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Lysine-specific histone demethylase 1A (KDM1A/
LSD1) inhibition attenuates DNA double-strand break 
repair and augments the efficacy of temozolomide in 
glioblastoma
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Abstract
Background.  Efficient DNA repair in response to standard chemo and radiation therapies often contributes to gli-
oblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the 
drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In 
this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination 
of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs).
Methods.  Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of 
a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal as-
says. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous re-
combination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. 
Orthotopic murine models were used to study efficacy in vivo.
Results. TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout 
or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic 
studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A 
is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced 
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their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair ca-
pacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and 
TMZ treatment significantly enhanced the survival of tumor-bearing mice.
Conclusions.  Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of 
DNA DSB repair pathways.

Key Points

•	 KDM1A inhibition attenuates DNA double-strand break repair pathways and 
enhances temozolomide (TMZ)-mediated DNA damage in glioma stem cells.

•	 Combination of KDM1A inhibitor and TMZ treatment improves the survival of 
tumor-bearing mice compared to monotherapy.

Glioblastoma (GBM) remains the most common and 
deadliest malignant primary brain tumor, with current 
5-year survival statistics at a dismal 7.2%.1–3 Standard 
of care consists of surgical resection of the bulk tumor, 
followed by external beam radiation therapy alongside 
adjuvant chemotherapy with temozolomide (TMZ).4,5 
Despite decades of research, effective treatment op-
tions for GBM have remained elusive. Glioma stem cells 
(GSCs), also known as glioblastoma tumor-initiating cells, 
demonstrated to be critical in GBM tumor development, 
invasiveness, and recurrence.6–8 Chemo and radiation 
therapy resistance is linked with increased DNA damage 
response (DDR) signaling and tumor cell survival, which 
is enhanced by deregulated oncogenic and epigenetic 
pathways.9,10 GSCs are known to exhibit high DNA re-
pair capacity7,11 and harbor altered DDR signaling path-
ways including the preferential activation of DNA damage 
sensing pathways such as ATR/CHK1, ATM/CHK2, and re-
pair pathways such as PARP1, and enhanced activation of 
the G2/M checkpoint, that aid GSCs to repair DNA double-
strand breaks.7,12–14 Identifying mechanisms regulating 
DDR in GSCs may reveal new paradigms to curb GBM 
growth and recurrence, and ultimately a strategy to im-
prove patient outcomes.

Lysine-specific histone demethylase 1A (KDM1A/LSD1), 
which demethylates mono- and di-methylated lysine res-
idue 4 and 9 on histone H3,15 has been identified as a po-
tential target in GBM.16–18 KDM1A is a key player in the 

maintenance of pluripotency and high levels of KDM1A are 
required to maintain the undifferentiated state of human 
embryonic stem cells.19,20 Recent studies implicate KDM1A 
in DDR through its recruitment to sites of DNA double-
strand breaks in osteosarcoma cells.21 It is currently un-
known whether KDM1A plays a role in DNA repair signaling 
in GSCs. Currently, the available KDM1A inhibitors largely 
exhibit different mechanisms of action and cell-specific in-
hibitory activities and few of them are in clinical trials for 
small cell lung cancer and myeloid neoplasms,22,23 how-
ever, the blood-brain barrier (BBB) permeability of these 
inhibitors is not established. We have identified the novel 
KDM1A-specific inhibitor NCD38 as a promising drug for 
GBM therapy.16,24 We reason that KDM1A inhibition could 
enhance the efficacy of TMZ in GBM.

In this study, we examined whether KDM1A inhibition 
enhances TMZ efficacy in GBM and investigated its mech-
anism of action. We observed that KDM1A knockdown or 
inhibition sensitized patient-derived GSCs to TMZ treat-
ment. Mechanistic studies identified that KDM1A is en-
riched at promoters of several DNA double-strand break 
(DSB) repair genes and KDM1A inhibition suppressed the 
DNA repair gene expression and DNA DSB repair path-
ways in GSCs. Pharmacokinetic studies showed that the 
KDM1A inhibitor NCD38 has excellent BBB permeability 
and combination therapy of KDM1A knockdown or inhi-
bition with TMZ potently enhanced the mice survival in 
orthotopic GBM models.

Importance of the Study

Glioma stem cells (GSCs) possess excellent DNA re-
pair capacity and efficiently repair DNA lesions caused 
by standard therapies which contribute to therapy re-
sistance. Epigenetic modifier KDM1A/LSD1 is highly 
expressed in glioblastoma (GBM). However, the mech-
anistic role of KDM1A in temozolomide (TMZ) re-
sistance, identifying a KDM1A-specific inhibitor that 
effectively crosses the blood-brain barrier (BBB), and 
whether KDM1A inhibition sensitizes GSCs to TMZ is a 
major knowledge gap. Our work shows that KDM1A is 

essential for the DNA double-strand break repair ca-
pacity of GSCs and KDM1A inhibition attenuates the 
homologous recombination and non-homologous end 
joining repair leading to TMZ sensitization. Furthermore, 
KDM1A inhibitor NCD38 has excellent BBB permea-
bility and knockdown or pharmacological inhibition of 
KDM1A potentiates the efficacy of TMZ in vitro and in 
vivo. Our results suggest that a combination of KDM1A 
inhibitor with TMZ could serve as a novel therapeutic 
strategy for GBM.
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Materials and Methods

Cell Culture and Patient-Derived GSCs

Patient-derived primary GSCs were established from dis-
carded specimens obtained from GBM patients undergoing 
surgery at UT Health San Antonio under an IRB-approved 
biorepository. The specimens were collected in accord-
ance with the declaration of Helsinki and approved by the 
Institutional Review Board (or Ethics Committee) of UT 
Health San Antonio. Patients provided informed consent 
for surgery and the use of their tissues for research. All 
patient-derived GSCs were cultured as neurospheres as 
described previously.16 See Supplementary Materials and 
Methods for details.

KDM1A shRNA and gRNA Transduction

For KDM1A knockdown studies, GSCs were transduced 
with lentiviral control shRNA or previously validated 
KDM1A shRNA.25,26 For KDM1A knockout, Scramble 
and KDM1A-specific gRNA were transduced into GSCs 
possessing TET-inducible Cas9. Cas9 stimulation was 
done by treating GSCs with 50  ng/mL doxycycline. See 
Supplementary Materials and Methods for details.

Cell Viability Assays

The effect of the combination of KDM1A knockdown/in-
hibitor with TMZ on the viability of GSCs was determined 
using CellTiter-Glo 2.0 Cell Viability Assay according to the 
manufacturer’s instructions. See Supplementary Materials 
and Methods for details.

Neurosphere Formation and Limiting 
Dilution Assays

For neurosphere assays, single-cell suspensions of GSCs 
were seeded in 96-well plates (5 cells/well) and treated with 
vehicle (DMSO 0.1% v/v), NCD38 (3 µM), TMZ (25 or 50 µM), 
or in combination for 7–10 days. Neurospheres were im-
aged and quantitated using NIH ImageJ. Extreme limiting 
dilution assay was performed by seeding decreasing num-
bers (20, 10, 5, and 1 cells/well) of dispersed GSCs in 96 
well ultra-low attachment plates and treated with vehicle 
(DMSO 0.1% v/v), NCD38 (3 µM), TMZ (25 or 50 µM), or in 
combination. After 10–14 days, the number of wells con-
taining neurospheres per each plating density was re-
corded and the stem cell frequency between control and 
treatment groups was calculated using extreme limiting 
dilution assay software (http://bioinf.wehi.edu.au/software/
elda/) and statmod package in R.

Single Cell Alkaline Gel Electrophoresis 
(Comet Assay)

GSCs were treated with vehicle, NCD38 (4  µM), TMZ 
(25  µM), or in combination. After 24  h, samples were 

subjected to comet assay. Briefly, cells were embedded in 
low melt agarose, lysed with alkaline lysis solution, pulsed 
for 10  min, and stained with SYBR gold solution. See 
Supplementary Materials and Methods for details.

qPCR-based Homologous Recombination Assay

Homologous recombination (HR) Assay Kit (Norgen Biotek 
Cat# 35600, Ontario Canada) was used to determine the HR 
efficiency in GSCs following KDM1A knockdown or inhib-
itor treatment according to the manufacturer’s instructions. 
See Supplementary Materials and Methods for details.

DR-GFP Reporter Assay

HR efficiency after KDM1A knockdown or inhibitor treatment 
was determined using DR-U2OS and DR-HeLa cell lines con-
taining a single integrated copy of the DR-GFP reporter. See 
Supplementary Materials and Methods for details.

Non-homologous End Joining Reporter Assay

To assess the non-homologous end joining (NHEJ) ca-
pacity of GSCs, we utilized the reporter system as previ-
ously described using pEGFP-Pem1-Ad2, a gift from Dr. 
Vera Gorbunova.27 See Supplementary Materials and 
Methods for details.

RNA-seq, RT-qPCR, and Chromatin 
Immunoprecipitation Assay

RNA-seq experiments were performed as described pre-
viously.16 Patient-derived GSCs were treated with vehicle 
or NCD38 (3 µM) or TMZ (50 µM) or NCD38+TMZ for 24 h. 
RNA was isolated using RNeasy mini kit and subjected 
to RNA-seq on the Illumina HiSeq 3000 system using 
Illumina TruSeq stranded mRNA-seq library preparation 
kit by UTHSA Genome Sequencing Facility. Chromatin 
immunoprecipitation assay was performed using Pierce™ 
Magnetic Chromatin immunoprecipitation Kit (Thermo Fisher 
Scientific, Waltham, MA, USA) as per the manufacturer’s pro-
tocol. See Supplementary Materials and Methods for details.

CUT&Tag Sequencing and Data Analysis

CUT&Tag sequencing was performed as described previ-
ously.28 Briefly, GSC 082209 cells were treated with vehicle or 
NCD38 (5 μM) for 24 h and 250 000 cells per condition were 
used. Data analysis on CUT&Tag sequencing reads was per-
formed by the nf-core/cutandrun bioinformatic analysis pipe-
line. See Supplementary Materials and Methods for details.

Western Blotting

GSC samples were pelleted down and lysed in RIPA buffer 
and transferred to PDVF membranes. See Supplementary 
Materials and Methods for antibodies and their concentrations.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://bioinf.wehi.edu.au/software/elda/
http://bioinf.wehi.edu.au/software/elda/
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
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γH2AX, RAD51, and 53BP1 Foci 
Formation Assays

DNA DSB were evaluated using γ-H2AX, RAD51, and 
53BP1 foci on GSCs seeded on poly-l-ornithine/fibronectin-
coated coverslips and treated for 48 h. See Supplementary 
Materials and Methods for further details.

Pharmacokinetic and Brain Bioavailability Studies

A pharmacokinetic study of NCD38 was conducted in male 
Sprague Dawley rats following intravenous and oral ad-
ministration of the compound NCD38. See Supplementary 
Materials and Methods for details.

In vivo Orthotopic Tumor Model

All animal experiments were conducted according to insti-
tutional guidelines after obtaining UT Health San Antonio 
IACUC approval. NOD.CB17-Prkdcscid/NCrCrl mice 8–10 
weeks old were purchased from Charles River (Wilmington, 
MO). Orthotopically implanted GBM tumor-bearing mice 
were randomized to receive either vehicle, NCD38, TMZ, 
or in combination via oral gavage. See Supplementary 
Materials and Methods for details.

Immunohistochemistry

Immunohistochemistry experiments were performed as 
described.16 Briefly, tumor sections were incubated over-
night with Ki67 (1:200), cleaved caspase3 (1:100), and 
γH2AX (1:100) primary antibodies. See Supplementary 
Materials and Methods for details.

Statistical Analysis

Differences between the control and experimental groups 
were analyzed using a two-tailed student’s t-test or 
ANOVA, as applicable, using GraphPad Prism 9 software. 
See Supplementary Materials and Methods for details.

Results

KDM1A Knockdown Enhances the Efficacy 
of TMZ in Reducing Viability, Neurosphere 
Formation, and Self-renewal of GSCs

The importance of KDM1A in tumorigenicity and stemness 
has been underscored in numerous cancer types.25,29,30 In 
gliomas, patients with high KDM1A expression exhibit poor 
overall survival compared to low KDM1A expression popu-
lations (Supplementary Figure 1A–C). Additionally, com-
pared to non-tumor samples, GBM patient tumors express 
higher levels of KDM1A (Supplementary Figure 1D–F). 
Importantly, among patients receiving standard TMZ/IR, 
we observed that non-responsive patients exhibited higher 
levels of KDM1A compared to their responsive counter-
parts (Figure 1A). Further analysis showed that KDM1A is 

highly expressed in recurrent GBM samples compared to 
primary tumors (Figure 1B). We established a collection of 
GSCs obtained from GBM patient samples at the UTHSA. 
These patient-derived GSCs were subtyped based on es-
tablished TCGA gene expression-based molecular classifi-
cations (Supplementary Figure 1G). Using these samples, 
we examined whether KDM1A is associated with the re-
sistance phenotype. To test this hypothesis, we transduced 
patient-derived GSCs with control or 2 different KDM1A-
specific shRNAs and treated them with increasing doses of 
TMZ. Results from cell viability assay show KDM1A knock-
down, compared to control, sensitizes GSCs to TMZ (Figure 
1C–D; Supplementary Figure 2A–C. Additionally, KDM1A 
knockdown reduces neurosphere formation (Figure 1E–F), 
neurosphere growth (Figure 1G–H; Supplementary Figure 
2D–G), and self-renewal capacity (Figure 1I–J) of TMZ-
treated GSCs compared to their respective controls or 
monotherapy. Importantly, we have validated these find-
ings using KDM1A knockout (KO) GSCs generated using an 
inducible CRISPR/Cas9 system. Cell viability assay results 
show that KDM1A-KO significantly sensitized GSCs to TMZ 
treatment (Supplementary Figure 2H–J). Interestingly, the 
reintroduction of KDM1A in KDM1A-KO cells significantly 
reversed this effect. Furthermore, we validated these find-
ings using cell viability and clonogenic studies in known 
TMZ-sensitive (U251), TMZ-resistant (T98G), and acquired 
TMZ-resistant (U251 TMZ-R) GBM lines (Supplementary 
Figure 3A–K). Altogether, these findings suggest KDM1A 
is associated with a therapy-resistant phenotype and that 
KDM1A knockdown enhances TMZ efficacy in GSCs.

NCD38 is a Brain Permeable KDM1A Inhibitor 
and Enhances TMZ Efficacy in GSCs

Recently our group identified novel KDM1A-specific in-
hibitor NCD38 which selectively inhibits KDM1A more po-
tently than its parent compound 2-PCPA (0.59 ± 0.32 µM vs. 
31 ± 12 µM)24,31 and exhibits antitumor activity in several 
cancer models.16,25,30,31 However, its pharmacokinetic and 
brain bioavailability profiles have not been established. 
We conducted pharmacokinetic and brain bioavailability 
studies following intravenous (IV) and peroral administra-
tion of NCD38 in male Sprague Dawley rats. Both routes 
of administration demonstrated favorable pharmaco-
kinetic parameters of NCD38 in the plasma (Figure 2A,  
Supplementary Table 1), with oral bioavailability of 23% 
and half-life in each case approaching 2  h (Figure 2A; 
Supplementary Tables 1 and 2). Importantly, NCD38 was 
available in both the brain and plasma (Figure 2B, C, 
Supplementary Tables 3 and 4), with a total brain/plasma 
ratio exceeding a ratio of 2 at 8-h post-administration in 
both IV and peroral routes, suggesting NCD38 readily per-
meates the BBB and exhibits adequate brain bioavailability. 
Moreover, we performed dose-ranging (1mg/kg, 5mg/kg, 
or 10mg/kg of NCD38) studies using U251-GSC orthotopic 
mouse model. Results showed that 10mg/kg was the most 
effective dose in reducing tumor growth (Figure 2D).

Next, we examined whether KDM1A-specific inhibitor 
NCD38 enhances TMZ-mediated reduction in cell viability. 
Similar to KDM1A knockdown, NCD38-treated GSCs were 
more sensitive to TMZ than monotherapy alone (Figure 2E, 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad018#supplementary-data
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F; Supplementary Figure 4A). Combination index analysis 
suggests NCD38 treatment works synergistically with TMZ 
(Supplementary Figure 4B–D). Importantly, the knockout of 
KDM1A significantly compromised the activity of NCD38 
in GSCs (Supplementary Figure 4E, F). Additionally, com-
bination treatment significantly reduces the self-renewal 
and neurosphere-forming capacity of GSCs compared to 
monotherapy (Figure 2G–L). These results suggest NCD38 
synergizes with TMZ to reduce GSCs viability and self-renewal.

KDM1A is Enriched at Transcriptional Start Sites 
of DNA DSB Repair Genes

To understand the mechanistic insights on how KDM1A 
inhibition sensitizes GSCs to TMZ, we performed 
genome-wide localization studies of KDM1A in GSCs 

using CUT&Tag-seq, a cutting-edge technology with 
greater signal: noise ratio compared to traditional ChIP-
sequencing.28 We detected 75,491 KDM1A peaks in the 
genome of GSCs (P < .0001) (Figure 3A, Supplementary 
Figure 5A). Of these peaks, the majority (49.11%) res-
ided in promoter regions. Specifically, 36.6% lie within 
the 1 kilobase pair (kbp) region flanking the transcription 
start site. Furthermore, KDM1A peaks at intergenic and 
intronic regions comprised 18.57% and 29.29%, respec-
tively. Importantly, pathway analysis of KDM1A binding 
genes using gene ontology showed KDM1A binding genes 
were enriched in DNA repair, cell cycle, and UPR signaling 
pathways (Figure 3B). Since TMZ resistance phenotype 
is associated with enhanced DNA repair, we next exam-
ined KDM1A-specific enrichment at DNA repair genes. 
Our results showed KDM1A is highly enriched at the 
transcriptional start site of numerous DNA repair genes 
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Figure 1.  KDM1A knockdown sensitized Glioma stem cells (GSCs) to TMZ treatment. (A) Box plot of KDM1A was generated using 
�a response based on overall survival at 16 months after radiation and TMZ treatment from ROC plotter datasets. (B) KDM1A expression was 
examined in primary versus recurrent GBM TCGA data sets. (C–D) Control and KDM1A knockdown GSCs were treated with either vehicle or TMZ 
for 5 days and cell viability was determined using CellTiter-Glo assays. (E–H) Neurosphere formation of control and KDM1A knockdown GSCs 
following TMZ treatment was determined. (I–J) Self-renewal ability of control and KDM1A knockdown GSCs following TMZ treatment was deter-
mined by extreme limiting dilution assays. *p < .05, **p < .01, ***p < .001, ****p < .0001, by t-test or one-way ANOVA.
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(Supplementary Figure 5B). We validated KDM1A binding 
at select gene promoters using ChIP (Supplementary 
Figure 5C–D), indicating that KDM1A may regulate their ex-
pression via its direct recruitment to the promoter regions.

KDM1A Inhibition or Knockout Reduces the 
Expression of Genes Involved in DNA Repair

Since GSCs possess high DNA repair capacity, a major con-
tributor to TMZ therapy resistance, we hypothesized that 
KDM1A inhibition-mediated sensitivity to TMZ may involve 
attenuation of DNA repair genes. We examined global 
transcriptional changes by RNA-sequencing using GSCs 
treated with either vehicle, NCD38 or TMZ monotherapy, or 
a combination. Initially, we looked at the effect of NCD38 
monotherapy and among the top downregulated path-
ways in NCD38-treated GSCs were related to DNA repair 

and cell cycle (Figure 3C). A closer examination of differ-
entially expressed genes revealed the downregulation 
of several important DNA repair genes (Figure 3D–E). 
Importantly, GSEA analysis indicated that genes altered in 
NCD38-treated cells showed negative enrichment with the 
gene sets of HR and NHEJ repair pathways (Figure 3F–G). 
Further analysis showed that NCD38 treatment increased 
the enrichment of repressive histone methylation mark 
H3K9me2 at promoter regions of a subset of DNA repair 
genes (Supplementary Figure 5E–L).

To further validate the effects of KDM1A on DNA re-
pair pathways in GSCs, we performed RNA-seq using 
KDM1A-KO GSCs and compared them with NCD38-treated 
cells. Results show there exists a significant overlap in gene 
expression between NCD38 versus KDM1A-KO cells (53.5% 
commonly upregulated; 51% commonly downregulated) 
(Supplementary Figure 6A–B). Pathway analysis of 
overlapping downregulated genes showed enrichment 
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in DNA repair pathways (Supplementary Figure 6C) with 
significant overlap with DNA repair genes (71 genes), in-
cluding BRCA1, EXO1, and FOXM1 (Supplementary Figure 
6D). Importantly, heatmap analysis showed that a subset 
of DNA DSB repair pathway genes are downregulated in 
the KDM1A-KO group (Supplementary Figure 6E). We val-
idated changes in select genes using western blotting and 
RT-qPCR in KDM1A-KO, KDM1A-KD, as well as NCD38 
treated GSCs (Figure 3H; Supplementary Figure 7A–D). 
Altogether, these results show both KDM1A-KO, -KD, and 
KDM1A inhibition results in the downregulation of DNA 
DSB repair genes in GSCs. We also observed that more 
genes are altered in the KDM1A-KO group compared to 

the NCD38 group, and this may, in part, reflect KDM1A’s 
ability to regulate gene expression in both demethylase-
dependent and independent means, whereas NCD38 only 
inhibits KDM1A demethylase dependent gene expression.

To further understand the mechanistic basis of the com-
bined effect of NCD38 and TMZ in GSCs, differentially ex-
pressed genes were subdivided into 4 major clusters by 
unsupervised clustering (Supplementary Figure 7E–F). 
Cluster A3 comprised 140 genes induced by TMZ but re-
pressed by NCD38. Gene ontology analysis showed that 
these genes were mainly enriched in the cellular response to 
DNA damage stimulus, DNA recombination, DNA repair, and 
HR (Figure 3I). Cluster A4 included 420 genes synergistically 
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Figure 3.  CUT&Tag and RNA-seq analysis identified KDM1A inhibition suppress DNA repair genes expression. (A) Chipseeker 
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induced by NCD38 and TMZ combination treatment impli-
cated in cell death and autophagy. Furthermore, cluster A2 
included 646 genes synergistically repressed in combination 
treatment, with several involved in cell cycle, epithelial to 
mesenchymal transition, E2F, mTORC1, and MYC signaling. 
Collectively, these results suggest KDM1A inhibition contrib-
utes to attenuation of DNA repair genes.

KDM1A Inhibition Suppresses HR and NHEJ 
in GSCs

Since RNA-seq and CUT&Tag-seq results suggest that 
KDM1A plays a role in DNA DSB repair, we examined the 
effect of KDM1A inhibition on the DNA repair capacity of 
GSCs. Previous studies have shown that HR and NHEJ re-
pair abilities are responsible for the therapy resistance of 
GBM. We determined the effect of KDM1A knockdown or 
inhibition on HR and NHEJ repair assays. First, we utilized 
a qPCR-based HR assay (Figure 4A) in GSCs and found that 
KDM1A knockout or inhibition significantly reduces the HR 

capacity in GSCs (Figure 4B–D). Next, we measured HR ef-
ficiency using a well-known HR-specific DR-GFP reporter 
system in U2OS and HeLa cell lines (Figure 4E). KDM1A 
knockdown or NCD38 treatment also reduces HR efficiency 
significantly in these models (Figure 4F–J). Furthermore, 
we explored whether NHEJ capacity was affected by 
KDM1A knockdown or inhibition (Figure 4K). As pre-
dicted by sequencing results, knockdown or inhibition of 
KDM1A reduces the NHEJ capacity of GSCs (Figure 4L–O). 
Altogether, these results highly suggest that KDM1A pro-
motes both HR and NHEJ repair activity of GSCs.

KDM1A Inhibition Enhances TMZ Mediated DNA 
Damage in GSCs

Since KDM1A inhibition compromised the DNA repair 
capacity of GSCs, we next examined whether such at-
tenuation of HR and NHEJ repair capacity will lead to 
persistent DNA damage signaling and unrepaired double-
strand breaks. First, we measured γH2AX foci formation 
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Figure 4.  KDM1A inhibition reduces both homologous recombination (HR) and non-homologous end-joining (NHEJ) repair 
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in KDM1A knockdown, knockout, and NCD38-treated 
GSCs in combination with TMZ. Knockdown of KDM1A 
increased the γH2AX levels at basal conditions (Figure 
5A, Supplementary Figure 8A). Further treatment with 
TMZ substantially increased γH2AX levels in KDM1A 
KD cells compared to control shRNA cells and this was 

corroborated in NCD38 and TMZ combination treatment 
(Figure 5A, B; Supplementary Figure 8A). Furthermore, 
knockdown or pharmacologic inhibition of KDM1A sig-
nificantly increased the γH2AX foci formation in GSCs 
(Figure 5C–F; Supplementary Figure 8B–H). Next, we as-
sessed the RAD51 foci formation, a marker of HR repair 
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whose inhibition is known to sensitize glioma cells to 
alkylating agents.32 As expected, TMZ treatment promoted 
RAD51 foci formation. However, when combined with 
NCD38 treatment, we observed a marked attenuation of 
TMZ-induced RAD51 foci formation in GSCs, consistent 
with our sequencing results and supporting the effect of 
NCD38 to compromise HR (Figure 5E–G, Supplementary 
Figure 8D, F), which we also observed in TMZ resistant 
T98G cells (Supplementary Figure 8G–I). We assessed the 
53BP1 foci formation, a marker of DNA DSB repair and 
NHEJ following NCD38 treatment in GSCs and found TMZ 
treatment increased 53BP1 foci formation. However, when 
combined with NCD38 treatment, we noted a marked at-
tenuation of TMZ-induced 53BP1 foci formation, consistent 
with our reporter assays supporting the effect of NCD38 
to reduce NHEJ repair in GSCs (Supplementary Figure 
8B, C). Furthermore, we measured the effect of combina-
tion therapy on DNA damage by alkaline comet assay and 
found that combination treatment significantly increased 
the olive tail moment of treated GSCs when compared to 
monotherapy (Figure 5H–K). Thus, these results provide 
strong evidence that KDM1A inhibition reduced the ability 
of GSCs to repair TMZ-mediated DNA damage.

KDM1A Knockdown or Inhibition Enhances 
Efficacy of TMZ in Orthotopic Xenograft Models

To determine whether KDM1A is a potential target to en-
hance the efficacy of  TMZ, we injected patient-derived GSCs 
transduced with either control shRNA or KDM1A shRNA 
into the right cerebrum of NOD-SCID mice (Figure 6A).  
We found TMZ treatment significantly decreased tumor 
progression and enhanced survival of KDM1A knock-
down tumor-bearing mice when compared to controls 
(Figure 6B–C). Next, to determine whether the combi-
nation of KDM1A inhibitor NCD38 with TMZ enhances 
overall survival, we treated patient-derived GSC 040815, 
GSC 082209, and U251 GSCs tumor-bearing mice with 
NCD38, TMZ, or in combination. As shown, NCD38 and 
TMZ combination treatment significantly reduced tumor 
progression (Figure 6D, Supplementary Figure 9A)  
and enhanced overall survival in all tumor models 
(Figure 6E, F; Supplementary Figure 9B) when com-
pared to monotherapy. Immunohistochemical analysis 
of tumor sections showed a marked reduction of the 
proliferation marker Ki67 after combination treatment 
(Figure 6G–H) and a significant increase in apoptosis 
marker cleaved caspase3 and DNA DSB marker γH2AX 
(Figure 6G, I–J). These findings are in agreement with 
the data obtained using KDM1A knockdown tumor sam-
ples (Supplementary Figure 8C–F). These results suggest 
KDM1A knockdown or inhibitor treatment significantly 
enhanced TMZ efficacy and improved the overall survival 
of GSC tumor-bearing mice.

To further understand the clinical association of KDM1A 
in DSB repair in human GBM samples, we analyzed the 
publicly available TCGA patient database. There is a pos-
itive correlation between KDM1A and several DNA re-
pair genes that we identified as attenuated in response 
to NCD38 treatment, including EXO1, RAD51, and BRCA1 
(Figure 6K–M). Interestingly, we also observed a similar 

trend not only in GBM but also in several other cancer 
types (Figure 6N). Altogether this data provided preclinical 
evidence that KDM1A inhibition potentiates the efficacy of 
TMZ in enhancing survival in murine GBM models.

Discussion

GSCs possess exceptional DNA repair capacity and effi-
ciently repair the DNA lesions caused by standard chemo 
and radiation therapy which often contributes to therapy 
resistance. Understanding the mechanisms of therapy re-
sistance and identifying the drugs that enhance the ther-
apeutic efficacy of the current standard of care may help 
to extend the survival of GBM patients. Overexpression 
of KDM1A has been documented in several human malig-
nancies including GBM. However, the major knowledge 
gap is due to the lack of suitable KDM1A-specific inhibitor 
that effectively penetrates the brain parenchyma and the 
mechanism by which KDM1A inhibition sensitizes GSCs 
to existing therapies. Our findings filled this knowledge 
gap by demonstrating that (1) KDM1A inhibitor NCD38 
has excellent BBB permeability, (2) KDM1A knockdown 
or inhibition potentiates TMZ efficacy in reducing cell vi-
ability and self-renewal capacity of GSCs, (3) KDM1A 
epigenetically regulates expression of DNA DSB repair 
genes, (4) KDM1A inhibition attenuates HR and NHEJ 
repair capacity of GSCs and exacerbates TMZ-induced 
DNA damage, and (5) combination of KDM1A knockdown 
or inhibition with TMZ treatment enhances survival of 
tumor-bearing mice.

KDM1A plays a vital role in multiple oncogenic processes 
including cancer stemness and chemoresistance.33,34 
Chemotherapy treatment causes interconversion of non-
GSCs and GSCs, leading to enhanced chemoresistance.35 
GSCs possess enhanced DNA repair capacity compared to 
other cells within the tumor36 and activation of DDR con-
tributes to TMZ resistance.37 We observed high KDM1A ex-
pression in therapy-resistant nonresponding populations 
compared to responders and in recurrent GBM compared 
to primary GBM. Analyses of NCD38-regulated genes 
showed downregulation of DNA repair pathways with the 
reduction in HR and NHEJ capacity being the prime mech-
anisms otherwise sensitizing GSCs to TMZ. Accordingly, 
our results demonstrated that knockdown or pharmacolog-
ical inhibition of KDM1A sensitizes GSCs to TMZ treatment 
suggesting the role of KDM1A in TMZ resistance.

Accumulating evidence suggests both HR and NHEJ 
play a vital role in TMZ resistance in GBM. Knockdown of 
HR genes RAD51 or BRCA2 sensitizes GBM to TMZ.32 It has 
been shown that higher levels of RAD51, BRCA2, Chk2 and 
Ku70 were overexpressed in GBM cells and RAD51 knock-
down enhances TMZ37 as well as radiotherapy responses in 
GBM.38 Inhibition of NHEJ factor DNA-PK sensitized GBM 
cells to radiation, as well as to TMZ albeit to a lesser ex-
tent.32 Furthermore, in pediatric GBM cell lines, NHEJ fac-
tors LIG4 and XRCC4 were identified as TMZ-sensitizers,39 
and depletion of LIG4 sensitized A172 GBM cells to TMZ.40 
Our findings provide evidence that KDM1A plays a vital 
role in both HR and NHEJ and inhibition of KDM1A im-
pairs the HR and NHEJ repair pathways which contribute 
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to the sensitizing effect of TMZ in GSCs. Previous studies 
have shown KDM1A also regulates MYC, ATF4, and HIF-1 
pathways in GBM cells.16,41–43 Since DNA damage/repair is 
the target mechanism for first-line therapeutic regimens, 
including TMZ, radiation, and PARP inhibitors, exploiting 
this phenomenon in GBM cells provides a distinct advan-
tage over other targets and is readily translatable for GBM 
therapy.

Emerging studies implicate KDM1A in the regulation 
of DDR in a cell/tissue-specific manner. KDM1A is shown 
to be recruited to the DNA damage sites in RNF168 de-
pendent manner, and its depletion sensitizes tumor cells to 
γ-irradiation21,44 and localized generation of hydrogen per-
oxide produced by KDM1A affects the function of proximally 
located DNA repair proteins in U2OS cells.45 Furthermore, 
KDM1A interacts with and destabilizes the tumor suppressor 
FBXW7 abrogating its functions in growth suppression, 
NHEJ repair, and radioprotection in lung cancer cells.46 Our 
study results are in agreement with previous observations 
and demonstrated the enrichment of KDM1A at HR and 
NHEJ repair pathway genes. Furthermore, KDM1A inhibition 
impairs the HR and NHEJ repair capacity of GSCs possibly 
via the transcriptional attenuation of a subset of DNA repair 
genes. A previous study showed that KDM1A knockdown re-
sulted in a modest increase in HR in U2OS cells,21 contrary to 
our current findings. We believe that this discrepancy is due 
to differing treatment periods as well as prior knockdown of 
KDM1A before I-Scel transfection. In our study, we provided 
strong evidence that both KDM1A knockdown or inhibition 
decreases HR in GSCs and in other cancer cell lines such as 
HeLa and U2OS.

KDM1A inhibitor NCD38 was developed based 
on a novel concept of the direct delivery of phenyl-
cyclopropyl amine to the KDM1A active site and exhib-
ited antiproliferative activity in leukemia models.24,30,31 
In this study, we established the pharmacokinetic profile 
of NCD38 and demonstrated that NCD38 in combination 
with TMZ enhances the survival of GBM tumor-bearing 
mice while maintaining good BBB permeability. A recent 
study showed that KDM1A/LSD1 inhibitor DDP_38003 is 
able to penetrate the brain parenchyma which is evident 
from the studies of cellular thermal shift assay conducted 
on brain homogenates and exhibit antitumor activity in 
GBM.41 However future studies are needed to establish 
the safety, efficacy, and off-target effects of KDM1A inhib-
itor that are needed for further clinical development. Our 
studies may provide a strong rationale to initiate phase 
I clinical trials for the combination therapy of NCD38 and 
TMZ in GBM patients.

In summary, our findings establish the potential of 
KDM1A inhibition to enhance the efficacy of TMZ in GSCs 
in vitro and in vivo via attenuation of DNA DSB repair 
pathways and the combination of TMZ and KDM1A inhib-
itor NCD38 may represent a novel therapeutic strategy for 
treating GBM.
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