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Abstract

Three-dimensional (3D) printing technologies have been increasingly utilized in medicine over the
past several years and can greatly facilitate surgical planning thereby improving patient outcomes.
Although still much less utilized compared to computed tomography (CT), magnetic resonance
imaging (MRI) is gaining traction in medical 3D printing. The purpose of this study was two-fold:
1) to determine the prevalence in the existing literature of using MRI to create 3D printed
anatomic models for surgical planning and 2) to provide image acquisition recommendations for
appropriate clinical scenarios where MRI is the most suitable imaging modality. The workflow
for creating 3D printed anatomic models from medical imaging data is complex and involves
image segmentation of the regions of interest and conversion of that data into 3D surface meshes,
which are compatible with printing technologies. CT is most commonly used to create 3D

printed anatomic models due to the high image quality and relative ease of performing image
segmentation from CT data. As compared to CT datasets, 3D printing using MRI data offers
advantages since it provides exquisite soft tissue contrast needed for accurate organ segmentation
and it does not expose patients to unnecessary ionizing radiation. MRI, however, often requires
complicated imaging techniques and time-consuming postprocessing procedures to generate high-
resolution 3D anatomic models needed for 3D printing. Despite these challenges, 3D modeling
and printing from MRI data holds great clinical promises thanks to emerging innovations in both
advanced MRI imaging and postprocessing techniques.

In medicine, three-dimensional (3D) printing, also known as additive manufacturing or rapid
prototyping, represents the fabrication of physical objects from volumetric medical imaging
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data, with the intent of positively impacting patient care. 3D printing patient-specific
anatomical data extend the current capabilities of conventional 3D visualization by allowing
radiologists, surgeons, and other physicians to physically hold patient-specific models in
their hands and use visuo-haptic inputs to better understand both complex anatomical
structures as well as the condition being treated. Recent advances of 3D printing have
allowed 3D printing in medicine to gain tremendous momentum and increased utilization of
3D printing demonstrates promising results in preoperative surgical planning.1-8 In addition,
by allowing for improved understanding of anatomy, enabling precontouring of implants,
and providing real-time guidance in the operating room (OR), 3D printed anatomic models
and guides can reduce OR costs secondary to shortening procedure times and possibly
improve patient outcomes.’~11

3D printing technology was introduced in the 1980s, and it encompasses various processes
intended to generate a physical 3D model from a digital file.12:13 Clinical applications

of 3D printing began with computed tomography (CT) images, with the first digitally
manufactured 3D model ever produced from CT imaging created in the early 1980s using
a milling process.14 The use of milling to produce prostheses continued through the 1980s
and 1990s with the majority of applications being in craniomaxillofacial surgery.1516 |n
the 1990s, people started to use stereolithography (SLA) to fabricate patient-specific 3D
anatomy from CT data, with the advantage of SLA as compared to traditional milling
techniques being that the SLA technique does not require a cutting tool.1” Around that time,
there was also a discussion of combining magnetic resonance imaging (MRI) with CT data
to get the soft tissue data from MRI and boney reconstructions from CT.18

The workflow for creating 3D printed anatomic models from medical imaging data is
complex and involves image segmentation of the anatomic regions of interest and conversion
of that data into 3D surface meshes, which are compatible with printing technologies. Figure
1 shows a typical workflow for 3D printing from MRI data.

As compared to CT datasets, 3D printing using MRI data offers a few advantages because
it provides exquisite soft tissue contrast needed for accurate organ segmentation and it
does not expose patients to unnecessary ionizing radiation. MRI datasets, however, are
more complex than CT because MRI has a multitude of sequences with acquisition and
image-contrast parameters that are challenging to standardize. Consequently, automated
image segmentation in MRI often does not work, global threshold masks are not very
useful and suitable thresholds for organs with similar signal intensities are often not found.
Furthermore, edge detection and region growing techniques often do not work due to the
similar signal intensities found in neighboring structures. Accordingly, the segmentation
of MRI datasets has become a complex task for clinicians. Manual segmentation must
often be performed, but manual segmentation is tedious, time-consuming, and operator
dependent. Another challenge is the long printing and design time, typically 3-5 days.1® The
average image post-processing for multipart renal mass models has been reported to be 7
hours each with a printing time of 10 hours. Despite the challenges in 3D segmentation
and modeling from MRI data, 3D modeling and printing from MRI data holds clinically
important promises if these challenges can be overcome.
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Recent innovations and reduced cost have made 3D printing technologies accessible to many
hospitals; and over the last several years there been an increase in hospitals utilizing 3D
printing at the point of care.29 However, although many hospitals are currently utilizing 3D
printed anatomic models for clinical care, it is unknown how widespread the use of MRI is
as the source data for these models. The purpose of this literature review was 1) to determine
the prevalence in the existing literature of using MRI to create 3D printed anatomic models
for surgical planning and 2) to provide image acquisition recommendations for appropriate
clinical scenarios where MRI is the most suitable imaging modality.

The authors first conducted a systematic literature review to determine the utilization of
MRI for the creation of 3D printed models for surgical planning. In order to identify current
publications demonstrating the use of MRI data to create 3D printed anatomic models

for surgical planning purposes, a detailed electronic search of Ovid-Medline (PubMed)

was conducted. The initial search was performed in June 2020. Search terms included the
following:

1 “3D printing” AND “magnetic resonance imaging” AND “planning”
“3D printing” AND “MRI” AND “planning”

“additive manufacturing” AND “magnetic resonance imaging” AND “planning”

2

3

4. “additive manufacturing” AND “MRI” AND “planning”

5 “rapid prototyping” AND “magnetic resonance imaging” AND “planning”
6

“rapid prototyping” AND “MRI” AND “planning”

Only studies in English were reviewed. All animal studies, review papers, editorials,
technical notes, and studies only using CT imaging for 3D model generation were excluded.
Two of the authors independently reviewed the publications. Data were evaluated to
determine what clinical indication 3D printing was being used for, how MRI was utilized to
create 3D printed anatomic models, and how these 3D printed models were being utilized
for surgical planning.

Next, the appropriate use guidelines for medical 3D printing published by the Radiological
Society of North America (RSNA) 3D Printing Special Interest Group (SIG) were searched
for clinical situations where 3D printing was deemed usually appropriate (scores of 7-9),
with data and experience showing an advantage of 3D printed anatomic models as compared
to conventional medical imaging.21-23

Finally, for each major clinical indication, currently available MRI acquisition parameters
and considerations for novel MRI sequences are described in order to help ensure that all
pertinent anatomic structures are well visualized in any 3D printed anatomic models derived
from MRI data.
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Results and Discussion

Our initial electronic search identified 220 articles with 133 articles remaining after
duplicates were removed (Fig. 2). Of these 133 articles, four were excluded based on
non-English language literature, leaving 129 which were assessed for eligibility. Out of these
129, 51 articles were excluded because they utilized CT data to construct 3D printed models,
30 review papers were excluded, 3 non-human studies were excluded, 3 technical notes

were excluded, and one study was excluded since the 3D printed models were utilized for
training. In total, 40 articles met the search term guidelines and were ultimately reviewed
(Table 1)_1,19,24—60

The literature collected was mostly produced in the last six years, with eight

articles prior to 2015, three in both 2015 and 2016, nine in both 2017 and 2018,

five in 2019, and three in 2020.1:19:32-60 The two most prominent specialties in

the literature review were cardiovascular and neurosurgery with 14 studies focusing

on cardiovascular models2:26.28,33-38,41,44,47.52,61 anq 10 focusing on neurosurgical
models.24:30.32,39,40,45,46,58-60 The remaining papers included orthopedic surgery,27:29:49
liver surgery,31:42:43 complex neuroblastoma cases,37:5! a case of perianal fistula,>°
urologic surgery;148:51.53,56.57 and women’s health including uterine surgery,® breast
reconstruction,®! and brachytherapy for gynecological cancer.>3

In regard to the appropriate use guidelines for medical 3D printing published by the RSNA
3D Printing SIG, the publications with clinical situations where 3D printing was deemed
usually appropriate which utilized MRI to generate 3D printed models are included in Table
2.21-23 The major clinical scenarios are described below with MRI sequence information
from the published papers found in our search (if available) as well as recommendations
based on expert opinion.

Cardiovascular Surgery

The cardiovascular system has complex structure and geometry, which can be better
visualized and understood with 3D modeling. The literature search performed here
identified 14 studies (35%) that utilized MRI to create cardiac models (Table
3).25.26,28,33-38,41,44,47,52,61 Qut of these 14 studies, the majority, 10 of the 14 (71.43%)
focused on congenital heart disease (CHD).26:33:34,36,38,41,44,47,52.61 CHD includes various
types of defects: aortic stenosis, atrial septal defects, coarctation of the aorta, Ebstein
anomaly, patent ductus arteriosus, patent foramen ovale, truncus arteriosus, double outlet
right ventricle, transposition of the great arteries, and ventricular septal defects. Since these
defects may be complex and difficult to interpret, 3D-printed models may enable better
visualization and analysis of the complex cardiac anatomy, optimize surgical planning and
reduce surgical times, ultimately resulting in improved patient outcomes.®2

Planning for congenital heart surgery using 3D printed models derived from cardiac MRI
data has proven to be helpful in many ways, such as decreasing mortality, lowering the
chances of finding unexpected results in vivo,*” allowing surgeons to address challenges
prior to surgery,*! and enabling surgeons to make improved decisions regarding the
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surgical plan pre-operatively.38:44 Specifically, 3D printed models of complex cardiovascular
pathology and intracardiac lesions can enable surgeons to overcome the shortcomings of
conventional planning by allowing improved identification and dimensional analysis of
anatomic structures.26:28,33.34.36.37 Taking planning one step further, 3D printed models of
the native Fontan geometry have also been created to validate simulation results and tissue
engineer patient-specific vascular grafts to improve the quality of the surgery.>2

For pediatric patients, MRI is preferred over CT since MRI does not utilize ionizing
radiation. Commonly available MRI techniques applicable for the 3D printing of CHD
models include noncontrast 3D steady-state free precession (SSFP) imaging and non
electrocardiogram (ECG)-gated or ECG-gated contrast-enhanced 3D fast low-angle shot
(FLASH) angiography with or without respiratory navigation.63 These sequences are
applicable for adult cardiovascular patients, although CT is generally the modality of
choice due to higher spatial resolution and much less motion blurring compared to MR
images. Unlike modern cardiac CT where images are always acquired axially with fast 3D
acquisition, MRI acquisitions are advantageous since 2D images can be generated along
any orientation with high temporal resolution. However, high-resolution 3D cardiac MRI
is time consuming and images are susceptible to motion artifacts. Recent technological
developments in both MR imaging and image reconstruction have allowed much higher
spatiotemporal resolution to be obtained, potentially making their clinical application in
3D printing a much more competitive alternative to CT. For example, novel 3D free-
breathing, self-navigated sequences can provide excellent image quality as compared to
routine MR sequences, therefore may be better suited for the creation of 3D models

(Fig. 3).64 With more of these new fast motion-insensitive MRI image protocols becoming
clinically available, we anticipate MRI will soon gain wider cardiovascular applications in
3D printing.

Neurosurgery

In neurosurgery, intricate and minute anatomical structures are usually encountered, thus

it is imperative that surgeons and interventionalists have a comprehensive understanding

of the pathology so that normal brain tissue and proper brain function are both

preserved. Herein, of the 40 articles, 10 (25%) highlighted neurosurgical applications
(Table 4).24.30.32,39,40,45.46,58-60 The majority of the reports were single cases or small
cohort studies with less than 10 patients, with models being used to enhance anatomic
understanding and to help refine the surgical procedure.24.30:39.40.45,46,58-60 The g|dest study
found in this search, dating back to 1998, utilized MRI data to create a single 3D model of
the human ventricular system.24 A T2-weighted sequence was selected for the 3D modeling
due to the high contrast between brain matter and fluid. Such models could be used for
pre-operative planning to help the surgeon decide on the optimal surgical approach and
could provide real-time intra-operative guidance.

In regard to 3D anatomic modeling for neurosurgical applications, T1-weighted 3D
magnetization-prepared rapid acquisition with gradient echo (MP-RAGE) sequences, which
provide excellent contrast between gray and white matter, have been utilized and are
recommended.39:3240 T1-weighted 3D fast spoiled gradient echo (FSPGR) and 3D time-
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of-flight MRI sequences may also be used.*6:58 Additionally, quantitative sequences such

as diffusion tensor imaging (DTI) or diffusion spectrum imaging (DSI) for fiber tract
extrapolation,#0:46.65.66 fynctional MRI,30 and contrast-enhanced MRI1%8-60 may be utilized
to incorporate more details into 3D models and further facilitate surgical planning (Fig. 4).56

For neurosurgical applications, recent imaging technological developments, particularly
parallel imaging and compressed sensing, have made high-resolution 3D imaging in
everyday clinical practice much more feasible.57-69 Parallel imaging and compressed
sensing are particularly advantageous in 3D MRI since much higher combined acceleration
factors can be achieved along both phase encode directions in 3D acquisitions without
introducing excessive artifacts and noise. Isotropic spatial resolution with a voxel size

of 1.0 mm3 using 3D T1-weighted MP-RAGE at 3Tesla can be obtained in less than 3
minutes with parallel imaging and compressed sensing.®9 In addition, high-resolution 3D
fluid attenuated inversion recovery (FLAIR) and 3D T2-weighted sequences (eg, CUBE
for GE, Sampling Perfection with Application optimized Contrasts using different flip
angle Evolution [SPACE] for Siemens, and Volume Isotropic Turbo spin echo Acquisition
[VISTA] for Philips) can be readily acquired within clinically acceptable scan duration

(<4 minutes each)59 and they will gain growing popularity in neurosurgical planning.
Moreover, 3D susceptibility-weighted imaging (SWI1) is replacing 2D MRI sequences

to visualize venous structures and iron, as well as to detect micro-hemorrhages.”0.71
Traditionally, clinical diffusion-weighted images (DWI) are acquired using single-shot echo
planar imaging (EPI) sequences, but these images suffer from poor spatial resolution,
spatial distortion, and susceptibility artifacts, not fit for modeling for 3D printing. Recent
single-shot turbo spin-echo (TSE) and multishot EPI DWI sequences have enabled higher
spatial resolution diffusion imaging with much less distortion.”2=4 There is also a trend

to use radial k-space acquisition to reduce motion sensitivity, making high-resolution 3D
imaging clinically more reliable.”® As these novel sequences are more widely utilized, more
neurosurgical applications for 3D printing using MRI data are expected.

Liver Surgery

For liver surgeries including hepatectomy, liver transplant, and tumor resection procedures,
hybrid CT and MRI approaches have been used to distinguish between hepatic arteries,
portal veins, bile duct, and tumor in the hepatic hilum.31:4243 3D printed liver models have
been shown to facilitate surgery by providing an enhanced understanding of the spatial
relationships between vascular and biliary structures and demonstrated identical anatomic
and geometrical landmarks in the 3D printed and native livers.3!

Similar to cardiovascular surgery, MRI is a preferable imaging modality for pediatric liver
surgical planning due to ionizing radiation concerns for infants and children. To allow
high-resolution 2D or 3D MR imaging of the abdomen, respiratory motion control such as
breath-hold, respiratory triggering, respiratory gating, and respiratory navigation is generally
needed. Fat suppression is also desirable to improve contrast of lesions and to reduce
potential contaminating artifacts. Dixon’s method-based sequences (i.e. mDixon for Philips,
IDEAL for GE, Dixon for Siemens) have gained wide-spread clinical use. In this technique,
multiple echoes with different echo times (TEs) are acquired in each repetition time (TR),
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which allows water-only, fat-only, in-phase, and out-of-phase water/fat contrast image sets
to be reconstructed during postprocessing.”® A fast 3D breath-hold Dixon’s method-based
sequence can also be used in liver MRI for precontrast and postcontrast imaging for tumor or
vascular evaluation (Fig. 5).7” New clinically available MR sequences using radial k-space
acquisition’® with less motion sensitivity can also be combined with Dixon’s method to
enhance diagnosis reliability or image contrast.”® These advanced sequences are becoming
more widely available on clinical scanners; therefore, it is anticipated that these emerging
fast MR sequences with high spatial resolution and less motion blurring will gain more
applications for 3D printing in clinical practice, particularly for liver imaging limited by
patient motion.

Urologic Surgery

The search conducted here yielded six collected articles related to urologic surgery

which focused on models for renal and prostate cancer.148:51.53,56.57 3D printed renal
cancer models have been shown to facilitate surgical planning for robotic assisted partial
nephrectomy?-23:80.81 and Wilms Tumor resection planning.>! MRI acquisitions used to
create 3D printed renal cancer models have included 1.5 Tesla imaging with a 3D
postcontrast fat suppressed gradient echo T1-weighted sequence with a spatial resolution
of 1 4mm x 1 .4mm x 2mm and a breath-hold ranging from 13 seconds to 20 seconds.1-82
Avrterial, venous, and collecting phase images are utilized for the appropriate visualization
of the arterial, venous, and collecting systems, respectively. Although our search did not
generate any reports of 3D printed renal cancer models created with MRI sequences based
on the 3D Dixon method, as discussed in the “Liver Surgery” section, it is likely these
sequences can provide equal or better outcome in kidney imaging, as shown in Fig. 5.

For urologic applications, presurgical 3D printed prostate cancer models derived from

MRI data can also be helpful for presurgical planning.#8:82 MR image acquisition can
include a 3D volumetric T2-weighted imaging sequence with a spatial resolution of
0.6mm x0.6mm x 1.0 mmat 3 T; and these T2-weighted anatomic images can be co-
registered with DWI or 3D dynamic contrast-enhanced (DCE) images for better lesion
characterization.82 Axial 3D T2-weighted MRI with an imaging slice thickness of 2.5 mm
has also been utilized to create patient-specific 3D printed prostate cutting guides; and
these have been used to successfully section the prostate for slice-by-slice comparison with
histopathological findings.%6

Figure 6 shows representative 3D printed kidney and prostate cancer models derived from
MRI data. 3D printing can be especially helpful in understanding the abnormal anatomy and
spatial relationships of pertinent anatomical structures in these cases and can help facilitate
organ sparing surgery.1:53.82

Orthopedic Surgery

In orthopedic surgery, CT is utilized more often than MRI due to the fact that CT uses
X-rays which leads to high contrast between bone and lean tissues. Furthermore, many
automated image postprocessing algorithms are already available clinically to segment
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anatomical regions of interest such as bone based on the Hounsfield unit scale.?! Despite
this, MRI, which is superior at visualizing soft tissue structures, may be used to examine
bones, joints, and soft tissues including cartilage, muscles, and tendons for injuries or

the presence of structural abnormalities or other conditions. This review yielded three
articles which utilized MRI to create 3D-printed anatomic models for surgical planning for
orthopedic procedures.2”-2%49 |n two out the three papers, MRI played a supporting role
compared to CT.2949 |n the other article, only MR images were used with better model
results desired.2’

For the combined approach, Punyaratabandhu et al described the creation of models for
presurgical planning on extra-compartmental bone tumors with a hybrid CT and MRI
approach, since CT is superior at segmenting bones and MRI is better at highlighting

soft tissue structures. They found that the models helped to guide the orthopedic surgeon

to create personalized pre-operative plans and perform physical simulations, leading to
decreased blood loss, operative times, and surgical incision lengths.#® Next, Bellanova et

al utilized a combined CT and MRI approach for surgical planning in four pediatric tibial
bone sarcoma resection cases.2? A multimodal registration algorithm was used to fuse the
CT, MR, and tumor volume which was manually delineated from an MRI series in which
the tumor boundaries were well visualized. After preoperative planning, a surgical guide that
was fitted to a unique position on the tibia was manufactured using 3D printing. A second
instrument was manufactured to adjust the bone allograft to fit the resection gap accurately.
The authors found that accurate preoperative localization of the tumor provided allowed
resection with adequate but minimal safe margins, and the patient-specific surgical guides
improved the accuracy of the resection during the surgery, thus preventing unnecessary
resection and preserving, when needed, articular cartilage in young patients.29 Hung et al
used only MRI data and detailed the creation of a 3D printed model for a 5-year-old boy
with progressive limping and shortening of the left lower limb following septic arthritis of
the ipsilateral joint with the sequelae of avascular necrosis of the femoral head and lateral
subluxation of the joint.2” Due to the patient’s young age, MRI was performed in order

to limit radiation and a 3D printed model was constructed for pediatric proximal femoral
corrective osteotomy. In comparison to CT, the boney boundary on MRI was less defined, so
to overcome this challenge, the contour was manually outlined by a technician. Although the
MRI model was not as smooth as CT-derived models, it was understood that the model was
still beneficial for the surgeons without exposing the patient to radiation.2’

MRI has traditionally been limited in orthopedic surgery, since MRI is inherently
disadvantaged in imaging cortical bone, which has a low proton density and a very low
T2 value, leading to dark signal on traditional MRI images. As described above, MRI

is often obtained pre-operatively in addition to CT, in order to properly visualize soft
tissues along with the bones (Fig. 7). If it was possible to adequately visualize the bone
using MRI, then the need for CT could be eliminated, preventing a patient from being
exposed to ionizing radiation and reducing costs, ultimately making it highly valuable for
any orthopedic or craniomaxillofacial surgeries.83:84 In addition, this could be beneficial
for radiation oncology applications where CT has been traditionally used as the primary
imaging modality for clinical treatment planning, in combination with MRI for soft tissue
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delineation. Herein, the patient treatment workflow can be greatly improved if only MRI is
needed.

The development of MRI sequences which better delineate bone has been a topic of great
interest over the last decade. “Black Bone” MRI techniques that do not enhance soft tissues
but rather enhance the zones of separation between bones and soft tissues, could be used

to differentiate bone from lean tissues. However, this MR technique assumes cortical bone
has low signal while all other non-bone within the area contribute to MR signal and is

thus susceptible to artifacts arising from air and tissue interfaces. Another major direction
of MRI is the application of ultra-short TE (UTE) or zero-TE (ZTE) sequences, emerging
imaging techniques that are becoming more clinical available to provide “positive” contrast
between bone and lean tissues.8588 In both techniques, radial k-space lines are acquired
starting from the k-space center to the peripheral areas, leading to effective TE of close to
zero (generally less than 100 psec), much less than the T2 of cortical bone (0.28 msec—0.38
msec).87:88 To enhance contrast between the short T2 components (eg, cortical bone) and
the long T2 tissues (eg, muscles, typically with higher signal than cortical bone), various
soft tissue suppression techniques have been developed.82 UTE/ZTE MRI are gaining
more clinical applications in diagnostic imaging such as in bone-related conditions.%0:91
Therefore, “synthetic CT” images, reconstructed from UTE/ZTE MRI images to simulate
CT images, have been heavily studied recently.9293 Additionally, “synthetic CT” images
can be used in hybrid PET/MRI scanners to generate surrogate bone density maps for PET
attenuation correction.%*95 The clinical applications of UTE/ZTE MRI are steadily growing.
However, to the best of our knowledge, there are few 3D printing studies or reports based
on images obtained from UTE/ZTE MRI sequences.?6:97 We believe that 3D printing and
UTE/ZTE MRI have great potential to grow synergistically. For example, a recent study
created a 3D-printed phantom mimicking cortical bone to evaluate UTE MRI techniques and
we expect more developments such as this in the future.98

Other Considerations and Future Perspectives

There has been a significant increase of the use of 3D printing from MRI data over the
past 5 years. However, at this time, image acquisition is generally obtained based on
established clinical protocols and is not optimized for 3D printing purposes. If a clinician
requests a 3D printed model prior to the image acquisition, dedicated MR protocols can be
tailored for 3D printing to include the highest possible spatial resolution, spatial fidelity,
signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the region of interest.2!
In order to facilitate the widespread utilization of 3D printing in medicine, it is necessary
to establish the global optimization of 3D printing compatible protocols for all patients.
Standard diagnostic MR sequences that are also compatible with 3D printing will not
only improve patient diagnosis but also will enhance surgical planning and clinical care

in a more efficient and cost-effective workflow. Fortunately, we are seeing a trend of

more high-resolution 3D MRI protocols being accepted by radiologists in their everyday
practice particularly in neurological and musculoskeletal applications, thanks to the recent
technological development in rapid MR imaging. Looking ahead, time resolved or motion
insensitive radial-based MR data acquisition, UTE/ZTE MRI, more advanced iterative or
deep-learning based image reconstruction techniques will become more clinical available,
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and will gain widespread adoption for many clinical applications, particularly in high-
resolution 3D or 4D imaging, which will allow 3D printed models to be readily created
if needed.99:100

Although the craniomaxillofacial (CMF) specialty was one of the earliest fields to adopt the
use of 3D models derived from medical imaging datal%1.192 and the usage of CT data over
MRI data to create CMF models for presurgical planning is an accepted practice,03 our
search did not find any articles utilizing MRI for surgical planning of CMF procedures. With
the introduction of novel black bone and UTE/ZTE MRI sequences, the use of MRI could
become more prevalent in these case types.%

Similarly, 3D printing for surgical planning has been used in conjoined twins separation
since the 1990s,194 and although our search did come up with one article that mentioned 3D
printing for conjoined twins separation, this article did not actually utilize 3D printing for
their own cases but instead just mentioned the use of 3D printing at other institutions for
these case types.10% For conjoined twins separation, combining CT with MRI and utilizing
novel MRI sequences as well as incorporating quantitative information such as that from
diffusion MRI into the 3D models may provide even extra value for clinicians.#0.66

In regard to 3D printing technologies commonly used in hospitals, the major types include
material extrusion, material jetting, binder jetting, vat photopolymerization, and polymer
powder bed fusion (HP Jet Fusion, HP Inc, Palo Alto, CA). Materials currently used to
create medical models with these technologies are generally rigid plastics and powders,
although a combination of rigid and flexible materials may be printed using material jetting
or multiextruder material extrusion technologies. Single component models such as bones
can be created easily with material extrusion or vat photopolymerization technologies. For
these, over-curing in certain regions or dual-extrusion printing may also allow for dual
colored models highlighting certain anatomic regions of interest. Full color printing may be
achieved using material jetting, binder jetting, or powder bed fusion. For medical models,
color may be necessary to differentiate different structures in anatomic models, which depict
multiple pertinent anatomic structures such as a kidney with a lesion, artery, vein, and
collecting system. 3D printed anatomic models that are used for simulations should closely
mimic human tissue properties, so for these, material jetting with different combinations of
rigid and flexible materials is most suitable. 3D-printed molds could also be created and
filled with suitable anthropomorphic materials.

Most of the commaonly available 3D printing materials are not visible with MRI since

these materials must be rich in hydrogen. At this time, new 3D printing materials are

being developed and their MRI properties are being evaluated.1%6 3D printed models

with MRI-visible properties and known geometries would be extremely useful for quality
assurance testing to evaluate the ability of MRI systems to safely produce accurate imaging.
Furthermore, patient-specific models that incorporate MRI-visible 3D printed materials
could have great impact on surgical planning and guiding MRI-guided percutaneous
procedures in the future.107
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Over the past 5 years, many hospitals throughout the United States have brought 3D printing
in-house; however, oftentimes this is driven by self-funding or grant support and costs

still remain a major concern for this technology.2% On July 1, 2019 four Category Il

Current Procedure Terminology (CPT) codes for 3D printed anatomic models and guides
were released.198 Category 111 CPT codes were established in 2001 and they are used for
data collection for emerging technologies that are not yet mature and do not yet meet the
criteria for Category | CPT codes, which are for established medical services that have

met the requirements of widespread clinical use and have documented efficacy. In order to
demonstrate the widespread use of 3D printing in medicine, in conjunction with the release
of the Category Il CPT codes, the RSNA and the American College of Radiology (ACR)
have established a registry for 3D printing.10° The data collected through this registry will
include information about the source imaging, the model construct and effort, 3D printing
techniques and effort, as well as the clinical impact of the models; and data will be used to
support an application for full reimbursement for 3D printing anatomic models and guides at
the point of care. Based on these efforts, it is expected that 3D printed anatomic models and
guides will be deemed clinically necessary for certain complicated procedures and these will
become part of common medical and surgical practice. In addition, personalized 3D-printed
implants, bioregenerative materials, and living bioprinted tissues and organs are expected to
further transform medicine over the next several decades.

Conclusions

3D printing based on MRI data can greatly facilitate surgical planning and thereby improves
patient outcomes. Current challenges and opportunities include the need to optimize MRI
acquisition protocols, improve image segmentation accuracy, reduce image processing

time, reduce 3D printing time, reduce cost, and expand the currently limiting insurance
reimbursement. Further demonstration of added value is needed for widespread clinical
adoption of 3D printing in medicine.
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FIGURE 1

General workflow for 3D printing from a MRI dataset including 1) MRI Exam (Image
Acquisition) showing a photograph of a MRI scanner (GE, Waukesha, WI) and axial
abdominal images, 2) Image segmentation for a renal cancer model including the kidney,
tumor, artery, vein, and ureter, 3) CAD (computer-aided design) modeling of the kidney
structures, and 4) 3D printing showing a photography of the J750 Digital Anatomy Printer
(Stratasys, Eden Prairie, MN) and anterior and posterior views of the 3D-printed kidney
tumor model printed with vero clear, yellow, green, pink, and blue photopolymer materials
(Stratasys, Eden Prairie, MN).
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Identification

220 articles identified through database searching

Screening

133 articles screened after duplicated removed —_— 4 articles excluded based on English language

Eligibility

-52 articles excluded since CT was utilized to
create models

129 articles assessed for eligibility - 30 review papers excluded

-3 non-human studies excluded
-3 technical notes excluded
-1 excluded since models for training

Inclusion

40 eligible articles

FIGURE 2:
Prisma flow diagram of study selection.
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FIGURE 3:
3D cardiovascular segmentation and modeling (D2P, 3D Systems, Rock Hill, SC). (a)

Blood pool segmentation using a 3D radial, nonslice-selective, T2-prepared, fat-saturated
bSSFP sequence on a 1.5 Tesla MRI scanner (MAGNETOM Aera, Siemens, Erlangen,
Germany). The acquisition window (~50 msec—55 msec) was placed in mid-diastole.
Imaging parameters were as follows: TR/TE = 3.1/1.56 msec, FOV = 200 mm3, voxel

size =1 mm3, FA = 115°, and acquisition time ~5 minutes (~12,000 radial lines). (b) 3D
representation of blood pool segmentation. (c) Outline of a 3 mm shell, which was created
around the blood pool and would be used for 3D printing shown on the same image as part
A. (d) 3D heart model with shell surrounding the hollowed blood pool.
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FIGURE 4:
(a) Fiber tracts in a healthy brain generated with a modified streamline tracking algorithm as

implemented in DSI Studio (http://dsi-studio.labsolver.org) from DSI obtained on a clinical
3Tesla scanner (Skyra, Siemens, Erlangen, Germany) with a 32-channel head coil using a
radially symmetric g-space sampling scheme. (b) 3D printed model of the fiber tracts from
part (a) printed using material jetting technology (J750, Stratasys, Eden Prairie, MN) with a
3 mm fiber tract thickness to ensure model fidelity.
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FIGURE 5:
(a) Axial and (b) coronal clinical liver MR images for a patient with hepatocellular

carcinoma (HCC) obtained on a 1.5 Tesla scanner using a 3D mDixon breath-hold sequence.
(c and d) Virtual Reality (VR) 3D reconstructions with the liver—purple, hepatocellular
carcinoma—bright green, hepatic veins—dark green, portal vein—royal blue, aorta—red,
right kidney—dark yellow, left kidney—mid blue, spleen—yellow, and heart—dark red
shown in the Elucis platform (Realize Medical, Ottawa, Canada). 3D structures can be
exported directly from VR for 3D printing.
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Segmentation 3D Print

FIGURE 6:
(Top Row) A 68-year-old male with a Prostate Imaging Reporting and Data System (PI-

RADS) 5 lesion broadly abutting capsule without gross extraprostatic extension. In this case,
the 3D printed model which included the prostate (clear), lesion (blue), bladder neck and
urethra (pink), rectal wall (white), and neurovascular bundles (yellow) helped to facilitate a
nerve sparing prostatectomy. (Bottom Row) A patient with a4.4 x 4.5 cm interpolar renal
mass which abuts a lower pole calyx. The 3D printed model which included the kidney
(transparent), mass (purple), artery (pink), vein (light blue), and collecting system (dark
blue) allowed the vasculature to be well-visualized and facilitated a nephron sparing partial
nephrectomy. For both cases, image segmentation and CAD modeling were performed in
Mimics and 3-matic (Materialise, Leuven, Belgium) and 3D printing was performed using
material jetting technology (J750 and Connex500, Stratasys, Eden Prairie, MN).
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FIGURE 7:
An example of a 3D printed orthopedic model created from MRI data (distal femur with

growth plate, tumor, artery, vein, and nerve). (a) Coronal T1-Weighted sequence-TR = 600
msec, TE = 9.4 msec, Slice Spacing = 6 mm, Pixel spacing = 0.714 mm. (b) Sagittal Short
TI Inversion Recovery — TR = 3480 msec, TE = 27 msec, ST 6, Slice spacing = 6 mm,
Pixel spacing = 0.714 mm. (c) Sagittal slice showing image segmentation using axial images
as source data. (d) 3D reconstruction of image segmentation with the bone—yellow, lesion
——purple, artery—red, vein—cyan, nerve—green, growth plate—orange. Note the lego-like
appearance of the bone due to the poor spatial resolution. () Computer-aided design model
with the bone-white (shown with significant smoothing to reduce the lego-like appearance),
lesion — purple lattice (created in Freeform Plus, 3D Systems, Rock Hill, SC), artery—red,
vein—cyan, nerve—green, growth plate—yellow, and struts—gray, which were created to
hold vasculature to model. (f) Multicolor 3D printed model printed with binder jetting
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technology (CJP 660, 3D Systems, Rock Hill, SC) with the same color scheme as shown in
the CAD model.
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