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Abstract
Background.  Characterizing and quantifying cell types within glioblastoma (GBM) tumors at scale will facilitate a 
better understanding of the association between the cellular landscape and tumor phenotypes or clinical correl-
ates. We aimed to develop a tool that deconvolutes immune and neoplastic cells within the GBM tumor microenvi-
ronment from bulk RNA sequencing data.
Methods. We developed an IDH wild-type (IDHwt) GBM-specific single immune cell reference consisting of B cells, 
T-cells, NK-cells, microglia, tumor associated macrophages, monocytes, mast and DC cells. We used this alongside 
an existing neoplastic single cell-type reference for astrocyte-like, oligodendrocyte- and neuronal progenitor-like 
and mesenchymal GBM cancer cells to create both marker and gene signature matrix-based deconvolution tools. 
We applied single-cell resolution imaging mass cytometry (IMC) to ten IDHwt GBM samples, five paired primary 
and recurrent tumors, to determine which deconvolution approach performed best.
Results.  Marker-based deconvolution using GBM-tissue specific markers was most accurate for both immune 
cells and cancer cells, so we packaged this approach as GBMdeconvoluteR. We applied GBMdeconvoluteR to bulk 
GBM RNAseq data from The Cancer Genome Atlas and recapitulated recent findings from multi-omics single cell 
studies with regards associations between mesenchymal GBM cancer cells and both lymphoid and myeloid cells. 
Furthermore, we expanded upon this to show that these associations are stronger in patients with worse prognosis.
Conclusions.  GBMdeconvoluteR accurately quantifies immune and neoplastic cell proportions in IDHwt GBM bulk 
RNA sequencing data and is accessible here: https://gbmdeconvoluter.leeds.ac.uk.

Key Points

•	 GBMdeconvoluteR is a glioblastoma-specific cellular deconvolution tool. When applied to 
bulk GBM RNAseq data. 

•	 GBMdeconvoluteR accurately quantifies the neoplastic and immune cells in that tumor. 

•	 GBMdeconvoluteR is available online at https://gbmdeconvoluter.leeds.ac.uk.
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Glioblastoma (GBM) brain tumors consist of a multitude 
of different neoplastic and non-neoplastic cell types.1 The 
specific cancer cell subtypes within a GBM are directly in-
fluenced by the cellular composition of the microenviron-
ment, which also has a role in shaping the progression 
of the tumor and its adaption to stressors including treat-
ment.2–4 It is of paramount importance to accurately charac-
terize the cellular make-up of GBM tumors. This will enable 
us to understand the phenotypes associated with changing 
cell landscapes within individual tumors, and to assess cor-
relation between specific cell populations and the efficacy 
of new treatments, particularly immunotherapies. Whilst 
single cell and spatial-profiling approaches currently offer 
the highest resolution of cellular deconvolution, they are 
technically challenging, and prohibitively costly for larger 
sample numbers.

Instead, approaches that propose to quantify cell types 
from bulk tissue RNA sequencing data have become in-
creasingly popular.5–9 These can be split into two main 
types: those that employ a full cell-type gene-expression 
signature matrix; and those based on marker-genes for 
specific cell types. A widely-adopted implementation of the 
former approach is CIBERSORTx,9 which was recently used 
to delineate pan-glioma cell types.3 However, key studies 
have shown that the accuracy of any gene-expression 
based computational deconvolution tool is mostly derived 
from the signature matrix, or marker-genes, underpinning 
it, which must be derived from the tissue of interest.5,10,11 
We, thus, decided to create a tool that can specifically quan-
tify cancer cell types, as delineated by Neftel et al,2 and im-
mune cell types from bulk IDHwt GBM tumor sequencing 
data. We developed this tool by amalgamating four in-
dependent single-cell GBM datasets to derive signature 
matrices for use with CIBERSORTx and marker-genes for 
use with MCPcounter. The latter was chosen as it has been 
benchmarked as one of the most accurate marker-gene-
based tools available, giving consistently high correlation 
with ground truths across cell types.12 We then compared 
results from these GBM-specific programmes to those 
from orthogonal cell quantification, using single-cell res-
olution imaging mass cytometry, on the same IDHwt GBM 
samples. We included both primary and recurrent GBM 
samples in our tool development and validation, to enable 
separate quantification of accuracy in longitudinal sam-
ples. We found that the MCPcounter based tool performed 
best at delineating both immune and neoplastic cancer 
cell populations and have made this publicly available as 

GBMdeconvoluteR: an online tool accessible via https://
gbmdeconvoluter.leeds.ac.uk.

Materials and Methods

All statistical analyses were carried out using the R statis-
tical software package version 4.2.0. The name of each test 
used, and level of significance achieved, is included within 
the results where the finding from each hypothesis test is 
confirmed. Plotting was done using ggplot2 (version 3.3.6).

Dataset Selection

Four single cell datasets were identified from literature 
searches (Table 1).13–16 The inclusion criteria were single-
cell or single-nuclei RNAseq expression data from human 
IDHwt glioblastoma samples. Data had to be available as 
raw counts.

Single-cell RNA-seq Data Pre-processing

The Seurat R package (version 4.1.1) was used for all pre-
processing, integration, clustering, and annotation tasks.17 
Whilst GSE163120 has a single accession code, it contains 
data from primary and recurrent sample cells that were 
sequenced on different platforms so these were processed 
separately.

Copy-number Variant Analysis to Remove 
Neoplastic Cells

Single cell datasets were amalgamated. Neoplastic cells 
were filtered, as has been done previously, by inferring and 
removing those with large-scale copy-number variations 
such as Chr. 7 amplification and Chr. 10 deletion using the 
inferCNV R package (version 1.3.3).18,19 The inferCNV object 
was created using “CreateInfercnvObject()” taking the raw 
counts (stored in the “RNA” assay of the Seurat object) for 
each dataset. Annotations were not provided, instead each 
dataset was grouped according to sample (ie, patient). The 
gene ordering file used was derived using the annotations 
from Ensembl Genes 91 for Human build 38 (GRCh38), 
taking the gene name, chromosome, and gene span. The 
“ref_group_names” argument was set to NULL, to average 

Importance of the Study

The cellular composition of IDH wild-type glioblastoma 
tumors (IDHwt GBM) impacts the cancer’s progres-
sion and response to treatment in ways that can likely 
be therapeutically exploited. To enable rapid and high-
throughput deconvolution of the cell landscape of GBM 
tumors, we have developed GBMdeconvoluteR: the 
first publicly accessible web-based tool that accurately 
quantifies both immune and neoplastic cell populations 

within GBMs from bulk tumor RNA sequencing data. 
We used high-resolution imaging mass cytometry to 
validate our tool, and applied it to data from The Cancer 
Genome Atlas to show its applicability for confirming, 
and expanding upon, recent findings from single-cell 
muti-omics studies. GBMdeconvoluteR is available at 
https://gbmdeconvoluter.leeds.ac.uk.

https://gbmdeconvoluter.leeds.ac.uk
https://gbmdeconvoluter.leeds.ac.uk
https://gbmdeconvoluter.leeds.ac.uk
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signal across all cells to define the baseline. The “run()” 
function was then used to perform InferCNV operations 
to reveal the copy-number variation signal. A cut-off value 
of 1 was used for all the datasets apart from GSE163120, 
where a value of 0.1 was used as suggested by the docu-
mentation for InferCNV.

Quality Control Filtering

Each dataset underwent individual quality control (QC) in 
which metrics were used to filter out poor quality cells ac-
cording to dataset-determined thresholds (Supplementary 
Table S1): the number of reads, or unique molecular 
identifiers (nUMI_min); the number of non-zero count 
genes (nGene); the percentage of mitochondrial genes 
(mitochondial_ratio_min); the percentage of ribosomal 
genes; and the cell complexity (gene_complexity_min), 
which is a composite measure derived as log10(nGene)/
log10(nUMI_min).

Dataset Normalization

Post-filtering, each dataset was normalized individually 
using SCTransform, whilst regressing out dataset-specific 
confounding sources of variation such as ribosomal/mi-
tochondrial ratio using the vars.to.regress function argu-
ment. Moreover, due to the disparity in the total number 
of cells in each dataset, a different number of variable fea-
tures were passed to the variable.features.n function argu-
ment. The specific normalization criteria for each dataset 
are in Supplementary Table S2.

Dataset Integration

The FindIntegrationAnchors tool was applied to the list of 
SCTransform normalized datasets to identify cross-dataset 
pairs of cells that were in a matched biological state. These 
“anchors” were then used with IntegrateData to merge all 
the datasets together.17 The normalization.method argu-
ment was set as “SCT” for both FindIntegrationAnchors 
and IntegrateData.

Clustering and Cell-type Assignment

Dimensionally reduction was performed on the integrated 
datasets using principal component analysis (PCA) using 

RunPCA with default settings. This was followed by uni-
form manifold approximation and projection (UMAP) 
which was implemented using RunUMAP with custom 
parameters a = 0.6 and b = 0.75. Shared nearest-neighbor 
graphs were constructed based on Euclidean distance 
using FindNeighbours; taking the default k (k = 20), the first 
30 principal components and using the rann method for 
finding nearest neighbors. Clusters were identified using 
FindClusters, with the “smart local moving” (SLM) algo-
rithm used for cluster optimization.20

Cell-type Annotation

Cell counts per cluster, for each clustering resolution pa-
rameter (0.1–0.8 in 0.1 increments) were cross tabu-
lated with immune cell-type labels transferred from 
dataset GSE163120. The 0.7 resolution cross-tabulation 
(Supplementary Table S3) was used, based on cluster ro-
bustness and stability,21 to assign cell-type annotation 
labels to clusters where the majority of cells had labels for 
either one distinct cell type or and/or where the cells were 
labeled were unknown. The T-cell, NK-cell and TAM labeled 
clusters could not be assigned and were sub-clustered to 
further resolve them. This constituting isolation of these 
cells and repeat of the above methodology, from the point 
of having normalized data, to separate cell types.

Deriving GBM Immune and Neoplastic Cell-type 
Profiles

Immune cell marker genes were identified from the inte-
grated, clustered and annotated data using the scran R 
package (version 1.2.2).22 The findMarkers function was 
used to identify candidate marker genes by testing for 
those that were differentially expressed (DE) between pairs 
of clusters using both t-test and Wilcoxon rank sum tests. 
Both “all” and “any” pval.type arguments were used to 
identify genes which were DE between any two clusters 
and highly ranked/significantly upregulated genes for a 
given cluster (all) or significantly upregulated compared 
with all other clusters (any). The multiMarkerStats func-
tion was then used to combine multiple sets of marker 
statistics. Neoplastic GBM cell marker genes were taken 
directly from Neftel et al2 but were filtered to remove non 
GBM tumor intrinsic genes, to negate the noise that would 
result from expression of these in the tumor microenvi-
ronment.23 Marker genes for a variety of GBM neoplastic 

  
Table 1.  Single-cell IDH1 wild-type GBM datasets used as a reference set for this project

Accession Samples Platform References 

GSE141383 Single cell RNAseq of ~18k cells from 5 primary IDHwt GBM Automated microwell array capture 
and full length mRNAseq

13

GSE163120 Single cell RNAseq of ~21k cells from primary and ~43kcells 
from recurrent IDHwt GBMs

10X Genomics GemCode capture 
and 3′ or 5′ mRNAseq

14

GSE135437 Single cell RNAseq of 769 cells from 4 IDHwt GBMs Single cell sorting and 3′ mRNAseq 15

GSE138794 Single-cell/nuclei RNA-sequencing of ~11k single cells from 
4 IDHwt primary GBMs.

10X Genomics Chromium capture 
and 3′ mRNAseq

16

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
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and non-neoplastic cell types have recently been made 
available as a resource entitled GBMap. We downloaded 
these directly from the Supplementary data of the accom-
panying preprint for testing within MCPcounter (denoted 
MCPcounter_GBMap).24 The neoplastic cell markers from 
GBMap were also filtered to only include GBM tumor in-
trinsic genes.

CIBERSORTx Reference Expression Profile

The single cell data used to derive the neoplastic expression 
profiles used with CIBERSORTx was obtained from the Gene 
Expression Omnibus (GEO: GSE131928). These data com-
prised ~23 000 cells which were filtered to include only adult 
GBM samples. Each cell came with a score corresponding to 
6 neoplastic cell states: these were converted to four states 
and then each cell was assigned to a neoplastic cell state or 
as a hybrid as described in Neftel et al.2 The neoplastic single 
cell data was combined with the labeled immune single 
cells and then randomly down-sampled such that the total 
number of cells in the resulting reference matrix was 5075 
and of roughly equal class type (Table 2).25

Validation Samples

Ten human GBM samples were used for validation via 
bulk RNA sequencing and imaging mass cytometry. These 
were de novo primary IDHwt GBM that had been stored in 
formalin-fixed, paraffin-embedded blocks, and the matched 
locally recurrent sample following initial debulking sur-
gery and treatment with radiation and Temozolomide 
chemotherapy.

Ethics Statement

Samples were from patients at the Walton Centre, UK, 
that provided informed consent in writing for the use of 

their tissue in research. The inclusion of these samples in 
this project was following approval by the UK National 
Health Service’s Research Ethics Service Committee South 
Central—Oxford A (Research Ethics Code: 13/SC/0509).

Bulk RNA Sequencing

RNA was extracted from neuropathologist annotated re-
gions containing >60% cancer cells using Qiagen kits 
(Qiagen, Sussex, UK). Paired end, 100bp strand-specific 
whole transcriptome libraries were prepared using the 
NEBNext Ultra Directional RNA Library Prep Kit for Illumina 
(New England BioLabs, Herfordshire, UK), following 
rRNA depletion with NEBNext rRNA Depletion Kit or 
Ribo-Zero Gold. Libraries were sequenced on an Illumina 
NextSeq2000. RNAseq data was processed as previously 
described.26

Imaging Mass Cytometry (IMC)

Antibody Selection

A panel of 33 antibodies for markers of neoplastic and 
immune cell subtypes in GBM was selected based on lit-
erature searches and manufacturer websites as collated 
in Table 3 and Supplementary Table S4. Neoplastic GBM 
cell markers were selected based on an overlap of GBM 
cancer cell delineators from three independent, single 
cell studies, including the Neftel et  al study that under-
pins the gene-expression approach herein.2,16,27 Antibody 
selection criteria was, in order of priority: available in pre-
conjugated format for IMC and previously used in IMC of 
GBM or normal brain; previously used in IMC of GBM or 
normal brain via bespoke conjugation; available in carrier 
free format and had been validated for use in IHC or ICC in 
brain or GBM; available in carrier free format.

A set of panel-wide control tissues was determined: 
spleen, brain, tonsil, prostate, bone marrow, skin and 
uterus. Control tissue samples from at least two individ-
uals were amalgamated into a multi-tissue formalin-fixed, 
paraffin-embedded block. Multi-tissue block sections were 
used in IHC validation and testing of three antibody con-
centrations at, above and below those recommended 
by the manufacturer. Chosen antibody concentrations 
and control tissue(s) relevant to each antibody are in 
Supplementary Table S4. Antibody conjugation and 
staining and IMC took place at the Flow Cytometry Core 
Facility at Newcastle University. Conjugation was per-
formed using MaxPar metal labeling kits using X8 polymer 
according to standard manufacturers protocols (with the 
exception of Gd157 which was obtained by Trace Sciences 
International and was diluted to 0.1M prior to use with 
MaxPar reagents). Conjugations were validated by capture 
on Thermo AbC beads prior to acquisition on a helios mass 
cytometer.

Sample Preparation and Mass Cytometry

5 µm sections, taken consecutively from the same blocks that 
underwent bulk RNA sequencing (see above), were stained 
with a cocktail of all 33 conjugated antibodies after dewaxing 

  
Table 2.  Cell types and number of each single cell profile input to 
CIBERSORTx to develop the GBM-specific signature matrix

Cell type Number of cells 

AC 458

B cells 458

DC 458

Mast cells 88

MES 458

Microglia 458

Monocytes 458

NK-cells 458

NPC 458

OPC 407

T-cells 458

TAM 458

Total 5075

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
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(Xylene) and HIER antigen retrieval in Tris-EDTA (pH9) with 
0.5% Tween 20. Sections were incubated for 30 min in 0.3 µM 
irridum to counterstain the nuclei prior to air drying. A min-
imum of three 2 mm2 regions of interest (ROI) were anno-
tated per sample within the area corresponding to that from 
which RNA was extracted from the adjacent sections. Images 
were generated on the Hyperion Tissue Imaging cytometer 
by ablation of the ROI at a 200 Hz frequency with a 1-µm di-
ameter laser. Raw MCD files were created and exported as 
ome-tiff from MCD Viewer software (Fluidigm).

Image Pre-processing

Following export, the raw data were converted from to 
ome-tiff format and segmented into single cells using 

the steinbock pipeline comprised of the following steps28 
Pixel classification was done using Ilastik (version 1.3.3): 
Tiff stacks were generated for each of the proteins in the 
panel and pixels classified into two channels as either nu-
clear, or background. These were used to train a random 
forest classifier, which returned probability masks for each 
image. The generated probability maps were processed 
to create single-cell masks using the image analysis soft-
ware CellProfiler (version 4.1.3). First, probabilities were 
histogram-equalized (256 bins and kernel size of 17), and 
then a Gaussian filter was applied to enhance contrast 
and smooth the probabilities. Subsequently, an Otsu two-
class thresholding approach was used to segment nuclear 
masks. Cell masks were derived from an expansion of nu-
clear masks using a maximum expansion of 3 pixels. The 

  
Table 3.  Antibodies used in IMC

Marker/target Cell type Functional state/specifics Antibody clone(s) 

ANXA1 GBM cancer cells Hypoxia driven mesenchymal EPR19342/abcam

ANXA2 GBM cancer cells Hypoxia driven mesenchymal MAB3928/RnD

BCAN GBM cancer cells Neural progenitor-like S294A-6/Thermo

CD3 Immune cells T-cells Fluidigm/3170019D

CD31 Normal brain cells Vasculature Fluidigm/EPR3094

CD45 Immune cells Pan-immune marker Fluidigm/3152016D

CD8 Immune cells T-cells SK1/Biolegend

CHI3L1 GBM cancer cells Mesenchymal EPR19078-157/abcam

DNA All cells Cell nucleus Fluidigm

DLL3 GBM cancer cells Neural progenitor-like EPR22592-18/abcam

EZH2 All cells Chromatin remodeler EPR9307(2)/abcam

GFAP Normal brain cells Astrocyte ab218309/abcam

HIF1A All cells Hypoxia 16H4L13/Thermo

HOPX GBM cancer cells Astrocyte-like ab230544

IBA1 Immune cells Pan-macrophage EPR16588/abcam

JARID2 All cells Chromatin remodeler Developed in house

JARID2 All cells Chromatin remodeler EPR6357/abcam

Ki67 All cells Proliferating cells B56/Fluidigm

MOG Normal brain cells Oligodendrocytes MA5-24644/Thermo

NCAM (CD56) Normal brain cells Immature Neuron HCD56/Biolegend

NeuN Normal brain cells Mature Neuron  1B7/Biolegend

NKp46 Immune cells NK-cells MAB1850/RnD systems

OLIG1 GBM cancer cells Oligodendrocyte progenitor-like MAB2417/R&D

P2Y12R Immune cells Microglia EPR23511-72/abcam

SCD5 GBM cancer cells Oligodendrocyte progenitor-like PA5-59963/Thermo

SLC1A3 GBM cancer cells Astrocyte-like EPR12686/abcam

SMA Normal brain cells Vasculature 1A4/R&D

SNAI1 GBM cancer cells Epithelial to Mesenchymal Transition AF3639/R&D

SOD2 GBM cancer cells Mesenchymal EPR2560Y/abcam

SOX2 GBM cancer cells GBM stem-like cell O30-678/Fluidigm

TGFbeta GBM cancer cells GBM stem-like cell TW4-6H10/Fluidigm

TMEM119 Immune cells Microglia HPA051870/sigma

TNC GBM cancer cells GBM stem-like cell MAB2138/R&D
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CellProfiler single cell masks were ultimately overlaid onto 
the single-cell segmentation masks and single-channel 
tiff images of all measured channels to extract single-cell 
marker expression means. The single-cell data was read 
into R using read_steinbock from the imcRtools R package 
(version 1.2.3) and the expression counts were transformed 
using an inverse hyperbolic sine function (cofactor  =  5). 
The expression counts were corrected for channel spill-
over using a non-negative least squares method as previ-
ously described.29 Briefly, each metal-conjugated antibody 
was spotted on an agarose-coated slide, and this was ab-
lated to generate a background signal which could be 
used for compensation using the R Bioconductor package 
CATALYST (version1.20.1).

Image Analysis

All downstream data visualizations, including Image 
and cell segmentation QC were completed using the 
cytomapper (version 1.8.0) and dittoseq (version 1.8.1) 
R packages.30 Batch effect correction of segmented cells 
was completed using harmony (version 0.1.0).31 Cells were 
clustered based on their similarity in marker expression 
using the PhenoGraph clustering algorithm (k =45) imple-
mented in Rphenograph (version 0.99.1).32 Cluster IDs were 
mapped on top of UMAP embeddings (n_neighbors = 40) 
derived using the uwot R package (version 0.1.11). Cell-type 
classification was completed using marker enrichment 
modeling, implemented in the MEM R packages (version 
2.0.0), selecting for markers with enrichment scores equal 
to or greater than 3 (display.thresh = 3)33 for the first clus-
tering, which defined immune cells. Further sub-clustering 
was required to annotate neoplastic cells with display.
thresh relaxed to 2 (Supplementary Table S5).

Creating and Comparing the Cell Deconvolution 
Approaches

MCPcounter was run via the R Package (version 1.2.0) in 
two modes: default mode (MCPdefault) used the universal 
set of 110 immune cell-type marker genes that come pro-
vided as standard, meaning no neoplastic cell populations 
were included; GBM mode (MCPGBM) used the GBM-
specific neoplastic and immune cell marker genes derived 
as outlined above.

The “Create Signature Matrix” module of CIBERSORTx 
was run with default parameters and quantile normaliza-
tion disabled, to create a signature matrix using the single-
cell-derived immune and neoplastic expression profiles 
detailed above. This signature matrix was then used to 
infer cell fractions of bulk RNA-Seq sample mixtures using 
the CIBERSORTx High-Resolution docker container (https://
hub.docker.com/r/cibersortx/hires). For all runs, the bulk 
RNAseq dataset was input as the “mixture” file and the re-
spective signature matrix was input as the “sigmatrix” file. 
For all runs, the Batch correction was done in “S-mode” by 
setting the “rmbatchSmode” parameter to TRUE and the 
input signature matrix’s respective CIBERSORTx-created 
“source gene-expression profile” was input. Finally, ab-
solute mode was set to FALSE for all runs. Cell popula-
tion quantities inferred from the GBM sample RNAseq 

for all expression based deconvolution approaches were 
compared with those from the IMC using the Pearson 
Correlation Coefficient.

Application to TCGA Data

TGCA data was obtained from the Genomics Data 
Commons Data Portal (https://portal.gdc.cancer.gov/). The 
data were filtered on the “data_category” and “data_type” 
fields to only include “transcriptome profiling” and “gene-
expression Quantification” data, respectively. Further, 
only primary, IDH wild-type GBM cases treated with 
standard/non-standard temozolomide chemoradiation 
were selected. The expression values for the 93 sam-
ples were TPM normalized counts that were combined 
into an expression matrix. This matrix was input to 
GBMdeconvoluteR, which was run using our GBM-specific 
marker genes. Outputted scores were used in correlation 
analysis using the cor() and cor.test() functions from base 
R stats package. The quartiles of overall survival (OS) were 
calculated and used to extract patients with a worse (OS 
less than the lower quartile of 8.55 months) or better (OS 
greater than the lower quartile of 20.55 months) prognosis. 
Plots were generated using the ggplot2 R package.

Developing GBMdeconvoluteR

GBMdeconvoluteR was developed as an interactive web 
application using the Shiny R package (version 1.7.1) and 
packaged as a portable container image using the rocker/
shiny:latest base Docker image. The custom image was 
stored in the Azure Container Registry and deployed using 
the Azure App Service. All code can be found at https://
github.com/GliomaGenomics/GBMDeconvoluteR.

Results

Identifying GBM-specific Cell-type Profiles

Four independent single cell GBM datasets (Table 1) were 
used to derive marker genes, or signature gene-expression 
matrices, for GBM tumor-infiltrating immune cells: B cells, 
T-cells, natural killer (NK) cells, microglia, tumor asso-
ciated macrophages (TAM), monocytes, mast and den-
dritic cells (DC). Figure 1A outlines the process. Datasets 
underwent pre-processing independently to filter out 
poor quality cells and copy-number analysis to remove 
neoplastic cells, before being amalgamated. There were 
significant batch effects owing to different sequencing plat-
forms and originating centres but these were effectively 
removed using regularized negative binomial regression34 
(Figure 1B and Supplementary Figure S1A). One dataset 
(GSE163120) included the immune cell annotations deter-
mined by the original study. This information was used to 
guide clustering, with optimization focused first on maxi-
mizing cluster stability and then on the best separation 
of pre-annotated cell types.21 Owing to the difficulty in 
separating immune types that are known to have similar 
and overlapping gene-expression profiles (namely TAM 
and microglia; and NK and T-cells) cells assigned to any of 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
https://hub.docker.com/r/cibersortx/hires
https://hub.docker.com/r/cibersortx/hires
https://portal.gdc.cancer.gov/
https://github.com/GliomaGenomics/GBMDeconvoluteR
https://github.com/GliomaGenomics/GBMDeconvoluteR
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
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these groupings were isolated and further sub-clustered, 
resulting in definitive cluster annotations (Figure 1B and 
Supplementary Figure S1B).

GBM-specific marker genes for each immune cell type 
were then derived by using differential expression analysis 
to highlight the top 25 genes, per annotated cluster, that 
were uniquely or predominantly expressed in that cluster, 
and visually checking these to identify specific cell-type 
markers corresponding to each immune cell type (Figure 1C 
and Supplementary Table S6). Marker genes for GBM cancer 
cell subtypes were adopted from Neftel et al.2 In that study, 
four neoplastic GBM cell types were delineated from single 

cell data. We extracted the marker genes that Neftel et al23 
showed to delineate the four subtypes, but then removed 
those that are also expressed in the GBM tumor microenvi-
ronment, and would therefore confound the results of appli-
cation to bulk tissue profiles (Supplementary Table S7).

Single cell expression profiles for annotated GBM-
associated immune cells, from our combined datasets, or 
for annotated GBM cancer cell subtypes, from Neftel et al, 
were amalgamated into a full gene-expression matrix. This 
was then sub-sampled to produce a total of 5075 single cell 
gene-expression profiles with roughly equal representa-
tion of each cell type (Table 2).
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Figure 1.  (A) The process adopted to amalgamate several independent single cell GBM datasets and create a GBM-specific immune cell refer-
ence signature gene-expression matrix (for input to CIBERSORTx) or marker gene set (for input to MCPcounter). (B) The inherent batch effects in 
the amalgamated data are evident in dimensionality reduction plots where clusters initially separated by originating datasets (far left), but were 
removed by normalization (middle left and Supplementary Figure S1A). Initial clustering and cell type assignment of the normalized data was un-
able to resolve TAM and microglia, and T- and NK-cells (middle right) but further sub-clustering enabled these cell types to be further delineated 
(far right and Supplementary Figure S1B). (C) A dot plot showing the expression of chosen GBM-specific immune cell type markers (y-axis) in 
each cell type in the amalgamated single cell data (x-axis).
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data


1243Ajaib et al.: GBMdeconvoluteR quantifies cell types in bulk GBM
N

eu
ro-

O
n

colog
y

Developing and Validating the Deconvolution 
Approach

Two gene-expression based computational decon-
volution approaches were investigated owing to pre-
vious benchmarking studies finding them to be the 
best full gene-expression signature matrix-based ap-
proach (CIBERSORTx) and marker gene-based ap-
proach (MCPcounter) available.12 The approaches are 
distinct and give results with different interpretations. 
gene-expression signature matrix methods such as 
CIBERSORTx attempt to quantify cell types in a single 
sample, enabling comparison of proportions of all cell 
types within and between samples. Marker gene-based 
methods like MCPcounter instead score a single cell type 
for comparison of prevalence across samples; the score 
from cell type A cannot be compared with cell type B so 
within-sample comparisons of different cell types is not 
possible. To ascertain the accuracy of these programmes 
and determine which performed best, we identified five 
primary and matched recurrent GBM samples on which 
to perform both gene-expression based and IMC-based 
cell type deconvolution (Figure 2A and Supplementary 
Figure S2). The latter is an approach that characterizes 
cells, according to protein expression, at single cell res-
olution in tissues using up to 40 antibodies (Figure 2B). 
We assembled and validated a panel of antibodies known 
to distinguish tumor-infiltrating macrophages, microglia, 
monocytes, NK and T-cells (Table 3 and Supplementary 
Table S4).

Immune Cell Quantification

MCPcounter can be used in default mode in which in-built 
canonical immune cells markers are employed. When run-
ning the programme in this mode it can only be used for 
immune cell estimation and we refer to it as MCPdefault. In 
contrast, the mode using the GBM-tissue specific immune 
and neoplastic cell markers listed in Supplementary Tables 
S6 and S7 is denoted MCPGBM. In addition, at the time of 
preparing this manuscript a larger GBM-specific single cell 
resource, GBmap, was made available that amalgamated 
26 single cell brain and GBM datasets.24 We, thus, also ran 
MCPcounter using the GBmap marker genes, denoting this 
as MCPGBmap.

We inspected the concordance between the absolute 
cell proportions predicted by CIBERSORTx, or the relative 
cell type prevalence scores that resulted from each ver-
sion of MCPcounter, and the quantification by IMC. We did 
this for all tumors together (Figure 2C and Supplementary 
Table S8) and for primary and recurrent GBM tumors sep-
arately (Supplementary Figure S3A and Table S8). Results 
varied across cell types but MCPGBM performed best 
overall: it was the only approach to have positive correl-
ations across all cell types (Figure 2C and Supplementary 
Table S8) and had the highest average correlation coef-
ficient (Supplementary Table S8: across all samples, the 
average Pearson’s r was 0.37 between IMC and MCPGBM 
compared with 0.05 between IMC and CIBERSORTx; 0.27 
between IMC and MCPdefault and 0.06 between IMC and 
MCPGBmap).

Neoplastic Cell Quantification

The four GBM cell types described by Neftel et al2 are delin-
eated by gene-expression. Recent studies have shown that 
such transcriptional cell-type markers often do not trans-
late to protein level markers for use in approaches such as 
IMC.35,36 We set out to test this for the GBM neoplastic cell 
types, specifically. To that end, in our IMC panel we included 
antibodies against markers of the four neoplastic GBM cell 
types from Neftel et al, prioritizing those that overlapped 
with markers of GBM cancer cell subsets identified in two 
independent studies: Wang et  al16 and Couturier et  al27 
(Table 3 and Supplementary S4). These studies also iden-
tified GBM cancer cell subsets that were labeled differently 
but showed good agreement with the Neftel et al study.

Results (Figure 2D and Supplementary Figure S3B and 
Table S9) suggest that the protein markers that we selected 
are capable of delineating neoplastic cell types: perfor-
mance varied per method and cell type but to the same 
degree that it did with well-established immune cell pro-
tein markers. Again, when judging performance based 
on correlation with IMC, MCPGBM performed best overall: 
across all samples, the average Pearson’s r was 0.43 be-
tween IMC and MCPGBM compared with 0.02 between IMC 
and CIBERSORTx; and 0.22 between IMC and MCPGBmap 
(Supplementary Table S9)

Application to TCGA Data

Our results show that MCPGBM is able to accurately quan-
tify immune and neoplastic cells in GBM-tissue bulk 
sequencing data. To show how this can be useful in gaining 
biological and clinical insights from large-scale studies, we 
applied MCPGBM to bulk RNAseq data from 93 GBM sam-
ples from The Cancer Genomic Atlas (TCGA). This gave a 
score per cell type per sample, allowing us to quantify the 
correlation of cell type prevalence across patients (Figure 
3A). Recent spatial, multi-omics studies have suggested 
that different neoplastic GBM cell types associate with, 
and are programmed by, different environmental niches 
of GBM tumors.4 A  key finding was that mesenchymal 
(MES) cancer cells associate with both myeloid and lym-
phoid compartments, whereas the remaining neoplastic 
cell types (AC-, NPC- and OPC-like cells) are significantly 
depleted in immune-rich regions. Our results recapitu-
late these findings: we observed significant, high, positive 
correlations between MES and all immune cells quanti-
fied, and significant negative correlations between the re-
maining neoplastic cell types. This phenomenon was more 
pronounced for non-MES neoplastic cells associated with 
neuronal development (NPC- and OPC-like cells) than for 
AC-like cells, also in keeping with the previous findings.4 
Based on the high numbers of samples in TCGA we were 
able to further separate patients using overall survival (OS) 
quartiles to extract worse prognosis (OS less than the lower 
quartile of 8.55 months) and better prognosis (OS greater 
than the upper quartile of 20.55 months) cohorts and com-
pare score distributions (Figure 3B) and correlations (Figure 
3C) in these patient subsets. The prevalence scores of cell 
types is not significantly different between worse or better 
prognosis patients (Figure 3B). This finding is in agreement 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad021#supplementary-data
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Figure 2.  (A) A schematic showing how patient samples were used for validation. Regions of formalin fixed tissue sections were annotated 
as high tumour cell content by a neuropathologist (circled) and were macro-dissected for RNA sequencing. At least three overlapping regions 
(squares) per sample were subjected to imaging mass cytometry (IMC) on a consecutive section. Brain schematic taken from Vecteezy.com (B) 
Left: A representative image from the IMC for GBM sample 64 with three of the chosen protein markers annotated. Right: The UMAP projection 
of cell types assigned according to the expression of cell type protein markers quantified by IMC. (C, D) Scatterplots of gold standard cell pro-
portions quantified by IMC (y-axis) versus those predicted by gene expression based methods (annotated across the top) for immune (C) or neo-
plastic cancer (D) cell types indicated down the side. The Pearson’s correlation coefficient (r) is indicated. The dotted line is the line of best fit and 
the shaded area denotes the confidence interval. Marker genes for MCPcounter were either default (MCPdefault), GBM-specific according to our 
research (MCPGBM) or GBM-specific according to GBMap (MCPGBMap) Neoplastic cells are astrocyte-like (AC), oligodendrocyte progenitor-like 
(OPC), neuronal progenitor-like (OPC) or mesenchymal (MES).
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Figure 2.  (A) A schematic showing how patient samples were used for validation. Regions of formalin fixed tissue sections were annotated 
as high tumour cell content by a neuropathologist (circled) and were macro-dissected for RNA sequencing. At least three overlapping regions 
(squares) per sample were subjected to imaging mass cytometry (IMC) on a consecutive section. Brain schematic taken from Vecteezy.com (B) 
Left: A representative image from the IMC for GBM sample 64 with three of the chosen protein markers annotated. Right: The UMAP projection 
of cell types assigned according to the expression of cell type protein markers quantified by IMC. (C, D) Scatterplots of gold standard cell pro-
portions quantified by IMC (y-axis) versus those predicted by gene expression based methods (annotated across the top) for immune (C) or neo-
plastic cancer (D) cell types indicated down the side. The Pearson’s correlation coefficient (r) is indicated. The dotted line is the line of best fit and 
the shaded area denotes the confidence interval. Marker genes for MCPcounter were either default (MCPdefault), GBM-specific according to our 
research (MCPGBM) or GBM-specific according to GBMap (MCPGBMap) Neoplastic cells are astrocyte-like (AC), oligodendrocyte progenitor-like 
(OPC), neuronal progenitor-like (OPC) or mesenchymal (MES).
  

with a recent study that defined GBM tumor subtypes 
based on the tumor microenvironment, but showed no dif-
ference in survival between them.37 However, our results 
show that the correlations between cell-types are mark-
edly different between better and worse prognosis patients 
(Figure 3C). Patients with worse prognosis have higher and 
more significant correlations (both negative and positive) 
between neoplastic and immune cell types. The tumor mi-
croenvironment has been shown to shape the neoplastic 

cell landscape over time in GBM, with more aggressive tu-
mors being linked to greater polarity and classification of 
neoplastic subtypes.3,4,38 Our results suggest that, in worse 
prognosis tumors, neoplastic and immune cells are more 
tightly associated, potentially through more direct inter-
cellular communications, which could be promising thera-
peutic targets. These preliminary results exemplify how our 
tool can be used to develop new insights and hypotheses, 
by being applicable to large-scale datasets.
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Figure 3.  MCPGBM was used to score cell types in bulk GBM RNAseq data from The Cancer Genome Atlas (TCGA). (A) Heatmap of the correl-
ations between cell type scores across all samples. (B) Boxplots showing distribution of cell type scores for patients with worse or better prog-
nosis (determined by the lower and upper quartile of overall survival, respectively). (C) Heatmap of the correlations between cell type scores 
across samples from patients with worse (left) or better (right) prognosis. Significance is denoted by asterisks: *P < .05; **P < .01; ***P < .001; 
 ****P < .0001; NS, not significant.
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Incorporating Additional GBM Cell Types 
and Making Our Approach Available Via 
GBMdeconvoluteR

To make MCPGBM available to the neuro-oncology com-
munity, we have packaged it into an online application called 
GBMdeconvoluteR. We also give the user the option to use 
the marker genes from GBMap24 because, although these did 
not quantify cell types as accurately as MCPGBM, the GBMap 
reference set extends the range of GBM non-neoplastic 
cell types that can be quantified from bulk expression data. 
GBMdeconvoluteR is, thus, a web-based application that 
enables users to upload bulk GBM expression profiles and 
output the relative proportion of immune and neoplastic GBM 
cells, or using GBMap markers genes as input, to also include 
normal brain and blood-vessel cells, across multiple samples.

Discussion

We have developed the first publicly available GBM-specific 
deconvolution tool that can infer both neoplastic and non-
neoplastic cell population prevalence from bulk GBM tumor 
RNA sequencing data. This tool was developed by amal-
gamating four independent, human, single cell sequencing 
datasets to create tissue specific cell type gene-expression 
reference profiles. The single cell data was from de novo 
IDHwt GBM either at initial diagnosis (primary) or upon re-
currence. Recurrent GBMs have been shown to have altered 
transcriptional profiles which may impact on the accuracy of 
the deconvolution results,3 so we included these samples in 
the tool development and validation. We found that our ap-
proach is suitable for deconvoluting recurrent GBM tumors 
but, in keeping with the aforementioned studies, neoplastic 
cell deconvolution is not as accurate at the longitudinal time 
point. Our study confirms, as shown elsewhere, that tissue 
specific reference datasets are necessary to achieve max-
imal accuracy in expression based deconvolution.5,10,11

We used IMC to ascertain the ground truth of cell type 
characterization and quantification. We then compared 
this with the results from the gene-expression based ap-
proaches to determine which should underpin our tool, 
and to establish its accuracy. However, it must be noted 
that the regions that underwent IMC, whilst encompassed 
within, were substantially smaller than regions that under-
went RNAseq (Figure 2A and Supplementary Figure S2), 
and that the GBM microenvironment is notoriously het-
erogeneous.4 That, and the fact that IMC was performed 
on different, albeit, adjacent tissue sections, means that 
a deviation from perfect correlation is not just a result of 
gene-expression deconvolution tool performance, but also 
in bona fide differences in cell proportions. In this way, 
the IMC results do not quantify the accuracy of each gene-
expression based tool, but does enable comparison be-
tween them to identify the best-performer.

Our study is the first to evaluate whether the marker 
genes of the four GBM neoplastic cell types, determined by 
Neftel at al from gene-expression data, are preferentially 
expressed at the protein level. We found a clear association 
between the protein levels of the selected markers and the 
gene-expression based quantification.

GBMdeconvoluteR is a publicly available webserver, en-
abling researchers to accurately determine the cell types 
and prevalence in GBM samples from bulk RNAseq data. 
The marker-gene MCPcounter based method was the most 
accurate. It should be noted that marker-based deconvolu-
tion results in relative, rather than absolute, cell type quan-
tification meaning comparison is possible within cell types 
across samples, rather than within samples across cell 
types. We applied GBMdeconvoluteR to data from TCGA 
and were able to confirm recent findings from single cell 
resolution multi-omics studies, regarding the specific en-
richment of MES neoplastic cells in immune compartments, 
and depletion of other GBM cancer cell types. However, 
because our approach is easily applicable to large-scale 
sequencing dataset, we could expand upon this further 
to show that this association is stronger in samples from 
patients with worst prognosis. This leads to the hypoth-
esis that quantifying immune:neoplastic cell interactions 
could be prognostic, or that targeting them could be ther-
apeutically beneficial, exemplifying the value in applying 
GBMdeconvoluteR to gain biological and clinical insights.

In summary, GBMdeconvoluteR can be used to assess 
associations between cell type quantities and phenotypic, 
molecular or clinical characteristics with applications 
for target identification, gaining mechanistic insight or 
stratifying samples for retrospective therapeutic evalua-
tion or prospective precision medicine approaches.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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