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Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal
mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of
various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the
breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and
hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and
cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of
breast aging and the relationship between changes during aging and breast-related diseases, as well as potential
interventions for delaying mammary gland aging and preventing breast disease.
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Introduction
Mammary glands are epidermal attachments that may originate
from the apocrine glands [1]. The main function of the mammary
gland is to secrete milk for offspring, and abnormal development
can result in hypolactation and the occurrence of breast disease.
Aging is a noteworthy factor in human breast development and

related diseases. There has been a definitive trend towards delayed
childbirth and breastfeeding in reproductive-aged women, with an
increase in the birthrates of women aged 35–39, 40–44, and 45–49
of 30%, 47%, and 190%, respectively, from 1990 to 2001 [2]. This
increase in the age of breastfeeding women may impact human
mammary gland development, resulting in a higher risk of
hypolactation and breast-related diseases.
In addition, age is the most significant risk factor for breast

cancer, with the incidence of breast cancer gradually increasing

with age. Studies have found that more than 80% of breast cancers
occur after the age of 50 [3]. Therefore, studying the changes that
occur in breast development during aging is necessary to under-
stand the functional defects and diseases of aged mammary glands.
As women age, their breasts undergo a series of biological

changes, including regression of terminal duct lobular units
(TDLUs), increased breast density and fat pads, hormonal changes,
and cellular transformation. These changes are often associated
with the occurrence of breast-related diseases. Hormonal fluctua-
tions in the mammary gland during aging can also decrease
the incidence of benign breast diseases such as fibroadenoma (FA)
[4–6]. Furthermore, normal TDLU degeneration during aging
reduces the incidence of breast cancer, while abnormal degenera-
tion and pro-inflammatory factor secretion can lead to an increase in
the incidence of breast cancer [7,8]. In addition, overall breast
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density decreases during aging, which is a strong risk factor for
breast cancer [9].
As the world’s population continues to age, economic challenges

and social burdens will become increasingly severe, highlighting
the importance of aging-related research [10]. Breast tissue exhibits
accelerated aging compared to other organs, such as the spleen,
skin, adipose tissue, ovary, lung, lymph nodes, and bladder [11,12].
This review focuses on the histological, cellular, and molecular
changes that occur in the mammary gland during aging, as well as
the relationship between these changes and the occurrence and
pathogenesis of breast diseases.

Structural and Histological Changes of Breast During
Aging
The female breast is composed of outer skin tissue and inner breast
tissue [13]. The skin layer consists of the epidermis and dermis,
which covers the entire surface of the mammary gland, including
the nipple and areola (Figure 1A). Under the mammary epidermis
lies the dermis, which primarily consists of elastic fibers and
collagen and connects the epidermis to the fibro-adipose tissue [14].
The internal structure of the mammary gland is composed of a
fascial layer, fibro-adipose pocket, and fibroglandular tissue [13].
The fascial layer covers the surface of the mammary glandular
tissue [15,16]. Underneath this layer, the fibro-adipose pocket is
composed of adipose and fibrous tissues, which play an essential
role in morphological support. The mammary glandular tissue is
composed of glandular lobes located in a central location through-
out the mammary gland [17,18]. These lobes consist of ducts with
lobules for transporting milk to the nipple.
Female mammary gland elasticity begins to decline around the

age of 25, and the mammary epidermis begins to thin around the
age of 40 (Figure 1A), eventually leading to changes in breast
morphology [13]. During breast involution, the breast matrix is
replaced by fat, causing the breast to become soft and ptotic [19]. As
a woman ages, the breast undergoes various structural and
histological changes.

Breast TDLU degradation during aging
Human mammary gland tissue is composed of 12–15 main lobes,
each containing many TDLUs [20]. TDLUs represent the functional
units of the mammary gland, responsible for milk production during
lactation and considered the primary sites for the development of
breast cancer [21]. TDLUs experience a series of changes during
mammary gland development (Figure 1B).
Mammary gland development begins in the embryonic period,

then further develops under the stimulation of hormones such as
growth hormone (GH), insulin-like growth factor 1 (IGF-1), and
estrogen during puberty, before reaching full maturity during
lactation and forming mammary glands in the fat pad. TDLUs
gradually degenerate with the completion of childbearing and
increasing age [22].
Involution of TDLUs is a physiological aging process of the breast

tissue, characterized by a decline in the epithelial component [20]
and related to the complexity and extent of the ductal epithelium
[23]. In the human mammary gland, TDLUs degenerate with age,
leading to a reduction in TDLU size, total TDLU number, and acini
number per TDLU [24]. The reduction in acini and shorter TDLU
spans ultimately lead to reduced TDLUs [25]. Lobular degeneration
resulting from aging differs from post-lactation degeneration, which

is characterized by marked apoptosis and morphological changes.
The less extensive changes in age-dependent TDLU involution are
negatively correlated with the risk of breast cancer [26].
In the process of aging, several canonical senescence pathways

regulate the degradation of TDLUs. Among these pathways, the
insulin and IGF-1 signaling (IIS) pathway is associated with
dysregulated nutrient sensing, which is a hallmark of aging. The
IIS pathway is one of the most evolutionarily conserved aging
control pathway and its multiple targeting sequences include
the FOXO family of transcription factors and the mTOR complex
[27–29]. Mechanistically, the IIS pathway can activate PI3K/AKT,
leading to FOXO inhibition and mTOR activation. The downstream
target genes of FOXO and mTOR, such as cyclin B, GADD45, 4E-BP1
and S6K, regulate the cell cycle, metabolism, apoptosis, and cell
stress response [30,31]. Decreased IIS is characteristic of both
physiological and accelerated aging [30]. The IIS pathway plays a
role not only in body aging, but also in the regulation of TDLU
degradation. Notably, increased circulating IGF factors are closely
related to the degradation and reduction of TDLUs, which can
induce breast disease during aging [25].

Changes in mammary adipose tissue during aging
The mammary gland is predominantly composed of glandular and
adipose tissues. Adipose tissue in the mammary gland includes
white, pink, and brown adipose tissue (WAT, PAT, and BAT,
respectively). Glandular and adipose tissues can exhibit mutual
transition under certain circumstances. For example, WAT can
differentiate into mammary glandular tissue and WAT and PAT
(responsible for lactation) can transition into one another during
pregnancy [32]. BAT, the primary source of energy for infants, is
gradually replaced by WAT with increasing age [33], a process
closely related to the incidence of breast cancer [34].
Mammary adipose tissue can secrete many factors, including

adipokines, cytokines, chemokines, and growth factors, which
control various cellular processes involved in breast cancer
development [35]. Among these factors, resistin plays an essential
role in controlling TLR-4 expression, leading to NF-κB and STAT3
pathway activation, mitochondrial dysfunction, cell apoptosis, cell
proliferation, and eventually cell stemness and breast cancer
progression [36]. Overactivation of NF-κB is a transcriptomic
hallmark of aging, with the application of NF-κB inhibitors on the
skin surface of aged transgenic mice shown to result in a younger
phenotype and expression pattern [37]. As the proportion of breast
adipose tissue increases during aging, there is an apparent
corresponding increase in resistin expression, which, in turn,
activates the TLR4/NF-κB/STAT3 signaling pathway and promotes
breast cancer.
Adipose tissue within the breast increases with body mass and

breast volume, as well as with advancing age [38]. Systemic lipid
accumulation occurs during aging, resulting in a marked expansion
of the mammary fat pad (Figure 1B). Moreover, menopause is
regarded as a critical point for many age-related changes, with
several studies showing that postmenopausal breast adipose tissue
increases more rapidly with age, accompanied by a decrease in
parenchymal components [39]. The underlying causes of age-
related mammary fat gain are complex and variable but may include
decreased lipase activity for fat breakdown. Baldwin et al. [40]
reported that adipose lipase activity is higher in young populations
of rats, guinea pigs, and cows than in older populations. In addition,
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Figure 1. Mammary gland structure and changes during aging (A) Overall structure of mammary gland. Mammary gland is primarily composed
of outer epidermal tissue and inner adipose and glandular tissues. Changes in mammary gland morphology during aging. With increasing age, the
epidermis of the female breast continues to thin, the elasticity of the mammary gland decreases, and the mammary gland matrix becomes soft and
undergoes ptosis as it is replaced by fatty tissue. (B) Changes in mammary gland structure during aging. Changes in TDLU, fat pads, hormones,
and overall density of the mammary gland during aging. Left, image of a young mammary gland; right, image of an older mammary gland, with
arrows indicating the aging process. Breasts in aged women have reduced TDLU and increased proportion of fat pads compared to young breasts.
Overall breast density can be expressed by the ratio of glandular tissue to adipose tissue. With the reduction in glandular tissue, the ratio decreases
and overall breast density decreases. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decline with age. (C) Changes in breast cells
during aging. Breast cells are composed of epithelial cells (including luminal and myoepithelial cells) and stromal cells (including adipocytes,
fibroblasts, macrophages, immune cells, vascular cells). Compared with normal young women, the proportion of adipocytes and lymphocytes in
the breasts of older women are increased, and the proportions of fibroblasts and dendritic cells are decreased. Arrows indicate increasing and
decreasing proportions of cells.
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loss of the lipid-membrane-scaffolding protein metacaveolin-1
(Cav-1) in the mammary gland can result in disrupted lipid
accumulation and reduction in the mammary fat pad, manifesting
as a decrease in adipocyte diameter and the formation of poorly
differentiated white adipose parenchyma [41]. The loss of lipid
related protein Caveolin-1 in fibroblasts also promotes the progres-
sion of breast cancer via TGF-β/Smad signaling pathway [42].

Hormonal changes in breast during aging
Hormones in the mammary gland are predominantly secreted from
the pituitary gland and ovaries, both of which undergo age-related
degeneration [43,44]. These secreted hormones, such as estrogen,
flavonoids, and GH, are transported to the mammary gland via the
circulatory system and play vital roles in mammary gland
development, particularly morphological development of mam-
mary ducts in puberty [45]. In mice, mammary gland development
is slow before puberty, but is rapidly accelerated under GH, IGF-1,
and estrogen stimulation, with subsequent formation of a complete
vessel tree within the fat pad under progesterone and prolactin
stimulation [46].
Various hormones that decline with age are important compo-

nents of lifespan pathways (Figure 1B). The mammary gland is
affected by a series of changes in hormone levels during aging,
likely attributed to the decline in ovarian function [47]. In
particular, GH and IGF-1 levels decline with age, potentially
influenced by changes in sex hormones after menopause [48].
Certain hormones in the mammary gland also participate in the
regulation of age-related pathways involving histone methylation.
Histone methylation is a hallmark of invertebrate aging [30], and
loss of histone methylation complexes can lead to increased lifespan
in worms and flies [49,50]. Histone demethylases can modulate
longevity by targeting components of key longevity pathways, such
as insulin/IGF-1 signaling [51].
Age-dependent changes in breast hormones may also be related

to the development and progression of breast cancer, which
increases with age. Ovarian-secreted estrogen and flavonoids
promote both normal mammary gland development and tumor
development, and thus longterm high levels of estrogen and
flavonoids are associated with increased breast cancer risk [52].
Hormonal changes occur around menopause, most notably with
decreased levels of estrogen and progesterone. Although breast
cancer-related hormones decrease with age, these hormones may be
converted by other hormones during aging, leading to an increase in
breast cancer incidence [53].

Mammographic density decreases with age
Mammographic density (MD) is a ratio of mammary gland stroma
reflected by X-ray images and is considered a strong risk factor for
breast cancer [54]. MD is measured based on both dense breast area
and percentage density (percentage of dense breast area divided by
total breast area) [40]. Adipose tissue is radiologically transparent,
while epithelial and connective tissue is dense and appears
bright in X-ray. Therefore, MD is mainly determined by the relative
proportion of fat and structural tissues in the breast [55], with
greater MD associated with a larger nuclear area of epithelial and
non-epithelial cells and higher collagen ratio [56].
Many factors affect MD, such as parity, body mass index (BMI),

menopausal status, hormone levels, and age [57–59]. Female parity
and menopausal status are negatively correlated with MD. BMI is

also significantly negatively correlated with MD, which may be due
to increased adipose tissue reducing the fibro-glandular component
or stimulating stromal cell differentiation to produce adipocytes
instead of collagen [58]. Serum levels of IGF-1 and oxytocin are
correlated with MD in postmenopausal women [60,61] and high
levels of circulating IGF-1 and its connexin IGFBP3 are associated
with increased MD [62].
MD decreases with age and is generally lower in women who

have given birth compared with nulliparous women [63]. Age-
dependent lobular involution begins before menopause and
continues afterwards and is associated with reduced MD [57].
Lokate et al. [64] found that the percentage of MD decreases
continuously and more slowly with age. The age-related decrease in
MD may be due to mammary involution, in which epithelial and
stromal cells continue to decline while adipose tissue increases [65].
Breast density can also differ among populations, with studies
showing that breast density is higher in Asian populations than in
Western populations [66,67].

Cellular Changes in Aged Mammary Gland
The breast is a complex tissue composed of different types of cells,
including epithelial and stromal cells that are distributed throughout
the gland to ensure proper function. Over a woman’s lifetime, the
mammary gland undergoes dynamic changes in cell composition
and gene expression [68]. Epithelial cells in the mammary gland
include myoepithelial, glandular epithelial, and sensory epithelial
cells, while stromal cells include adipocytes, immune cells,
fibroblasts, lymphocytes, and vascular cells (Figure 1C). These
cells undergo a series of changes during aging, which are closely
related to the occurrence and progression of breast-related diseases.

Changes in mammary epithelial cells during aging
Mammary epithelial cells are primarily distributed in the mammary
ducts, which consist of an outer layer of myoepithelial cells and an
inner layer of hormone-sensing (HS) and secretory alveolar (AV)
cells. HS cells can respond to endocrine stimuli, such as estrogen,
progesterone, and prolactin, while the central role of AV cells is
lactation.
Li et al. [69] found that the proportion of epithelial cells increases

from 45% to 82%, while the proportion of stromal cells decreases
from 55% to 18% during mammary aging in mice, with the AV cell
subtype increasing from 26% to 69% and the HS cell subtype
decreasing from 53% to 9% (Table 1). Thus, these results
demonstrate that the proportion of epithelial cells continues to
increase, and the proportion of stromal cells continues to decline in
the process of aging.
The gene expression profile of myoepithelial cells in the

mammary gland changes significantly during aging (Table 2).
Bioinformatics analysis shows that these changes are mainly related
to cytokines/growth factors, oxidative phosphorylation, extracel-
lular matrix (ECM), and cytoskeleton/contractility genes [69],

Table 1. Changes in the proportion of breast cells during aging

Cell types Proportions of youth Proportions of aged

Epithelial cells 45% 82%

Stromal cells 55% 18%

Alveolar cells 26% 69%

Hormone-sensing cells 53% 9%
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which are directly connected to tumor progression [70–73]. In HS
cells, most altered genes are regulated by hormone receptors,
indicating hormonal changes during aging. Of note, two genes are
specifically upregulated in HS cells during aging, namely Tph1 and
Arg1 [69]. Increased Tph1 is activated during lactation and can
promote serotonin biosynthesis [74]. Serotonin then binds to its
receptor, activates the downstream PI3K/Akt signaling pathway,
promotes the expression of vascular endothelial growth factor
(VEGF), and induces migration and invasion of breast cancer cells
[75]. Arg1 inhibits the proliferation of T cells and natural killer (NK)
cells by downregulating L-arginine in the mammary microenviron-
ment [76] and is usually expressed in immunosuppressive or tumor
cells.
Age-dependent changes in mammary gland epithelial cells are

related to the incidence of benign breast diseases such as FA, which
is relatively common among women and increases with age before
menopause. The proportion of breast epithelial cells increases with
age, and Tgfb1 expression in these cells is upregulated during aging
(Table 2), thereby promoting the incidence of FA. Notably,
Pilichowska et al. [77] found that Tgfb1 is highly expressed in FA
and breast cancer and its overexpression in breast epithelial cells
during aging can lead to an increase in the incidence of both
diseases. In addition, the expression of some inflammatory factors
from breast epithelial cells increases during aging, providing an
inflammatory microenvironment and promoting the occurrence of
mastitis. Mammary epithelial cells, the proportion of which
increases with age, are the first cells to produce an immune
response to bacteria. The NF-κB pathway is activated when bacteria
invade mammary epithelial cells, which increases inflammatory
factor release, ultimately leading to an increase in the incidence of
mastitis [78]. Thus, the higher proportion of breast epithelial cells
and inflammatory factors during aging may increase the frequency
of mastitis.
The increase in the proportion of epithelial cells during aging is

closely related to the occurrence and development of breast cancer.
Specifically, the proportion of AV cells increases during aging,
which is closely connected to the occurrence of breast cancer [79].
The expression of VEGF-A in breast epithelial cells also increases

during aging, which is related to an increase in the incidence of FA
and breast cancer [80]. Furthermore, upregulation of TGF-β in aging
breast epithelium may function to promote the growth and
metastasis of breast cancer, and its expression can also be used to
evaluate breast cancer malignancy [81,82]. Consequently, the
cellular changes in breast epithelial cells during aging are related
to the increase of the incidence of FA, mastitis, and breast cancer.

Changes in mammary stromal cells during aging
Among the different types of stromal cells in the mammary gland,
adipocytes are predominantly located in the fat pad and are
involved in lactation metabolism [83,84], as well as endocrine
functions such as the secretion of VEGF to regulate mammary
angiogenesis [85]. Mammary fibroblasts are mainly distributed near
the basal side of the epithelial branching tree in the mammary fat
pad [86] and can communicate with epithelial cells through
secreted factors and proteases [4]. Immune cells in the breast are
mainly myeloid cells, such as dendritic cells and macrophages, and
lymphocytes, such as T cells, B cells, and NK cells [69]. These
immune cells exhibit multiple functions in mammary gland
development, such as branching [6], apoptosis initiation, and
adipocyte regeneration [87].
Mammary gland stromal cells and expression of their genes

change with aging (Table 2). Notably, the proportion of fibroblasts
declines with increasing age. Stress-related genes, such as Hspa1a,
Sqstm1, Ubc, and Cebpb, are upregulated in aged fibroblasts, while
ECM-related genes, such as Col5a3, Col6a3, and Fn1, are down-
regulated [69]. The ratio of myeloid cells in breast tissue also
decreases with age, whereas the percentages of lymphocytes and T
cells continue to increase, as does the expression of replicative aging
markers. In addition, the expression levels of CD274 and LILRB4,
two immunosuppressive ligands targeting T cells and NK cells, are
reportedly upregulated in the tissues of aged mice, potentially
promoting an immunosuppressive microenvironment [69].
Changes in mammary gland stromal cells during aging can

promote the development of breast diseases, including cancer. The
proportion of breast adipocytes increases with age, leading to
aromatase secretion, breast epithelial cell proliferation, and

Table 2. Breast cells gene changes and related pathways during aging

Cell types Gene changes during aging Gene related pathways

Myoepithelial cells Immune-related genes: Cxcl1, Cxcl2, Cxcl16, Csf1, and Csf3
Oxidative phosphorylation genes: Ndufa3, Ndufa5, Ndufa7, Ndufa8, Ndufa13, Ndufb3,
Ndufb9, Ndufb10, Ndufc1, Ndufv3, Atp5j, Etfb, Uqcr10, and Uqcr11
Growth factor genes: Tgfb1, Jag1, and Vegfa
ECM-related genes: Dcn, Col4a1, Col4a2, Serpinh1, Sparc, Emid1, Dag, and Spon2
Actomyosin-related genes: Acta2, Actg2, Mylk, Myl6, Myl9, Myh11, and Krt15

Cytokines or growth factors,
oxidative phosphorylation,
extracellular matrix (ECM), and
cytoskeleton/contractility
genes.

Alveolar cells Csn1s1, Csn1s2a, Csn2, and Spp1 Milk biosynthesis.

Hormone-sensing cells Tph1 and Arg1 Hormone and immune.

Fibroblasts Upregulated genes: Hspa1a, Sqstm1, Ubc, Cebpb, and Gadd45b
Downregulated genes: Col5a3, Col6a3, Fn1, and Mmp23

Upregulated genes are related to
cellular stress. Downregulated
genes are related to ECM.

Vascular endothelial cells Upregulated genes: Csf3, Cxcl1, Cxcl16, and Il-6
Downregulated genes: Ctnnb1, Jup, Pvrl2, Cdh5, llt4, Cldn5, and F11r

Upregulated genes are related to
immune microenvironment.
Downregulated genes are related
to cell-cell junctions.

Mb macrophages Cytokines Ccl5, Cxcl2, and Gdf15 –

Lymphoid cells Cd274 and Lilrb4 –
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increased risk of breast cancer [88]. Accumulated adipose tissue in
mammary gland with age is close to breast cancer tissue, which can
foster cancer cells by secreting factors and nutrient substances and
promote tumor metastasis [89]. The proportion of mammary gland
Ma macrophages, which play an important role in the immune
response, decreases with age, thereby inducing immune response
inactivation and breast disease development, such as mastitis, FA,
and breast cancer [69].
Marked age-related changes in breast fibroblast genes, such as

Hspa1a, Sqstm1, Ubc, Cebpb, and Gadd45b (Table 2), can influence
the development and progression of breast cancer. Hspa1a
expression increases in fibroblasts with age and its upregulation
can promote breast cancer resistance to radiotherapy through stress
response signaling pathways [90,91]. The autophagy adapter
protein SQSTM1/p62, an important regulator of breast cancer
metastasis, also increases in breast fibroblasts during aging.
Inhibition of SQSTM1/p62 can restrain tumor growth and metas-
tasis, mediated by cell cycle arrest and tumor microenvironment
regulation [92]. The CEBPB/glycolysis pathways can help maintain
a tumor immunosuppressive environment by inhibiting the expres-
sion of LAP, thereby preventing immune cells from killing tumor
cells [93]. Breast vascular endothelial cell genes that are upregu-
lated during aging include Csf3, Cxcl1, Cxcl16, and Il-6
(Table 2). Chemokine CXCL1 can regulate the NF-κB and VEGF
pathways and promote tumor chemotherapy resistance [94].
Cytokine IL-6 and its downstream gene Stat3 constitute a key
carcinogenic signaling pathway, which can promote ER+ breast
cancer metastasis [95]. As a multi-effect cytokine with anti-
inflammatory and pro-inflammatory properties, IL-6 can directly
act on breast cancer to promote its proliferation and survival [96].
Therefore, dysregulated genes in aging breast stromal cells are
associated with breast cancer progression.

Changes in Molecular Signaling Pathways in Aged
Mammary Gland
Aging is also associated with changes in various molecular signaling
pathways, including cyclin D1, STAT3, RANK/RANKL, and Slug/
Snail. These pathways play critical roles in the regulation of cell
proliferation, growth, differentiation, and the senescence-related
secretory phenotype (SASP), which are key processes involved in
the development of breast diseases. Dysregulation of cyclin D1,
STAT3, RANK/RANKL, and Slug/Snail signaling during aging is
related to breast epithelial cell and fibroblast senescence, and thus
the incidence of breast-related diseases such as cancer.

Cyclin D1
The cell cycle machinery drives cell proliferation in mammals.
Critical components in this process include cyclin family proteins,
which can activate cyclin-dependent kinases (CDKs) [97]. Cyclin-
CDK complexes can phosphorylate intracellular proteins and drive
cell cycle progression [98]. Cyclin D1 can bind with CDK4 and CDK6
to form cyclin D1-CDK4 and cyclin D1-CDK6 complexes, the
activation of which can phosphorylate retinoblastomas (Rb) to
activate E2F transcription factors [97]. E2F induces various target
genes to enable the cell cycle to enter the S phase (Figure 2C), thus
promoting cell proliferation. Irreversible cell cycle arrest occurs in
senescent cells, which represses the activation of cyclin-CDK
complexes [99,100] and inhibits cell proliferation.
Cyclin D1 is a well-established oncogene that is highly expressed

in various cancers and is associated with tumor progression and
metastasis. Studies have shown that cyclin D1 ablation in ErbB2-
overexpressing breast cancer can cause cancer cell senescence and
breast cancer delay [97]. Cyclin D-CDK kinase can protect cells
against senescence by regulating downstream genes, such as Rb
proteins [101,102] and FOXM1 [103]. Inactivation of hypo-
phosphorylated Rb and FOXM1 proteins can enhance the senescent
state by permanently silencing E2F target genes, such as cyclin E1,
cyclin A2, and Dhfr, thereby inhibiting cancer progression [97].
The expression of cyclin D1 in mammary epithelial cells increases

with age [104], likely due to the activation of various upstream
factors. For example, age-related nuclear translocation of EGFR can
promote cyclin D1 expression and increase the proliferation of
mammary epithelial cells [104]. In addition, the expression of
chemokine C-C motif ligand 5 (CCL5) in fibroblasts significantly
increases during aging, and its overexpression can activate the
ERK1/2/cyclin D1 signaling pathway, thereby promoting breast
cancer cell proliferation [105]. Given its role in the cell cycle
process, cyclin D1 is clearly related to cellular senescence and its
knockdown can cause cell cycle arrest by preventing the formation
of cyclin D1-CDK4/CDK6 complexes. Therefore, targeting cyclin D1
and its upstream regulators may be a promising strategy for
inhibiting breast cancer.

STAT3
STATs are cytoplasmic transcription factor family proteins [106].
Mammalian STAT family proteins include STAT1, 2, 3, 4, 5a, 5b,
and 6, which mediate various intracellular signaling pathways
[107]. STAT3 is an important regulator of SASP factors [108] and
plays a vital role in body aging and cellular senescence. Studies
have found that altered STAT3 signaling can trigger immune and
non-immune cell senescence partly by activating the p53 pathway,
thereby accelerating the aging process in organisms [109].
Cellular senescence can be triggered by various factors, including

aging and external stress. Senescent cells can secrete SASP factors
that can promote breast cancer development, mediated by the
STAT3 signaling pathway. Activation of STAT3 can promote
malignant tumor metastasis by promoting cell cycle progression,
inhibiting apoptosis, and enabling tumor immune escape. Targeting
STAT3 in breast cancer cells can induce cellular senescence and
enhance immunotherapy, thus limiting breast cancer cell growth
and metastasis [110]. Normal aging luminal cells in the breast also
secrete SASP factors, including IL-6 and IL-8 [111]. In the context of
cellular senescence, IL-8 can activate the JAK2/STAT3 pathway and
its downstream target genes, including IL-6 (Figure 2A), thus
promoting the expression of genes related to stemness and epithelial-
mesenchymal transition (EMT) (e.g., CD44, OCT-4, vimentin, and
ZEB-1) and increasing breast cancer cell proliferation and metas-
tasis. Senescence-induced IL-8 can also downregulate miR-141
expression via STAT3/AUF1/p16 signaling. miR-141 has been
shown to negatively regulate ZEB1 and ZEB2, which are associated
with EMT and stemness [112,113]. Senescent fibroblasts can
promote the oncogenicity, EMT, and stemness of breast cancer cells
through the STAT3 pathway [114]. Moreover, ionizing radiation-
induced senescent cells can produce bystander effects to promote
the migration and invasion of adjacent non-senescent tumor cells
through the release of CSF2 and subsequent activation of the JAK2/
STAT3 and AKT pathways [115]. Therefore, inhibiting STAT3 can
induce cellular senescence in the mammary gland, with the STAT3
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pathway playing an essential role in promoting breast cancer
development due to the secretion of SASP factors by aging cells.

RANK/RANKL
RANKL is important for mouse mammary gland development and
the proliferation of mammary epithelial cells, which stimulate
ductal side-branching and alveologenesis [116,117]. RANKL/
RANK/OPG signaling plays an essential role in cell death,
proliferation, inflammation, and immune processes [118,119], and
is associated with postmenopausal hormone-related diseases of the
mammary gland in elderly women [120]. Moreover, the RANKL/
RANK/OPG pathway can activate NF-κB and its downstream genes
[121], playing a vital role in mammary duct morphogenesis [122].
The RANK pathway not only plays a crucial role in mammary gland
development, but also acts as an important regulator in breast aging
and associated diseases.
RANKL mRNA expression increases with age [123], which may

promote breast cancer development. Overexpression of RANK or
treatment with RANKL activators induces senescence in mammary
epithelial cells via p16/p19 [124]. In oncogene-induced mouse
models (Neu and PyMT), RANK in the mammary epithelium causes
cellular senescence, thereby delaying and reducing tumor initiation
and incidence [124].
RANK signaling can also regulate normal mammary gland

development. RANKL overexpression in transgenic mouse models

results in prematurely developed mammary glands in young mice,
with excessive growth of ductal side-branching and alveologenesis.
These morphological changes are due to RANKL-induced mammary
epithelial cell proliferation via activation of NF-κB and cyclin D1
expression. Therefore, prolonged exposure to RANKL can cause
limited mammary epithelial hyperplasia with increasing age [116].
The promotion of both cell proliferation and senescence by RANK
appears to be a contradiction. One explanation is that RANK
promotes normal epithelial cell division, accelerating its approach
to the Hayflick limit, then prematurely activates the cellular
senescence pathway. However, further studies are needed to
demonstrate the role of RANK in breast epithelial development
and breast cancer during aging.
Hormones constantly change in the body aging process, regulat-

ing the RANK pathway and breast disease development. Gonado-
tropin-releasing hormone (GnRH) negatively regulates RANKL
expression in breast cancer cells and decreases continuously with
age [125]. Thus, the decline in GnRH level during aging facilitates
the RANK pathway and promotes breast cancer development. The
expression levels of RANK and RANKL are also regulated by
estrogen, follicle-stimulating hormone, and dehydroepiandroster-
one (DHA) in different cells [126–128]. Hormone-driven activation
of the RANK signaling pathway with age can enhance the stemness
of human and murine mammary epithelial cells and mediate breast
cancer initiation and invasiveness [124].

Figure 2. Senescence-associated signaling pathway changes in mammary gland (A) STAT3 signaling pathway during mammary gland aging.
Aged luminal cells activate the JAK2/STAT3 signaling pathway in fibroblasts through paracrine IL-8, and then activate downstream targets IL-6,
AUF1, and AUF1 to further activate P16 and inhibit miR-141 expression, which can enhance breast cancer cell expression. (B) Relationship between
RANK signaling pathway and mammary epithelial cells and breast cancer cells. RANKL and its receptor RANK activate NF-κB signaling, which can
promote the stemness of breast cancer cells or mammary epithelial cells; RANKL/RANK signaling pathway also induces mammary epithelial cell
senescence in a P16/P19-dependent manner, ultimately promoting mammary epithelial cells. (C) Slug signaling pathway and breast epithelial cell
senescence. In mammary epithelial cells, OSM induces slug expression through STAT3/SMAD3-signaling, which then inhibits the execution of
DDR signaling, ultimately inducing mammary epithelial cell senescence. (D) Cyclin D1 signaling pathway and breast epithelial cell senescence and
proliferation. Cyclin D1 binds to CDK4/6 to activate retinoblastomas. Phosphorylated retinoblastomas further activate E2F, which targets its
downstream genes to enter the S phase of the cell cycle, ultimately promoting proliferation of mammary epithelial cells. Cyclin D1 deletion can
lead to mammary epithelial cell senescence.
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Slug/Snail
The SNAI family of zinc finger proteins includes three main
members, namely SNAI1 (Snail), SNAI2 (Slug), and SNAI3 (Smuc)
[129]. These proteins are known to regulate apoptosis, EMT,
stemness, differentiation, and DNA damage response [130]. Slug
and Snail play critical roles in the senescence of normal mammary
epithelial cells and the development of breast cancer during aging
by regulating EMT molecules, including E-cadherin and vimentin,
and participating in tissue degeneration [131]. Slug acts as a direct
transcriptional repressor of senescence marker p16Ink4a, and thus
inhibits cellular senescence [132]. Deletion of Slug can lead to DNA
damage, which triggers breast epithelial cell senescence. Deletion of
Slug decreases the phosphorylation level of RPA32 and CHK1,
leading to the recruitment of damaged RAD51 to DNA damage sites
and impairment of the normal DNA damage response (DDR). As a
result, DNA damage continues to accumulate, ultimately accelerat-
ing premature aging of mammary epithelium [133]. Snail is also
reported to be an indispensable mediator of oncostatin M (OSM)-
induced senescence, which promotes MYC expression and in-
creases breast cancer resistance to palbociclib treatment [134,135].

Hallmarks in Breast Aging and Diseases
Aging is an inevitable, progressive, and ultimately degenerative
process, accompanied by tissue stem cell depletion, tissue
inflammation, matrix alterations, and metabolic dysfunction [30].
This process is influenced by genetic and environmental factors and
is characterized by genomic instability, epigenetic modifications,
mitochondrial dysfunction, cellular senescence, telomere attrition,
proteostasis loss, nutrient sensing dysregulation, stem cell exhaus-
tion, and changes in intercellular communication [30]. Many of
these aging characteristics are also associated with breast aging and
related diseases (Figure 3).

Genomic instability
Genomic instability refers to the frequency at which cells acquire
genomic changes, including site-specific structural variations
involving mutations of base pairs and insertions and deletions of
fragments in chromosomes [136]. Evidence indicates that aging is
accompanied by genomic instability, with artificially induced
genomic instability leading to accelerated aging [30]. Moreover,
genomic instability is considered an essential factor for cells to
accumulate multiple mutations and induce senescence [137].
Genomic instability is also closely associated with the occurrence

and development of breast cancer. Based on copy number
alterations (CNAs), breast cancer can be characterized into three
distinct genetic modes. The first mode, simplex, involves the gain or
loss of an entire chromosome arm and is typically associated with
ER+ breast cancer. The second mode, amplifier, is related to the
Luminal B and ERBB2 subtypes of breast cancer and involves the
amplification of sites that regulate the cell cycle and nucleic acid
metabolism, such as 8p12 (FGFR1), 8q24 (MYC), 11q13 (CCND1),
12q15 (MDM2), 17q12 (ERBB2), and 20q13 (ZNF217). The third
mode, sawtooth, is mainly related to triple-negative (TNBC) or
basal-like breast cancer [138].

Epigenetic alterations
Aging stimulates epigenetic changes that not only affect biological
cells and tissues [30] but are also recognized as important
contributors to cancer development. Common epigenetic changes

in cancer include histone modification, expression level changes in
non-coding RNAs, and abnormal DNA methylation, which is the
most extensively studied epigenetic change in cancer [139].
Gene hypermethylation is a common occurrence in the early

stages of many cancers, including breast cancer [140]. The
promoter regions of tumor suppressor genes, such as RASSF1A,
APC, and cyclin D2, are frequently methylated in human cancers. In
different human breast cancer cell lines, the promoter region and
CpG island of the RASSF1A gene are fully methylated, inhibiting the
transcription process and activating cyclin D1 and cell proliferation
[141]. In addition, compared with noncancerous adjacent tissues,
the promoter region CpG island of the APC gene in breast cancer
tissues is hypermethylated, promoting downstream WNT signaling
and cell stemness [142]. These findings indicate a close association
between abnormal methylation of the promoter region of tumor
suppressor genes and breast cancer.

Mitochondrial dysfunction
Mitochondrial dysfunction has a profound impact on the aging
process in mammals [30], as well as the occurrence of cancer. This
dysfunction is primarily characterized by impaired respiratory chain
efficiency, increased electron leakage, reduced adenosine tripho-
sphate (ATP) production, and enhanced senescence [143]. Mito-
chondrial dysfunction is also associated with increased levels of
reactive oxygen species (ROS), resulting in oxidative damage to lipids,
proteins, and DNA, as well as the onset of various diseases, such as
diabetes, neurodegeneration, inflammation, and cancer [144].
Mitochondrial dysfunction is caused by mutations in mitochon-

drial DNA, deletions of mitochondrial enzymes, and alterations in
oncogenes [145]. Mitochondrial dysregulation in cancer-related
fibroblasts can significantly promote the occurrence and develop-
ment of breast cancer, which occurs through the production of high-
energy mitochondrial fuel [146]. Compared with other cells, TNBC
cells exhibit profound metabolic changes, including decreased
mitochondrial respiration and increased glycolysis [147]. In basal-
like breast cancer cells, serious mitochondrial functional defects

Figure 3. Aging hallmarks in breast aging Breast aging includes
several markers, such as genomic instability, epigenetic modification,
mitochondrial dysfunction, and cellular senescence.
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occur, leading to the destruction of redox balance and ultimately the
function and regulation of cell metabolism [148].

Cellular senescence
Cellular senescence is a complex stress response in which cells
irreversibly lose the ability to proliferate, accompanied by changes
in gene expression [149]. Cellular senescence includes replicative
senescence, oncogene-induced senescence (OIS) and therapy-
induced senescence (TIS) [150]. Senescent cells, which accumulate
with age and contribute to body aging [30], produce various SASP
factors, including inflammatory cytokines, chemokines, growth
factor matrix metalloproteinases (MMPs), and other paracrine
factors [151]. These SASP factors participate in the aging process
of the body.
Cellular senescence inhibits the proliferation of cancer cells

through irreversible growth retardation [152–154]. Although
cellular aging can act as an inhibitory barrier to the occurrence of
human tumors, the secretion of SASP factors by aging cells can
promote the development of cancer [155]. For example, TIS-
induced senescent epithelial cells can secrete SASP factors that
promote the invasion of breast cancer cells via the CXCL11/AKT/
ERK pathway [156]. Furthermore, in xenotransplantation models,
the co-culture of aging and breast cancer cells can promote cell
proliferation and tumor formation [156–158].

Other aging hallmarks
Oxidative stress occurs due to an imbalance between ROS and
antioxidant defense. Oxidative stress can increase with age, leading
to abnormal tissue function [159] and potentially to aging-related
diseases and cancer progression. Systemic oxidative stress during
aging not only leads to ROS accumulation but also to epigenetic
damage of the DNA structure [160]. Oxidative stress accumulation
during aging is also influenced by various factors, such as
inflammation, intracellular factors, and environmental factors,
which contribute to the occurrence and development of age-related
diseases, including cancer [161]. ROS is a critical regulatory factor
of growth factor receptor signaling, which is involved in the
pathogenesis of estrogen-induced breast cancer. Furthermore,
activated mitogenic pathways in malignant breast cancer epithelial
cells can increase intracellular ROS levels [162].
Autophagy is an evolutionarily conserved process, responsible

for degrading intracellular proteins and organelles [163]. Autophagy
continues to decline during aging and plays an important role in
cellular senescence and aging-related diseases such as breast cancer
[164]. Autophagy not only promotes breast cancer proliferation but
also contributes to chemotherapy resistance. Several factors that
regulate breast disease development and treatment are mediated by
autophagy and autophagy-induced senescence. The stress-induced
kinase PKCη can promote autophagy induced by ER and oxidative
stress, as well as autophagy-induced senescence, leading to
chemotherapy resistance in breast cancer cells [165]. The protein-
coupled estrogen receptor (GPR30/GPER) is associated with
tamoxifen (TAM) resistance. TAM treatment activates GPR30,
thereby promoting the expression of HMGB1, activating MEK/
ERK signaling, increasing autophagy of breast cancer cells, and
inducing TAM-treated cellular senescence and survival [166]. circ-
Dnmt1 can also promote the proliferation of breast cancer cells,
which is dependent on autophagy-induced senescence [167]. Thus,
autophagy is not only closely related to body aging, but also

involved in treatment-induced breast cancer cell senescence.

Aging and Breast Disease
Breast diseases can be categorized as either benign or malignant.
Benign breast diseases are markedly more common than malignant
tumors and include mastitis, FA, lipoma, adenoma, hamartoma,
and granular cell tumor [168,169]. Breast cancer, which primarily
belongs to the category of malignant breast diseases, increases with
age [170]. In addition to breast diseases, milk production deficiency
also increases with age.

FA during aging
FA is a common hormone-dependent benign breast disease but is
associated with an increased risk of breast cancer. FA originates
from stromal and epithelial connective tissue cells that exhibit high
expression of estrogen and flavonoid receptors. The incidence of FA
increases with age but decreases significantly after menopause [6].
FA originates from the TDLUs, and its size is influenced by
increased levels of estrogen, progesterone, and prolactin [171]. FA
is more prevalent in women before the age of 30 [172], when
mammary glands undergo rapid development under hormonal
stimulation, including during pregnancy and lactation.
Compared with normal breast tissue, FA is characterized by

higher expression of the prolactin receptor (PRLR) gene [173–175].
In a study of 74 FA patients and 170 normal controls, Roman et al.
[176] identified four FA patients with mutations in exon 6 of the
PRLR. Mutations in PRLR can lead to PRL-independent tyrosine
phosphorylation of PRLR and activation of the STAT5 signaling
pathway, ultimately leading to evasion of cell death and a
proliferative phenotype.
Research has shown that approximately 65% of FA patients carry

mutations in mediator complex subunit 12 (MED12) gene, most
commonly in exon 2 [7,8,177]. As the mediator complex interacts
with ERα and β [115], MED12 mutations can disrupt estrogen
signaling in the mammary gland and contribute to FA pathogenesis
[171]. Furthermore, as MED12 can activate CDK8 by binding with
cyclin C, MED12 mutations can lead to inactivation of the cyclin C-
CDK8/CDK19 pathway, thereby increasing the incidence of FA [178].

Mastitis and related diseases during aging
Mastitis, a form of breast inflammation, can occur at all ages [179].
Mastitis is generally categorized as non-lactational or lactational.
Non-lactational mastitis includes periductal and idiopathic granu-
lomatous mastitis [180]. Lactating mastitis, which is the most
common type, is typically caused by bacteria that live on the skin,
such as Staphylococcus aureus [180].
Although the relationship between mastitis and age has been less

studied in humans andmice, recent research on dairy cows suggests
that the risk and incidence of mastitis increase with age [181,182].
Furthermore, the high incidence of latentmastitis in oldermultiparous
cows may be associated with increased nipple patency and
frequency of previous exposure [183], as well as a potential decline
in immunity [184].
Mastitis is often caused by suboptimal milk removal from the

mammary gland, resulting in milk retention and the promotion of a
microenvironment favorable for microbial overgrowth. As breast
cancer can rise from inflammatory or infected sites, patients with
mastitis have a higher risk of developing breast cancer [185], as also
reported for women with non-lactational mastitis [180]. Bacterial
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infections, which are common in mastitis, can also trigger
tumorigenesis, with recent studies showing that tumor-resident
intracellular microbiota may be involved in promoting breast cancer
metastasis [186].

Insufficient lactation during aging
Milk is a complex liquid mixture developed to meet the nutritional
needs of infants [187]. Decreased lactation is generally considered
to be the result of a decrease in the ability of epithelial cells to
produce milk [188,189]. Mammalian lactation decreases with age
[190], which results from cumulative cellular damage caused by
endogenous oxygen free radicals during aging [191]. Decreased
lactation can also occur due to cellular senescence, which is a
marker of aging [181,192]. Although continued milk removal from
the mammary gland prolongs lactation and prevents mammary
gland involution, milk synthesis declines over time during
prolonged lactation, and the aged status of lactating cells may
accelerate reduced milk production. This is partly attributed to
changes in mammary mitochondrial oxidation markers during the
extended lactation cycle [181]. Insufficient lactation is also
associated with the incidence of breast cancer [193]. Notably,
breastfeeding can reduce the incidence of breast cancer by about
20%, and prolonged lactation can significantly reduce the incidence
of breast cancer [194].

Breast cancer during aging
The prevalence of various malignancies increases with age,
suggesting that aging is a key factor in the development of cancer
[195,196]. Breast cancer, a malignancy that commonly affects
women, also increases with age, with over 80% of cases occurring
in women older than 50 years [53,197]. The aging process initiates a
series of changes in the breast, including regression of TDLUs,
increase in adipose tissue, and decrease in overall breast density,
which can promote the occurrence of breast cancer.
Decreased TDLU degeneration leads to increased breast
cancer
As the functional unit of normal tissue in the mammary gland,
TDLUs are responsible for milk production during lactation.
Invasive lobular carcinomas (ILCs) are frequently derived from
TDLU cells [198], with higher and lower age-related TDLU
involution associated with reduced and increased breast cancer
risk, respectively [22,26].
The mechanism underlying delayed TDLU degeneration is not

well understood. A standard approach for detecting TDLU
degradation is to measure TDLU counts, median TDLU span, and
median acini counts per TDLU. Zeina et al. [26] investigated the
effects of hormones on TDLU degeneration in normal tissue and
found that high levels of oxytocin in premenopausal women are
associated with higher TDLU counts, while high levels of
progesterone are significantly associated with lower TDLU counts.
In contrast, in postmenopausal women, high levels of estradiol and
testosterone are associated with high TDLU counts. Oh et al. [199]
studied the relationship between circulating IGF and TDLU
involution in African and Caucasian American women and revealed
that postmenopausal IGFBP-3 (IGF receptor) is negatively corre-
lated with TDLU count, with higher IGF-1:IGFBP-3 ratio resulting in
a higher concentration of TDLUs in premenopausal women. Several
studies have found that highly expressed pro-inflammatory
markers, such as TNF-α, COX-2, IL-6, CRP, leptin, SAA1, IL-8,

and IL-10, are negatively correlated with the degree of lobular
degeneration. Thus, high expression of inflammatory markers in the
mammary gland is associated with reduced lobular degeneration,
which may increase the risk of breast cancer [200].
Increased breast fat increases breast cancer incidence
Mammary adipose tissue is the primary endocrine system of the
breast, secreting a variety of growth factors and enzymes [35]. The
proportion of this tissue increases with age and is significantly
associated with the incidence of breast cancer, with mammary
adipocytes involved in the initiation, progression, invasion, and
metastasis of breast cancer [89]. Moreover, interactions between
adipocytes and surrounding cancer cells can modify the tumor
microenvironment in favor of breast cancer development [35].
Breast adipose tissue contains special crown-like structures

(CLSs), which may explain, at least in part, the positive age-related
correlation between this tissue and breast cancer incidence. These
CLSs are formed by macrophages surrounding dead or dying
adipocytes [201], which are rich in aromatase, an enzyme that
converts androgens to estrogens [202]. Estrogens play a substantial
role in promoting the occurrence and development of breast cancer.
In postmenopausal women, most endogenous estrogens are
converted from androgens, a process dependent on aromatase,
with higher circulating estrogen levels associated with increased
breast cancer incidence [203,204]. The occurrence of CLSs in breast
adipose tissue in breast cancer patients is associated with an
increased estrogen to androgen ratio in breast adipose tissue and
serum [205]. In older women, increased CLS number and density
are associated with increased BMI and adipocyte size [206,207].
Thus, female breast adipose tissue and CLS formation will continue
to increase with increasing age, eventually leading to an increase in
the incidence of breast cancer. Therefore, aromatase inhibitors
alone or in combination with TAM may significantly reduce tumor
progression of hormone receptor-positive breast cancers in post-
menopausal women [208].
As women age, PAT is transformed into WAT in the mammary

gland, which contributes to an increase in the risk of breast cancer.
This transdifferentiation process is mediated by PPARγ, a crucial
factor for preventing age-related dysfunction in many organs and
tissues [209], and occurs during mammary gland involution after
lactation [32]. Downregulation of PPARγ creates a favorable
tumorigenic microenvironment for breast cancer due to inflamma-
tory signaling pathways [210], suggesting that transition from PAT
to WAT is necessary for mammary involution, with reduced
involution associated with increased breast cancer risk.
Breast hormonal changes and breast cancer during aging
In the process of aging, numerous hormones in the breast decline,
with a corresponding increase in the prevalence of hormone-
dependent breast cancer. GH and IGF-1 signaling decreases during
aging, associated with reductions in postmenopausal sex hormones
[48]. Although postmenopausal women have lower levels of
estrogen, older women experience a higher rate of ERα-positive
breast cancer [211]. Studies have found that the incidence of
hormone-dependent breast cancer increases with age, including
both ER+ breast cancer [212] and PR+ breast cancer [48].
The expression levels of various hormone-related enzymes,

including aromatase, sulfatase, and 17β-hydroxy-steroid dehydro-
genase-1, increase with age, allowing mammary epithelial cells to
maintain proliferation at lower circulating estrogen levels [213].
These changes lead to enhanced hormone sensitivity in mammary
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epithelial cells [214], thereby fostering the development and
progression of breast cancer.
Overall breast density and breast cancer
High overall breast density, the third strongest risk factor for breast
cancer after age and BRCA1/2 mutations [9], can be affected by
many factors, such as TDLU degeneration and age. Research has
shown that TDLU degeneration during aging is associated with MD,
while delayed TDLU degeneration is associated with increased
overall breast density [215]. Overall breast density is also positively
correlated with collagen, epithelial, and non-epithelial cells, and
negatively correlated with fat [9], consistent with the increased
proportion of mammary adipose tissue during aging.
Certain hormones, including progesterone and IGFs, can also

affect overall breast density [25,57,216]. Postmenopausal hormone
therapy (HT) can lead to an increase in MD, especially under
combined estrogen/progestin treatment [217]. Studies have shown
that the use of HT, particularly estrogen and progestin, slows the
transition from dense to more fatty patterns in the mammary gland,
which typically develops with age [218]. Therefore, HT may slow
breast involution and increase breast cancer incidence.
Changes in breast immune cells during aging and their
relationship with breast cancer
In the aging process, the proportion of different immune cells in the
mammary gland changes markedly. Studies have shown that NK
and CD8+ T cells are significantly increased (by 2-fold and 8-fold,
respectively) in the mammary tissue of agedmice [9] and the serum
levels of NK cells are significantly higher in the elderly groups than
in the young groups [219].
During aging, immune cells in the breast and blood undergo

changes that may contribute to the incidence of breast cancer. The
relationship between immune cells and breast cancer is complex
but may be partly attributed to changes in immune cell populations.
Carman et al. [69] demonstrated that Cd274 (also known as Pd-l1)
and Lilrb4 (also known as Ilt3) are upregulated in aged mouse
mammary glands and may act as immunosuppressive ligands that
target T cells and NK cells, thereby promoting an immunosuppres-
sive microenvironment. It has also been reported that the number
of CD56−CD16+ NK cells is significantly increased in elderly
individuals. This increase in immunosuppressive CD56−CD16+ NK
cells can lead to a decrease in the expression of immune regulators,
such as granzymes A, B, and NKG2A [219], resulting in a decrease
in anti-tumor immunoreactions.
Accumulative mutations during aging and breast cancer
Gene mutations occur in almost all organisms, and continue to
accumulate in the aging process, with about 40 new mutations
developing in the body every year [220]. Somatic cells also continue
to mutate throughout life. While most of these mutations do not
harm the body, some can change key functions of cells, including
proliferation and differentiation [221,222], which play an important
role in the development of aging diseases and tumors. Generally,
cancer is caused by mutations that have accumulated continuously
in the aging process in individuals [223,224].
While mutation accumulation is closely related to breast cancer

occurrence and development, it is not the only factor responsible for
the disease. Rather, breast cancer can be considered a multi-step
process, with each step related to the mutation of essential
regulatory genes. Clinical diagnosis of breast cancer generally
reveals 4 to 6 major regulatory gene mutations distributed on
different chromosomes of breast cancer cells, which play crucial

roles in maintaining cell proliferation, apoptosis, and differentiation
[225]. Various genes are prone to mutations in breast cancer
during aging, including BRCA1, BRCA2, CHEK2, TP53, and CYP1A1
[225–228]. However, age-related mutation accumulation cannot
explain the increased incidence of breast cancer with age [229].
Notably, while the incidence of many types of cancer increases
exponentially with age, the incidence of breast cancer does not
follow the same pattern, instead increasing slowly after the age
of 50 [230].

Interventions for Delaying Mammary Gland Aging and
Preventing Breast Disease
Breast aging is associated with an increased risk of breast cancer
and other related diseases. As such, delaying the aging process
could potentially reduce the incidence of these diseases. As an
effective and widely used anti-aging endocrine therapy, HT can
increase breast volume by the administration of different hormones,
including GH, androgen, estrogen, and progesterone [231]. Both GH
and IGF-1 levels decline with age. Studies on female rhesus monkeys
have shown that treatment with IGF-1, GH, or GH+IGF-1 can result
in progressively greater breast volume enlargement, suggesting that
the GH/IGF-1 axis may stimulate the proliferation of mammary
glands in primates via activation of downstream proteins C-MYC,
CDKs, ZO-1, and VEGF [232]. Although HT has anti-aging benefits, it
may also increase the risk of breast cancer. Biological hormone
replacement therapy (BHRT), a new type of HT, is an effective anti-
aging and aging-related disease treatment strategy [233].
Breast cancer can be resulted from multiple factors, including

genetic and non-genetic risk factors. Non-genetic risk factors
include obesity, alcohol intake, and poor exercise. Studies suggest
that reducing BMI, limiting alcohol intake, and increasing physical
exercise can help prevent breast cancer [234]. Notably, regular
exercise has been shown to reduce aging T cells, increase the
proliferation of T cells, and enhance the killing capacity of NK cells
to prevent immune aging [235]. Furthermore, moderate regular
exercise can partially restore mitochondrial dysfunction and other
dysfunctions caused by aging or lack of exercise, with caloric
restriction potentially able to extend lifespan [236]. Regular exercise
may also help prevent breast aging as well as the occurrence and
development of breast-related diseases. Obesity can also promote
aging and age-related metabolic abnormalities similar to those
caused by normal aging [237]. Hence, reducing obesity may help
delay both aging and breast disease. Epigenetic changes also play a
role in the occurrence and development of breast cancer. Histone
deacetylase and DNAmethyltransferase inhibitors, which modulate
epigenetic activity, have attracted increasing attention in cancer and
aging research [238]. Caloric restriction also exerts epigenetic
regulation activity in a variety of aging-related diseases and
cancers [238].
During aging, nutrient sensing is an evolutionarily conserved

process that involves various signaling pathways, such as mTOR.
These pathways are closely related to the occurrence and develop-
ment of breast cancer. Targeting important molecules in these
pathways may be an effective strategy for preventing breast cancer.
Temsirolimus, anmTOR inhibitor, has been shown to be effective in
treating advanced hormone receptor-positive breast cancers [239].
Targeting cancer-related fibroblasts that secrete SASP factors may
also inhibit breast cancer progression. Researchers have reported
that the mTOR inhibitor rapamycin effectively reduces SASPMMP-2
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activity and TGF-β1 expression after 14 days of treatment [239,240].
Moreover, while SASP factors secreted by senescent epithelial cells
can promote the proliferation, migration, and invasion of breast
cancer cells, targeting the SASP factor CXCL11 can eliminate the
promotion of senescent cells and proliferation of breast cancer
cells [240].
Interventions that target aged molecules have been shown to

effectively inhibit breast cancer. Both CDK4 and CDK6 promote the
transition of cells from the G1 phase to the S phase, and thus CDK4/6
inhibitors can block the proliferation of cancer cells and promote
cellular senescence [241]. The combination of CDK4/6 inhibitors
and other therapies has been widely applied in clinical treatment,
resulting in cell sensitization to palbociclib resistance by enhancing
breast cancer cell aging [242]. The RANK signaling pathway plays
an important role in breast cancer progression. Overexpression of
RANK or exposure to RANKL in breast cancer cells can induce
aging, which is dependent on p16/p19. RANK-induced aging is
essential due to its induced stemness and tumor-promoting effects.
RANKL intervention is an effective treatment for proliferative breast
diseases [125,243]. PAK4 can prevent breast cancer cells from
aging, leading to malignant proliferation, while inhibition of PAK4
can promote the aging of breast cancer cells [244]. Targeting
promyelocytic leukemia protein (PML), which is significantly
upregulated in TNBC cells and regulates the initiation of breast
cancer, can lead to significant growth inhibition and MYC and PIM1
kinase reduction, thereby triggering CDKN1B (p27) accumulation
and initiation of aging [245]. CXCR2 can promote the anti-aging,
anti-apoptosis, and EMT processes of breast cancer cells, ultimately
leading to tumor metastasis and enhanced chemoresistance. Thus,
CXCR2 antagonists can be used to treat breast cancer patients [246].

Conclusions and Perspectives
This review provides an overview of the various changes that occur
in the mammary gland during aging, including regression of
mammary TDLUs, enhanced mammary gland density, increased
adipose tissue deposition, changes in hormone levels, and changes
in cellular composition. These modifications are closely connected
to the development of mammary gland-related diseases. Delayed
regression of TDLUs during aging is associated with an increase in
the incidence of breast cancer and may be related to hormonal
imbalances in the breast, such as aberrant levels of estradiol,
testosterone, circulating IGF, and pro-inflammatory cytokines
[26,199,200]. Although age-related changes in TDLUs have been
confirmed in several studies, the underlying mechanism and related
factors require further study to elucidate the roles of aged TDLUs in
breast pathologies.
The abovementioned age-related changes in the mammary gland

stimulate breast diseases through complex mechanisms. The high
proportion of adipose tissue in the mammary gland during aging is
implicated in increased breast cancer risk, which may be due to
adipocytes secreting cytokines that alter the tumor microenviron-
ment [35]. In addition, excess adipose tissue forms specific
structures [35,206,207] that can accelerate the conversion of
androgens to estrogens, thereby initiating the potential develop-
ment of breast cancer. Hormones in the mammary gland arise from
both systemic circulation and local synthesis. Although breast
cancer-related hormones, such as estrogen, decline in postmeno-
pausal women [211], breast cells become more sensitive to estrogen
[48,214], thereby increasing the incidence of breast cancer.

In the aging process, the proportion of mammary epithelial cells
continuously increases, while the proportion of stromal cells
decreases [69]. Breast cancer can originate from breast epithelial
cells, and the increasing proportion of epithelial cells during aging is
implicated in breast cancer incidence. Upregulation of genes such as
TGFB1 and VEGFA in aging epithelial cells is also associated with
breast-related diseases, such as FA and breast cancer. Stromal cells
decline with age, and changes in certain stromal cell factors, such as
HSPA1A, SQSTM, CEBPB, CXCL1/2, and IL-6, may not only
promote the occurrence and development of breast cancer, but
also participate in the process of chemoresistance. Changes in the
proportion of breast cells and corresponding gene expression during
aging are closely related to the increased risk of breast cancer.
However, further research is needed to investigate the relationship
between aging-related breast diseases and changes in breast cells.
Several important regulatory pathways, including cyclin D1,

STAT3, RANK/RANKL and Slug/Snail, undergo changes during
aging and participate in the aging process of breast epithelial cells,
tumor fibroblasts, and tumor cells. Cyclin D1 is highly expressed in
elderly breast cancer patients [247] and targeting the cyclin D1-
CDK4/CDK6 complexes and their downstream genes can inhibit the
development of breast cancer. STAT3 also contributes to the
regulation of body aging and cellular senescence. STAT3 signaling
can promote tumor growth, while its inhibition can lead to breast
cancer cell senescence [110]. The RANK/RANKL pathway regulates
mammary gland development and promotes breast epithelial cell
proliferation. Overexpression of RANK can cause breast cancer
hyperplasia, as well as breast cancer cell senescence. The Slug/Snail
signaling pathway is related to DNA damage response, and deletion
of Slug can lead to breast cancer cell senescence. These regulatory
pathways are essential to aging and breast cancer cell senescence
and could potentially be targeted for clinical applications.
Aging is a gradual and time-dependent functional decline that

affects most organisms and is characterized by loss of physiological
integrity, impaired function, and greater susceptibility to death [30].
Aging exhibits several characteristics in cellular and molecular
biology, including genomic instability, telomere attrition, epigenetic
modification, proteostasis loss, nutrient sensing dysregulation,
mitochondrial dysfunction, cellular senescence, stem cell exhaus-
tion, and changes in intercellular communication [30]. Here, we
primarily focused on the relationship between breast-related
diseases and aging hallmarks, including genomic instability,
epigenetic modifications, mitochondrial dysfunction, cellular se-
nescence, oxidative stress, and autophagy. Although oxidative
stress and autophagy are linked to breast cancer cell senescence,
their functions during breast aging development remain poorly
studied. Given their inevitability during aging, it would be
worthwhile studying the contribution and mechanisms of oxidative
stress and autophagy to breast diseases during breast aging.
The mammary gland undergoes various changes in the aging

process, many of which are associated with breast-related diseases,
especially cancer. In this review, we discussed changes in the
process of breast aging, including decreased TDLUs and overall
density, increased adipose tissue, and alterations in hormone levels.
These changes in mammary gland development during aging can
facilitate the progression of breast diseases, such as FA, mastitis,
hypolactation, and cancer. Understanding the relationship between
breast changes during aging and breast diseases, as well as the
relationship between these diseases, will provide guidance for the
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prevention and treatment of breast-related disorders.
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