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Abstract

In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom 

schedule. In previous work, we have shown that maximizing the discrimination between 

different tissue types by optimizing the acquisition schedule allows reductions in the number 

of measurements required. The ideal optimization algorithm for this application remains unknown, 

however. In this work we examine several different optimization algorithms to determine the one 

best suited for optimizing MR Fingerprinting acquisition schedules.
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1. Introduction

In MR Fingerprinting (MRF) [1-3], acquisition over many time steps is required to ensure 

unique signal evolution as a way to distinguish different tissue types. This need for a large 

number of acquisitions results in increased scan time but can be mitigated by severely 

undersampling the k-space using short, variable density spiral sampling schemes. The use 

of significant undersampling results in severe aliasing artifacts. However, because MRF 

reconstruction is based on pattern-matching (using the vector dot product, for instance) 

to a pre-computed dictionary of signal magnetizations, accurate tissue maps may still be 

recovered from the acquired data provided enough measurements (typically 500–2000), or 

by the use of advanced reconstruction algorithms [4,5].

As an alternative to severely undersampling k-space, we have previously introduced [6,7] 

a method to maximize the discrimination between different tissue types using a schedule 

optimization strategy to determine the choice of flip angles (FA) and repetition times (TR). 

This method was demonstrated with a novel Cartesian- sampled echo-planar-imaging (EPI) 
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sequence that acquired the entirety of k-space (i.e., with no undersampling). The use of an 

optimized schedule allowed a 100-fold reduction in the number of measurements required 

for accurate matching, resulting in 5–8 fold reduction in scan time. The discrimination 

between different tissue types was quantified by defining an optimization dictionary D that 

consisted of magnetization signal evolutions for all possible tissue parameter values for the 

sample under study. The dictionary was then used to calculate the dot product matrix H = 

DTD. In the desired case of perfect discrimination, the diagonal entries of H will be equal 

to 1 with off-diagonal entries equal to 0, i.e. H will equal the identity matrix I. The general 

optimization problem, therefore, can be formulated as a search for the acquisition schedule 

that minimizes the distance between the dot product matrix H and the identity matrix I:

min
x

‖I − Dx
TDx‖F

2
(1)

where x represents the acquisition schedule and ∥ · ∥F is the Frobenius norm [8].

Although Eq. (1) can be solved numerically with a variety of constrained optimization 

algorithms, the choice of algorithms can affect the quality of the optimum found and 

specifically its closeness to the global optimum. In this study we compare the performance 

of different classes of optimization algorithms based on their optimization speed, cost and 

the reconstruction errors resulting from application of the schedules found in simulated 

acquisitions. The performance of each algorithm is quantified in numerical simulations and 

in a calibrated phantom and the clinical utility of the optimized schedule demonstrates in in 

vivo human brain scans on a 1.5 T scanner.

2. Materials and methods

2.1. Optimization algorithms used

Four algorithms representing different classes of numerical optimization techniques were 

compared: i) Simulated Annealing (SA) [9-13], ii) Branch-and-Bound (BB) [14,15], iii) 
Interior-Point (IP) [16-19] and iv) Brute Force (BF) methods. Publically available code was 

used for the implementation of the SA [20] and BB [21,22] methods. The fmincon function 

in MATLAB (The Mathworks, Natick, MA) was used for the IP method. The BF method 

was implemented in MATLAB by sampling the FA/TR schedule hyperspace using latin 

hypercube sampling [23] for a fixed number (150000) of samples. The cost of each sample 

was then iteratively calculated and the sample (i.e. schedule) with the lowest cost saved.

2.2. Simulations

2.2.1. Evaluation of optimization cost—All algorithms were limited to a maximum 

of 10,000 iterations and 150,000 cost function evaluations, and constrained to FA and TRs 

in the range 15–100° and 75–200 ms. The step size and function value tolerances were set 

to 10−7. The same optimization dictionary consisting of T1 values in the range 200–2600 ms 

in increments of 50 ms and T2 values in the range 40–350 ms in increments of 10 ms was 

used for all algorithms. Algorithms that required an initialization point (i.e., SA, IP) were 

initialized with a pseudorandom schedule with FAs defined using the two segment formula:
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FA(t)first = 10 + 50 × sin 2π
2N + rand(5) (2)

FA(t)second = 0.5 × FA(t)first (3)

where N is the schedule length and the first segment is run for measurements 1 to N/2 and 

the second segment for measurements N/2 to N. The rand(5) function is a function that 

generates uniformly distributed values with a standard deviation of 5. The set of TRs was 

randomly selected from a uniform distribution. This schedule is similar to the one defined 

in Ref. [1]. The algorithms were run until convergence or until the maximum number of 

function evaluations was reached.

The optimization cost of each algorithm was plotted as a function of the number of cost 

function evaluations for a fixed schedule length of N = 30 measurements.

2.2.2. Reconstruction error vs cost—Errors in the reconstructed tissue parameter 

maps resulting from application of the schedule generated by each algorithm were quantified 

using a numerical phantom of proton density (PD), T1 and T2 values taken from the 

Brainweb database [24] for schedules with 30 measurements. A scan with an inversion-

recovery fast imaging with steady-state (IR-FISP) EPI pulse sequence was simulated using 

an extended phase graph (EPG) Bloch equation solver [25] with the FAs and TRs of each 

measurement determined by the schedule generated by each algorithm. Complex Gaussian 

noise was added to the data with the signal-to-noise ratio (SNR) defined as 20log10(S/N) 

where S is the average white matter signal intensity in the acquisition and N is the noise 

standard deviation. The SNR levels were varied from 10 to 40 dB in intervals of 5 dB. 

The noisy data was reconstructed by pattern-matching using the vector dot-product to a 

pre-computed dictionary consisting of all T1 values in the range 200–2600 ms in increments 

of 1 ms between 200 and 900 ms and increments of 20 ms between 900 and 2600 ms and all 

T2 values in the range 40–350 ms in increments of 2 ms. The T1 and T2 ranges used were 

selected based on the T1 and T2 values of the numerical phantom used. The computed T1, T2 

maps in the grey matter, white matter and cerebrospinal fluid (CSF) tissues were compared 

to their ground truth values according to the formula: Error = 100 × ∣ True-Measured ∣ / True 

and the mean percent error across the three tissues of interest calculated for tissue parameter, 

schedule and noise level.

2.2.3. Scan and optimization time vs cost—In addition to minimizing optimization 

cost (improving discrimination) the total scan time per slice of a given schedule is an 

important attribute with clinical relevance to patient comfort and throughput. The scan time 

of each schedule obtained was therefore calculated and compared both to the optimization 

cost as well as the optimization time.

The search-space each algorithm must explore grows exponentially with schedule length. To 

test the impact the larger search-space has on each algorithm, schedules of lengths 25, 30 

and 35 measurements were optimized using each algorithm and the resulting optimization 

cost, time and scan time per slice plotted.
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2.3. MR imaging

All experiments were conducted on a 1.5T Avanto (Siemens Healthcare, Erlangen, 

Germany) whole-body scanner with the manufacturer's body coil used for transmit and 

32-channel head array coil for receive. The MRF EPI sequence was used with TI/TE/BW set 

to 19 ms/27 ms/2009 Hz/pixel. The resolution was 2 × 2 × 5 mm3 with a matrix of 128 × 

128. An acceleration factor of R = 2 was used and the images reconstructed online using the 

GRAPPA [26] method.

2.4. Phantom experiments

Acquisition schedules of 25 measurement length were generated by each algorithm using an 

optimization dictionary with T1 in the range 100–5000 ms (in increments of 50 ms between 

1 and 3000 ms and increments of 500 ms between 3000 and 5000 ms) and T2 in the range 

20–1000 ms (in increments of 10 ms between 20 and 150 ms and 100 ms between 300 

and 1000). Given the larger number of points in the optimization dictionary (hence longer 

optimization time), the optimization algorithms were all limited to 15,000 cost function 

evaluations. Although limiting the number of cost function evaluations is likely to increase 

the minimal cost found, a tradeoff must be made between cost reduction and optimization 

time. A multi-compartment phantom with calibrated T1 and T2 values similar to those of 

the in vivo human brain was scanned with the optimized schedules generated by each of 

the four algorithms. The data was reconstructed with a dictionary composed of T1 varied 

between 100 and 5000 ms (in increments of 10 ms) and T2 varied between 1 and 3000 

ms (in increments of 2 ms for 1–800 ms, and 200 ms for 800–3000 ms). The optimization 

dictionary used a sparser sampling than the reconstruction dictionary because the signal 

evolution varies slowly as a function of FA and TR so a denser dictionary is unnecessary and 

would increase the optimization time.

The T1 and T2 maps obtained were validated using a spin-echo sequence with varying TR = 

[40,80,160,320,640,1280,2000,3000] ms and constant TE = 11 ms for T1 quantification and 

varying TE = [11,15,30,45,60,75,150] ms and constant TR = 3000 ms for T2 quantification. 

The signal intensity data was fitted to a three (for T1) and two (for T2) parameter model 

using the Levenberg-Marquadt algorithm [27]. The correlation coefficient between the 

reconstructed T1 and T2 values from the schedule generated by each algorithm and the 

spin-echo data was calculated and a least-square-fit curve plotted.

2.5. In vivo human brain

To demonstrate the utility of optimized schedules, a representative in vivo scan was 

conducted. A healthy 28 year old male volunteer was recruited for this study and provided 

informed consent. The study was approved by the Partners Healthcare Institutional Review 

Board, and conducted in strict adherence with its regulations. The subject was scanned 

with a localizer sequence for field-of-view guidance, followed by the MRF EPI sequence. 

A fat suppression module applied prior to the acquisition removed the lipid signal. Given 

the different chemical shift between brain tissue and lipids the fat suppression pulse does 

not affect the brain signal. The gradients following the lipid excitation pulse may dephase 

the brain tissue signal but are accounted for in the EPG formalism used. Three regions-of-

interest (ROI) in the grey and white matter and CSF were selected and their mean T1 and T2 
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values calculated and compared to values from the literature. The acquisition schedule was 

a 25 measurement schedule optimized with the IP method which resulted in a scan time per 

slice of 2.8 s.

3. Results

3.1. Simulation

3.1.1. Evaluation of optimization cost—The optimized schedule obtained with each 

algorithm is shown in Fig. 1 and the optimization cost curve of each algorithm is shown 

in Fig. 2. Despite having the smallest number of cost function evaluations, the IP method 

yielded the smallest optimization cost (= 3.13) followed by the BB method (= 3.3) which 

necessitated over 100,000 cost function evaluations.

3.1.2. Reconstruction error vs cost—The reconstructed T1 and T2 maps and their 

error maps for each SNR level and each algorithm tested are shown in Fig. 3. The mean 

error of each algorithm as a function of SNR is plotted in Fig. 4 for T1 and T2. As expected, 

the reconstruction error decreased with decreasing noise level for both T1 and T2 for all 

algorithms tested. However, the drop in the mean error rate was sharpest for the IP and SA 

algorithms for T1 with the mean SA error being slightly (~2%) lower. However, the mean T2 

error was smallest for the IP algorithm at all SNR levels.

3.1.3. Scan and optimization time vs cost—The cost, scan time per slice and 

optimization time for each algorithm and each schedule length is shown in Fig. 5. The 25 

measurement IP schedule yielded the lowest cost (= 3.02), lowest optimization time (= 192 

s) and shortest scan time (= 1962 ms). Increasing the schedule length generally increased all 

three parameters.

3.2. Phantom

The reconstructed T1 and T2 values for each vial in comparison to those obtained with the 

gold-standard spin-echo sequences are shown for each algorithm in Fig. 6 along with a 

least-square-fit curve. The correlation coefficient for the T1 values obtained was similarly 

high (~1.00) for all schedules. However, the correlation was significantly lower (<0.70) for 

the T2 values for all the algorithms with the exception of the IP method whose correlation 

coefficient was 0.91. For comparison, the R2 values reported for a non-optimized MRF 

acquisition using 1000 images (40-fold greater than the 25 images used in this study) was 

0.98 for both T1 and T2 [2].

3.3. In vivo human brain

Quantitative PD, T1 and T2 maps obtained with the MRF EPI sequence using the schedule 

generated by the IP algorithm are shown in Fig. 7. The mean T1 and T2 values of the white 

matter regions selected were 634 ± 22 and 90 ± 11 ms, the grey matter 943 ± 51 and 121 ± 

21 ms and the CSF 3155 ± 298 and 1723 ± 345 which is similar to values obtained from the 

literature [28-30].
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4. Discussion

In this study we assessed the suitability of algorithms belonging to different classes 

of optimization methods for solving the schedule optimization problem. Some of the 

metrics used included the minimum optimization cost, optimization time, scan time and 

the robustness to noise. The algorithms were tested in simulations, in a phantom and 

demonstrated in vivo.

Among the algorithms tested, the IP method, implemented with MATLAB's fmincon 

function, emerged as a clear winner by virtually all measures. The IP method required 

the least cost function evaluations and hence had the fastest optimization time, resulting in 

the lowest cost as well as the shortest scan time. The slightly smaller mean error in T1 for 

the SA algorithm at the highest noise levels is insignificant in practical imaging experiments 

where the SNR is generally >25 dB but may be relevant in high noise applications (e.g. at 

ultra-low magnetic field [31]). Importantly, the error in T1 for SNRs >30 dB was <1% for 

all algorithms indicative of the greater sensitivity to T1 variations imparted by the initial 

inversion pulse, as had been remarked by other groups [4] and demonstrated by the phantom 

results of Fig. 6. The benefits of the 1P methods were even starker for the phantom T2 

maps acquired. The limited number of cost function evaluations imposed on the algorithms 

severely impacted the quality of the optimized schedules obtained resulting in highly 

erroneous and biased T2 maps for all algorithms other than IP method. Although the lack of 

randomness in the schedule found by the IP method is somewhat surprising, this schedule 

yielded the lowest cost for the optimization dictionary and acquisition parameters used. It is 

possible that alternative optimization dictionaries (different anatomies) or sampling patterns 

(cartesian vs spiral) would yield a different schedule.

Each schedule Sk can be considered as a point in a multi-dimensional hyperspace with an 

associated cost Ck defined by the optimization metric. Let us define the cost of the initial 

schedule S0 as C0. Algorithms that use initialization (IP, SA) will start their exploration of 

the search-space at the point defined by the initial schedule and will attempt to find other 

points with a cost Ck < C0. Thus, if S0 is already high performing (small C0), the algorithm 

is guaranteed to return a schedule with a smaller cost Ck. However, there is no guarantee that 

the schedule found represents the global optimum, i.e. the schedule with the smallest cost 

out of all possible schedules. Algorithms that explore the search-space systematically (BB, 

BF) and do not restrict themselves to local regions may therefore find superior schedules 

given sufficient compute time.

The increase in optimization cost and scan time for longer schedules would militate against 

increasing schedule lengths. In particular, because the size of the search-space grows 

exponentially with increasing schedule length, the likelihood of getting stuck in a local 

minimum is increased. However, longer schedules can confer improved noise immunity 

since the noise is uncorrelated from measurement to measurement. This also implies that if 

the SNR is sufficiently high the schedule length can be reduced with little penalty on the 

reconstruction accuracy despite the reduced tissue discrimination.
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Previous work in MRF [1,5,32-34,3] relied on highly undersampled acquisitions that suffer 

from severe aliasing artifacts. Additionally, the GRAPPA reconstruction used in this work 

occasionally results in aliasing artifacts in some of the image frames. The reconstructed T1 

and T2 maps are nevertheless artifact free due to the robustness of the dictionary matching 

to aliasing. Hence, the improved discrimination afforded by the optimized schedule may be 

beneficial for undersampled acquisitions as well though that is the topic of ongoing research.

Because of its low bandwidth in the phase encoding direction, the EPI sequence used 

in this study is susceptible to geometric distortions (contractions, expansions) caused by 

off-resonance effects. Geometric distortions cause a voxel's signal to either spread across 

multiple voxels (expansion) or compress into fewer voxels (contraction) [35]. The resulting 

signal is therefore a weighted sum of the individual voxels which, at tissue interfaces, 

could be affected by the distortions, similar to the partial volume effect. Fortunately, 

adequate magnet shimming and the short echo times obtained with parallel imaging can 

largely mitigate this problem outside the air-sinus interfaces. Nevertheless, alternative pulse 

sequences that don't suffer from geometric distortions can similarly be optimized using the 

algorithms described in this work.

Global optimization is a rich and well-studied field [36-41] with relevance to multiple areas 

of science and engineering. Although the algorithms tested in the present study represent 

different classes of optimization methods, they are by no means exhaustive. Indeed, 

alternative algorithms may offer superior performance, particularly algorithms specifically 

tailored for this application. Nevertheless, ease of implementation and availability of source-

code are important factors in the choice of an algorithm. Aside from advances in algorithm 

design, the availability of advanced graphical processing units (GPU) can have significant 

impact on this application. The search-space exploration carried out by the optimization 

algorithm is an inherently parallelizable process which readily lends itself to massive 

acceleration by GPU processing.

5. Conclusion

We have quantified the performance of different algorithms for solving the schedule 

optimization problem. Out of the algorithms tested, the Interior-Point method performed 

best yielding the smallest optimization cost, optimization time and scan time.
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Fig. 1. 
Optimized (red) and pseudorandom or initial (blue) FA/TR schedules generated by each 

algorithm. Algorithms that required an initialization point (i.e., IP, SA) were initialized with 

the pseudorandom schedule. For algorithms that required no initialization point (BF, BB) the 

pseudorandom schedule is shown for reference. Note the similarity between the SA and its 

initial schedules indicative of a local optimum.
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Fig. 2. 
Optimization cost as a function of the number of cost function evaluations for each 

algorithm for a schedule with 30 measurements. The IP algorithm resulted in the lowest 

cost despite the smallest number of cost functions evaluations required.
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Fig. 3. 
The reconstructed T1 and T2 and error maps as a function of the SNR for a simulated 

acquisition of the numerical brain phantom using the schedule generated by each algorithm. 

The mean percent error of each image is shown inset (white).
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Fig. 4. 
Comparison of mean reconstruction error as a function of SNR between the different 

algorithms for T1 and T2. Note that for SNR levels > 25 dB the schedules generated by 

the IP algorithm gave the smallest errors.

Cohen and Rosen Page 13

Magn Reson Imaging. Author manuscript; available in PMC 2023 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Relationship between the scan time per slice, optimization cost and optimization time for 

the different algorithms and schedule lengths tested. The N = 25 length schedule optimized 

with the IP method (blue diamond) resulted in the smallest scan time per slice (a), smallest 

optimization cost (b) and smallest optimization time (c).
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Fig. 6. 
Reconstructed T1 and T2 values obtained from each phantom compartment with the MRF 

EPI sequence in comparison to a spin-echo sequence for schedules generated with the BF 

(a, e), BB (b, f), IP (c, g) and SA (d, h) methods. Unlike the other methods, the IP method 

showed good correlation with the spin-echo values for both T1 and T2.
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Fig. 7. 
Quantitative PD (a), T1 (b) and T2 (c) maps obtained from a healthy subject using the 25 

measurement schedule generated with the IP algorithm. The black circles indicate the ROIs 

selected for the mean grey and white matter and CSF T1/T2 calculations. The total scan time 

for this acquisition was 2.8 s per slice.
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