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Abstract

Three-dimensional (3D) printing technologies have been increasingly utilized in medicine over the 

past several years and can greatly facilitate surgical planning thereby improving patient outcomes. 

Although still much less utilized compared to computed tomography (CT), magnetic resonance 

imaging (MRI) is gaining traction in medical 3D printing. The purpose of this study was two-fold: 

1) to determine the prevalence in the existing literature of using MRI to create 3D printed 

anatomic models for surgical planning and 2) to provide image acquisition recommendations for 

appropriate clinical scenarios where MRI is the most suitable imaging modality. The workflow 

for creating 3D printed anatomic models from medical imaging data is complex and involves 

image segmentation of the regions of interest and conversion of that data into 3D surface meshes, 

which are compatible with printing technologies. CT is most commonly used to create 3D 

printed anatomic models due to the high image quality and relative ease of performing image 

segmentation from CT data. As compared to CT datasets, 3D printing using MRI data offers 

advantages since it provides exquisite soft tissue contrast needed for accurate organ segmentation 

and it does not expose patients to unnecessary ionizing radiation. MRI, however, often requires 

complicated imaging techniques and time-consuming postprocessing procedures to generate high-

resolution 3D anatomic models needed for 3D printing. Despite these challenges, 3D modeling 

and printing from MRI data holds great clinical promises thanks to emerging innovations in both 

advanced MRI imaging and postprocessing techniques.

In medicine, three-dimensional (3D) printing, also known as additive manufacturing or rapid 

prototyping, represents the fabrication of physical objects from volumetric medical imaging 
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data, with the intent of positively impacting patient care. 3D printing patient-specific 

anatomical data extend the current capabilities of conventional 3D visualization by allowing 

radiologists, surgeons, and other physicians to physically hold patient-specific models in 

their hands and use visuo-haptic inputs to better understand both complex anatomical 

structures as well as the condition being treated. Recent advances of 3D printing have 

allowed 3D printing in medicine to gain tremendous momentum and increased utilization of 

3D printing demonstrates promising results in preoperative surgical planning.1–6 In addition, 

by allowing for improved understanding of anatomy, enabling precontouring of implants, 

and providing real-time guidance in the operating room (OR), 3D printed anatomic models 

and guides can reduce OR costs secondary to shortening procedure times and possibly 

improve patient outcomes.7–11

3D printing technology was introduced in the 1980s, and it encompasses various processes 

intended to generate a physical 3D model from a digital file.12,13 Clinical applications 

of 3D printing began with computed tomography (CT) images, with the first digitally 

manufactured 3D model ever produced from CT imaging created in the early 1980s using 

a milling process.14 The use of milling to produce prostheses continued through the 1980s 

and 1990s with the majority of applications being in craniomaxillofacial surgery.15,16 In 

the 1990s, people started to use stereolithography (SLA) to fabricate patient-specific 3D 

anatomy from CT data, with the advantage of SLA as compared to traditional milling 

techniques being that the SLA technique does not require a cutting tool.17 Around that time, 

there was also a discussion of combining magnetic resonance imaging (MRI) with CT data 

to get the soft tissue data from MRI and boney reconstructions from CT.18

The workflow for creating 3D printed anatomic models from medical imaging data is 

complex and involves image segmentation of the anatomic regions of interest and conversion 

of that data into 3D surface meshes, which are compatible with printing technologies. Figure 

1 shows a typical workflow for 3D printing from MRI data.

As compared to CT datasets, 3D printing using MRI data offers a few advantages because 

it provides exquisite soft tissue contrast needed for accurate organ segmentation and it 

does not expose patients to unnecessary ionizing radiation. MRI datasets, however, are 

more complex than CT because MRI has a multitude of sequences with acquisition and 

image-contrast parameters that are challenging to standardize. Consequently, automated 

image segmentation in MRI often does not work, global threshold masks are not very 

useful and suitable thresholds for organs with similar signal intensities are often not found. 

Furthermore, edge detection and region growing techniques often do not work due to the 

similar signal intensities found in neighboring structures. Accordingly, the segmentation 

of MRI datasets has become a complex task for clinicians. Manual segmentation must 

often be performed, but manual segmentation is tedious, time-consuming, and operator 

dependent. Another challenge is the long printing and design time, typically 3–5 days.19 The 

average image post-processing for multipart renal mass models has been reported to be 7 

hours each with a printing time of 10 hours.1 Despite the challenges in 3D segmentation 

and modeling from MRI data, 3D modeling and printing from MRI data holds clinically 

important promises if these challenges can be overcome.
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Recent innovations and reduced cost have made 3D printing technologies accessible to many 

hospitals; and over the last several years there been an increase in hospitals utilizing 3D 

printing at the point of care.20 However, although many hospitals are currently utilizing 3D 

printed anatomic models for clinical care, it is unknown how widespread the use of MRI is 

as the source data for these models. The purpose of this literature review was 1) to determine 

the prevalence in the existing literature of using MRI to create 3D printed anatomic models 

for surgical planning and 2) to provide image acquisition recommendations for appropriate 

clinical scenarios where MRI is the most suitable imaging modality.

Methods

The authors first conducted a systematic literature review to determine the utilization of 

MRI for the creation of 3D printed models for surgical planning. In order to identify current 

publications demonstrating the use of MRI data to create 3D printed anatomic models 

for surgical planning purposes, a detailed electronic search of Ovid-Medline (PubMed) 

was conducted. The initial search was performed in June 2020. Search terms included the 

following:

1. “3D printing” AND “magnetic resonance imaging” AND “planning”

2. “3D printing” AND “MRI” AND “planning”

3. “additive manufacturing” AND “magnetic resonance imaging” AND “planning”

4. “additive manufacturing” AND “MRI” AND “planning”

5. “rapid prototyping” AND “magnetic resonance imaging” AND “planning”

6. “rapid prototyping” AND “MRI” AND “planning”

Only studies in English were reviewed. All animal studies, review papers, editorials, 

technical notes, and studies only using CT imaging for 3D model generation were excluded. 

Two of the authors independently reviewed the publications. Data were evaluated to 

determine what clinical indication 3D printing was being used for, how MRI was utilized to 

create 3D printed anatomic models, and how these 3D printed models were being utilized 

for surgical planning.

Next, the appropriate use guidelines for medical 3D printing published by the Radiological 

Society of North America (RSNA) 3D Printing Special Interest Group (SIG) were searched 

for clinical situations where 3D printing was deemed usually appropriate (scores of 7–9), 

with data and experience showing an advantage of 3D printed anatomic models as compared 

to conventional medical imaging.21–23

Finally, for each major clinical indication, currently available MRI acquisition parameters 

and considerations for novel MRI sequences are described in order to help ensure that all 

pertinent anatomic structures are well visualized in any 3D printed anatomic models derived 

from MRI data.
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Results and Discussion

Our initial electronic search identified 220 articles with 133 articles remaining after 

duplicates were removed (Fig. 2). Of these 133 articles, four were excluded based on 

non-English language literature, leaving 129 which were assessed for eligibility. Out of these 

129, 51 articles were excluded because they utilized CT data to construct 3D printed models, 

30 review papers were excluded, 3 non-human studies were excluded, 3 technical notes 

were excluded, and one study was excluded since the 3D printed models were utilized for 

training. In total, 40 articles met the search term guidelines and were ultimately reviewed 

(Table 1).1,19,24–60

The literature collected was mostly produced in the last six years, with eight 

articles prior to 2015, three in both 2015 and 2016, nine in both 2017 and 2018, 

five in 2019, and three in 2020.1,19,32–60 The two most prominent specialties in 

the literature review were cardiovascular and neurosurgery with 14 studies focusing 

on cardiovascular models25,26,28,33–38,41,44,47,52,61 and 10 focusing on neurosurgical 

models.24,30,32,39,40,45,46,58–60 The remaining papers included orthopedic surgery,27,29,49 

liver surgery,31,42,43 complex neuroblastoma cases,37,51 a case of perianal fistula,50 

urologic surgery;1,48,51,53,56,57 and women’s health including uterine surgery,19 breast 

reconstruction,51 and brachytherapy for gynecological cancer.53

In regard to the appropriate use guidelines for medical 3D printing published by the RSNA 

3D Printing SIG, the publications with clinical situations where 3D printing was deemed 

usually appropriate which utilized MRI to generate 3D printed models are included in Table 

2.21–23 The major clinical scenarios are described below with MRI sequence information 

from the published papers found in our search (if available) as well as recommendations 

based on expert opinion.

Cardiovascular Surgery

The cardiovascular system has complex structure and geometry, which can be better 

visualized and understood with 3D modeling. The literature search performed here 

identified 14 studies (35%) that utilized MRI to create cardiac models (Table 

3).25,26,28,33–38,41,44,47,52,61 Out of these 14 studies, the majority, 10 of the 14 (71.43%) 

focused on congenital heart disease (CHD).26,33,34,36,38,41,44,47,52,61 CHD includes various 

types of defects: aortic stenosis, atrial septal defects, coarctation of the aorta, Ebstein 

anomaly, patent ductus arteriosus, patent foramen ovale, truncus arteriosus, double outlet 

right ventricle, transposition of the great arteries, and ventricular septal defects. Since these 

defects may be complex and difficult to interpret, 3D-printed models may enable better 

visualization and analysis of the complex cardiac anatomy, optimize surgical planning and 

reduce surgical times, ultimately resulting in improved patient outcomes.62

Planning for congenital heart surgery using 3D printed models derived from cardiac MRI 

data has proven to be helpful in many ways, such as decreasing mortality, lowering the 

chances of finding unexpected results in vivo,47 allowing surgeons to address challenges 

prior to surgery,41 and enabling surgeons to make improved decisions regarding the 
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surgical plan pre-operatively.38,44 Specifically, 3D printed models of complex cardiovascular 

pathology and intracardiac lesions can enable surgeons to overcome the shortcomings of 

conventional planning by allowing improved identification and dimensional analysis of 

anatomic structures.26,28,33,34,36,37 Taking planning one step further, 3D printed models of 

the native Fontan geometry have also been created to validate simulation results and tissue 

engineer patient-specific vascular grafts to improve the quality of the surgery.52

For pediatric patients, MRI is preferred over CT since MRI does not utilize ionizing 

radiation. Commonly available MRI techniques applicable for the 3D printing of CHD 

models include noncontrast 3D steady-state free precession (SSFP) imaging and non 

electrocardiogram (ECG)-gated or ECG-gated contrast-enhanced 3D fast low-angle shot 

(FLASH) angiography with or without respiratory navigation.63 These sequences are 

applicable for adult cardiovascular patients, although CT is generally the modality of 

choice due to higher spatial resolution and much less motion blurring compared to MR 

images. Unlike modern cardiac CT where images are always acquired axially with fast 3D 

acquisition, MRI acquisitions are advantageous since 2D images can be generated along 

any orientation with high temporal resolution. However, high-resolution 3D cardiac MRI 

is time consuming and images are susceptible to motion artifacts. Recent technological 

developments in both MR imaging and image reconstruction have allowed much higher 

spatiotemporal resolution to be obtained, potentially making their clinical application in 

3D printing a much more competitive alternative to CT. For example, novel 3D free-

breathing, self-navigated sequences can provide excellent image quality as compared to 

routine MR sequences, therefore may be better suited for the creation of 3D models 

(Fig. 3).64 With more of these new fast motion-insensitive MRI image protocols becoming 

clinically available, we anticipate MRI will soon gain wider cardiovascular applications in 

3D printing.

Neurosurgery

In neurosurgery, intricate and minute anatomical structures are usually encountered, thus 

it is imperative that surgeons and interventionalists have a comprehensive understanding 

of the pathology so that normal brain tissue and proper brain function are both 

preserved. Herein, of the 40 articles, 10 (25%) highlighted neurosurgical applications 

(Table 4).24,30,32,39,40,45,46,58–60 The majority of the reports were single cases or small 

cohort studies with less than 10 patients, with models being used to enhance anatomic 

understanding and to help refine the surgical procedure.24,30,39,40,45,46,58–60 The oldest study 

found in this search, dating back to 1998, utilized MRI data to create a single 3D model of 

the human ventricular system.24 A T2-weighted sequence was selected for the 3D modeling 

due to the high contrast between brain matter and fluid. Such models could be used for 

pre-operative planning to help the surgeon decide on the optimal surgical approach and 

could provide real-time intra-operative guidance.

In regard to 3D anatomic modeling for neurosurgical applications, T1-weighted 3D 

magnetization-prepared rapid acquisition with gradient echo (MP-RAGE) sequences, which 

provide excellent contrast between gray and white matter, have been utilized and are 

recommended.30,32,40 T1-weighted 3D fast spoiled gradient echo (FSPGR) and 3D time-
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of-flight MRI sequences may also be used.46,58 Additionally, quantitative sequences such 

as diffusion tensor imaging (DTI) or diffusion spectrum imaging (DSI) for fiber tract 

extrapolation,40,46,65,66 functional MRI,30 and contrast-enhanced MRI58–60 may be utilized 

to incorporate more details into 3D models and further facilitate surgical planning (Fig. 4).66

For neurosurgical applications, recent imaging technological developments, particularly 

parallel imaging and compressed sensing, have made high-resolution 3D imaging in 

everyday clinical practice much more feasible.67–69 Parallel imaging and compressed 

sensing are particularly advantageous in 3D MRI since much higher combined acceleration 

factors can be achieved along both phase encode directions in 3D acquisitions without 

introducing excessive artifacts and noise. Isotropic spatial resolution with a voxel size 

of 1.0 mm3 using 3D T1-weighted MP-RAGE at 3Tesla can be obtained in less than 3 

minutes with parallel imaging and compressed sensing.69 In addition, high-resolution 3D 

fluid attenuated inversion recovery (FLAIR) and 3D T2-weighted sequences (eg, CUBE 

for GE, Sampling Perfection with Application optimized Contrasts using different flip 

angle Evolution [SPACE] for Siemens, and Volume Isotropic Turbo spin echo Acquisition 

[VISTA] for Philips) can be readily acquired within clinically acceptable scan duration 

(<4 minutes each)69 and they will gain growing popularity in neurosurgical planning. 

Moreover, 3D susceptibility-weighted imaging (SWI) is replacing 2D MRI sequences 

to visualize venous structures and iron, as well as to detect micro-hemorrhages.70,71 

Traditionally, clinical diffusion-weighted images (DWI) are acquired using single-shot echo 

planar imaging (EPI) sequences, but these images suffer from poor spatial resolution, 

spatial distortion, and susceptibility artifacts, not fit for modeling for 3D printing. Recent 

single-shot turbo spin-echo (TSE) and multishot EPI DWI sequences have enabled higher 

spatial resolution diffusion imaging with much less distortion.72–74 There is also a trend 

to use radial k-space acquisition to reduce motion sensitivity, making high-resolution 3D 

imaging clinically more reliable.75 As these novel sequences are more widely utilized, more 

neurosurgical applications for 3D printing using MRI data are expected.

Liver Surgery

For liver surgeries including hepatectomy, liver transplant, and tumor resection procedures, 

hybrid CT and MRI approaches have been used to distinguish between hepatic arteries, 

portal veins, bile duct, and tumor in the hepatic hilum.31,42,43 3D printed liver models have 

been shown to facilitate surgery by providing an enhanced understanding of the spatial 

relationships between vascular and biliary structures and demonstrated identical anatomic 

and geometrical landmarks in the 3D printed and native livers.31

Similar to cardiovascular surgery, MRI is a preferable imaging modality for pediatric liver 

surgical planning due to ionizing radiation concerns for infants and children. To allow 

high-resolution 2D or 3D MR imaging of the abdomen, respiratory motion control such as 

breath-hold, respiratory triggering, respiratory gating, and respiratory navigation is generally 

needed. Fat suppression is also desirable to improve contrast of lesions and to reduce 

potential contaminating artifacts. Dixon’s method-based sequences (i.e. mDixon for Philips, 

IDEAL for GE, Dixon for Siemens) have gained wide-spread clinical use. In this technique, 

multiple echoes with different echo times (TEs) are acquired in each repetition time (TR), 
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which allows water-only, fat-only, in-phase, and out-of-phase water/fat contrast image sets 

to be reconstructed during postprocessing.76 A fast 3D breath-hold Dixon’s method-based 

sequence can also be used in liver MRI for precontrast and postcontrast imaging for tumor or 

vascular evaluation (Fig. 5).77 New clinically available MR sequences using radial k-space 

acquisition78 with less motion sensitivity can also be combined with Dixon’s method to 

enhance diagnosis reliability or image contrast.79 These advanced sequences are becoming 

more widely available on clinical scanners; therefore, it is anticipated that these emerging 

fast MR sequences with high spatial resolution and less motion blurring will gain more 

applications for 3D printing in clinical practice, particularly for liver imaging limited by 

patient motion.

Urologic Surgery

The search conducted here yielded six collected articles related to urologic surgery 

which focused on models for renal and prostate cancer.1,48,51,53,56,57 3D printed renal 

cancer models have been shown to facilitate surgical planning for robotic assisted partial 

nephrectomy1,53,80,81 and Wilms Tumor resection planning.51 MRI acquisitions used to 

create 3D printed renal cancer models have included 1.5 Tesla imaging with a 3D 

postcontrast fat suppressed gradient echo T1-weighted sequence with a spatial resolution 

of 1 .4 mm  × 1 .4 mm  × 2 mm and a breath-hold ranging from 13 seconds to 20 seconds.1,82 

Arterial, venous, and collecting phase images are utilized for the appropriate visualization 

of the arterial, venous, and collecting systems, respectively. Although our search did not 

generate any reports of 3D printed renal cancer models created with MRI sequences based 

on the 3D Dixon method, as discussed in the “Liver Surgery” section, it is likely these 

sequences can provide equal or better outcome in kidney imaging, as shown in Fig. 5.

For urologic applications, presurgical 3D printed prostate cancer models derived from 

MRI data can also be helpful for presurgical planning.48,82 MR image acquisition can 

include a 3D volumetric T2-weighted imaging sequence with a spatial resolution of 

0 .6 mm × 0 .6 mm × 1 .0 mmat 3 T; and these T2-weighted anatomic images can be co-

registered with DWI or 3D dynamic contrast-enhanced (DCE) images for better lesion 

characterization.82 Axial 3D T2-weighted MRI with an imaging slice thickness of 2.5 mm 

has also been utilized to create patient-specific 3D printed prostate cutting guides; and 

these have been used to successfully section the prostate for slice-by-slice comparison with 

histopathological findings.56

Figure 6 shows representative 3D printed kidney and prostate cancer models derived from 

MRI data. 3D printing can be especially helpful in understanding the abnormal anatomy and 

spatial relationships of pertinent anatomical structures in these cases and can help facilitate 

organ sparing surgery.1,53,82

Orthopedic Surgery

In orthopedic surgery, CT is utilized more often than MRI due to the fact that CT uses 

X-rays which leads to high contrast between bone and lean tissues. Furthermore, many 

automated image postprocessing algorithms are already available clinically to segment 
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anatomical regions of interest such as bone based on the Hounsfield unit scale.21 Despite 

this, MRI, which is superior at visualizing soft tissue structures, may be used to examine 

bones, joints, and soft tissues including cartilage, muscles, and tendons for injuries or 

the presence of structural abnormalities or other conditions. This review yielded three 

articles which utilized MRI to create 3D-printed anatomic models for surgical planning for 

orthopedic procedures.27,29,49 In two out the three papers, MRI played a supporting role 

compared to CT.29,49 In the other article, only MR images were used with better model 

results desired.27

For the combined approach, Punyaratabandhu et al described the creation of models for 

presurgical planning on extra-compartmental bone tumors with a hybrid CT and MRI 

approach, since CT is superior at segmenting bones and MRI is better at highlighting 

soft tissue structures. They found that the models helped to guide the orthopedic surgeon 

to create personalized pre-operative plans and perform physical simulations, leading to 

decreased blood loss, operative times, and surgical incision lengths.49 Next, Bellanova et 

al utilized a combined CT and MRI approach for surgical planning in four pediatric tibial 

bone sarcoma resection cases.29 A multimodal registration algorithm was used to fuse the 

CT, MRI, and tumor volume which was manually delineated from an MRI series in which 

the tumor boundaries were well visualized. After preoperative planning, a surgical guide that 

was fitted to a unique position on the tibia was manufactured using 3D printing. A second 

instrument was manufactured to adjust the bone allograft to fit the resection gap accurately. 

The authors found that accurate preoperative localization of the tumor provided allowed 

resection with adequate but minimal safe margins, and the patient-specific surgical guides 

improved the accuracy of the resection during the surgery, thus preventing unnecessary 

resection and preserving, when needed, articular cartilage in young patients.29 Hung et al 

used only MRI data and detailed the creation of a 3D printed model for a 5-year-old boy 

with progressive limping and shortening of the left lower limb following septic arthritis of 

the ipsilateral joint with the sequelae of avascular necrosis of the femoral head and lateral 

subluxation of the joint.27 Due to the patient’s young age, MRI was performed in order 

to limit radiation and a 3D printed model was constructed for pediatric proximal femoral 

corrective osteotomy. In comparison to CT, the boney boundary on MRI was less defined, so 

to overcome this challenge, the contour was manually outlined by a technician. Although the 

MRI model was not as smooth as CT-derived models, it was understood that the model was 

still beneficial for the surgeons without exposing the patient to radiation.27

MRI has traditionally been limited in orthopedic surgery, since MRI is inherently 

disadvantaged in imaging cortical bone, which has a low proton density and a very low 

T2 value, leading to dark signal on traditional MRI images. As described above, MRI 

is often obtained pre-operatively in addition to CT, in order to properly visualize soft 

tissues along with the bones (Fig. 7). If it was possible to adequately visualize the bone 

using MRI, then the need for CT could be eliminated, preventing a patient from being 

exposed to ionizing radiation and reducing costs, ultimately making it highly valuable for 

any orthopedic or craniomaxillofacial surgeries.83,84 In addition, this could be beneficial 

for radiation oncology applications where CT has been traditionally used as the primary 

imaging modality for clinical treatment planning, in combination with MRI for soft tissue 
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delineation. Herein, the patient treatment workflow can be greatly improved if only MRI is 

needed.

The development of MRI sequences which better delineate bone has been a topic of great 

interest over the last decade. “Black Bone” MRI techniques that do not enhance soft tissues 

but rather enhance the zones of separation between bones and soft tissues, could be used 

to differentiate bone from lean tissues. However, this MR technique assumes cortical bone 

has low signal while all other non-bone within the area contribute to MR signal and is 

thus susceptible to artifacts arising from air and tissue interfaces. Another major direction 

of MRI is the application of ultra-short TE (UTE) or zero-TE (ZTE) sequences, emerging 

imaging techniques that are becoming more clinical available to provide “positive” contrast 

between bone and lean tissues.85,86 In both techniques, radial k-space lines are acquired 

starting from the k-space center to the peripheral areas, leading to effective TE of close to 

zero (generally less than 100 μsec), much less than the T2 of cortical bone (0.28 msec–0.38 

msec).87,88 To enhance contrast between the short T2 components (eg, cortical bone) and 

the long T2 tissues (eg, muscles, typically with higher signal than cortical bone), various 

soft tissue suppression techniques have been developed.89 UTE/ZTE MRI are gaining 

more clinical applications in diagnostic imaging such as in bone-related conditions.90,91 

Therefore, “synthetic CT” images, reconstructed from UTE/ZTE MRI images to simulate 

CT images, have been heavily studied recently.92,93 Additionally, “synthetic CT” images 

can be used in hybrid PET/MRI scanners to generate surrogate bone density maps for PET 

attenuation correction.94,95 The clinical applications of UTE/ZTE MRI are steadily growing. 

However, to the best of our knowledge, there are few 3D printing studies or reports based 

on images obtained from UTE/ZTE MRI sequences.96,97 We believe that 3D printing and 

UTE/ZTE MRI have great potential to grow synergistically. For example, a recent study 

created a 3D-printed phantom mimicking cortical bone to evaluate UTE MRI techniques and 

we expect more developments such as this in the future.98

Other Considerations and Future Perspectives

There has been a significant increase of the use of 3D printing from MRI data over the 

past 5 years. However, at this time, image acquisition is generally obtained based on 

established clinical protocols and is not optimized for 3D printing purposes. If a clinician 

requests a 3D printed model prior to the image acquisition, dedicated MR protocols can be 

tailored for 3D printing to include the highest possible spatial resolution, spatial fidelity, 

signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the region of interest.21 

In order to facilitate the widespread utilization of 3D printing in medicine, it is necessary 

to establish the global optimization of 3D printing compatible protocols for all patients. 

Standard diagnostic MR sequences that are also compatible with 3D printing will not 

only improve patient diagnosis but also will enhance surgical planning and clinical care 

in a more efficient and cost-effective workflow. Fortunately, we are seeing a trend of 

more high-resolution 3D MRI protocols being accepted by radiologists in their everyday 

practice particularly in neurological and musculoskeletal applications, thanks to the recent 

technological development in rapid MR imaging. Looking ahead, time resolved or motion 

insensitive radial-based MR data acquisition, UTE/ZTE MRI, more advanced iterative or 

deep-learning based image reconstruction techniques will become more clinical available, 

Talanki et al. Page 9

J Magn Reson Imaging. Author manuscript; available in PMC 2023 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and will gain widespread adoption for many clinical applications, particularly in high-

resolution 3D or 4D imaging, which will allow 3D printed models to be readily created 

if needed.99,100

Although the craniomaxillofacial (CMF) specialty was one of the earliest fields to adopt the 

use of 3D models derived from medical imaging data101,102 and the usage of CT data over 

MRI data to create CMF models for presurgical planning is an accepted practice,103 our 

search did not find any articles utilizing MRI for surgical planning of CMF procedures. With 

the introduction of novel black bone and UTE/ZTE MRI sequences, the use of MRI could 

become more prevalent in these case types.96

Similarly, 3D printing for surgical planning has been used in conjoined twins separation 

since the 1990s,104 and although our search did come up with one article that mentioned 3D 

printing for conjoined twins separation, this article did not actually utilize 3D printing for 

their own cases but instead just mentioned the use of 3D printing at other institutions for 

these case types.105 For conjoined twins separation, combining CT with MRI and utilizing 

novel MRI sequences as well as incorporating quantitative information such as that from 

diffusion MRI into the 3D models may provide even extra value for clinicians.40,66

In regard to 3D printing technologies commonly used in hospitals, the major types include 

material extrusion, material jetting, binder jetting, vat photopolymerization, and polymer 

powder bed fusion (HP Jet Fusion, HP Inc, Palo Alto, CA). Materials currently used to 

create medical models with these technologies are generally rigid plastics and powders, 

although a combination of rigid and flexible materials may be printed using material jetting 

or multiextruder material extrusion technologies. Single component models such as bones 

can be created easily with material extrusion or vat photopolymerization technologies. For 

these, over-curing in certain regions or dual-extrusion printing may also allow for dual 

colored models highlighting certain anatomic regions of interest. Full color printing may be 

achieved using material jetting, binder jetting, or powder bed fusion. For medical models, 

color may be necessary to differentiate different structures in anatomic models, which depict 

multiple pertinent anatomic structures such as a kidney with a lesion, artery, vein, and 

collecting system. 3D printed anatomic models that are used for simulations should closely 

mimic human tissue properties, so for these, material jetting with different combinations of 

rigid and flexible materials is most suitable. 3D-printed molds could also be created and 

filled with suitable anthropomorphic materials.

Most of the commonly available 3D printing materials are not visible with MRI since 

these materials must be rich in hydrogen. At this time, new 3D printing materials are 

being developed and their MRI properties are being evaluated.106 3D printed models 

with MRI-visible properties and known geometries would be extremely useful for quality 

assurance testing to evaluate the ability of MRI systems to safely produce accurate imaging. 

Furthermore, patient-specific models that incorporate MRI-visible 3D printed materials 

could have great impact on surgical planning and guiding MRI-guided percutaneous 

procedures in the future.107
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Over the past 5 years, many hospitals throughout the United States have brought 3D printing 

in-house; however, oftentimes this is driven by self-funding or grant support and costs 

still remain a major concern for this technology.20 On July 1, 2019 four Category III 

Current Procedure Terminology (CPT) codes for 3D printed anatomic models and guides 

were released.108 Category III CPT codes were established in 2001 and they are used for 

data collection for emerging technologies that are not yet mature and do not yet meet the 

criteria for Category I CPT codes, which are for established medical services that have 

met the requirements of widespread clinical use and have documented efficacy. In order to 

demonstrate the widespread use of 3D printing in medicine, in conjunction with the release 

of the Category III CPT codes, the RSNA and the American College of Radiology (ACR) 

have established a registry for 3D printing.109 The data collected through this registry will 

include information about the source imaging, the model construct and effort, 3D printing 

techniques and effort, as well as the clinical impact of the models; and data will be used to 

support an application for full reimbursement for 3D printing anatomic models and guides at 

the point of care. Based on these efforts, it is expected that 3D printed anatomic models and 

guides will be deemed clinically necessary for certain complicated procedures and these will 

become part of common medical and surgical practice. In addition, personalized 3D-printed 

implants, bioregenerative materials, and living bioprinted tissues and organs are expected to 

further transform medicine over the next several decades.

Conclusions

3D printing based on MRI data can greatly facilitate surgical planning and thereby improves 

patient outcomes. Current challenges and opportunities include the need to optimize MRI 

acquisition protocols, improve image segmentation accuracy, reduce image processing 

time, reduce 3D printing time, reduce cost, and expand the currently limiting insurance 

reimbursement. Further demonstration of added value is needed for widespread clinical 

adoption of 3D printing in medicine.
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FIGURE 1: 
General workflow for 3D printing from a MRI dataset including 1) MRI Exam (Image 

Acquisition) showing a photograph of a MRI scanner (GE, Waukesha, WI) and axial 

abdominal images, 2) Image segmentation for a renal cancer model including the kidney, 

tumor, artery, vein, and ureter, 3) CAD (computer-aided design) modeling of the kidney 

structures, and 4) 3D printing showing a photography of the J750 Digital Anatomy Printer 

(Stratasys, Eden Prairie, MN) and anterior and posterior views of the 3D-printed kidney 

tumor model printed with vero clear, yellow, green, pink, and blue photopolymer materials 

(Stratasys, Eden Prairie, MN).
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FIGURE 2: 
Prisma flow diagram of study selection.
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FIGURE 3: 
3D cardiovascular segmentation and modeling (D2P, 3D Systems, Rock Hill, SC). (a) 

Blood pool segmentation using a 3D radial, nonslice-selective, T2-prepared, fat-saturated 

bSSFP sequence on a 1.5 Tesla MRI scanner (MAGNETOM Aera, Siemens, Erlangen, 

Germany). The acquisition window (~50 msec–55 msec) was placed in mid-diastole. 

Imaging parameters were as follows: TR/TE = 3.1/1.56 msec, FOV = 200 mm3, voxel 

size = 1 mm3, FA = 115°, and acquisition time ∼5 minutes (∼12,000 radial lines). (b) 3D 

representation of blood pool segmentation. (c) Outline of a 3 mm shell, which was created 

around the blood pool and would be used for 3D printing shown on the same image as part 

A. (d) 3D heart model with shell surrounding the hollowed blood pool.
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FIGURE 4: 
(a) Fiber tracts in a healthy brain generated with a modified streamline tracking algorithm as 

implemented in DSI Studio (http://dsi-studio.labsolver.org) from DSI obtained on a clinical 

3Tesla scanner (Skyra, Siemens, Erlangen, Germany) with a 32-channel head coil using a 

radially symmetric q-space sampling scheme. (b) 3D printed model of the fiber tracts from 

part (a) printed using material jetting technology (J750, Stratasys, Eden Prairie, MN) with a 

3 mm fiber tract thickness to ensure model fidelity.
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FIGURE 5: 
(a) Axial and (b) coronal clinical liver MR images for a patient with hepatocellular 

carcinoma (HCC) obtained on a 1.5 Tesla scanner using a 3D mDixon breath-hold sequence. 

(c and d) Virtual Reality (VR) 3D reconstructions with the liver—purple, hepatocellular 

carcinoma—bright green, hepatic veins—dark green, portal vein—royal blue, aorta—red, 

right kidney—dark yellow, left kidney—mid blue, spleen—yellow, and heart—dark red 

shown in the Elucis platform (Realize Medical, Ottawa, Canada). 3D structures can be 

exported directly from VR for 3D printing.
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FIGURE 6: 
(Top Row) A 68-year-old male with a Prostate Imaging Reporting and Data System (PI-

RADS) 5 lesion broadly abutting capsule without gross extraprostatic extension. In this case, 

the 3D printed model which included the prostate (clear), lesion (blue), bladder neck and 

urethra (pink), rectal wall (white), and neurovascular bundles (yellow) helped to facilitate a 

nerve sparing prostatectomy. (Bottom Row) A patient with a 4.4 × 4.5   cm interpolar renal 

mass which abuts a lower pole calyx. The 3D printed model which included the kidney 

(transparent), mass (purple), artery (pink), vein (light blue), and collecting system (dark 

blue) allowed the vasculature to be well-visualized and facilitated a nephron sparing partial 

nephrectomy. For both cases, image segmentation and CAD modeling were performed in 

Mimics and 3-matic (Materialise, Leuven, Belgium) and 3D printing was performed using 

material jetting technology (J750 and Connex500, Stratasys, Eden Prairie, MN).
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FIGURE 7: 
An example of a 3D printed orthopedic model created from MRI data (distal femur with 

growth plate, tumor, artery, vein, and nerve). (a) Coronal T1-Weighted sequence–TR = 600 

msec, TE = 9.4 msec, Slice Spacing = 6 mm, Pixel spacing = 0.714 mm. (b) Sagittal Short 

TI Inversion Recovery – TR = 3480 msec, TE = 27 msec, ST 6, Slice spacing = 6 mm, 

Pixel spacing = 0.714 mm. (c) Sagittal slice showing image segmentation using axial images 

as source data. (d) 3D reconstruction of image segmentation with the bone—yellow, lesion

—purple, artery—red, vein—cyan, nerve—green, growth plate—orange. Note the lego-like 

appearance of the bone due to the poor spatial resolution. (e) Computer-aided design model 

with the bone-white (shown with significant smoothing to reduce the lego-like appearance), 

lesion – purple lattice (created in Freeform Plus, 3D Systems, Rock Hill, SC), artery—red, 

vein—cyan, nerve—green, growth plate—yellow, and struts—gray, which were created to 

hold vasculature to model. (f) Multicolor 3D printed model printed with binder jetting 
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technology (CJP 660, 3D Systems, Rock Hill, SC) with the same color scheme as shown in 

the CAD model.
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