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Abstract
Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancer cases and features a strong
predilection for early metastasis and extremely poor prognosis. Despite being highly sensitive to chemotherapy
and/or radiotherapy initially, most SCLC patients develop therapeutic resistance within one year and die of distant
metastases. Multiple studies have revealed the high heterogeneity and strong plasticity of SCLC associated with
frequent metastases and early development of therapeutic resistance as well as poor clinical outcome. Importantly,
different SCLC subtypes are associated with different therapeutic vulnerabilities, and the inflamed subtype tends to
have the best response to immunotherapy, which highlights the importance of precision medicine in the clinic.
Here, we review recent advances in SCLC heterogeneity and plasticity and their link to distant metastases and
chemotherapy resistance. We hope that a better understanding of the molecular mechanisms underlying SCLC
malignant progression will help to develop better intervention strategies for this deadly disease.
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Introduction
Small cell lung cancer (SCLC) accounts for approximately 15% of all
lung cancer cases [1]. SCLC frequently occurs in lifetime heavy
smokers (5 or more cigarettes a day), with only 2% of cases arising
in never-smokers [2–4], which is possibly linked to exposure to air
pollution [5] and radon [6] and histological transformation from
non-small cell lung cancer (NSCLC) [7]. SCLC is rapidly growing,
highly metastatic, and relatively immune-cold, with an extremely
poor prognosis compared to other solid tumors [8]. SCLC can be
classified into limited stage and extensive stage. Most patients are
initially diagnosed at an extensive stage, characterized by nearby
lung and/or distant organ metastases [9]. The most common organs
for SCLC metastases include the contralateral lung, brain, bone and
liver [10,11] (Figure 1). A high frequency of early metastasis and
therapeutic resistance contributes to poor clinical outcomes of
SCLC, with a 5-year survival rate of less than 7% [12]. Current first-
line SCLC therapy remains chemotherapy and radiotherapy, which
were established decades ago [13–16]. Although SCLC patients
initially exhibit a strong response to chemotherapy, most relapse

with acquired drug resistance within one year [17–20].
Based on studies of human specimens and mouse models,

emerging recognition of the high heterogeneity and plasticity of
SCLC has implicated the complexity of this disease [21–33]. In this
review, we will summarize the progression of current findings in
SCLC heterogeneity and plasticity, as well as their link to distant
metastases and chemotherapy resistance. The improved under-
standing of the molecular mechanisms underlying SCLC hetero-
geneity and plasticity might help the development of novel
therapeutic strategies for clinical management.

SCLC Subtyping and Therapeutic Vulnerabilities
Although neuroendocrine (NE) cells serve as the predominant cell
of origin of SCLC, alveolar type II (AT2) cells and club cells are also
endowed with this ability [34–36]. Growing evidence has supported
the multiple cells of origin of SCLC, indicating the potential
heterogeneity of this disease. Since the 1980s, both “classic” and
“variant” phenotypes have been detected in established human
SCLC cell lines [37,38]. Nearly 70% of these cell lines feature a
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“classic” phenotype, grow as tight aggregates and highly express
NE-associated proteins [39]. The rest belong to “variant” cell lines,
which can be further classified into morphological and chemical
variant subtypes, with the former adherent to the dishes in cell
culture and the latter growing as tightly aggregates with reduced NE
markers [39].
The differential expression of four lineage-related transcription

factors distinguishes SCLC into the achaete-scute homolog 1
(ASCL1) (SCLC-A), neuronal differentiation 1 (NEUROD1) (SCLC-
N), POU class 2 homeobox 3 (POU2F3) (SCLC-P) and Yes1
associated transcriptional regulator (YAP1) (SCLC-Y) subtypes,
which are associated with distinct therapeutic vulnerabilities [30].
Delta-like ligand 3 (DLL3), a direct transcriptional target of ASCL1,
tends to be highly expressed in the SCLC-A subtype and minimally
expressed in normal tissues [40], which enables the development of
therapeutics to specifically target SCLC cells (Table 1). The DLL3-
targeted antibody drug conjugate (ADC) rovalpituzumab tesirine
(Rova-T) has been evaluated in clinical trials [41] (Table 1).
Unfortunately, the following phase II study demonstrated asso-
ciated toxicities [42], and additional DLL3 targeting approaches are

currently under development [43] (Table 1). Other important
aberrations in the SCLC-A subtype include amplifications of BCL2
apoptosis regulator (BCL2) [44] and enhancer of zeste 2 polycomb
repressive complex 2 subunit (EZH2) [45,46] and a decrease in
CREB binding protein (CREBBP) [47] (Table 1).
Upregulation of C-MYC is related to the SCLC-N subtype [30] and

serves as a potential target for therapeutic agents [61,62]. SCLC with
high C-MYC expression is selectively vulnerable to aurora A/B
kinase, checkpoint kinase 1 (CHK1), inosine monophosphate
dehydrogenase 1/2 (IMPDH1/2) inhibitor treatment, and arginine
deprivation [48–56] (Table 1). Although C-MYC shares major
features with its paralogues N-MYC and L-MYC, the sensitivity to
aurora kinase inhibitors seems unique for C-MYC-driven SCLC
based on the results of a clustered regularly interspaced short
palindromic repeats (CRISPR) activation model [54]. A recent
double-blind clinical study confirmed that C-MYC may be a
potential predictive biomarker of response to the aurora A inhibitor
alisertib [63]. The SCLC-P subtype has been shown to preferentially
depend on insulin-like growth factor 1 receptor (IGF-1R) and
poly(ADP-ribose) polymerase 1 (PARP) signaling [44,57] and is

Figure 1. Various organs for SCLC metastasis

Table 1. SCLC subtyping and therapeutic strategies

Subtype Characteristic Therapeutic strategies

SCLC-A High DLL3 level [40]
Amplifications of BCL2 [44] or EZH2 [45,46]
Decrease of CREBBP [47]

DLL3 inhibitor (Rova-T) [40–43]

SCLC-N Upregulation of C-MYC [30] Aurora A/B kinase, CHK1, IMPDH1/2 inhibitors, arginine
deprivation [48‒56]

SCLC-P Activation of IGF-1R or PARP signaling [44,57]
High MCL1 level [58]

MCL1 inhibitor (S63845) [58]

SCLC-Y Inflamed tumor microenvironment [59] Immunotherapy [59]

SCLC-Ia Low expression of ASCL1, NEUROD1 and POU2F3 [44] Combined chemotherapy and immunotherapy [44]

SCLC-Ib Immunosuppressive feature and high genomic instability,
high POU2F3 level [60]

Combined chemotherapy and immunotherapy [60]
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enriched with myeloid cell leukemia 1 (MCL1) expression,
indicating a potential response to targeted therapy with the MCL1
inhibitor S63845 [58] (Table 1). The SCLC-Y subtype is associated
with an inflamed tumor microenvironment, suggesting a potential
benefit from immune checkpoint blockade treatment [59] (Table 1).
Studies show the close association between increased tumor

mutational burden (TMB) and response to immunotherapy in
multiple cancer types [64,65]. Considering the high TMB of SCLC
[66] and better prognosis of patients with increased tumor-
infiltrating lymphocytes (TILs) [67,68], immunotherapy is ap-
proved for patients with extensive stage or relapsed SCLC [69–
71]. However, response to anti-PD-1/PD-L1 therapy only occurs in a
small group of patients with SCLC [71,72]. A phase III clinical trial of
anti-PD-1 (nivolumab) in combination with anti-CTLA-4 (ipilimu-
mab) in patients with extensive stage SCLC failed to meet its
primary endpoint of overall survival [70]. Moreover, the correlation
between PD-L1 expression and the effect of immunotherapy is
ambiguous [73,74]. These studies imply that the efficacy of
immunotherapy for unselected patients with SCLC is modest; thus,
it is urgently needed to identify the patients who may benefit most
from immunotherapy. Using tumor expression data and nonnega-
tive matrix factorization, a previous study identified a SCLC subtype
(SCLC-Ia) with low expression of ASCL1, NEUROD1 and POU2F3
and featured an inflamed gene signature [44] (Table 1). SCLC-Ia is
sensitive to the addition of immunotherapy to chemotherapy [44]
(Table 1). Through integrative analysis of multi-omics data, we also
uncovered the immune features of SCLC (SCLC-Ib) with immuno-
suppressive features and high genomic instability [60]. Importantly,
we found that POU2F3 is effective in predicting the SCLC-Ib subtype,
and patients with high POU2F3 expression exhibit better responses
to immunotherapy [60] (Table 1). SCLC-A (70%), SCLC-N (10-
15%) and SCLC-P (12%) are the dominant subtypes of SCLC
[57,75,76]. However, only 2% of SCLC shows YAP1 expression at
quite low levels relative to ASCL1, NEUROD1 and POU2F3 [76,77].
YAP1 and its transcriptional targets are higher in both POU2F3 and
SCLC-Ia subtypes than in the other two subtypes [44]. Therefore, it
is proposed that YAP1 alone may not define a single group [78–80].
In contrast to the SCLC-Ia subtype with low POU2F3 expression, the
SCLC-Ib subtype shows high POU2F3 level [60]. However, the
relationship between the SCLC-P and SCLC-Ib subtypes is unclear
and needs further study.
Notch signaling is positively correlated with the non-NE

phenotype and significantly predicts the clinical benefit of
immunotherapy [67]. Cyclin-dependent kinase 7 (CDK7) is a
central regulator of the cell cycle and gene transcription [81].
Combining CDK inhibitors with anti-PD-1 offers a significant
survival benefit in SCLC, providing a rationale for new combination
regimens and immunotherapies [82]. More recently, certain
combination chemotherapy plus immunotherapy regimens (includ-
ing the anti-PD-L1 drugs atezolizumab or durvalumab) have been
recommended in the National Comprehensive Cancer Network
(NCCN) Guidelines for SCLC as preferred options for patients with
extensive stage SCLC [69,83–88].

Molecular and Cellular Mechanisms Involved in SCLC
Metastasis
Concurrent loss of p53 and RB1 occurs frequently in SCLC [89,90].
Homozygous deletion of these two alleles in mouse lung epithelia
promotes SCLC development and dramatic metastasis, which

closely recapitulates the clinical disease [91]. SCLC derived from
the Rb1L/L/Trp53L/L (RP) mouse model typically expresses NE
markers, including neural cell adhesion molecule 1 (NCAM) and
ASCL1, and frequently metastasizes into distant organs. Concurrent
deletion of RB family members p107 and p130 or Pten in the RP
model significantly accelerates malignant progression and SCLC
metastasis [22,92–94].
Based on the study of these autochthonous SCLC mouse models,

we recently identified NCAMhiCD44lo cells as the major subpopula-
tion responsible for liver metastasis [32] (Figure 2). During SCLC
malignant progression, the phenotypic transition of NCAMhiCD44lo

cells (SCLC metastasizing cells, SMCs) from NCAMloCD44hi cells
(non-SCLC metastasizing cells, non-SMCs) is driven by the down-
regulation of the Hippo pathway co-activator Taz/Wwtr1. More-
over, the SWI/SNF chromatin remodelling complex plays an
important role in silencing Taz during this process. Liver metastasis
from SCLC patients showed decreased Taz expression and an
increased NCAMhiCD44lo phenotype. To study the heterogeneity
and tumor microenvironment of clinical SCLC specimens, Chan et
al. [95] used single-cell transcriptome sequencing and imaging
techniques and identified a phospholipase C gamma 2 (PLCG2)-
high-expressing subpopulation linked to increased brain metastasis
and poor prognosis, as well as an enrichment of a monocyte/
macrophage population with a profibrotic, immunosuppressive
phenotype.
A previous study showed that NE and nonneuroendocrine (non-

NE) share common cell origins and play different roles during SCLC
metastasis [21]. Further study revealed that non-NE cells secrete
fibroblast growth factor 2 (FGF2) and enhance the expression of
polyomavirus enhancer activator 3 (Pea3) in NE cells, resulting in
metastatic dissemination of the NE subclone to the liver [26] (Figure
2). Interestingly, we recently found that the non-NE subtype of
SCLC is composed of mesenchymal and epithelial-like subsets, and
the activation of TGF-β signaling in the mesenchymal subset
promotes cancer metastasis to the liver [96] (Figure 2). Moreover,
depletion of the TGF-β signaling pathway in mice depresses the liver
metastasis capability of SCLC [96]. In addition, Nfib is oncogenic in
SCLC, promotes pro-metastatic neuronal gene expression programs
and drives SCLC liver metastasis [23,28,29]. Mechanistically, NFIB
promotes SCLC metastasis by increasing the accessibility of global
chromatin during cancer progression [23] (Figure 2).

Mechanistic Insights into SCLC Chemotherapy
Resistance and Overcoming Strategy
The current first-line treatment for SCLC, combining etoposide and
cisplatin (E/P), has been the clinical standard of care since the
1970s [97]. Despite the initial sensitivity to chemotherapy,
resistance emerges rapidly. The paucity of tumor specimens from
chemotherapy-resistant SCLC patients has greatly hindered the
current mechanistic understanding of chemotherapy resistance in
the clinic. Therefore, the clinical outcome has not significantly
improved over the past few decades, and chemotherapy resistance
remains the central problem for SCLC treatment [8].
Through comprehensive bioinformatics analyses, we found that

adherent or semi-adherent SCLC cells are enriched with increased
PI3K/Akt/mTOR pathway activity and high chemotherapy resis-
tance [98] (Figure 3). Activation of this pathway promotes the
transition from the suspension to adhesion growth pattern of SCLC
cells and confers chemotherapy resistance [98]. Such chemotherapy
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resistance could be largely overcome by combining chemotherapy
with PI3K/Akt/mTOR pathway inhibitors [98]. A phase I/II clinical
trial (NCT03366103) targeting mammalian target of rapamycin
kinase (mTOR) and BCL-2 is currently ongoing [1].
Activation of the Kras or Notch pathway results in an NE to non-

NE fate switch, which enhances SCLC chemotherapy resistance
[21,23,24,51] (Figure 3). MYC drives the temporal evolution of
SCLC subtypes by reprogramming neuroendocrine fate through
activation of the Notch pathway and promotes SCLC chemotherapy

resistance [31,51,99,100] (Figure 3). YAP can signal through Notch-
dependent or Notch-independent pathways to promote the fate
conversion from NE to non-NE tumor cells [101] (Figure 3). Notch
blockade in combination with chemotherapy suppresses tumor
growth and delays relapse in pre-clinical models [24]. Moreover,
EZH2 is upregulated in chemoresistant SCLC and promotes drug
resistance through epigenetic silencing of schlafen family member
11 (SLFN11) [102]. Combined EZH2 inhibition and chemotherapy
treatment is currently being explored in a phase I/II clinical trial of

Figure 2. The link of SCLC heterogeneity and plasticity to distant metastases SMC, SCLC metastasizing cell. non-SMC, non-SCLC metastasizing
cell. NE, neuroendocrine. non-NE, nonneuroendocrine. FGF2, fibroblast growth factor 2. Epi, epithelial. Mes, mesenchymal.

Figure 3. Mechanisms in regulating SCLC chemoresistance
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recurrent SCLC (NCT038979798) [103].
Recently, we found that chemoresistant SCLC undergoes meta-

bolic reprogramming relying on the mevalonate (MVA)–geranylger-
anyl diphosphate (GGPP) pathway, which can be targeted by
clinically approved statins [104]. Mechanistically, statins induce
oxidative stress accumulation and apoptosis through the GGPP
synthase 1 (GGPS1)–RAB7A–autophagy axis [104]. Statin treatment
overcomes both intrinsic and acquired SCLC chemotherapy
resistance in vivo across multiple SCLC patient-derived xenograft
(PDX) models bearing high GGPS1 levels. Importantly, GGPS1
expression is negatively associated with survival in SCLC patients,
and combined statin and chemotherapy treatment resulted in
durable responses in three SCLC patients who relapsed from first-
line chemotherapy [104].

Perspective
SCLC is the most malignant type of lung cancer with an extremely
poor prognosis, and most patients are diagnosed at an extensive
stage. Patients with SCLC exhibit a remarkable initial response to
chemotherapy and/or radiotherapy followed by the quick develop-
ment of drug resistance. Although an increasing number of targeted
therapies have emerged in many other cancer types [105,106],
treatments for recurrent or refractory SCLC are limited and
unsatisfactory [12,107–109]. Most SCLC patients eventually die of
distant metastases and chemotherapy resistance. Recent advances
in SCLC have revealed the heterogeneity and plasticity of SCLC and
have uncovered pivotal roles during cancer metastasis and
chemotherapy resistance. The phenotypic evolution during malig-
nant cancer progression emphasizes the importance of timely and
precise diagnosis and related therapeutic interventions in the clinic.
Different molecular subtypes of SCLC have been defined by gene

expression profiling and exhibit distinct vulnerabilities to targeted
therapies. Precise analysis of the patients at initial diagnosis may
help to improve the therapeutic outcomes. Immunotherapy has
been recommended for extensive-stage and recurrent SCLC clinical
treatment, and recent studies have identified the inflamed or
immune subtype that may benefit from immunotherapy. The
combination of molecularly targeted therapy or immunotherapy
with traditional chemotherapy may improve the clinical outcomes
in the future. A better understanding of SCLC biology will hopefully
uncover novel vulnerabilities that might be amenable to clinical
therapeutic approaches.
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