, the TNBC subtype was shown to correlate
with high VEGF activity and multiple antiangiogenic agents were
included in combination therapies for aggressive tumors like
TNBC137,138. Similarly, elevated and dysregulatedWnt signaling in TNBC
was reported numerously139,140. In recent studies, suppression of the
TCA cycle was shown effective in decreasing the growth and invasion
of TNBC cells141, as increased TCA cycle utilization provides elevated
ATP production for the cells142,143.

Finally, the ER+/PR+ subtype was enriched in GPCR and aberrant
PI3K signaling (together with TNBC), cell-cell communication, cellular
senescence, and RUNX2-mediated transcription pathways (Fig. 7a, red
and light gray). In the hormone receptor-positive subtype, hyper-
activated PI3K activity was previously shown144–147. Moreover, cell-cell
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communication and signaling is elevated ER+ cell lines148, where
chemotherapy-induced senescence is sensitive to hormone therapy149.
Regarding RUNX2-mediated transcriptional activity, triple-positivity
(ER+, PR+, RUNX2+) is prevalent, especially in grade 2 and 3 breast
tumors150, with possible ER-RUNX2 mutual regulatory mechanisms151.
Finally, G protein–coupled receptor superfamily, and especially the G-
protein-coupled estrogen receptor (GPER)152,153, was shown to mediate
estrogen-dependent kinase activity in breast cancer tumorigenesis and
metastasis154–156.

In addition to the subtype-specific enriched pathways, we sum-
marized the common pathways enriched in all three subtypes (Fig. 7b
and Supplementary Data 19). These include cell cycle, transcription,
intracellular signaling, and programmed cell death pathways. Estrogen
receptor (ESR)-mediated signaling was also included in the core net-
work,most likely due to the facts that estrogen is critical and central in
breast biology and the curatedpathway gene-list coincides largelywith
major proliferation pathways (MAPK and PI3K) and transcription.

Discussion
Here we introduced the MOBILE pipeline to integrate and analyze
multi-omics datasets in a data-driven way. Using a central-dogmatic
framework, themethodfinds statistically robust integrated association
networks (IANs) between pairs of epigenomic, transcriptomic, and
proteomic analytes that are biologically interpretable. We explored
context-specific IANs obtained via leave-one-group-out (LOGO) ana-
lysis, yielding (i) non-canonical connections with novel immunother-
apeutic potential, (ii) differentially activated pathways to discriminate
between highly similar ligand-receptor responses, and (iii) breast
cancer subtype-specific pathway enrichments.

The MOBILE pipeline can prioritize context-specific, differentially
activated pathways and mechanisms. MOBILE identifies statistically
significant associations, while LOGO analysis provides context-
specificity. In our analysis of the LINCS MCF10A dataset, by holding
outdata fromeach ligandone at a time, associations that dependon the
held-out data are inferred and cataloged as ligand-dependent. These
ligand-dependent associations are the core of MOBILE integrator,
enabling the exploration of single ligand-specific and differentially
enriched pathways between multiple conditions. We expect that the
exact method used for forming statistical associations (replicated
Lasso) could be substituted with other methods10,24,28,30,54–56. However,
by imposing matching time points, we miss time-lagged associations
betweenmRNAs and proteins due to their temporal ordering. Thus, the
next step for the MOBILE pipeline could be to become more flexible
with respect to different time points for different assays to more fully
exploit temporal dependence information for inference of associations.

The above-mentioned matching column order for input matrices
requirementof theMOBILEpipeline in thisworkdoes not restrict users
to study only time points x ligand conditions. For instance, we applied
MOBILE to TCGA datasets to infer cancer subtype-specific pathways,
where the columns of input matrices were individual patients. More-
over, we previously showed that paired input data matrix pairs at dif-
ferent time points (rows: proteomicmeasurements, columns: different
cell lines) could infer robust, time-dependent associations between
proteins and phospho-proteins37. Another way to utilize the MOBILE
pipeline is to find cell line-specific association networks by considering
datasets like the Cancer Cell Line Encyclopedia (CCLE), where hun-
dreds of cell lines were characterized with molecular and functional
assays2,157. MOBILE could be set up where columns represent different
cell lines, and the matrix pair are proteomic and transcriptomic data.
By imposing different higher-level hierarchies for theMOBILE pipeline,
researchers can explore different types of context-specificity by using
data from either single or multiple assays.

The current MOBILE pipeline is appropriate for use with con-
tinuous data only. This is partly due to the datasets we analyzed so far
and in part due to the Lasso regression type selected. However, other

methods within the glmnet package could be substituted, which
would provide additional flexibility on the input data. Another limita-
tion of the current framework is that input matrices need to be com-
plete, withoutmissing values; future versions ofMOBILE could include
data imputation methods to further enhance functionality and enable
the use of sparse data.

Nevertheless, the associations generated by MOBILE are all data-
driven experimental candidates to study ligand-specific linkages
between genes andgeneproducts. Thehighestmagnitude associations
could suggest newhypotheses and inform thedesignof experiments to
explore cross-talk mechanisms or unknown links in the literature. For
instance, by analyzing the IFNγ-specific network only, we hypothesized
new regulatory mechanisms of PD-L1, a critical immunotherapeutic
target. Of the fiveMOBILE-hypothesized connector genes (BST2,CLIC2,
FAM83D, ACSL5, and HIST2H2AA3) between IRF1 and PD-L1, BST2 was
recently recognized as part of an immune/tumor-related signature that
is significantly associated with the overall survival of skin cancer
patients104. Specifically, the BST2 gene signature predicted a response
to a CTLA4 antibody called ipilimumab, suggesting a mechanistic
involvement in tumor progression. Secondly, CLIC2 was shown to be
co-expressed with PD-L1 and PD-1 and act as a good prognosis marker
with higher rates of tumor-infiltrating CD8 +T cells in breast cancer
patients105. Finally, FAM83Dwas shown to be a potential oncogene with
high expression levels associated with poor breast cancer prognosis106.
Moreover, FAM83A (an isoform of FAM83D) was shown to drive PD-L1
expression andbe correlatedwithpoor lung cancer prognosis109. These
results suggest that context-specific gene-gene associations identified
through MOBILE are potential biomarkers for prognosis and patient
response to immune checkpoint inhibition.

Another key capability of the MOBILE pipeline is the IAN-
comparative analysis. For instance, we hypothesized and then experi-
mentally validated that the phenotypic differences between TGFβ1 and
BMP2 perturbations are caused by cell-ECM interactions, specifically
laminin-collagen. When we assessed responses in the absence of col-
lagen-coating, the two ligands induced similar changes, in agreement
with prior findings that both TGFβ1 and BMP2 induce cell differentia-
tion, inhibit cell proliferation, and signal through similar canonical
pathways111–113. Additionally, it was shown before that laminin/collagen
pathway inhibition leads to cell-ECM attachment disruption122,130.
However, there are other TGFβ1-specific ECM-related pathways
(Fig. 6b) and genes that could be further explored for differences
between BMP2 and TGFβ1 conditions. Similarly, studying other ligand-
IAN pairs (e.g., EGF vs HGF, IFNγ vs TGFβ1, and OSM vs IFNγ) could
suggest additional data-driven hypotheses.

We also demonstrated that MOBILE performs well with patient
data. By empirically defining three patient subtypes and applying
LOGO,we determined association networks for HER2-amplified, triple-
negative, and ER+/PR+ subtypes. The pair-wise comparison of corre-
sponding IANs revealed subtype-specific and subtype-independent
(core) enriched pathways. Most of the pathways were previously
reported in association with the mentioned subtype, but MOBILE also
provided hypotheses to explore further. An example of the latter is
that the HER2-amplified subtype network was enriched for the adap-
tive immune response pathway, whereas the TNBC subtype was
associated with innate immune response and keratinization pathways.
Another next step would be to explore patient-specific IANs using the
same TCGA input.

TheMOBILEpipelinehere infers robust associationsbetweengenes
and gene products without prior network knowledge input, enables the
generation of context-specific, gene-level networks of different biolo-
gical modalities in a data-driven way, and provides an exploration of
these networks in a single or paired fashion to pinpoint differentially
activated pathways.We believe the freely-availableMOBILE pipeline will
be broadly helpful in extracting context-specific insights from multi-
omics datasets to help answer targeted biological questions.
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Methods
The Lasso module
The multi-omics datasets from the LINCS consortium76 are pre-
processed using a raw variance filter to retain only 10% (RNAseq,
ATACseq) and 20% (RPPA) highly variant analyte measurements across
median summarized Level 4 data (Fig. 2a, synapse.org/LINCS_MCF10A,
https://doi.org/10.6084/m9.figshare.20294229.v2). The variance cut-off
provides that we only look at analytes with some variability across dif-
ferent (ligand and time point) conditions158–160. The difference in cutoff
percentages is due to thedifference innumberof features across assays.
RPPA had the least, thus retained at a higher percentage (20 compared
to 10). The proteomic (RPPA), transcriptomic (RNAseq), and epigenetic
(ATACseq) datasets are integrated with a central-dogmatic view, such
that pairs ofRPPA+RNAseqandRNAseq+ATACseqdatamatrices are run
through the Lasso module (Fig. 2b, c). The steps of the algorithm37 are:
1. We use glmnet package for lasso regression161. The module takes

two input matrices, Y=left hand side and X=right hand side, and
our goal is to calculate matrix β in Y=β � X+δ. The number and
the ordering of columns in input matrices should be equal
(Fig. 2b). The rows are assay analytes measured and columns
represent ligand/time point conditions.

2. The matrices are column-centered, row-centered, and row nor-
malized. The preprocessing makes sure that the algorithm is not
biased towards high-magnitude analyte measurements but
focused on analyzing based on the shape ofmeasurements across
conditions. It also sustains that the offset value is moved
toward zero.

3. We set the cross-validationparameter ofglmnetpackage to 4 and
turned off the input data standardization option.

4. Next, both matrices are transposed and the transposed Y matrix
(Y’) is separated into column vectors.

5. For each column k of the Y’ (or each row of input matrix Y), a set
of lasso regression coefficients are calculated using glmnet
package. With every iteration, we obtain one row of the final
coefficient matrix β and an offset value δ, which is negligible in
this case (values less than 10−7). We minimize the quantity:

XC

i= 1
Yki �

XR

j = 1
βkjX ji � δk

h i2
+ λ

XR

j = 1
∣βkj ∣ ð1Þ

6. The λ factor (Eq. 1) is estimated via the inherent cross-validation
step of the glmnet package. In short, a set of different λ values are
tested, resulting in different sets of lasso coefficients, each with a
potentially different number of non-zero coefficients.

7. We select the set of lasso coefficients (i.e., the lasso coefficient
vector) corresponding to the minimum estimation error.

8. Repeating steps 5-7 as many times as the number of input Y rows,
we obtain R-many Lasso coefficient vectors, each R2-long.

9. We concatenate the R-many R2-long vectors to obtain a Lasso
coefficient matrix.

10. We repeat the (3–9) steps 10,000 times to obtain an ensemble of
Lasso coefficient matrices. We start each estimation with a dif-
ferent seed for a random number generator.

11. We calculate the average value for every matrix position, based
only on thematrices that are non-zero.Wealsofind the coefficient
indices (matrix positions) that appear (inferred as non-zero) at
least half of the time (currently ≥5000 times). The overlap
between these twomatrices is called the Robust Lasso Coefficient
Matrix (RLCM) and used for the rest of the analyses.

12. The final matrix (β) sustains the equality Y=β � X and contains
association weights relating to the analyte levels of the two input
matrices.

13. When the input data contains all experimental conditions, we
named the resulting robust Lasso coefficient matrix as the FULL-
data matrix.

14. We do steps 1-13 for (i) RPPA (matrixY)-RNAseq (matrixX) and (ii)
RNAseq (matrix Y)-ATACseq (matrix X) input data matrix pairs.

15. To show that the inferred coefficients are non-random, we repe-
ated the above steps for sets of shuffled input matrices, using
Matlab (R2018a and R2021b) randperm function. We saw that the
randomized input matrices resulted in a significantly smaller
number of coefficients inferred (Supplementary Fig. 6). We used
the kstest2 function in Matlab to test for the significance in the
differences (Kolmogorov-Smirnov distances) between real and
shuffled conditions.We obtained p values = 0 for all comparisons,
indicating that the real input has more information content and
thus requires more coefficients to explain the data.

The MOBILE simulation of RPPA-RNAseq inference takes around
2–3 s per run (10,000 instances are run in total: ~8 h), including the
save function in a normal desktop/laptop. The RNAseq-ATACseq
inference simulations were run on Clemson University Palmetto HPC
and took around 8 h per 1000 iteration of the 10,000 instances
(sources used per batch job: number of nodes = 1, number of CPUs =
40, memory = 360 gb). Ten batch jobs were run in parallel, and the
results were concatenated offline afterward.

The LOGO module
In addition to the Lasso module, we employ the leave-one-group-
out (LOGO) module (Fig. 3) to obtain a new robust Lasso coeffi-
cient matrix for each perturbation in the input dataset. Here, the
perturbations are ligand combinations used. We create a ligand-
specific matrix by excluding that ligand condition during the
model run and comparing the resulting matrix to FULL-data robust
Lasso coefficient matrix to determine the coefficients that depend
on the existence of the corresponding ligand data. We apply the
LOGO module for both RPPA-RNAseq and RNAseq-ATACseq input
pairs. Similar in principle to cross-validation, the LOGO module
here enabled us not just to integrate given datasets but to acquire
ligand-specific associations.

The integration
When both proteomic-transcriptomic and transcriptomic-epigenetic
robust Lasso coefficient matrices are obtained, they are merged into a
single, gene-level network (Fig. 2c). This network representation is
named the Integrated Associations Network (IAN), where each node is
a gene, and edge weights represent the Lasso coefficient magnitudes.
Notably, the gene nodes can represent data from one or more RPPA,
RNAseq, or ATACseq sets. Summarizing the networks at the gene level
enabled us to explore pathway enrichments using GSEA80.

GSEA and pathway enrichments
Using the Lasso+LOGOmodules and excluding one ligand condition at
a time, we obtain seven LOGO IANs (PBS, EGF, HGF, OSM, IFNγ, TGFβ1,
and BMP2) in addition to the FULL-data network. We compare each
ligand network with the FULL-data network to determine ligand-
dependent associations and create gene-level network visuals using
Cytoscape162. Next, we calculate the weighted sum of edge weights for
each gene node in the networks and rank them. Then, we run pathway
enrichment analysis using GSEA80 and Reactome to obtain a list of
curated pathways enriched for each network (i.e., ligand-LOGO
condition).

We calculate the gene-level weight α for each gene k (Eq. 2) by
summingover eachedgewidth andnormalizingby the total number of
possible edges.

αgenek
=
∣
P3062

j = 1

P59
i = 1βij ∣RPPA RNAseq

+ ∣
P3062

j = 1

P9321
i = 1 βij ∣RNAseq ATACseq

59 � 3062 � 9321
ð2Þ
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The ranked gene-lists are then imported into GSEA software
(version 4.1.0) and used in the GSEAPreranked analysis. We select
Reactome (v7.2) as the gene set database, keep the default 1000
permutations option, and keep the dataset as is without collapsing
the gene symbols since we already use the HGNC identifiers. We
also choose the classical weighting option and choose “149” as our
seed for permutation for reproducibility. We repeat these steps
for every ligand-specific ranked gene-list from the ligand-
specific IANs.

After the enrichment analysis successfully completes, we use the
Enrichment Map Visualization tool of GSEA, together with Cytoscape
(v3.7.1). We only retain pathways enriched with a p value less than 0.05
and a false discovery rate (FDR) of 0.1. The results for BMP2 and TGFβ1
are given in Supplementary Data 12, 13. For this comparison, we only
retain coefficients with magnitudes larger than 0.1 (Supplemen-
tary Fig. 7).

MOBILE performance on finding known interactions
Wedetermined the lists of genes represented in the RPPA-RNAseq and
RNAseq-ATACseq input matrices and used them to obtain known (lit-
erature-based) interactions via stringApp163 in Cytoscape162 (Supple-
mentary Data 20, 21). Then, we counted the overlap between the
literature interaction lists and 10,000 Lasso coefficientmatrices of real
(yellowdistributions) and shuffled (orange andbluedistributions) data
(Supplementary Fig. 8).

The real data derived Lassomatrices contained significantly more
interactions “correctly” inferred in both RPPA-RNAseq and RNAseq-
ATACseq cases. For the latter, the real data condition yielded twice the
number of known interactions in post-selection shuffled data and
almost twenty times the number of interactions inferred from pre-
selection shuffled data. The number of known interactions identified
by the Robust Lasso Coefficient Matrices are also counted and repor-
ted (dashed lines, Supplementary Fig. 8).

TCGA data analysis
TCGA breast cancer transcriptomic (RNAseq) and proteomic (RPPA)
datasets are downloaded (accessed on November 12, 2022, Supple-
mentary Data 22). A total of 1226 RNAseq and 919 RPPA data files were
obtained, representing 1098 cases (or patients). The data are filtered
for paired files per case with the primary tumor site only. The final list
was comprised of 878 cases (data columns). Then, the datasets are
further cleaned: (i) ribosomal nuclear, long noncoding, micro, and
other unannotated RNA transcripts and transcripts measured only in
less than 10% cases are excluded from RNAseq and (ii) measurements
with NaN values in RPPA are removed. The finalized lists for the
MOBILE pipeline contained 27,797 transcript levels (RNAseq) and 457
protein levels (RPPA).

Next, three subtypes are determined using RNAseq measure-
ments: (i) HER2-amplified (log2(HER2_fpkm+1) > 7), (ii) triple-
negative (TNBC, log2(HER2_fpkm+1) < 7, log2(ER_fpkm+1) < 1, and
log2(PR_fpkm+1) < 1), and (iii) estrogen and progesterone receptor
positive (ER+/PR+, log2(HER2_fpkm+1) < 7, log2(ER_fpkm+1) > 3,
and log2(PR_fpkm+1) > 3). About 89, 129, and 308 cases were
selected for each subtype, respectively. Then, following MOBILE
pipeline guidelines, only the top highly variant analytes (10% for
RNAseq, 20% for RPPA) are retained. MOBILE Lasso Module
(Fig. 2b) is run using all samples (878 columns) to obtain the FULL-
TCGA-IAN. By excluding sample columns for each subtype from
the input data, we ran the LOGO module (Fig. 3) to obtain context-
specific IANs. Finally, the subtype-LOGO-IANs are pair-wise com-
pared to each other, and enriched pathways are determined.

Cell culture
MCF10A cells (ATCC #CRL-10317, acquired from LINCS Consortium/
GordonMills and STR verified internally inMarch 2019) are cultured in

DMEM/F12 (Gibco #11330032) medium supplemented with 5% (by
volume) horse serum (Gibco #16050122), 20 ng/mL EGF (PeproTech
#AF-100-15), 0.5mg/mL hydrocortisone (Sigma #H-0888), 10 μg/mL
insulin (Sigma #I-1882), 100 ng/mL cholera toxin (Sigma#C-8052), and
2mM L-Glutamine (Corning #25-005-CI). Cells were cultured at 37 oC in
5% CO2 in a humidified incubator and passaged every 2–3 days with
0.25% trypsin (Corning #25-053-CI) to maintain subconfluency.
Experimental starvationmedium is DMEM/F12medium supplemented
with 5% (by volume) horse serum (Gibco #16050122), 0.5mg/mL
hydrocortisone (Sigma #H-0888), 100 ng/mL cholera toxin (Sigma #C-
8052), and 2mM L-glutamine (Corning #25-005-CI).

Mycoplasma testing
The cells were tested for Mycoplasma using a detection kit (Lonza
#LT07-701). Following the manufacturer protocol, growth media
(2mL) from the culture plate was spun at 200×g for 5min, and 100μL
from the cleared supernatant was transferred into a well of a 96-well
plate. About 100μL testing Reagent was added into the same well and
let settle for 5min. Then luminescence is measured in Synergy H1
microplate reader (Agilent Technologies, Inc., CA, USA) with Gen5
(v3.08) software. The Gain was set to 200, the integration time to 1 s,
and a single reading was captured. Then, the plate is returned under
the hoodand 100μLof testing Substratewas added into the samewell.
The plate was left to settle for 10min at room temperature. Then, the
second luminescence reading (cell supernatant, Reagent, and Sub-
strate) was taken with the same parameters. A ratio of less than 1
indicates a negative test.

Validation experiments
The cells were seeded in full growth media at 2000 cells/well in tissue
culture treated (no collagen-coating) 96-well plates (Falcon #353072).
After loading, plates were left to settle under the hood for 30min and
then placed in the incubator for 10 h. Next, themedia is exchanged for
experimental starvation media for 15 h. Then, media are replaced with
fresh, experimental media containing the ligand(s): EGF (10 ng/mL,
R&DSystems#236-EG), BMP2 (20 ng/ml,R&DSystems#355-BM) + EGF
(10 ng/ml), and TGFβ1 (10 ng/ml, R&D Systems #240-B) + EGF
(10 ng/ml). Each condition was repeated in triplicate. The plates are
incubated for ~48 h. The cells are fixed using %2 paraformaldehyde
(Alfa Aesar #43368) and stainedwithHoechst (1:10000, by volume, BD
Biosciences #561908) for nucleus localization. The platewas left for 1 h
at room temperature. The wells are washed once with 1X PBS and
replenished with 40μl/well PBS.

Imaging
The plates are imaged at 10X magnification with phase contrast
objective (Agilent/BioTek part number 1320516) and TagBFP filer cube
(Agilent/BioTek part number 1225115, excitation 390 nm, emission
447 nm). A total of 10 × 8 fields of view per well? are imaged with laser
autofocus on the Cytation5 (Agilent Technologies, Inc., CA, USA).
When readingwas done, the tiles weremontaged together by theGen5
(v3.04, Agilen/BioTeK) software using phase contrast images as
registration template (fusion method = linear blend, final image
reduction to 13.71%). The imaging parameters for phase contrast were
LED = 10, Integration time= 8, and Gain = 24. The parameters for the
TagBFP channel were LED = 10, Integration time= 36, and Gain = 24.

Image processing and quantification
The images are processed for cell segmentation and finding cell cen-
troids. In short, TrackMate (v7.1.0) plugin from ImageJ (v2.3.0/1.53 f) is
used to locate cell nuclei in each image (Hoechst stain + BFP channel,
see https://doi.org/10.6084/m9.figshare.20294229.v2) and the sum-
mary was exported as a comma separated file (see https://doi.org/10.
6084/m9.figshare.20294229.v2). The parameters for the plugin were
Detector=LoG, Estimated object diameter=5 pixels, Quality
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threshold=0, Pre-process with median filter=ON, Sub-pixel localiza-
tion=ON, and Initial thresholding=Auto.

Spatial and microenvironmental metric calculations
The csv files exported by ImageJ included each cell object as a row and
reported its center coordinates with other default information. The
files were imported, and the cells per cluster and distance-to-
neighbors metrics were evaluated using R (v4.1.3) scripts (on fig-
share https://doi.org/10.6084/m9.figshare.20294229.v2, github.com/
cerdem12/MOBILE) and packages (readr v2.1.2, dplyr v1.0.9, ggplot2
v3.3.5, tidyr v1.2.0, stringr v1.4.0, LPCM v0.46-7, foreach v.1.5.2)
and RStudio (2022.02.0 + 443 Prairie Trillium release). The script is
adapted from github.com/MEP-LINCS/MDD/blob/master/R/MDD_
Immunofluorescence_Lvl0Data_Processing.R76.

Statistics and reproducibility
Although no statistical method was used to predetermine sample
sizes, community standards were followed, and at least three biologi-
cal replicates were run. The experiments were not randomized.

Data availability
The LINCS datasets analyzed during the current study are available in
the Synapse repository, synapse.org/LINCS_MCF10A76,164. The data
used to plot figure panels are provided in Source Data. The immuno-
fluorescence data generated, processed LINCS data, and processed
TCGA data are provided on figshare at https://doi.org/10.6084/m9.
figshare.20294229.v2165. Source data are provided with this paper.

Code availability
The final model scripts, files, and information are available at
github.com/cerdem12/MOBILE166.
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