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Abstract
Motivation: Genome-wide association studies (GWAS) have been successful in identifying genomic loci associated with complex traits.
Genetic fine-mapping aims to detect independent causal variants from the GWAS-identified loci, adjusting for linkage disequilibrium patterns.

Results: We present “FiniMOM” (fine-mapping using a product inverse-moment prior), a novel Bayesian fine-mapping method for summarized
genetic associations. For causal effects, the method uses a nonlocal inverse-moment prior, which is a natural prior distribution to model non-null
effects in finite samples. A beta-binomial prior is set for the number of causal variants, with a parameterization that can be used to control for po-
tential misspecifications in the linkage disequilibrium reference. The results of simulations studies aimed to mimic a typical GWAS on circulating
protein levels show improved credible set coverage and power of the proposed method over current state-of-the-art fine-mapping method
SuSiE, especially in the case of multiple causal variants within a locus.

Availability and implementation: https://vkarhune.github.io/finimom/.

1 Introduction

Leveraging genetic associations from up to millions of individ-
uals, genome-wide association studies (GWAS) have been
widely used to find genomic loci associated with complex
traits and disease liability (Visscher et al. 2017). Such genomic
regions can be further prioritized to analyze disease etiology
and potential pharmacological targets in more detail
(Gallagher and Chen-Plotkin 2018).

Each genomic loci highlighted in a GWAS may harbor sev-
eral causal variants [such as single-nucleotide polymorphisms
(SNPs)], and the identification of these variants is important
for a better understanding of the biological mechanisms un-
derlying the trait of interest. The difficulty in dissecting the
causal variants within a specific locus is compounded by the
linkage disequilibrium (LD) patterns, as noncausal variants in
LD with a true causal variant will also show associations with
the trait of interest.

Fine-mapping methods aim to distinguish independent
causal variants for a given trait within a specific genomic lo-
cus (Schaid et al. 2018). Assuming additive effects of individ-
ual variants, fine-mapping can be considered as a variable
selection problem, where the aim is to identify the true causal
signals from a candidate set of genetic variants (O’Hara and
Sillanpää 2009, Fan and Lv 2010).

As the effect sizes of individual genetic variants are typically
minuscule, large sample sizes are required in both GWAS and

fine-mapping to obtain adequate statistical power to detect
robust genetic associations. In addition to practical difficulties
and privacy concerns in providing access to large-scale indi-
vidual-level genetic data, summarized genetic associations
from GWASs are increasingly publicly available. Therefore,
the use of summary-level genomic data has become a standard
in carrying out post-GWAS analyses (Pasaniuc and Price
2017). Accordingly, many of the common fine-mapping
methods are either compatible with or developed for GWAS
summary statistics (The Wellcome Trust Case Control
Consortium et al. 2012, Yang et al. 2012, Hormozdiari et al.
2014, Kichaev et al. 2014, Chen et al. 2015, Kichaev and
Pasaniuc 2015, Benner et al. 2016, Newcombe et al. 2016,
Wang et al. 2020, Zou et al. 2022).

A key element in fine-mapping using summarized data is
the correct specification of the LD structure underlying the
locus-specific genetic associations. The most simple method of
summary data fine-mapping via Bayes factors (The Wellcome
Trust Case Control Consortium et al. 2012) makes a simplify-
ing assumption of one causal variant per locus. This strategy
has the benefit of not needing LD information, albeit the as-
sumption itself may not be realistic (Abell et al. 2022).
However, if no in-sample LD information is available, care
must be taken in how to obtain the LD reference. Ideally, the
reference is derived from a sufficiently sized sample (Benner
et al. 2017) that is ancestrally similar to the population in the
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summary statistics, and with similar data quality control pro-
cedures applied (Kanai et al. 2022). In practice, this target
may be very difficult to achieve (Kanai et al. 2022).

Here, we propose a Bayesian fine-mapping method for
quantitative traits based on nonlocal product inverse-moment
(piMOM) priors using summary-level genetic associations.
Originally proposed by Johnson and Rossell (2010), nonlocal
prior densities have zero density at the null parameter value,
and the nonlocal product priors are independent products of
such densities (Johnson and Rossell 2012). Such priors for re-
gression coefficients have attractive properties of both theo-
retical and finite-sample performance for variable selection
and prediction (Johnson and Rossell 2012, Rossell and
Telesca 2017, Shin et al. 2018). In the context of genomic
analyses, nonlocal priors for binary, continuous, and time-to-
event outcomes have been developed for individual-level data
(Nikooienejad et al. 2016, Sanyal et al. 2019, Nikooienejad
et al. 2020). Prior to our work, no methods based on nonlocal
priors have been applied on summary-level genetic data. Of
note, analyses of summary-level genomic data provide an ad-
ditional benefit of algorithms not scaling with the sample size.

The proposed method allows a flexible way to take the ex-
ternal LD information into account. We treat the model di-
mension as a parameter for which we assign a beta-binomial
prior distribution. Such prior has been shown to provide opti-
mal model selection in high-dimensional settings (Castillo
et al. 2015). Crucially, our formulation of the prior allows the
proposed method to be adjusted according to whether an in-
sample or out-of-sample LD information is used.

We further apply the approximate Laplace’s method
(Rossell et al. 2021) and a locally balanced proposal (Zanella
2020) in our model selection posterior sampling algorithm,
leading to excellent computational efficiency. We demonstrate
our method’s competitive performance to the current state-of-
the-art fine-mapping method SuSiE (sum-of-single-effects re-
gression) by different simulated scenarios and an applied
example.

2 Materials and methods
2.1 Statistical model

Let Y ¼ ðy1 . . . yNÞT be a vector of the mean-centered ob-
served values for a quantitative trait of interest, and X a stan-
dardized (mean¼0; standard deviation¼ 1) genotype matrix
of size N�P for genetic variants within a specific genomic lo-
cus. Given a linear model

Y ¼ Xbþ e; (1)

where e �MVNNð0; diagðr2
e ÞÞ, our aim is to identify the

causal variants xj for which bj 6¼ 0. In other words, we aim to
identify a model (or a causal configuration) m, which only
includes the d causal variants, from a set of candidate models
M of maximum size (dimension) K. Typically, the magnitude
of variants included in a fine-mapping application vary from
P � 102 to P � 103, and it is also reasonable to assume that
the true model dimension d � K� P.

In the absence of individual-level genetic data, we resort to
the use of GWAS summary statistics, where the outcome is
regressed on each genetic variant separately, with population
stratification adequately taken into account, and with further
adjustments for additional covariates, such as sex, age or
technical covariates, carried out where appropriate

(Uffelmann et al. 2021). We require that the coefficient esti-
mates b̂j and their standard errors SEðb̂jÞ are available in the
GWAS summary statistics. Furthermore, we assume that there
is a good estimate available for the LD matrix RP�P, and that
the effect allele frequencies (EAFs) for each variant and
VarðYÞ are known.

Assuming a large N and small bj (both of which are usually
the case in GWAS), we follow the proposal by Zhu and
Stephens (2017) and write the likelihood for the observed ef-
fect estimates b̂ as

p b̂jb
� �

¼ j2pŜR̂Ŝj�1=2 exp

� 1

2
b̂� ŜR̂Ŝ

�1
b

� �T

ŜR̂Ŝð Þ�1
b̂� ŜR̂Ŝ

�1
b

� �� �( )
;

(2)

where Ŝ ¼ diagðSEðb̂1Þ . . . SEðb̂JÞÞ and R̂ is an estimate of

LD matrix R. If the summary statistics are given in per-allele
units, these can be trivially transformed into standardized
units by assuming a Hardy–Weinberg equilibrium for the var-

iants and multiplying both b̂j and SEðb̂jÞ byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EAFjð1� EAFjÞ=VarðYÞ

p
.

2.1.1 Nonlocal prior for effect size b

A Gaussian density is commonly used for an effect size prior
of a causal variant. Such zero-centered, i.e. “local,” priors
have the maximum density for the causal effect size at the null
parameter value. However, when conditioning on model m
which only includes the causal variant(s), such prior densities
may seem counter-intuitive due to unnecessary strong shrink-
age of the causal variants toward the null value. Therefore,
conditioned on model m, we set a nonlocal product inverse-
moment (piMOM) prior for the causal effect size vector b:

pbðbjs; r;mÞ ¼
Y
k2m

sr=2

Cðr=2Þ jbkj�ðrþ1Þ exp � s

b2
k

� �
; (3)

where s > 0; r 2 1; 2; . . ., and Cð�Þ is the gamma function.
This prior is a product of independent inverse-moment prior
densities for each component of the parameter vector in the
model. As per the definition of a nonlocal prior, the density
value at zero is 0, which is a natural characteristic for the ef-
fect size prior. The product formulation of the prior ensures
that the density is zero if any of the components in the param-
eter vector is zero, which leads to a strong penalty on the
parameters (Johnson and Rossell 2012). Of note, in Equation
(3), we also implicitly condition on the model dimension d.

Parameter r controls the tail behavior of the distribution.
Selecting r¼ 1 leads to Cauchy-like tails, which are known to
protect against the potential over-shrinkage of large effect
sizes for sparse signals (Carvalho et al. 2010).

The parameter s controls the spread of the effects away
from 0, in that smaller s allows for smaller causal effect sizes
to be detected. As the magnitude of the smallest detectable
effect sizes depends on the sample size, we suggest a formal
way for selecting s based on N such that Pðjbjj >
N�1=2zqÞ ¼ 1� q. For default values, we suggest zq ¼ 3:29
and q¼ 0.05 (Supplementary Methods and Table S1).

Figure 1 depicts a comparison of a marginal inverse-
moment density with a Gaussian density, which is commonly
used as an effect size prior in genetics (Wakefield 2009). The
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inverse-moment prior possesses heavier tails which allow for
less shrinkage of large effect sizes, and while its density van-
ishes as bj ! 0, there is still a non-zero prior probability to
detect small but non-zero effect sizes.

2.1.2 Prior for model dimension and accounting for potential
linkage disequilibrium misspecifications

As a prior for model dimension d (i.e. for the number of
causal variants), we assign a beta-binomial distribution:

pdðdjP; a; bÞ ¼
P
d

� �
Bðaþ d;P� d þ bÞ

Bða;bÞ ; (4)

where a;b > 0; d ¼ 1; . . . ;K, and Bð�Þ is the Beta function.
This prior arises from a binomial distribution for the model
dimension with parameters P and q, where q is being assigned
a Beta(a, b) distribution. As fine-mapping is typically applied
in situations with at least one causal variant, we set
Pðd ¼ 0Þ ¼ 0. The model dimension is also restricted by a
maximum model dimension K� P, with Pðd ¼ lÞ ¼ 0 for
l ¼ Kþ 1; . . . ;P. The beta-binomial prior is consistent with
the family of priors suggested by Castillo et al. (2015) for re-
covering the correct sparse model in high-dimensional
regression.

One choice for the parameters a and b, as discussed by
Castillo et al. (2015) and Castillo and van der Vaart (2012),
is to set a¼ 1 and b ¼ Pu, u> 1. The hyperparameter u con-
trols the concentration of the probability mass of the model
dimension prior, in that larger u prioritizes smaller models a
priori (Supplementary Figure S1). Earlier work on summary
data fine-mapping has shown that a misspecified LD matrix is
likely to lead to more false positives (Benner et al. 2017).
Therefore, a natural and an adaptive way to take into account
the potential misspecification of the LD matrix is by increas-
ing u, which places more prior probability mass to models of
smaller dimension. This protects against false positives in the
posterior while allowing the data to pick up strong signals of
multiple causal variants, provided that the data strongly favor

such models. Importantly, in the case of in-sample (or other-
wise highly accurate) LD matrix being available, such strong
shrinkage toward sparse models is not necessarily needed,
and therefore u can be set to a smaller value, thus not
compromising power at the expense of the false positives.

All model hyperparameters and our reasoning for choosing
their values are summarized in Supplementary Table S2.

2.1.3 Posterior inference

Let pmðDÞ denote the marginal likelihood of the data under
model m, again implicitly conditioning on the model dimen-
sion d. To obtain the posterior probability for model m of di-
mension d, given data D ¼ ðb̂; Ŝ; R̂Þ, we can apply Bayes’ rule
and obtain

PðmjDÞ ¼ pdðdÞpmðDÞP
j2M pdðjÞpjðDÞ

;

where j refers to the dimension of model j. When comparing
different models, the denominator is the same for all models
and can be canceled out in the algebra. To calculate pmðDÞ,
we use the approximate Laplace’s method (Rossell et al.
2021), based on a second-order Taylor approximation of the
log-integrand:

pmðDÞ ¼
Ð

pðb̂jbmÞpbðbmÞdbm ¼
Ð

e�f ðbmÞdbm

� e�f ð~bmÞð2pÞd=2jH~bm
j�1=2 exp

1

2
gT

~bm
H�1

~bm
g~bm

	 

;

(5)

where bm refers to the parameter vector corresponding to the
model m,

f ðbÞ ¼ �logðpðb̂jbÞÞ � logðpbðbÞÞ; (6)

and g~bm
and H~bm

are the gradient and Hessian of f, respec-
tively, evaluated at ~bm. Plugging in Equations (2) and (3) into
(6), dropping the constant terms with respect to the parame-
ters, and denoting ẑ ¼ Ŝ

�1
b̂, we have
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:

Using the approximate Laplace’s method is considerably
faster than the conventional Laplace’s method, where f needs

to be optimized (Rossell et al. 2021). We set ~bm ¼ R̂
�1

m b̂m, in
which the subscript m refers to the indices of model m. In case

of a numerically ill-conditioned R̂m or H~bm
, we resort to solv-

ing pmðDÞ using the conventional Laplace’s method, as in
Johnson and Rossell (2012) and Nikooienejad et al. (2016;
Supplementary Methods).

Figure 1. Comparison of a marginal inverse-moment (iMOM, solid black

line) distribution with s ¼ 0:00385 and a Gaussian (N, dashed red line)

distribution with mean 0 and variance 0:12.
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2.1.4 Algorithm and implementation

To generate dependent samples from the posterior distribu-
tion, we propose the following Markov chain Monte Carlo
(MCMC) sampling scheme:

1) Choose initial model mcurr.
2) For i ¼ 1; . . . ; niter

a) To create a proposal model mprop, randomly select to
either add, delete, or swap one of the active variables
in mcurr, with the proposed model dimension dprop

constrained at 1 � dprop � K:
1) Add variable with probability padd that is propor-

tional to each variable’s squared correlation with
the residuals of the current model: padd /
ðXTecurrÞ2, where XTecurr / b̂� Rbcurr.

2) Delete variable with uniform probability from all
active variables.

3) Swap: select a variable to be swapped to inactive
with uniform probability from all active variables
in mcurr – select the variable to be swapped to ac-
tive with probability pswap that is proportional to
the squared correlation with the variable to be
swapped to inactive: pswap / r2

swap.
b) Using the proposed model mprop, compute acceptance

probability

a ¼ mp

mp þmc
; (7)

where

mp ¼ pdðdpropÞpmpropðDÞqðmcurrjmpropÞ; (8)

mc ¼ pdðdcurrÞpmcurrðDÞqðmpropjmcurrÞ; (9)

dprop and dcurr are the dimensions of models mprop

and mcurr, respectively, and qðm0jmÞ is the condi-
tional probability of the proposal for model m0, given
model m.

c) Sample u � Uð0;1Þ, and if a > u, then set
mcurr ¼ mprop.

In the “add”-step, we give the largest probabilities to varia-
bles that have the largest correlations with the residuals of the
current model. This bears similarities to the screening method
proposed by Shin et al. (2018). Our method allows a non-
zero probability for all variables, instead of considering only
the variables that correlate highly with the residuals of the
current model. The probabilities required for qðmcurrjmpropÞ
in the “delete”-step can be cheaply evaluated by seeing that
XTecurr �XTeprop / Rðbprop � bcurrÞ, and that the number of
non-zero elements in the vector ðbprop � bcurrÞ is at most
maxðdcurr; dpropÞ.

In the “swap”-step, we prioritize variants with high correla-
tions with a variant already existing in the model. This pre-
vents the model from deviating far from an already good fit,
in that the variant added to the model is likely in high LD
with a variant to be replaced. This also provides a natural and
efficient way to take into account the uncertainty of a true
causal variant among a group of variants in very high LD (see
also Supplementary Methods for further considerations of ex-
tremely high LD).

The acceptance probability in Equation (7) is also called the
Barker proposal (Barker 1965), suggested for nonlocal priors

in Johnson and Rossell (2012). Furthermore, Zanella (2020)
showed this to be the optimal proposal regarding the mixing
time in the case of binary indicators. Accordingly, by examin-
ing the trace plots for the realizations of the model dimension
parameter in the simulations (Section 2.2), we found similar
convergence for Markov chains of length 12 500 with a 2500
burn-in (i.e. 10 000 samples from the posterior) as for
Markov chains of length 60 000 with a 10 000 burn-in (50
000 samples).

In Equations (8) and (9), the model dimension prior pd and
the marginal likelihood pm refer to those in Equations (4) and
(5), respectively. The interest is in whether the variants are
causal or not, or in other words, whether they are included in
model m. Therefore, we have integrated out all other parame-
ters (that is, the effect sizes b) in Equation (5) using the ap-
proximate Laplace’s method. The proposed sampling scheme
is related to reversible jump MCMC algorithm (Green 1995),
however our formulation and use of the approximate
Laplace’s method avoids complicated sampling from varying-
dimensional model space.

The proposed fine-mapping method “FiniMOM” (fine-
mapping using a product inverse-moment prior) with the de-
scribed sampling scheme is implemented in a freely available
R package: https://github.com/vkarhune/finimom.

2.1.5 Credible sets

We adopt the proposed approach by Lee et al. (2018) and
Wang et al. (2020) and treat credible sets as the main tool for
posterior inference. A credible set at level a 2 ð0; 1Þ is defined
as a set of variants that contain a true causal variant with
probability larger than a.

Via credible sets, we can present the uncertainty in both (i)
the number of causal variants that are supported by the data
and (ii) the identification of a true causal variant from a can-
didate set of variants for a specific set (Supplementary
Methods). We can directly use the posterior distribution of
model dimension, Pðd ¼ ljDÞ;1 � l � K, to obtain the pos-
terior probabilities for the supported number of signals l, and
equivalently, the number of credible sets. The credible sets are
then created at coverage al, which represent the coverage of a
conditioned on l signals. In addition to the credible sets, poste-
rior inclusion probabilities (PIPs) for each variant
PIPj ¼ Pðbj 6¼ 0jDÞ; j ¼ 1; . . . ; J, can be calculated as the pro-
portion of the posterior samples where variant j is included in
the model.

2.1.6 Clumping variants and linkage disequilibrium
consistency check

To improve the implementation of our method, we also pre-
sent options for clumping extremely highly correlated var-
iants, and a consistency check for the out-of-sample LD
reference. The details of these procedures are given in
Supplementary Methods.

2.2 Simulation studies

We conducted simulation studies to investigate the accuracy
and speed of our proposed method. The genotype data used
for simulations were obtained from two Finnish population-
based pregnancy-birth cohorts, Northern Finland Birth
Cohort 1966 (NFBC1966; N¼ 5400; http://urn.fi/urn:nbn:
fi:att:bc1e5408-980e-4a62-b899-43bec3755243) (Sabatti
et al. 2009, University of Oulu 2022a, Nordström et al. 2022)
and Northern Finland Birth Cohort 1986 (NFBC1986;
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N¼ 3743; http://urn.fi/urn:nbn:fi:att:f5c10eef-3d25-4bd0-
beb8-f2d59df95b8e) (Järvelin et al. 1993, University of Oulu
2022b) (Supplementary Methods). Genotype data from
NFBC1966 were used for phenotype simulations to create the
summary-level data, and genotype data from NFBC1986 for
estimating the out-of-sample LD matrix.

We randomly selected five protein-coding genes of varying
size from different chromosomes, and selected the region 6100
kb around each gene for fine-mapping. The variants were fil-
tered for availability in both NFBC1966 and NFBC1986 data-
sets, resulting in the number of variants in the fine-mapped loci
varying from 387 to 2996 (Supplementary Table S3).

We considered scenarios of 1, 2, or 5 causal variants
explaining 0.015 or 0.03 of the phenotypic variance
(Supplementary Methods). The parameters used in the simu-
lations represent plausible scenarios for protein quantitative
trait loci (pQTL) analyses (Ferkingstad et al. 2021). The
resulting summary statistics (i.e. association estimates and
their standard errors) and an LD matrix (see below) were
given as inputs to the considered fine-mapping methods.

To investigate the influence of the choice of the LD matrix
R̂, we compared the performance of using in-sample LD matrix
(i.e. calculated using NFBC1966 genotype data) and out-of-
sample LD matrix, calculated using NFBC1986 genotype data.
We clumped the variants at r2 ¼ 0:99, and applied the LD in-
consistency check when out-of-sample LD matrix was used.

Each scenario was repeated 100 times. For all simulations,
r¼ 1, and the maximum number of causal variants K¼ 10.
We varied the hyperparameters s 2 f0:00320;0:00385;
0:00538;0:0083g and u 2 f1:05; 1:25;1:5; 1:75;2;2:25; 2:5g
(see Supplementary Methods and Table S1 for how s values
for the simulations were selected). MCMC was run for 12
500 iterations, of which we excluded the first 2500 as a
“burn-in,” and used the last 10 000 for posterior inference.

The two main performance measures were the 95% credi-
ble set coverage (the proportion of the credible sets containing
a true causal variant) and power (the proportion of true
causal variants included in a credible set). We also evaluated
the median size of the credible sets, the sets being ideally as
small as possible with adequate coverage and power. The
sampling variability of the estimates in the replication results
is quantified by 95% confidence intervals, calculated using bi-
nomial distribution for coverage and power, and by 1000
bootstrap samples for median model dimension.

We compare our method with the current state-of-the-art
method of sum-of-single-effects (SuSiE) regression using sum-
mary statistics, which has been shown to perform well against
many other fine-mapping methods (Wang et al. 2020, Zou
et al. 2022). The SuSiE method applies a “sum-of-single-
effects” prior:

bjb1; . . . ; bL ¼
XL

l¼1

bl;

bljcl;bl ¼ clbl; l ¼ 1; . . . ;L;

cl �Multinomialð1;pÞ;

bl � Nð0;r2
l Þ:

The overall vector of effect sizes b is a sum of L effect size
vectors with exactly one non-zero element, with a Gaussian
prior for the non-zero effect size. The model fitting is done via

Iterative Bayesian Stepwise Selection (IBSS) described by
Wang et al. (2020) and Zou et al. (2022) extended its adapta-
tion for summarized data. We applied SuSiE with L¼10 and
with the effect size prior variance r2

l estimated from the data.
The independent credible sets (at most L), and variant-specific
PIPs were extracted from SuSiE output.

To compare the running times of the methods and to assess
the scenarios of a larger sample size and a smaller phenotypic
variance explained, we conducted additional simulations us-
ing 50 000 observations from a synthetic HAPNEST genotype
dataset (Wharrie et al. 2022; Supplementary Methods).

2.3 Applied real data example

We illustrate the performance of our method in real data for
genetic associations of interleukin-18 (IL18), a proinflamma-
tory cytokine that stimulates several cell types as an inflam-
matory factor (Akdis et al. 2011). The source GWAS
summary statistics on IL18 are based on the analysis of 3675
individuals in three Finnish cohorts (Ahola-Olli et al. 2017,
Kalaoja et al. 2021), which identified three loci with at least
one variant associated with circulating IL18 levels at
p < 5� 10�8. These three loci (61 Mb from the variant with
the lowest P-value) were selected for fine-mapping, in which
we applied FiniMOM with s ¼ 0:00566 (estimated based on
the sample size), r ¼ 1;u ¼ 2:25 and K¼ 10, and SuSiE (ver-
sion 0.12.16) with L¼ 10 and r2

l estimated from the data.
NFBC1966 genotype data were used to generate the (out-of-
sample) LD matrix. We compare the variants contained in the
credible sets given by each method, and further assess the
marginal associations of these variants in an external GWAS
on IL18, conducted in up to 19 195 individuals of European
ancestries (Folkersen et al. 2020).

The analyses were conducted using R software. The scripts
for simulations are available at: https://github.com/vkarhune/
finimomSimulations.

3 Results
3.1 Analysis of simulation replicates

The FiniMOM main simulation results across all scenarios
with varying values of hyperparameters s and u are presented
in Figure 2. The credible set coverage improved with larger
values of u and smaller values of s. While the credible set
power also improved with decreasing s, it plateaued for u
such that the largest power was detected for u¼1.5, with a
slow decrease in power for larger values. As expected, using
the in-sample LD consistently outperformed the use of an LD
matrix from a reference panel.

Based on the investigation of FiniMOM performance using
different values of s and u, we carried out the comparison
with SuSiE fine-mapping using s ¼ 0:00385 and u¼ 2 for in-
sample LD and u¼ 2.25 for out-of-sample LD. These values
were selected as a compromise of the ideal credible set cover-
age and power.

The comparison of credible set coverage between
FiniMOM and SuSiE in the main simulations is shown in
Figure 3. While the differences within each scenario were
mostly minor, FiniMOM produced consistently larger credi-
ble set coverage than SuSiE. Interestingly, FiniMOM with
out-of-sample LD was not notably worse than SuSiE with in-
sample LD in any of the scenarios. SuSiE credible set coverage
was superior to FiniMOM in the simulations of larger sample
size (N¼ 50, 000; Supplementary Figures S2 and S3).
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FiniMOM showed better statistical power to detect
multiple causal variants than SuSiE (Figure 4). The largest
differences in favor of FiniMOM were detected in the five-

causal-variant scenarios. FiniMOM also outperformed SuSiE
with respect to power across different sample sizes and pheno-
typic variance explained (Supplementary Figures S2 and S3).

The median credible set sizes were similar or somewhat
larger in FiniMOM (Supplementary Figure S4). The credible
set sizes differed the most in the cases of low heritability and a
large number of causal variants.

When comparing the computational times, both FiniMOM
and SuSiE scaled well with increasing number of variants con-
sidered (Supplementary Figure S5). Both methods also pro-
vided similar distributions for the PIPs and their ranks of
simulated causal variants (Supplementary Figure S6), as well
as for the number of credible sets (Supplementary Figure S7).

The coverage and power estimates across all simulation sce-
narios using NFBC1966 genotype data are given in Table 1.
FiniMOM had better coverage and power for both in-sample
LD and out-of-sample LD than SuSiE, with somewhat larger
median credible set size.

3.2 Applied example

We then ran an applied example using GWAS summary sta-
tistics on circulating IL18 levels (Kalaoja et al. 2021). We
chose three genomic regions—NLRC4, RAD17, and
BCO2—harboring variants at p < 5� 10�8 (6 1 Mb win-
dow from the lead variant) for fine-mapping (Table 2), and
investigated the variants in the produced credible sets in a sep-
arate GWAS on IL18 levels (Folkersen et al. 2020) for replica-
tion (“replication GWAS”). The run times (using Intel Xeon
processor running at 2.1 GHz) for NLRC4, RAD17, and
BCO2 loci were 8.3, 3.4, and 6.8 s, respectively. For SuSiE,
the same run times were 5.8, 3.1, and 5.8 s, respectively.

The results for IL18 are summarized in Figure 5 and
Supplementary Figures S8 and S9. Both methods selected the
same number of credible sets for each loci, with minor devia-
tions in the numbers of causal variants. The uncertainty in the
number of credible sets is provided only by FiniMOM method
(Table 3).

For NLRC4, FiniMOM produced a smaller credible set,
consisting of only two variants, rs385076 and rs659239. The
former SNP was also the top variant in the replication
GWAS. The size of the corresponding SuSiE credible set was
45 variants (Figure 5). This is due to FiniMOM assigning
larger PIP for the lead variant rs385076 (FiniMOM
PIP¼0.94, SuSiE PIP¼ 0.70; Supplementary Figure S10).
Both methods detect variant rs17229943 as the lead signal
(and as its own credible set) at RAD17 locus. In addition,
there were two other credible sets detected by both methods.

Figure 2. 95% credible set coverage (upper panel) and power (lower

panel) and their 95% confidence intervals in the Northern Finland Birth

Cohort 1966 simulation study (calculated over 100 simulation replicates)

using FiniMOM with different values for hyperparameters s and u. s
controls the spread of the detectable effect sizes, and u controls the prior

for model dimension. Larger values of s correspond to larger causal effect

sizes that can be detected, while larger values for u refer to stronger

priors toward smaller dimensions. The parameter value combinations

used in the subsequent comparisons with SuSiE are highlighted with a

box. LD: linkage disequilibrium; SuSiE: sum-of-single-effects.

Figure 3. Comparison of credible set coverage and their 95% confidence

intervals for FiniMOM and SuSiE in the simulation study (calculated over

100 simulation replicates). The grey dashed line represents the nominal

95% target coverage. LD: linkage disequilibrium; FiniMOM: Fine-mapping

using inverse-moment priors; SuSiE: sum of single effects.

Figure 4. Comparison of credible set power and their 95% confidence

intervals for FiniMOM and SuSiE in the simulation study (calculated over

100 simulation replicates). LD: linkage disequilibrium; FiniMOM: fine-

mapping using inverse-moment priors; SuSiE: sum of single effects.
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However, no strong signal was detected for the variants in
these credible sets in the replication GWAS (Supplementary
Figure S8). Both FiniMOM and SuSiE were able to distinguish
the peak BCO2, and both produced one credible set with the
same variants included. This signal was also detected in the
replication GWAS (Supplementary Figure S9).

4 Discussion

In this article, we have proposed a novel fine-mapping
method for summarized genetic associations using
product inverse-moment priors. Additionally, incorporating
theoretical results of the model dimension prior in very sparse
regression settings, we propose an adjustable beta-binomial
prior to be used. The proposed approach showed improved

detection of causal variants across various scenarios which
were aimed to mimic typical settings in pQTL association
analyses (Ferkingstad et al. 2021). Our method also worked
well in the applied example, is competitive to SuSiE in abso-
lute running times, and scales well even for large genetic
regions.

In Bayesian fine-mapping methods, a common way is to set
a Gaussian prior for the causal effect sizes. This allows for
effects that are arbitrarily close to zero with non-negligible
probability (Figure 1). While such small effect sizes may exist,
these cannot be reliably detected with finite datasets. In con-
trast, the piMOM prior applied here can be set such that, con-
ditioned on the variant being causal, the probability for the
absolute values of the detectable effect sizes being smaller
than a specific threshold can be determined a priori. Apart
from the use of nonlocal priors (Nikooienejad et al. 2016,
Sanyal et al. 2019, Nikooienejad et al. 2020), similar
approaches can be found in QTL mapping literature (Knürr
et al. 2011, 2013, Walters et al. 2019), and we believe using
such priors is a natural way to analyze genomic datasets.

The better performance of FiniMOM over SuSiE seems to
come at the expense of slightly larger credible sets. However,
based on the simulations, the differences in the set sizes were
notable in the cases of low phenotypic variance explained and
multiple causal variants, implying that FiniMOM better
allows for uncertainty in these situations. In the scenarios of a
single causal variant, the sizes were largely similar.

We also highlight our method’s flexibility in the tradeoff
between credible set coverage and power, easily incorporated
via the hyperparameters s and u which control the detectable
effect sizes and the model dimension prior, respectively.
Similarly, FiniMOM is highly adaptable to deal with either
in-sample or out-of-sample LD reference. Moreover, unlike in
SuSiE, but similarly as in FINEMAP method (Benner et al.
2016), we also obtain the uncertainty in the number of credi-
ble sets in a fully Bayesian way.

Some limitations of our work should be mentioned. In the
absence of in-sample LD information, the importance of a
good LD reference cannot be overstated and, while our
method is shown to be robust for out-of-sample LD referen-
ces, it naturally cannot recover poor LD reference and data
quality. We set the hyperparameters r and a as constants and
did not conduct an exhaustive search over their parameter
spaces. We did not consider the situations where the effect
sizes depend on the allele frequencies of the variants (Schoech
et al. 2019), however this can be easily incorporated by allow-
ing the prior parameter s to vary across variants (Johnson
and Rossell 2012). Finally, our current method does not cover
varying LD structures across different ancestries (Lu et al.
2022), infinitesimal polygenic effects (Cui et al. 2022), or mul-
tivariate outcomes (Arvanitis et al. 2022).

In summary, we have proposed a novel genetic fine-
mapping method for summarized data that outperforms a

Table 1. Estimates and 95% confidence intervals (CIs) for mean credible set coverage, mean credible set power, and median credible set size across all

simulated scenarios using Northern Finland Birth Cohort 1966 genotype dataset.

Method LD matrix Coverage Power Median size

FiniMOM In-sample 0.909 (0.901–0.917) 0.551 (0.540–0.562) 13 (13–14)
FiniMOM Out-of-sample 0.901 (0.892–0.910) 0.513 (0.502–0.524) 12 (11–13)
SuSiE In-sample 0.895 (0.885–0.903) 0.493 (0.482–0.504) 11 (10–12)
SuSiE Out-of-sample 0.890 (0.880–0.899) 0.492 (0.481–0.503) 11 (10–12)

The CIs are based on binomial distribution for coverage and power, and 1000 bootstrap samples for median size.

Table 2. Genomic regions used in the applied example.

Lead variant Nearest gene Genomic region (hg19) Variants

rs385076 NLRC4 chr2:31,489,851–33,489,851 6511
rs17229943 RAD17 chr5:67,682,536-69,682,536 3043
rs12420140 BCO2 chr11:111,071,294–113,071,294 5862

Figure 5. Locus plot of genetic associations (� log 10ðpÞ) per each variant

within NLRC4 locus (61Mb from rs385076 variant), with credible sets

highlighted for FiniMOM (left panels) and SuSiE (right panels) in the

discovery GWAS (top panels) and in the replication GWAS (bottom

panels). FiniMOM: fine-mapping using inverse-moment prior; SuSiE: sum

of single effects; GWAS: genome-wide association study.

Table 3. FiniMOM posterior distribution for the number of credible sets in

each locus.

Number of credible sets

Locus 1 2 3 4 >5

rs385076 >0.99 0.005 0 0 0
rs17229943 0.004 0.05 0.91 0.03 0
rs12420140 0.99 0.01 0 0 0
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current state-of-the-art fine-mapping method. The specific
strengths in detecting multiple causal variants and adaptabil-
ity to deal with out-of-sample LD information make
FiniMOM an attractive option for fine-mapping studies of
quantitative traits.
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