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2 

ABSTRACT 40 
 41 
Transcription factors (TFs) bind combinatorially to genomic cis-regulatory elements 42 
(cREs), orchestrating transcription programs. While studies of chromatin state and 43 
chromosomal interactions have revealed dynamic neurodevelopmental cRE 44 
landscapes, parallel understanding of the underlying TF binding lags. To elucidate the 45 
combinatorial TF-cRE interactions driving mouse basal ganglia development, we 46 
integrated ChIP-seq for twelve TFs, H3K4me3-associated enhancer-promoter 47 
interactions, chromatin and transcriptional state, and transgenic enhancer assays. We 48 
identified TF-cREs modules with distinct chromatin features and enhancer activity that 49 
have complementary roles driving GABAergic neurogenesis and suppressing other 50 
developmental fates. While the majority of distal cREs were bound by one or two TFs, a 51 
small proportion were extensively bound, and these enhancers also exhibited 52 
exceptional evolutionary conservation, motif density, and complex chromosomal 53 
interactions. Our results provide new insights into how modules of combinatorial TF-54 
cRE interactions activate and repress developmental expression programs and 55 
demonstrate the value of TF binding data in modeling gene regulatory wiring.  56 
  57 
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3 

INTRODUCTION 58 
 59 
Neurogenesis in the subpallial embryonic basal ganglia (BG) produces the cells that 60 
differentiate into GABAergic and cholinergic neurons that make up mature BG 61 
structures, as well as GABAergic interneuron populations that migrate to areas such as 62 
the cortex and amygdala1. Comparative analysis of BG cell types and structures 63 
suggest strong evolutionary conservation of development and anatomy across the >560 64 
million years of vertebrate phylogenic divergence2,3. Many transcription factors (TFs) 65 
have been identified that control patterning and cell type specification in the BG and the 66 
brain overall, with homeobox TF genes playing central and deeply evolutionarily 67 
conserved roles4–7. Homeobox TFs are a large family of proteins that include a 68 
homeobox domain capable of recognizing a target DNA motif8. Homeobox TFs, 69 
alongside other TF classes, bind in a combinatorial and competitive manner at cis-70 
regulatory elements (cREs) to direct dynamic expression patterns necessary for brain 71 
development and function9–11. Studies in simpler organisms have revealed 72 
combinatorial homeobox TF expression codes determining neuronal identity12,13. 73 
Genetic studies in mice have shown a number of homeobox TFs to be critical for all 74 
stages of mammalian Central Nervous System (CNS), including BG development6,14. 75 
These studies show that many individual TFs directly activate or repress transcription in 76 
developing brain, presumably via combinatorial and context-dependent TF interactions.  77 
 78 
While single TFs have been studied at various stages of neurodevelopment, it remains 79 
largely unknown how TFs within and across diverse homeobox and other TF families 80 
work together to establish gene regulatory interactions in vivo in developing mammalian 81 
brain15,16. More specifically, it is unknown in the developing BG and brain overall how 82 
TFs with similar or diverse binding motifs overlap in genomic targets and which 83 
combinations of TFs bind which cREs, and if cREs that are bound by the same set of 84 
TFs have similar regulatory function and evolutionary history. Characterization of TF-85 
cRE regulatory interactions at scale is also needed to understand how sets of TFs 86 
interact to control chromatin landscapes underlying neurodevelopment. More broadly, 87 
most combinatorial TF binding studies that compare more than a few TFs in a single 88 
system have been done in less complex organisms or in vitro cell models, thus there 89 
remain major questions regarding how sets of TFs bind to regulatory DNA targets 90 
during mammalian embryonic development and what the relationships are between cis-91 
trans interactions between TFs and regulatory targets and chromosomal DNA 92 
interactions. We addressed these questions via integrating ChIP-seq data from 12 TFs, 93 
9 of them representing 6 distinct homeobox classes, with chromatin state and 94 
chromosomal interactions identified using H3K4me3 PLAC-seq, and established the 95 
activity of representative TF-bound cREs in transgenic mouse enhancer assays (Figure 96 
1A).  97 
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RESULTS 98 
 99 
A TF-anchored model of regulatory interactions in E13.5 mouse basal ganglia  100 
 101 
We performed epigenetic experiments on micro-dissected embryonic day (E)13.5 102 
mouse BG, when GABAergic and cholinergic neurogenesis is ongoing in the medial, 103 
lateral, and caudal ganglionic eminences (MGE, LGE, and CGE)17. Dissections included  104 
the ventricular zone (VZ), where neural precursor stem cells are located and expanding, 105 
the subventricular zone (SVZ), which includes intermediate progenitors and early born 106 
neurons, and the mantle zone (MZ), which is made up of maturing and migrating 107 
immature GABAergic and cholinergic neurons17. We performed ChIP-seq targeting five 108 
TFs (ARX, ASCL1, GSX2, NR2F1, and PBX1/2/3) and combined this new data with 109 
seven previously published BG ChIP-seq TF datasets (DLX1, DLX2, DLX5, LHX6, 110 
NKX2.1, OTX2, and SP9)18–21 (See Figure S1 and Online Methods for computational 111 
and experimental details). The PBX antibody used in ChIP-seq experiments detected 112 
PBX1, PBX2, and PBX3 proteins, but results here are referred to as PBX1 for simplicity. 113 
This representative TF set in this study includes: 1) TFs that establish regional identity 114 
and control proliferation and are expressed most highly in neural progenitors (ASCL1, 115 
GSX2, NR2F1, OTX2); 2) TFs that activate neurogenic transcriptional programs and are 116 
expressed most highly in the VZ-SVZ transition (DLX1, DLX2, NKX2.1), and 3) TFs that 117 
drive maturation of GABAergic neurons (ARX, DLX5, LHX6, PBX1, SP9) expressed 118 
most strongly in the SVZ and MZ, as shown by expression in single cell RNA-seq and in 119 
situ data (Figure S1b, S1c)22. In addition to diverse functions and expression patterns, 120 
these TFs capture a diverse set of TF families, including 9 homeobox TFs from 6 121 
classes: Distal-less/DLX (DLX1, DLX2, DLX5), LIM (LHX6), HOXL (GSX2), PRD (ARX, 122 
OTX2), and NKL (NKX2.1), as well as three non-homeobox TFs, ASCL1 (bHLH family), 123 
NR2F1 (COUP orphan nuclear receptor family), and SP9 (SP family, buttonhead-like 124 
ZF).  125 
 126 
We first identified the genome-wide targets from ChIP-seq data for each TF, and then 127 
generated a merged set totaling 27,398 loci, with each locus targeted by at least one TF 128 
(see Online Methods). The full set of merged loci with TF binding included 22,297 distal 129 
putative cREs (pREs) and 5,101 promoter-proximal sites that overlapped or were less 130 
than 2kb from a TSS. TF-bound loci were enriched near genes associated with 131 
neurodevelopment and with specific functions that spanned proliferation, neurogenesis, 132 
and neuronal maturation. Individual TF ChIP-seq peak sets varied in number of peaks, 133 
percent distal versus proximal targets, and primary binding motifs (Figure 1E). All TFs 134 
except SP9 had strong enrichment of a primary binding motif centered within ChIP-seq 135 
peaks, indicating mostly direct DNA binding. SP9-bound pREs includes a subset that 136 
contain a putative SP9 primary binding motif23, suggesting that while direct binding 137 
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occurs, the majority of SP9 interactions here are indirect. Illustrating the challenges of 138 
inferring TF interactions via motif analysis alone, six of the TFs (ARX, DLX1, DLX2, 139 
DLX5, GSX2, and LHX6) recognize variations of a highly similar “TAATTA” motif 140 
common to many homeobox TFs24. Despite recognizing the same motif, genomic 141 
targets of these 6 TFs varied substantially (Figure S1e, S1f). Considering the set of loci 142 
targeted by these 12 representative TFs, the majority featured a peak call from only one 143 
TF (57.5%), though many pREs featured multiple TF peaks and a small subset (2.7%) 144 
included a ChIP-seq peak from 8-12 of the TFs (Figure 1B).   145 
 146 
To understand the cis-regulatory contexts associated with TF binding, we integrated 147 
biophysical interactions, chromatin state, and gene expression data. We performed 148 
H3K4me3-anchored Proximity Ligation-Assisted Chromatin Immunoprecipitation 149 
followed by sequencing (PLAC-seq) at 10-kb resolution. We identified 113,048 150 
significant interactions that represented 13,128 PLAC-seq contacts (PSCs). These 151 
interactions comprise 1,974 distinct “ensembles” built from chaining together inclusive 152 
sets of interacting regions (see Online Methods). Most of the interaction ensembles 153 
included only one or two PSC interactions, however, there were a substantial number of 154 
complex ensembles with 5 or more chained PSCs. Many of these complex ensembles 155 
featured extensive interactions between distal and proximal contacts, and nearly all had 156 
overlap with at least one TF-bound pRE (Figure S1g, S1h). Across TF-bound pREs, 157 
48% overlapped PSCs and 30% were within loops formed by these contacts (Figure 158 
1C). Via PLAC-seq interactions, we were able to map nearly half of the TF-bound pREs 159 
to putative regulatory target genes and evaluate relationships between TF-binding and 160 
interaction structure. We additionally segmented the genome into 9 chromatin states via 161 
ChromHMM using ChIP-seq data for H3K4me3, H3K4me1, H3K27ac, and H3K27me3 162 
(Figure S1i, S1j). Lastly, we associated published E13.5 BG RNA-seq to complete the 163 
landscape. As expected, PSCs were biased towards chromatin states featuring 164 
H3K4me3 and were associated with increased gene expression, but were also enriched 165 
for states with H3K27ac, H3K4me1, and H3K27me3, indicating chromosomal 166 
interaction data captures transcriptionally active and bivalent enhancer-promoter 167 
complexes. The Sp9 locus is an example showing the intersection of TF binding, 168 
chromosomal interactions, and chromatin state (Figure 1D). Together, these datasets 169 
synthesize regulatory interactions between cREs and TFs, offering an integrated map of 170 
the regulome in E13.5 mouse BG.  171 
 172 
Combinatorial TF binding defines distinct enhancer and promoter pRE sets  173 
 174 
We next sought to define combinatorial binding patterns of the 12 TFs. Comparing peak 175 
overlap has limitations for modeling combinatorial binding due to differences in antibody 176 
and ChIP-seq performance, as well as missing differences in strength and spread of 177 
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signal, and in complex binding patterns. Thus, to better model TF binding patterns, we 178 
leveraged unbiased K-means clustering implemented in DeepTools25, using as input 179 
normalized ChIP-seq neighborhood signal coverage across a 1-kb region centered on 180 
TF-bound loci (Figure 2A). This approach yielded 7 clusters of promoter-proximal pREs 181 
and 18 clusters for distal pREs (Figure 2B, 2C). All TFs exhibited strong enrichment in 182 
specific pRE cluster sets, accompanied by weaker or no binding in other clusters. 183 
 184 
There were two general binding patterns for pREs: clusters with one or two dominant 185 
TFs and an average of 1 to 2 ChIP-seq TF peaks versus clusters with multiple TF 186 
binding (“broadly-bound”) and an average of greater than two TF ChIP-seq peaks. 187 
Clusters 1_D and 2_D had the highest TF co-occupancy, with an average of 6-8 of the 188 
12 TFs bound per pRE (Figure 2D): DLX2 was the only TF where ChIP-seq signal was  189 
widespread across most clusters, though binding intensity varied and was absent in 190 
some clusters (e.g., 15_D and 18_D, which were exclusively bound by PBX1 and 191 
NR2F1, respectively). NR2F1 was the only TF whose proximal and distal interaction 192 
sets (3_P and 18_D) did not have a clear overlap with other TFs. Average pRE width 193 
differed by cluster (Figure 2E), which was driven by increased ChIP-seq signal intensity 194 
and/or local spread. Cis-level motif occurrences in DNA across pRE clusters mirrored 195 
TF binding (Figure 2F). For example, there was high specificity between the ChIP-seq 196 
binding for relevant TF and presence of DNA motif for ASCL1, NKX2.1, NR2F1, PBX1, 197 
and OTX2. There was expected high correlation across TAATTA motif variants for the 198 
set of TFs that bind these motifs (ARX, DLX1, DLX2, DLX3, GSX2, and LHX6), with 199 
highest rate of TAATTA motif occurrence in broadly-bound clusters 1_D and 2_D. 200 
Cluster 6_D featured DLX1 binding and was strongly enriched for tandem TTAA simple 201 
repeats, consistent with repeat element binding or the “decoy” model of gene 202 
expression regulation26. We additionally tested all HOMER motifs and found numerous 203 
motifs with cluster-specific enrichment, for example Foxo1, Oct4, and Sox2 motifs in 204 
1_D and 2_D (Figure S3b)27.  205 
 206 
In summary, clustering by local ChIP-seq neighborhood signal separated TF targets into 207 
distinct pRE groups with specific combinatorial TF binding signatures. pRE sequences 208 
were generally enriched for the cognate motifs of bound TFs, with the expected 209 
exception of SP9. While we expected to identify various discrete combinatorial binding 210 
patterns, somewhat surprisingly, 8% of distal pREs that comprised clusters 1_D and 211 
2_D were broadly bound across TFs rather than specific to a particular TF subset. Most 212 
strikingly, the small set of distal loci making up 1_D were bound by nearly all TFs, with 213 
representation across all 9 homeobox TFs, and were further distinguished by 214 
representing the extremes for ChIP-seq signal for TAATTA-binding homeobox TFs. 215 
 216 
 217 
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Combinatorial TF binding reveals cREs with distinct neurodevelopmental roles, 218 
cell-type specificity, and regulatory function 219 
 220 
We next tested if pREs with different TF binding patterns similarly exhibit differences in 221 
chromatin state, regulatory targets, cell-type specific chromatin accessibility, 222 
chromosomal interactions, and sequence features (Figure 3). We compared chromatin 223 
states across pRE clusters (Figure 3A). Proximal pRE clusters were enriched for active 224 
and bivalent promoter states (H3K4me3 with or without H3K27me3), consistent with 225 
constitutive and developmentally-regulated promoters. Distal pREs sets separated into 226 
groups with differential representation of enhancer-relevant states: no histone marks or 227 
repressed (H3K27me3), active or bivalent (H3K27ac without or with H3K27me3), 228 
inactive or poised (no marks or H3K4me1 without H3K27ac), and a mix of active, 229 
poised, and repressed states. Clusters featuring a single TF were more likely to exhibit 230 
inactive or repressed states, whereas broadly-bound pREs were active or bivalent. 231 
Exceptions were 12_D, with ASCL1-specific TF binding and active enhancer states, and 232 
4_D, with binding across several TFs but inactive/poised states. 233 
 234 
We used a neighborhood-based approach (GREAT) for target gene assignment and 235 
functional annotation enrichment analysis of pRE clusters (Figure 3B). PLAC-seq 236 
defined gene target assignment showed overall agreement (Figure S3a). Beyond 237 
shared general enrichment for neurodevelopmental pathways, contrasts emerged in 238 
target genes and pathways across TF-pRE sets. Combining chromatin state-based 239 
activity inference and pathways enrichment revealed signatures of activating, mixed 240 
activating/repressive/inactive, and repressive TF-cRE modules. Broadly-bound pREs, 241 
both distal (1_D, 2_D, 3_D, 7_D, and 8_D) and proximal (1_P and 2_P) regulated a 242 
specific program of subpallial development and GABAergic neuron differentiation. 243 
These pREs target genes regulating GABAergic neurogenesis and associated 244 
processes such as axon guidance and migration. Contrasting this activation, TF-pRE 245 
modules 9_D, 3_D, 8_D, and 1_P repress transcriptional programs associated with 246 
earlier embryogenesis, as well as other organ systems and CNS structures. For 247 
example, repression of skeletal and renal systems and endoderm and mesoderm 248 
programs. We identified mixed activation and repression of neural precursor 249 
proliferation directed by specific TF-pRE binding. For example, ASCL1-specific pREs 250 
(12_D) activated neural precursor expansion, while 9_D, 3_D and 8_D were associated 251 
with bivalent and repressive regulatory states for interneuron differentiation. TF-specific 252 
promoter pRE modules were most strongly enriched for housekeeping functions (e.g., 253 
RNA splicing ad DNA metabolism).  254 
 255 
We intersected pRE clusters with a published set of open chromatin regions (OCRs) 256 
annotated to specific cell types in adult and developing forebrain via single nucleus 257 
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(sn)ATAC-seq28 (Figure 3C). 63% of pREs overlap OCRs overall, with 26% of pREs 258 
overlapping a developmental cell-type specific OCR compared to only 3% for adult cell-259 
type specific OCRs. Neurodevelopmental OCRs separated into cell-type specific sets 260 
for neural progenitors and distinct sub-pallial (SP) and pallial (P) populations of maturing 261 
excitatory and inhibitory neurons. The two TF-pRE modules with strongly active 262 
chromatin and the broadest TF binding, 1_D and 2_D were again outliers with the 263 
highest overlap with cell-type specific developmental OCRs (70% and 60%, 264 
respectively), overlapping OCRs from combined SP/P neural progenitors and three 265 
early stages of maturing SP neurons. In contrast, 12_D, 9_D, and 3_D modules had 266 
reduced but still high neurodevelopmental OCR overlap, but with different cell-type OCR 267 
classes. 12_D was enriched for neural progenitor OCRs, while 3_D and particularly 9_D 268 
were enriched in OCRs mapping to pallial early excitatory neurons. TF-pRE clusters 269 
further showed stage specific cis-regulatory programs within the BG, for example 12_D 270 
and 3_D had enrichment for progenitor OCRs while 4_D was enriched for early and 271 
differentiating SP neuron OCRs. Overall, integration of chromatin state, functional 272 
enrichment, and snATAC-seq OCRs reveals combinatorial TF binding in embryonic BG 273 
directs activation of GABAergic neurogenesis while repressing earlier and alternative 274 
developmental programs, including repressing pallial and excitatory fates.  275 
 276 
Intersection of pREs and PLAC-seq interaction ensembles showed differences across 277 
TF-pRE clusters (Figure 3D). Broadly-bound pRE clusters featured higher than average 278 
rates of inclusion in PSCs and participated in ensembles with increased average 279 
number of PSCs. Among interaction ensembles with more PSCs, complex interactions 280 
between distal pREs as well as distal and proximal pREs, were common, consistent 281 
with a biophysical structure model of TF-cRE biomolecular condensates in the nucleus 282 
that increase recruitment efficiency of co-factors and RNA polymerase complexes29–31. 283 
Lastly, we compared evolutionary sequence conservation using the maximum 284 
vertebrate Phastcons element s score for each pRE (Figure 3E). Average proximal pRE 285 
cluster scores ranged from 410, equivalent to a random sample of promoter proximal 286 
intervals, to 580 for 1_P and 2_P.  Distal clusters spanned from 365, similar to randomly 287 
selected distal regions, to the maximum conservation score of 662 for cluster 1_D. 288 
There was a strong relationship between number of TFs bound and evolutionary 289 
conservation for distal pREs; again, cluster 1_D was the extreme case. 290 
 291 
Enhancer activity in developing mouse telencephalon is predicted by 292 
combinatorial TF binding  293 
 294 
To assess whether distal elements bound by multiple TFs are bona fide enhancers 295 
active in the developing BG, we identified pREs that overlapped with VISTA enhancer 296 
elements32 and classified as active in SP (n=60), P (n=57), SP and P (n= 70), and non-297 
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telencephalic brain (non-tel, n=75) (Figure 4E, Supplementary Table 3). As a 298 
comparison set, we included tested VISTA elements that had no reproducible enhancer 299 
activity (n=121). Distal pREs with high levels of combinatorial binding (8-12 TFs, 300 
clusters 1_D and 2_D) overlapped 48% of all VISTA enhancers with SP activity, 33% 301 
with SP and P activity, and 25% with P activity, but only 8% of those with non-302 
telencephalic brain activity and 3% with no activity (Figure 4A, 4B). Conversely, VISTA 303 
elements without BG TF binding made up 53% of those with non-telencephalic activity 304 
and 64% with no activity (64%). Individual TF ChIP-seq peaks showed similar 305 
enrichment for VISTA enhancers with subpallial activity versus non-telencephalic 306 
enhancers (Figure S4a, S4d). These results indicate that broadly-bound distal pREs 307 
indeed function as enhancers in vivo in developing mouse telencephalon, with clear 308 
enrichment for subpallial activity. Strikingly, ChIP-seq of the 12 TFs here identified most 309 
BG-active enhancers in the VISTA database, as well as many enhancers active in other 310 
tissues. This suggests that developmental enhancers feature complex TF binding 311 
driving both activation, here in embryonic BG, as well suppression of activity in other 312 
cells and tissues. 313 
 314 
Elements in the VISTA database were identified via criteria that may bias this set 315 
towards general enhancer activity, such as ultra-conservation34 and forebrain p300 316 
ChIP-seq35. To directly test our TF-based pRE predictions and towards generating a 317 
resource of subpallial enhancers, we identified 84 novel TF-bound pRE loci and tested 318 
them using the same transgenic enhancer assay as used in VISTA discovery32. In 319 
addition to selecting candidates based on TF binding, we also chose enhancers with 320 
PLAC-seq identified target genes that play critical roles in subpallial development, 321 
enriching the value of enhancers screened here. Individual results for these enhancers 322 
are shown in Figure S4. Similar to findings for the VISTA elements, enhancer activities 323 
of newly-tested pREs with broader BG TF binding were more likely to exhibit subpallial 324 
specificity (Figure 4C). Splitting by cluster, pREs from clusters 1_D and 2_D were 325 
particularly enriched for subpallial activity, while cluster 3_D showed similar specificity in 326 
enhancer activity in the SP, SP+P and P (Figure 4D and Figure S4b, S4c). Six tested 327 
pREs representing 5 clusters are shown with ChIP-seq signal and local H3K27ac and 328 
H3K27me3 in Figure 4D. Finally, we assessed if pRE clusters had differential enhancer 329 
activity in subpallial VZ progenitors versus neurons (examples shown in Figure 4E). 330 
Cluster 1_D had proportionally higher non-VZ versus VZ enhancer activity; 2_D had a 331 
balance of VZ and non-VZ enhancer activity, and 3_D had higher VZ activity (Figure 332 
4F), matching gene ontology analyses and snATAC-seq inferences above. In terms of 333 
individual TFs, only OTX2 and PBX1 showed preferential binding to enhancers active in 334 
the VZ (Figure S4e). ASCL1, DLX1, DLX5 and LHX6 preferentially bind to enhancers 335 
with activity in the SVZ/MZ. Thus, different TF-pREs modules exhibit differential activity 336 
in progenitor versus post-mitotic states and between telencephalon regions.  337 
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 338 
Broadly-bound enhancers are characterized by TAATTA homeobox motif 339 
composition and deep evolutionary conservation 340 
 341 
To test how sequence determinants distinguish the combinatorial TF binding clusters, 342 
we compared frequency of motif occurrence, spacing and position of motif pairs (i.e., 343 
motif “grammar”), and base-level evolutionary conservation (vertebrate PhyloP score) of 344 
motif and flanking DNA (Figure 5). For this analysis, we generated a merged set of 345 
TAATTA motifs. We further separated TAATTA motifs into “symmetric” instances, where 346 
the motif was identified as overlapping occurrences on sense and antisense strands 347 
(i.e., palindromic), “degenerate” instances identified on only one strand, and “complex” 348 
overlapping instances that largely map to simple “TTAA” repeats. The majority of 349 
TAATTA motifs identified in random regions are degenerate, suggesting symmetric 350 
instances are more likely to be functional. Only 6_D was enriched for complex TAATTA 351 
motifs, consistent with these pREs harboring simple TTAA repeats. The average 352 
number of TAATTA motifs within pRE had significant range across clusters, and both 353 
motif counts and relative symmetric:degenerate motif ratio showed cluster-specific 354 
patterns (Figure 5A). 1_D averaged nearly four TAATTA instances per pRE and had the 355 
largest shift towards symmetric over degenerate instances. These patterns show that 356 
1_D represents an extreme in both binding patterns and sequence composition. The 357 
other broadly bound distal clusters of 2_D, 3_D, and 4_D also all averaged multiple 358 
TAATTA instances and increased ratio of symmetric motifs.  359 
 360 
We next examined spacing and orientation of motif pairs within pREs across clusters. 361 
Overall, cluster-relevant motif pairs were likely to be closely spaced (i.e., within 20-200 362 
bp distance) within pREs (Figure 5B). This is most obvious for pRE clusters with more 363 
motif instances. For example, TAATTA-TAATTA pairs were located in spatial proximity 364 
within pRE clusters featuring broad TF binding, epitomized by 1_D. 1_D also exhibited 365 
reduced but still clear proximity between TAATTA-NKX2.1 and TAATTA-PBX1 pairs, 366 
though not for TAATTA-ASCL1. In comparison, 12_D, bound specifically by ASCL1, 367 
showed clustered ASCL1-ASCL1, but not TAATTA-TAATTA, pairs. There were also 368 
differences in TAATTA-TAATTA pairs across clusters. For example, 4_D and 16_D both 369 
feature similar average number of TAATTA instances, but TAATTA-TAATTA pairs are 370 
more likely immediately adjacent in 16_D, with 26% of pREs featuring a pair of TAATTA 371 
motifs within 4 bp compared to 8% in 4_D and 10% in 1_D. We did not identify 372 
canonical orientation or spacing rules for motif pairs in any of the TF-pRE clusters, as 373 
would be predicted if TF complex binding was determined by a “syntax” of motifs with 374 
deterministic spacing. At the upper end of the spectrum for motif density, 1_D featured 375 
clustered, and at times overlapping, sets of motifs including the primary motifs of TFs 376 
studied here as well as other motifs in the HOMER database. Overall, our findings are 377 
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consistent with a “billboard” model, where relevant DNA binding sequences are 378 
clustered within a core region of the regulatory DNA element, but do not conform to 379 
strict patterns of orientation or syntax36.  380 
 381 
Lastly, we examined base-level PhyloP vertebrate conservation of TF motifs within 382 
pREs (Figure 5C). Overall, motifs expected to be relevant for TF binding showed 383 
increased base-level conservation in line with motif position weight matrix and reduced 384 
relative conservation for flanking sequences, indicating purifying selection on bases 385 
critical for TF binding (see Figure S5a for complete motif by cluster analysis). For 386 
example, average base-level conservation for DLX2 primary motif shows strong 387 
conservation for the TAATTA bases compared to flanking sequence for both cluster 388 
1_D and 16_D. Base-level motif conservation also showed differences across pRE 389 
clusters bound by the TF. While background conservation is significantly higher in 1_D 390 
versus 16_D, the TAATTA core also shows a larger increase relative to background in 391 
1_D. For DLX2 TAATTA motifs in 1_D, increased base-level conservation of flanking 392 
DNA gradually decreases out to +/- 200bp, indicating a conserved core region within 393 
these pREs. We next expanded base-level motif conservation analysis to all motifs in 394 
the Homer database that were enriched in each pRE cluster. Considering the evidence 395 
for the central role of TAATTA motifs in 1_D, we wondered if similarly strong base-level 396 
conservation was present across other motifs. Motifs from several TF families indeed 397 
exhibited increased conservation, for example HOXD11/Hox, FOXA1/Forkhead, 398 
OCT6/OCT, and SOX6/SOX (Figure 5D). Among motifs with high base-level 399 
conservation in 1_D, TAATTA motifs are at the top of the range, cementing a special 400 
role for TAATTA motifs and TFs that bind these sequences in 1_D enhancers. 401 
 402 
Our results indicate that at the sequence level, 1_D pREs are characterized by 403 
increased number of symmetric TAATTA motifs, which are located in proximity to each 404 
other and to other motifs in a highly-conserved and motif-rich core region. To illustrate 405 
these patterns, four representative newly-characterized 1_D pREs are depicted in 406 
Figure 5E. These 1_D enhancers capture the overall patterns of this cluster, giving 407 
examples of the motif clustering but variability of spacing and organization as well as 408 
the base-level motif conservation both across the enhancer core as well as of critical 409 
nucleotides within each motif. These results provide evidence that enhancers at the 410 
extreme upper end of evolutionary conservation indeed feature dense hubs of cis-trans 411 
regulatory interactions during embryonic development that are likely to drive strong 412 
selective constraint. 413 

 414 
Our results highlight the complex regulomes of neurodevelopmental TFs targeted by the 415 
TFs profiled here, potentially associating distinct genes via common chromatin 416 
interaction ensembles. Actively regulated chromosomal regions, particularly those 417 
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harboring TF genes, feature complex physical interaction landscapes anchored by 418 
differential combinations of TFs that act to activate or repress enhancer activity in the 419 
developing BG. As an example, for the interaction ensemble including the Pbx1 gene, 420 
we identified 31 pREs that serve as PSCs (Figure 6A) and transgenic testing verified 421 
activity for three enhancers predicted to be activated in BG and corresponding pallial or 422 
non-CNS activity for enhancers correctly predicted to be repressed in BG (Figure 6B).  423 
 424 
DISCUSSION 425 
 426 
Application of epigenomic profiling resolved to cell type specificity have revolutionized 427 
understanding of cis-regulatory landscapes underlying neurodevelopment, including in 428 
the embryonic BG37. Missing from these advances has been parallel comprehensive 429 
understanding of TF components of gene regulatory wiring, and, specifically, how 430 
combinatorial TF binding to cREs directs transcriptional activation and repression. 431 
Studies focused on individual or a small set of TFs have provided valuable insights 432 
about necessity and sufficiency of specific TFs during neurodevelopment and in the BG1 433 
and cortex38. Yet an integrated perspective of TF binding during brain development has 434 
been lacking due to technical and computational barriers, particularly for ChIP-seq on 435 
ex vivo embryonic brain tissues. In silico and in vitro efforts to use TF co-expression and 436 
motif analyses have provided insights into contributions of TF networks even without 437 
assaying genomic interactions39–41. However, modeling roles of TFs without 438 
interrogating genomic binding is problematic due to shared target motifs and 439 
overlapping expression within homeobox and other TF families, and due to presence of 440 
indirect TF interactions with regulatory DNA. Further complicating functional modeling, 441 
our results corroborate previous understanding that not all TF binding events are 442 
equivalent regarding regulatory function42,43. Illustrating these complexities, all tested 443 
TFs (except for NR2F1) participated in more than one distinct combinatorial TF binding 444 
pattern that had different functional roles, six of the homeobox TFs bound the same 445 
family of TAATTA motifs, SP9 primarily bound cREs via indirect mechanisms. This 446 
study revealed patterns of TF-cRE interaction and regulatory function that would be 447 
masked if only considering chromatin accessibility or individual TF binding patterns. 448 
This work represents an initial build of an embryonic BG “regulome” made up of TF-cRE 449 
modules that integrates information for TF binding, chromosomal interactions, chromatin 450 
state and transcriptional activity, and cRE regulatory function.  451 
 452 
A motivating factor for this study was to define complex patterns of the combinatorial TF 453 
binding in the developing brain, going beyond previous work on individual TFs to build 454 
models similar to efforts in other organisms and for in vitro systems50–53. We had 455 
previously found that DLX TFs had a largely overlapping set of binding targets, and 456 
NKX2-1 and LHX6 had overlapping and distinct binding targets18,20. Here we combined 457 
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published and novel TF ChIP-seq across twelve TFs, capturing diversity of TF families 458 
and neurodevelopmental function. Our work illustrates context-dependent combinatorial 459 
TF control of activating and repressive cRE modules and gene regulatory programs 460 
across proliferating and post-mitotic neuronal populations in embryonic mouse BG 461 
(Figure 7A). We show that TF-cRE interactions are required for proper activation and 462 
repression of enhancer activity associated with sub-pallial regional identity, GABAergic 463 
neurogenesis, and cortical interneuron specification (Figure 7B). These different TF-464 
cRE modules act in parallel to generating complex developmental expression patterns, 465 
for example at the Pbx1 locus (Figure 7C). These results reveal the molecular and 466 
genomic basis underlying findings from earlier TF knockout mouse studies for Gsx2, 467 
Nkx2-1, and Otx2 showing shifts in telencephalic regional identities21,27,44, and for Arx, 468 
Ascl1, Dlx1/2/5, Nr2f1, Pbx1, and Sp9 showing decreased GABAergic neurogenesis 469 
and differentiation19,22,45–49. Our integrated characterization of embryonic BG TF-pRE 470 
modules and the 74 newly-defined enhancers represent a rich resource for future 471 
studies of transcriptional control of enhancer function, enhancer-driven cell labeling, and 472 
neuronal fate mapping. 473 
 474 
Among the most important insights from our analysis was the overlap and strength of 475 
TF binding across 11 of the 12 TFs at a relatively small set of distal pREs. These 476 
findings support previous studies that TF binding overlap is associated with increased 477 
enhancer activity and conservation4,54,55. For example, pREs with OCT4, SOX2, and 478 
NANOG combined binding had stronger evolutionary conservation and enhancer 479 
function in ESCs than sites with single TF binding56. Indeed, 1_D included an 480 
enrichment for elements that were identified as among the most conserved non-coding 481 
sequences in the mouse genome57. Our findings build context around observations 482 
made regarding what have been deemed “ultraconserved” enhancers, including that 483 
these enhancers are key partners for developmental TFs, are strongly enriched for 484 
activity in the developing brain, that they are enriched for TA-rich motifs and robustly 485 
bound in vivo by homeobox TFs in this study58–60, but whose defects are nonetheless 486 
non-lethal61. To this picture, our results show that BG-active deeply-conserved 487 
enhancers are broadly bound by TFs, feature rich and often overlapping motif 488 
composition and extreme base-level conservation (Figure 7D). Our results show that 489 
homeobox TFs, and TAATTA-binding TFs in particular, bind this set of ancestral 490 
enhancers, which regulate genes that act at the top of signaling pathways that regulate 491 
the regulators of brain development62,63. Our study further supports the model where 492 
these extensive TF-enhancer interactions are involved in establishing and maintaining 493 
complex transcription-associated local biophysical interactions64. Our results frame a 494 
model where cREs that are broadly TF bound during neurodevelopment represent the 495 
extreme end of the spectrum for sequence composition, conservation, and regulatory 496 
activity, and as such are exceptional and ancient class of enhancers.  497 
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 539 
 540 
FIGURE LEGENDS 541 
 542 
Figure 1 – TF Binding Profiles and Basic Genomic Features. (A) Schematics of the 543 
scope of the present study, showing 3D structures combinatorially bound by TFs in 544 
transcriptionally active chromatin (H3K4me3-marked). The model was validated by 545 
enhancer transgenic mouse assays. (B) Distribution of combined bound loci between 546 
distal and proximal regions, segmented by the number of TFs sharing locus position. 547 
(C) Pie chart showing the distribution of loci in relation to the loops formed by 548 
H3K4me3-mediated PLAC-seq contacts (PSC). (D) Sp9 locus showing TF binding and 549 
PLAC-seq interactions with VISTA enhancers hs242, hs243, hs244, hs245, hs574, 550 
hs860, and hs953. PLAC-seq contacts are displayed as arcs and contact maps (adj. p < 551 
0.01). (E) Doughnut plot showing individual TF number of binding loci, split into proximal 552 
and distal from gene TSS, with the associated core motifs and their average distribution 553 
around peak centers. In parentheses are the enrichments over background and percent 554 
of target motifs. See also Figure S1. 555 
 556 
Figure 2 – Organization of Bound Loci into Clusters of Similar Binding 557 
Neighborhood Profiles. (A) Schematics showing the several binding patterns captured 558 
by investigating local neighborhood around ChIP-seq peak summits, as well the 559 
subsequent clustering and following genomic profile characterization. (B) and (C) 560 
Heatmaps representing each TF coverage around 1 kb of each called peak in proximal 561 
and distal regions, respectively. Row blocks and columns depict TFs and clusters, 562 
respectively. Within each row block, each line represents the coverage color-codes for 563 
intensity of ChIP-seq signal (intensity grows in the black-to-yellow-to-red direction). 564 
Within each cluster, lines with same position across the TFs represent the same 565 
genomic locus. Numbers (n = ) indicate the number of peaks called within each cluster. 566 
(D) Distribution of mean number of TFs bound to each locus across clusters. Mean 567 
distributions were calculated by sampling without replacement (N=1000). Random 568 
means was calculated by randomly sampling the genome (N=27398). (E) Distribution of 569 
mean number of TFs sharing loci across binding clusters, and compared to a random 570 
sample, calculated by sampling without replacement (N=1000). (F) Heatmap showing 571 
the relative enrichment of core binding motifs for each of the TFs across clusters. See 572 
also Figure S2. 573 
 574 
Figure 3 – Genomic and Functional Features of TF-Bound RE Clusters. (A) 575 
Frequency of occurrence of peaks across chromatin states and binding clusters, split 576 
into distal and proximal. As reference, in between the two heatmaps is one derived from 577 
assigning chromatin states to a random loci sample. Color codes represent the 578 
percentage of peaks by cluster. (B) Gene ontology analysis of genes hitting interaction 579 
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contact points (PSC) split into clusters, displaying select brain-specific or general terms. 580 
(C) Bar plot depicting the intersection of our binding clustering with clusters determined 581 
by single-nucleus ATAC-seq28, showing putative neuronal cell differentiation states 582 
across binding clusters. (D) Dot plot showing the mean ensemble size across binding 583 
clusters in function of the percent of loci in the cluster colocalizing with PSCs. (E) 584 
Distribution of means of PhastCons scores across clusters for 60 vertebrates. Top 585 
panels are distal peaks, and proximal ones are on the bottom panels. References were 586 
random distal and proximal genomic regions of random widths. See also Figure S3. 587 
 588 
Figure 4 – VISTA and Novel Enhancer Activity across Bound Loci. (A) Heatmap of 589 
combinatorial TF binding (percentage enrichment, 0-12 TFs) on VISTA enhancers that 590 
have subpallial (SP), pallial and subpallial (SP+P), pallial (P), non-telencephalic (non-591 
tel), and no activity (inactive). (B) Stacked bar plot showing the percentage of newly 592 
identified regulatory sequences with high (8-12 TFs), intermediate (5-7 TFs), low (3-4 593 
TFs), and very low (1 TF) binding in BG showing spatial regional activity. (C) Stacked 594 
bar plot depicting percentage of novel enhancers across binding clusters showing 595 
restricted spatial enhancer activity in the subpallium, pallium and shared among them. 596 
(D) Six pREs representing different clusters that were tested for activity in transgenic 597 
mouse assays33. Clusters are shown in the left column, enhancer names are written in 598 
turquoise, and the success ratios are listed next to the name (i.e., 6/6 depicts 6 embryos 599 
with forebrain activity out of 6 embryos tested). Schemas predict the regulated genes by 600 
the tested enhancers (turquoise). The grey arrow depicts the orientation of the TSS. 601 
Green bars show the normalized binding of BG TFs, with color intensity proportional to 602 
ChIP-seq intensity. The specific TFs bound are shown above the top bar. Wholemounts 603 
(WM) and three sections representing the LacZ expression are shown. H3K27ac 604 
(green) and H3K27me3 (red) histone ChIP-seq results from the GE are shown to the 605 
right; the turquoise bars correspond to the tested genomic regions. Cx: Cortex; GE: 606 
Ganglionic Eminences; L: LGE; M: MGE; C: CGE. (E) Coronal brain section 607 
schematization showing: 1. the subregions of the primordial BG (LGE and MGE) as well 608 
as the cortex (top left hemisection) ; 2. the subregional laminae of the GEs (VZ, SVZ, 609 
and MZ; top right hemisection). Hemisections from 2 VISTA enhancers with specific sub 610 
regional activity are shown below with hs1056 showing activity in the VZ and SVZ of the 611 
MGE (bottom left hemisection) and hs566 showing activity in the mantle zones of the 612 
MGE and LGE (bottom right hemisection). (F) Bar plot depicting cluster classification of 613 
enhancers with VZ and non-VZ activity (n=99). See also Figure S4. 614 
 615 
Figure 5 – Arrayed TAATTA motifs anchor deeply-conserved GABAergic 616 
enhancers. (A) Relative number of TAATTA motifs within each RE across clusters 617 
separated by symmetric, degenerate, and complex instances. (B) Histogram showing 618 
distribution of distance in base pairs between all motif pair occurrences within REs for 619 
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selected clusters and motif pairs. (C) Average base-level sequence conservation 620 
(vertebrate PhyloP score) for TAATTA motif and flanking DNA for 1_D (top) and 16_D 621 
(bottom left) within 10bp of motif, and for 1_D out to 400bp of motif (bottom right). (D) 622 
TAATTA motifs exhibit the strongest base-level conservation across TF motif families 623 
enriched in 1_D REs. Enriched motifs with significant base-level conservation increase 624 
compared to 10bp flanking sequence labeled, primary motifs from BG TFs in bold. (E) 625 
Four representative 1_D REs with enhancer activity. Target gene, evolutionary 626 
conservation, BG TF binding, and enhancer activity in E12.5 mouse telencephalon. (F) 627 
Motif and evolutionary conservation landscape for enhancers in (d) showing motif 628 
clustering and overlap with conserved regions across core 500bp (top) and at single-629 
base resolution (bottom) for selected intervals. Legend shows colors for BG TF primary 630 
motifs and all Homer motifs. See also Figure S5. 631 
 632 
Figure 6 – Pbx1 Genomic Locus and Associated Putative Enhancers. (A) 633 
Representation of the Pbx1 locus, showing nearby genes, and the ensemble of PLAC-634 
seq contacts creating a tridimensional structure made of multiple loops. Bound genomic 635 
loci are noted underneath in black, and enhancers are marked in turquoise and red 636 
(active and inactive, respectively). (B) Six enhancers around the Pbx1 locus exhibited 637 
activity in transgenic mouse assays. Of these, 1_D and 2_D enhancers were active in 638 
subpallium, while one 9_D enhancer was active in in pallium and the other 9_D and a 639 
4_D enhancer showed non-telencephalic activity. 640 
 641 
Figure 7 – Cis-trans interactions underlying gene regulation driving GABAergic 642 
neurogenesis.  (A) Chromatin accessibility maps identify pREs, but TF binding is 643 
necessary to understand mechanisms and functional relevance of pRE activity. TF 644 
binding can direct either activation or repression of enhancer activity. Here we identify 645 
pRE-TF modules that drive specific regulatory activity in developing mouse BG, with 646 
representative examples depicted. Bold BG modules in (A) are highlighted in (B).  (B) 647 
Combinatorial TF binding defines context-dependent patterns of enhancer activation 648 
and repression in embryonic BG. Three example cis-trans modules identified here are 649 
shown, with the enhancer activity and schematic of activity across VZ, SVZ, and MZ.  650 
(C) Developmental TF genes (i.e. Pbx1) relevant to embryonic BG have complex cis-651 
regulatory landscapes and generally include multiple cis-trans regulatory modules. (D) 652 
Comparison of enhancers with simple versus complex TF binding identified in 653 
embryonic BG. Enhancers with exceptional TF binding also feature high density of TF 654 
binding motifs, complex chromosomal contacts, strong evolutionary conservation across 655 
the vertebrate tree (human, chicken, zebrafish conservation represented), and 656 
increased base pair size. Abbreviations: Imm. CIN: immature cortical interneurons, Imm. 657 
PN: immature projection neurons, BG NPC: basal ganglia neural progenitor cell, BG 658 
IPC: basal ganglia intermediate progenitor cell. 659 
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WT1(Zf)_Kidney−WT1−ChIP−Seq(GSE90016)_1D
Zfp281(Zf)_ES−Zfp281−ChIP−Seq(GSE81042)_1D
Sp2(Zf)_HEK293−Sp2.eGFP−ChIP−Seq(Encode)_1D
Sp5(Zf)_mES−Sp5.Flag−ChIP−Seq(GSE72989)_1D
KLF14(Zf)_HEK293−KLF14.GFP−ChIP−Seq(GSE58341)_1D
Maz(Zf)_HepG2−Maz−ChIP−Seq(GSE31477)_1D
ZNF467(Zf)_HEK293−ZNF467.GFP−ChIP−Seq(GSE58341)_1D
Gata2(Zf)_K562−GATA2−ChIP−Seq(GSE18829)_1D
Egr1(Zf)_K562−Egr1−ChIP−Seq(GSE32465)_1D
E2F6(E2F)_Hela−E2F6−ChIP−Seq(GSE31477)_1D
SP9_1D
Sox9(HMG)_Limb−SOX9−ChIP−Seq(GSE73225)_1D
NFIL3(bZIP)_HepG2−NFIL3−ChIP−Seq(Encode)_1D
NKX2.1_1D
Pax7(Paired,Homeobox)_Myoblast−Pax7−ChIP−Seq(GSE25064)_1D
Brn2(POU,Homeobox)_NPC−Brn2−ChIP−Seq(GSE35496)_1D
Cux2(Homeobox)_Liver−Cux2−ChIP−Seq(GSE35985)_1D
Duxbl(Homeobox)_NIH3T3−Duxbl.HA−ChIP−Seq(GSE119782)_1D
NFY(CCAAT)_Promoter_1D
CEBP:AP1(bZIP)_ThioMac−CEBPb−ChIP−Seq(GSE21512)_1D
Atf4(bZIP)_MEF−Atf4−ChIP−Seq(GSE35681)_1D
Six1(Homeobox)_Myoblast−Six1−ChIP−Chip(GSE20150)_1D
CArG(MADS)_PUER−Srf−ChIP−Seq(Sullivan_et_al.)_1D
Gata1(Zf)_K562−GATA1−ChIP−Seq(GSE18829)_1D
HIF2a(bHLH)_785_O−HIF2a−ChIP−Seq(GSE34871)_1D
PRDM15(Zf)_ESC−Prdm15−ChIP−Seq(GSE73694)_1D
Chop(bZIP)_MEF−Chop−ChIP−Seq(GSE35681)_1D
NR2F1_1D
T1ISRE(IRF)_ThioMac−Ifnb−Expression_1D
Arnt:Ahr(bHLH)_MCF7−Arnt−ChIP−Seq(Lo_et_al.)_1D
E2F3(E2F)_MEF−E2F3−ChIP−Seq(GSE71376)_1D
Gfi1b(Zf)_HPC7−Gfi1b−ChIP−Seq(GSE22178)_1D
CEBP(bZIP)_ThioMac−CEBPb−ChIP−Seq(GSE21512)_1D
HLF(bZIP)_HSC−HLF.Flag−ChIP−Seq(GSE69817)_1D
Pbx3(Homeobox)_GM12878−PBX3−ChIP−Seq(GSE32465)_1D
Six2(Homeobox)_NephronProgenitor−Six2−ChIP−Seq(GSE39837)_1D
BMYB(HTH)_Hela−BMYB−ChIP−Seq(GSE27030)_1D
STAT4(Stat)_CD4−Stat4−ChIP−Seq(GSE22104)_1D
Nanog(Homeobox)_mES−Nanog−ChIP−Seq(GSE11724)_1D
Nkx6.1(Homeobox)_Islet−Nkx6.1−ChIP−Seq(GSE40975)_1D
GSX2_1D
LXH9(Homeobox)_Hct116−LXH9.V5−ChIP−Seq(GSE116822)_1D
DLX5_1D
Lhx1(Homeobox)_EmbryoCarcinoma−Lhx1−ChIP−Seq(GSE70957)_1D
Lhx3(Homeobox)_Neuron−Lhx3−ChIP−Seq(GSE31456)_1D
ARX_1D
DLX2_1D
Dlx3(Homeobox)_Kerainocytes−Dlx3−ChIP−Seq(GSE89884)_1D
Isl1(Homeobox)_Neuron−Isl1−ChIP−Seq(GSE31456)_1D
Lhx2(Homeobox)_HFSC−Lhx2−ChIP−Seq(GSE48068)_1D
LHX6_1D
ASCL1_1D
MyoD(bHLH)_Myotube−MyoD−ChIP−Seq(GSE21614)_1D
Pitx1(Homeobox)_Chicken−Pitx1−ChIP−Seq(GSE38910)_1D
DLX1_1D
Hoxa11(Homeobox)_ChickenMSG−Hoxa11.Flag−ChIP−Seq(GSE86088)_1D
CHR(?)_Hela−CellCycle−Expression_1D
Mef2a(MADS)_HL1−Mef2a.biotin−ChIP−Seq(GSE21529)_1D
CRX(Homeobox)_Retina−Crx−ChIP−Seq(GSE20012)_1D
PBX1_1D
HNF6(Homeobox)_Liver−Hnf6−ChIP−Seq(ERP000394)_1D
Hoxa10(Homeobox)_ChickenMSG−Hoxa10.Flag−ChIP−Seq(GSE86088)_1D
GSC(Homeobox)_FrogEmbryos−GSC−ChIP−Seq(DRA000576)_1D
OTX2_1D
Sox2(HMG)_mES−Sox2−ChIP−Seq(GSE11431)_1D
Sox3(HMG)_NPC−Sox3−ChIP−Seq(GSE33059)_1D
Sox17(HMG)_Endoderm−Sox17−ChIP−Seq(GSE61475)_1D
Sox6(HMG)_Myotubes−Sox6−ChIP−Seq(GSE32627)_1D
Sox10(HMG)_SciaticNerve−Sox3−ChIP−Seq(GSE35132)_1D
Sox4(HMG)_proB−Sox4−ChIP−Seq(GSE50066)_1D
Sox15(HMG)_CPA−Sox15−ChIP−Seq(GSE62909)_1D
TATA−Box(TBP)_Promoter_1D
FoxD3(forkhead)_ZebrafishEmbryo−Foxd3.biotin−ChIP−seq(GSE106676)_1D
Otx2(Homeobox)_EpiLC−Otx2−ChIP−Seq(GSE56098)_1D
Pdx1(Homeobox)_Islet−Pdx1−ChIP−Seq(SRA008281)_1D
FOXM1(Forkhead)_MCF7−FOXM1−ChIP−Seq(GSE72977)_1D
Oct11(POU,Homeobox)_NCIH1048−POU2F3−ChIP−seq(GSE115123)_1D
OCT4−SOX2−TCF−NANOG(POU,Homeobox,HMG)_mES−Oct4−ChIP−Seq(GSE11431)_1D
Oct4(POU,Homeobox)_mES−Oct4−ChIP−Seq(GSE11431)_1D
Phox2b(Homeobox)_CLBGA−PHOX2B−ChIP−Seq(GSE90683)_1D
Phox2a(Homeobox)_Neuron−Phox2a−ChIP−Seq(GSE31456)_1D
Prop1(Homeobox)_GHFT1−PROP1.biotin−ChIP−Seq(GSE77302)_1D
Myf5(bHLH)_GM−Myf5−ChIP−Seq(GSE24852)_1D
Hoxd13(Homeobox)_ChickenMSG−Hoxd13.Flag−ChIP−Seq(GSE86088)_1D
Hoxa9(Homeobox)_ChickenMSG−Hoxa9.Flag−ChIP−Seq(GSE86088)_1D
Unknown(Homeobox)_Limb−p300−ChIP−Seq_1D
Hoxc9(Homeobox)_Ainv15−Hoxc9−ChIP−Seq(GSE21812)_1D
Hoxd11(Homeobox)_ChickenMSG−Hoxd11.Flag−ChIP−Seq(GSE86088)_1D
Hoxd12(Homeobox)_ChickenMSG−Hoxd12.Flag−ChIP−Seq(GSE86088)_1D
OCT:OCT(POU,Homeobox)_NPC−Brn1−ChIP−Seq(GSE35496)_1D
Oct2(POU,Homeobox)_Bcell−Oct2−ChIP−Seq(GSE21512)_1D
Hoxa13(Homeobox)_ChickenMSG−Hoxa13.Flag−ChIP−Seq(GSE86088)_1D
Foxf1(Forkhead)_Lung−Foxf1−ChIP−Seq(GSE77951)_1D
FOXA1(Forkhead)_LNCAP−FOXA1−ChIP−Seq(GSE27824)_1D
FOXA1(Forkhead)_MCF7−FOXA1−ChIP−Seq(GSE26831)_1D
CUX1(Homeobox)_K562−CUX1−ChIP−Seq(GSE92882)_1D
Hoxb4(Homeobox)_ES−Hoxb4−ChIP−Seq(GSE34014)_1D
FoxL2(Forkhead)_Ovary−FoxL2−ChIP−Seq(GSE60858)_1D
Barx1(Homeobox)_Stomach−Barx1.3xFlag−ChIP−Seq(GSE69483)_1D
Brn1(POU,Homeobox)_NPC−Brn1−ChIP−Seq(GSE35496)_1D
Oct6(POU,Homeobox)_NPC−Pou3f1−ChIP−Seq(GSE35496)_1D
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WT1(Zf)_Kidney−WT1−ChIP−Seq(GSE90016)_1D
Zfp281(Zf)_ES−Zfp281−ChIP−Seq(GSE81042)_1D
Sp2(Zf)_HEK293−Sp2.eGFP−ChIP−Seq(Encode)_1D
Sp5(Zf)_mES−Sp5.Flag−ChIP−Seq(GSE72989)_1D
KLF14(Zf)_HEK293−KLF14.GFP−ChIP−Seq(GSE58341)_1D
Maz(Zf)_HepG2−Maz−ChIP−Seq(GSE31477)_1D
ZNF467(Zf)_HEK293−ZNF467.GFP−ChIP−Seq(GSE58341)_1D
Gata2(Zf)_K562−GATA2−ChIP−Seq(GSE18829)_1D
Egr1(Zf)_K562−Egr1−ChIP−Seq(GSE32465)_1D
E2F6(E2F)_Hela−E2F6−ChIP−Seq(GSE31477)_1D
SP9_1D
Sox9(HMG)_Limb−SOX9−ChIP−Seq(GSE73225)_1D
NFIL3(bZIP)_HepG2−NFIL3−ChIP−Seq(Encode)_1D
NKX2.1_1D
Pax7(Paired,Homeobox)_Myoblast−Pax7−ChIP−Seq(GSE25064)_1D
Brn2(POU,Homeobox)_NPC−Brn2−ChIP−Seq(GSE35496)_1D
Cux2(Homeobox)_Liver−Cux2−ChIP−Seq(GSE35985)_1D
Duxbl(Homeobox)_NIH3T3−Duxbl.HA−ChIP−Seq(GSE119782)_1D
NFY(CCAAT)_Promoter_1D
CEBP:AP1(bZIP)_ThioMac−CEBPb−ChIP−Seq(GSE21512)_1D
Atf4(bZIP)_MEF−Atf4−ChIP−Seq(GSE35681)_1D
Six1(Homeobox)_Myoblast−Six1−ChIP−Chip(GSE20150)_1D
CArG(MADS)_PUER−Srf−ChIP−Seq(Sullivan_et_al.)_1D
Gata1(Zf)_K562−GATA1−ChIP−Seq(GSE18829)_1D
HIF2a(bHLH)_785_O−HIF2a−ChIP−Seq(GSE34871)_1D
PRDM15(Zf)_ESC−Prdm15−ChIP−Seq(GSE73694)_1D
Chop(bZIP)_MEF−Chop−ChIP−Seq(GSE35681)_1D
NR2F1_1D
T1ISRE(IRF)_ThioMac−Ifnb−Expression_1D
Arnt:Ahr(bHLH)_MCF7−Arnt−ChIP−Seq(Lo_et_al.)_1D
E2F3(E2F)_MEF−E2F3−ChIP−Seq(GSE71376)_1D
Gfi1b(Zf)_HPC7−Gfi1b−ChIP−Seq(GSE22178)_1D
CEBP(bZIP)_ThioMac−CEBPb−ChIP−Seq(GSE21512)_1D
HLF(bZIP)_HSC−HLF.Flag−ChIP−Seq(GSE69817)_1D
Pbx3(Homeobox)_GM12878−PBX3−ChIP−Seq(GSE32465)_1D
Six2(Homeobox)_NephronProgenitor−Six2−ChIP−Seq(GSE39837)_1D
BMYB(HTH)_Hela−BMYB−ChIP−Seq(GSE27030)_1D
STAT4(Stat)_CD4−Stat4−ChIP−Seq(GSE22104)_1D
Nanog(Homeobox)_mES−Nanog−ChIP−Seq(GSE11724)_1D
Nkx6.1(Homeobox)_Islet−Nkx6.1−ChIP−Seq(GSE40975)_1D
GSX2_1D
LXH9(Homeobox)_Hct116−LXH9.V5−ChIP−Seq(GSE116822)_1D
DLX5_1D
Lhx1(Homeobox)_EmbryoCarcinoma−Lhx1−ChIP−Seq(GSE70957)_1D
Lhx3(Homeobox)_Neuron−Lhx3−ChIP−Seq(GSE31456)_1D
ARX_1D
DLX2_1D
Dlx3(Homeobox)_Kerainocytes−Dlx3−ChIP−Seq(GSE89884)_1D
Isl1(Homeobox)_Neuron−Isl1−ChIP−Seq(GSE31456)_1D
Lhx2(Homeobox)_HFSC−Lhx2−ChIP−Seq(GSE48068)_1D
LHX6_1D
ASCL1_1D
MyoD(bHLH)_Myotube−MyoD−ChIP−Seq(GSE21614)_1D
Pitx1(Homeobox)_Chicken−Pitx1−ChIP−Seq(GSE38910)_1D
DLX1_1D
Hoxa11(Homeobox)_ChickenMSG−Hoxa11.Flag−ChIP−Seq(GSE86088)_1D
CHR(?)_Hela−CellCycle−Expression_1D
Mef2a(MADS)_HL1−Mef2a.biotin−ChIP−Seq(GSE21529)_1D
CRX(Homeobox)_Retina−Crx−ChIP−Seq(GSE20012)_1D
PBX1_1D
HNF6(Homeobox)_Liver−Hnf6−ChIP−Seq(ERP000394)_1D
Hoxa10(Homeobox)_ChickenMSG−Hoxa10.Flag−ChIP−Seq(GSE86088)_1D
GSC(Homeobox)_FrogEmbryos−GSC−ChIP−Seq(DRA000576)_1D
OTX2_1D
Sox2(HMG)_mES−Sox2−ChIP−Seq(GSE11431)_1D
Sox3(HMG)_NPC−Sox3−ChIP−Seq(GSE33059)_1D
Sox17(HMG)_Endoderm−Sox17−ChIP−Seq(GSE61475)_1D
Sox6(HMG)_Myotubes−Sox6−ChIP−Seq(GSE32627)_1D
Sox10(HMG)_SciaticNerve−Sox3−ChIP−Seq(GSE35132)_1D
Sox4(HMG)_proB−Sox4−ChIP−Seq(GSE50066)_1D
Sox15(HMG)_CPA−Sox15−ChIP−Seq(GSE62909)_1D
TATA−Box(TBP)_Promoter_1D
FoxD3(forkhead)_ZebrafishEmbryo−Foxd3.biotin−ChIP−seq(GSE106676)_1D
Otx2(Homeobox)_EpiLC−Otx2−ChIP−Seq(GSE56098)_1D
Pdx1(Homeobox)_Islet−Pdx1−ChIP−Seq(SRA008281)_1D
FOXM1(Forkhead)_MCF7−FOXM1−ChIP−Seq(GSE72977)_1D
Oct11(POU,Homeobox)_NCIH1048−POU2F3−ChIP−seq(GSE115123)_1D
OCT4−SOX2−TCF−NANOG(POU,Homeobox,HMG)_mES−Oct4−ChIP−Seq(GSE11431)_1D
Oct4(POU,Homeobox)_mES−Oct4−ChIP−Seq(GSE11431)_1D
Phox2b(Homeobox)_CLBGA−PHOX2B−ChIP−Seq(GSE90683)_1D
Phox2a(Homeobox)_Neuron−Phox2a−ChIP−Seq(GSE31456)_1D
Prop1(Homeobox)_GHFT1−PROP1.biotin−ChIP−Seq(GSE77302)_1D
Myf5(bHLH)_GM−Myf5−ChIP−Seq(GSE24852)_1D
Hoxd13(Homeobox)_ChickenMSG−Hoxd13.Flag−ChIP−Seq(GSE86088)_1D
Hoxa9(Homeobox)_ChickenMSG−Hoxa9.Flag−ChIP−Seq(GSE86088)_1D
Unknown(Homeobox)_Limb−p300−ChIP−Seq_1D
Hoxc9(Homeobox)_Ainv15−Hoxc9−ChIP−Seq(GSE21812)_1D
Hoxd11(Homeobox)_ChickenMSG−Hoxd11.Flag−ChIP−Seq(GSE86088)_1D
Hoxd12(Homeobox)_ChickenMSG−Hoxd12.Flag−ChIP−Seq(GSE86088)_1D
OCT:OCT(POU,Homeobox)_NPC−Brn1−ChIP−Seq(GSE35496)_1D
Oct2(POU,Homeobox)_Bcell−Oct2−ChIP−Seq(GSE21512)_1D
Hoxa13(Homeobox)_ChickenMSG−Hoxa13.Flag−ChIP−Seq(GSE86088)_1D
Foxf1(Forkhead)_Lung−Foxf1−ChIP−Seq(GSE77951)_1D
FOXA1(Forkhead)_LNCAP−FOXA1−ChIP−Seq(GSE27824)_1D
FOXA1(Forkhead)_MCF7−FOXA1−ChIP−Seq(GSE26831)_1D
CUX1(Homeobox)_K562−CUX1−ChIP−Seq(GSE92882)_1D
Hoxb4(Homeobox)_ES−Hoxb4−ChIP−Seq(GSE34014)_1D
FoxL2(Forkhead)_Ovary−FoxL2−ChIP−Seq(GSE60858)_1D
Barx1(Homeobox)_Stomach−Barx1.3xFlag−ChIP−Seq(GSE69483)_1D
Brn1(POU,Homeobox)_NPC−Brn1−ChIP−Seq(GSE35496)_1D
Oct6(POU,Homeobox)_NPC−Pou3f1−ChIP−Seq(GSE35496)_1D

0

2

4

6

8

10

12

14

NKX2.1
NANOG
DLX2/TAATTA
ASCL1/bHLH
PBX1
OTX2
SOX6/SOX
OCT4-SOX2-TCF-NANOG
PHOX2A/PHOX
HOXD11/HOX
FOXA1/Forkhead
OCT6/POU 

V
e

rt
e

b
ra

te
 P

h
yl

o
P

S
co

re

-10 bp        motif     +10 bp -400 bp       motif       +400 bp

0

2

4

6

0 10 20 30
position

co
ns

er
va

tio
n

0.001

0.002

0.003

0.004
density

DLX2 _ cluster_1_D _ 10

-10 bp                                                      +10 bp

a c

b

g

d e

Defining the Mouse E13.5 Basal Ganglia Regulome

A B C D

n = 4

Integration of:
• TF binding: ChIP-seq for 12 TFs
• Interactions: H3K4me3 PLAC-seq
• Chromatin states: histone PTMs
• Mouse transgenic enhancer assays mouse egg 
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Figure 7 684 
 685 

 686 
  687 

binding of 
12 TFs

resolution of BG
pRE-TF modules

cis-regulatory 
map

example
BG modules

9_D: OTX2/GSX2
12_D: ASCL1
3_D: DLX2

2_D: Many TFs

B
G

N
P

C

Im
m

. 

G
A

B
A

 

n
e

u
r.

+

Im
m

.

G
A

B
A

C
IN

Enhancer

Activity

9_D

12_D

1_D

9_D: OTX2 + GSX2 in BG VZ repress 

cortical enhancer activity

1_D: context-dependent TFs  
repress in VZ, activates in SVZ/MZ

12_D: ASCL1 activates enhancers for 

regulation of cell proliferation

A

B

D

Combinatorial TF binding controls context-dependent enhancer activation/repression in BG

VZ

SVZ

MZ

C

TF motifs

pRE size

evol.

conserv.

chr. contacts

simple TF Binding exceptional TF binding

Dev. TF geneGeneTFs

complex cis-trans 
ensembles (e.g. Pbx1)

B
G

IP
C

a

CxL
M

OE
M

b

P
bx
1 

en
ha

nc
er

s

Pbx1 genomic locus
chr1:

ensembles

mm10
167,000,000

1 Mb
167,500,000 168,000,000 168,500,000 169,000,000

bound loci

Tada1 Pogk Fmo9 Uck2
Tmco1

Aldh9a1

Lrrc52

Rxrg Lmx1a
Mir6348 Mir6354

hs1191

mm1820
hs1185mm1239

mm1226
enhancers (active / inactive)

hs1202

Pbx1

a

CxL
M

OE
M

b

P
bx
1 

en
ha

nc
er

s

Pbx1 genomic locus
chr1:

ensembles

mm10
167,000,000

1 Mb
167,500,000 168,000,000 168,500,000 169,000,000

bound loci

Tada1 Pogk Fmo9 Uck2
Tmco1

Aldh9a1

Lrrc52

Rxrg Lmx1a
Mir6348 Mir6354

hs1191

mm1820
hs1185mm1239

mm1226
enhancers (active / inactive)

hs1202

Pbx1

BG 

enh1

BG inactive 

enhancers

Pb
x1

BG 

enh2

BG 

enh3

1_D: Many TFs

4_D: DLX/LHX6/ARX 

MZ

SVZ

VZ

Imm.
PN

TF binding

LGE
MGE

Cx

?

?

?

?

?

?

a

Imm.
CIN



 
25 

 688 
MATERIAL AND METHODS 689 
 690 
Experimental Model and Subject Details 691 
 692 
Mice 693 
All procedures and animal care were approved and performed in accordance with 694 
National Institutes of Health and the University of California San Francisco Laboratory 695 
Animal Research Center (LARC) guidelines. For the RNA-seq experiment, an equal 696 
number of males and females were used. ChIP-seq and native histone ChIP-seq was 697 
performed on Mus musculus CD1 strain at developmental stage E13.5. The embryos 698 
were not assessed genotypically for gender since we used a pool of embryos and 699 
therefore expect a roughly equal number of male and females. 700 
 701 
Method Details 702 
 703 
TF Chromatin Immunoprecipitation (ChIP) 704 
ChIP was performed using antibodies against DLX1, DLX2, DLX518, NKX2.1 (Santa 705 
Cruz Biotechnology, Cat# sc-13040), LHX620, OTX2 (Published in Hoch, Lindtner, Price 706 
and Rubenstein - R&D, Cat# AF1979), SP965, ARX (Santa Cruz, Cat# sc-48843), 707 
ASCL1 (BD, Cat# 556604), GSX266, NR2F1 (R&D biosystems, Cat# PP-H8132-10), 708 
and PBX1/2/3 (Santa Cruz, Cat# sc-888). Basal ganglia were dissected in cold PBS 709 
from CD1 embryos (2 L/Ab for DLX2, SP9, NR2F1; 3 L/Ab for DLX1, DLX5, NKX2.1, 710 
LHX6, ARX, ASCL1, and GSX2; 2 L/Ab for OTX2). The basal ganglia consisted of the 711 
LGE, MGE and CGE progenitor and mantle zones except the NKX2.1 and LHX6 ChIPs 712 
for which the medial ganglia were used. The dissected basal ganglia were either fixed in 713 
1% formaldehyde at RT for 10 min (LHX6, NKX2.1, OTX2, PBX, SP9) or fixed in 1.5% 714 
formaldehyde at RT for 20 min (ARX, ASCL1, DLX1, DLX2, DLX5, GSX2, NR2F1, 715 
OTX2), neutralized with glycine, and washed gently in PBS. The fixed cells were lysed 716 
with a hypotonic buffer (50 mM Tris pH 7.5 / 0.5% NP40 / 0.25% sodium deoxycholate / 717 
0.1% SDS / 150 mM NaCl) to obtain the nuclei; these were then lysed in 1% SDS buffer 718 
and the chromatin was sheared into 300-1000 bp fragments by sonicating for 40 cycles 719 
(30 sec on and 45 sec off) using a bioruptor (Diagenode). Immunoprecipitation (IP) 720 
reactions were performed with the sheared chromatin diluted 1/10 times with “dilution 721 
buffer” (0.01% SDS, 1.1% Triton X- 100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, 722 
167mM NaCl, usually in 6 ml. Antibody was then added to either 5 µg (ARX, DLX1, 723 
DLX2, DLX5, NR2F1, OTX2, PBX, SP9) or 8 µg (ACSL1, GSX2, LHX6, NKX2.1) 724 
specific antibodies. Negative control ChIP reactions used either IgG (5µg) or blocking 725 
peptide (DLX antigen used for immunizing rabbits; 50x molar excess, ARX, LHX6, 726 
NKX2.1, PBX 400x molar excess). Antibody/chromatin complexes were purified using 727 
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Dynabeads (Invitrogen) and washed extensively in “wash buffer” (low salt, 0.1% SDS, 728 
1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl; high salt, 0.1% 729 
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl; LiCl, 0.25 730 
M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, 731 
pH 8.1 and TE). 732 
 733 
Complexes were eluted with 1% SDS, 10 mM sodium bicarbonate buffer at 65 ºC for 734 
10 min. Eluted chromatin was reverse-crosslinked overnight at 65 ºC in the presence of 735 
500 mM NaCl, then subsequently treated with RNase (10 µg/200 µL reaction, 15 min at 736 
37 ºC) and Proteinase K (10 µg/200 µL reaction, 60 min at 55 ºC) and cleaned using a 737 
ChIP DNA Clean & Concentrator kit (Zymo Research). The chromatin was quality-738 
controlled (QC) using qPCR to check for enrichment of genomic DNA fragments that 739 
were expected, and not expected, to have the different TF binding. 740 
 741 
Libraries were prepared using an Ovation Ultralow DR Multiplex System (Nugen), size- 742 
selected in the range of 300 bp on a chip from BluePippin (Sage Science) and lastly QC 743 
tested on a Bioanalyzer (Agilent). The libraries were sequenced as single-end 50-bp 744 
reads on a HiSeq 4000 (Illumina) at the Center for Advanced Technology (UCSF). 745 
 746 
Native histone ChIP 747 
Each native histone ChIP was performed starting with ~250,000 nuclei from WT E13.5 748 
basal ganglia. The native ChIP was performed as described earlier18. Briefly, nuclei 749 
were extracted and digested with micrococcal nuclease (MNase, Sigma). A population 750 
of mono- and di-nucleosomes were used in chromatin immunoprecipitation assays. 751 
Antibodies used were specific to H3 monomethyl lysine-4 (H3K4me1, Abcam, ab8895), 752 
H3 trimethyl lysine-4 (H3K4me3, Abcam, ab8580), H3 trimethyl lysine-27 (H3K27me3, 753 
Active Motif, 39157), and H3 acetylated lysine 27 (H3K27ac, Abcam, ab472). 754 
Immunoprecipitated DNA was washed, isolated, and cleaned as for the TF ChIP-seq 755 
described above. 756 
 757 
PLAC-seq 758 
PLAC-seq libraries for E13.5 basal ganglia were prepared similar to a previously 759 
published protocol67. 3 to 7 million cells were used for each library. If the cells appeared 760 
aggregated, they were dissociated with gentle MACS dissociator or Dounce 761 
homogenizer. Each PLAC-seq library was prepared using DpnII as the restriction 762 
enzyme and Dynabeads M-280 sheep anti-rabbit IgG (Invitrogen #11203D) mixed with 763 
5 µg of H3K4me3 (04-745, Millipore) for the chromatin immunoprecipitation step. 764 
Finally, libraries were prepared with the Illumina TruSeq adaptors and the final libraries 765 
were sent for paired-end sequencing on the HiSeq X Ten (150-bp reads) equipment. 766 
 767 
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Transgenic enhancer assays 768 
All transgenic enhancer assays were performed at Lawrence Berkeley National 769 
Laboratory (LBNL) under the approval of the Animal Welfare and Research Committee 770 
(AWRC), as previously described18. In short, candidate enhancers were PCR-amplified 771 
and cloned into an hsp68-promoter- lacZ reporter vector68. Transgenic assays were 772 
performed according to published methods68,69. The enhancer-reporter vector was 773 
linearized and injected into the pronucleus of FVB strain single cell stage mouse 774 
embryos (E0.5). Embryos were implanted into surrogate CD-1 strain Mus musculus 775 
mothers and were then collected and stained for reporter gene expression at E11.5, 776 
E12.5, or E13.5. The resulting embryos were not assessed phenotypically for gender, 777 
which is not outwardly obvious at these ages. Therefore, we expect that a roughly equal 778 
number of male and female embryos were assessed. Embryos were excluded from 779 
analysis only if they did not harbor the transgene or if they were not at the correct 780 
developmental stage. No comparisons were made between cohorts of transgenic 781 
embryos, so randomization and experimenter blinding were unnecessary and not 782 
performed. Sample sizes were determined empirically based on our experience 783 
performing >2,000 transgenic enhancer assays. Only LacZ activity patterns that were 784 
observed in more than 30% of embryos resulting from independent transgene 785 
integration events of the same construct were considered reproducible. 786 
 787 
Histology and Regional Activity Scoring 788 
Brains were fixed, cryopreserved and embedded as described previously70. LacZ 789 
activity of candidate enhancers were annotated by at least two experts in the field by 790 
annotating activity in the ventricular zone and the subventricular zone/mantle zone of 791 
the ganglionic eminences. 792 
 793 
Computational and Statistical Analysis 794 
 795 
PLAC-seq 796 
We detected the statistically significant long-range chromatin interactions from 797 
H3K4me3-associated proximity (PLAC-seq) data, using the MAPS pipeline71. Only intra-798 
chromosomal interactions for autosomal chromosomes were selected, at a 10-kb 799 
resolution in the range 20 kb to 1 Mb. Raw reads from sequencing (FASTQ files) were 800 
mapped to the mm10 genome annotation using BWA mem. After duplicate, chimeric 801 
and low-quality read removal71, we split the mapped reads into short- and long-range 802 
reads, for distances between pair ends less than 1 kb and in the 1 kb-1 Mb range, 803 
respectively. We used the short-range and long-range reads to measure protein 804 
immunoprecipitation (IP) efficiency and detect long-range chromatin interactions, 805 
respectively. 806 
 807 
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For ascertaining meaningful interactions, we called peaks from ChIP-seq experiments 808 
on GE cells using H3K4me3 antibody using MACS272. Only 10-kb bin pairs for which at 809 
least one end overlapped with called ChIP-seq peaks were used in the analysis. We 810 
fitted a positive Poisson regression model on all selected 10-kb bin pairs with more than 811 
one raw count, taking into consideration bias factors including linear genomic distance 812 
between two interacting bins, restriction enzyme cut site frequency, GC content, 813 
mappability score, and H3K4me3 antibody efficiency measured by the number of short-814 
range reads in each bin. After model-fitting, we obtained expected contact frequency, p-815 
value and false discovery rate (FDR) for each 10-kb bin pairs. We filtered only 816 
statistically significant bin pairs, defined as those with (1) raw contact frequency >= 12, 817 
(2) normalized contact frequency (observed/expected contact frequencies) >= 2, and (3) 818 
FDR < 0.01.  819 
 820 
We defined singletons as isolated significant chromatin interactions that passed the very 821 
stringent FDR of 1 x 10-4 (to reduce potential false positives) after merging adjacent 822 
chromatin interactions together. Contiguous contact point intervals from the table 823 
generated as above were merged, and the resulting interaction graphs were produced 824 
and analyzed under the denomination interaction ensembles, using a custom R script.  825 
 826 
RNA-seq Data Analysis 827 
Gene expression in GEs at E13.5 were expressed as log2(RPKM) and calculated from 828 
the mean of read counts assigned to genes using the UCSC annotation. RNA-seq data 829 
was generated as part of a study previously reported18, and was used without further 830 
modifications. 831 
 832 
ChIP-seq Data Analysis 833 
The basic analysis pipeline is depicted in the Figure S1a. Quality-controlled FASTQ 834 
files73 containing the reads were further cleaned-up from the remaining adapter 835 
sequences using Trim Galore version 0.4.574. The resulting reads were aligned to the 836 
mouse (mm10) genome using BWA version 0.7.9a75, and duplicates removed with 837 
Samtools version 1.876. Peaks of enriched binding regions against both negative binding 838 
and input DNA control were called using MACS version 2.172 with p-value cutoffs of 1 x 839 
10-4.  840 
 841 
To infer co-occurrence of TF binding at each genomic locus, we combined the peaks 842 
called from 6 published and 6 novel TF ChIP-seq datasets, as described above. Narrow 843 
peaks of TFs were overlapped and merged into one dataset using custom R scripts, 844 
where they were annotated for neighboring gene regulatory regions and filtered against 845 
repeat, blacklisted, and gapped regions. For each TF with more than one replicate, we 846 
selected one that was representative of the whole set; we ran Pearson correlation 847 
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analysis on genome wide coverage using DeepTools version 2.5.325 and determined 848 
that replicates for the same TF were consistent.  849 
 850 
Hypothesizing that genomic context of binding is determined not only by the binding loci 851 
but also by their neighborhood, we used DeepTools to cluster read coverage for each 852 
TF around 1 kb (each side) of each peak in the combined data set at 10-bp resolution 853 
employing the K-means strategy. The data set was split into proximal and distal regions, 854 
defined as those either overlapping or not with putative gene promoters (respectively 855 
2000 and 200 bp upstream and downstream of TSSs), respectively. The number of 856 
clusters was initially set to 3 for each distal/proximal subset and increased by one until 857 
no further patterns were visually captured by the authors, except slight variations in the 858 
clusters bound by multiple TFs. We visually assessed the clusters to determine 859 
patterns. In the distal subset, one of the clusters encompassed more than 8000 peaks; 860 
we further clustered that cluster using the same strategy, and found additional patterns 861 
as outlined above. In the proximal subset, two clusters had similar binding profiles, and 862 
one of them was too small to allow statistical analysis; they were combined, and shown 863 
in Figure 2b as 2.1_P and 2.2_P. 864 
 865 
Motif Analysis 866 
Core motifs for each of the 12 TFs were determined using HOMER version 4.977 in the 867 
called peaks for each individual TF. We performed de novo motif discovery with 868 
standard parameters, 300 bp up- and downstream of TF peaks. We compared the 869 
highest significant discovered motifs with HOMER known motif and JASPAR78 870 
databases, and inferred the core motif based on similitude. For all TFs except SP9 the 871 
core motif was the most significant one (lowest p-value from the HOMER analysis). The 872 
motif enrichment in the combined data set was determined for each cluster, distal and 873 
proximal loci combined, and overall, for all motifs present in the HOMER known motif 874 
database with p-value < 10-125 and enrichment > 1.5 (unless otherwise noted). We 875 
removed from the analysis all motifs from proteins encoded by genes not expressed in 876 
E13.5 GEs, as determined by the RNA-seq experiment. 877 
 878 
For each individual TF and bound loci cluster, the average motif coverage enrichment 879 
plot around 300 bp of peaks was established using HOMER annotation output and 880 
custom R scripts. For the coverage analysis on clustered bound loci, we averaged the 881 
signals from the homeobox-containing motifs among our 12 TFs. The heatmap in Figure 882 
2f reflects individual core motif prevalence, whose relative enrichment is displayed in 883 
Figures S2a and S2b, under different scopes. The average core motif coverage plots 884 
across the different binding clusters are shown in Figure S2d. 885 
 886 
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Integration of orthogonal data types 887 
To make the inferences described in the text, we integrated transcriptomic (RNA-seq), 888 
binding (ChIP-seq), epigenomic (histone ChIP-seq), and interactomic (PLAC-seq) data, 889 
using custom R scripts (Figure S1a). We overlapped binding loci with chromatin 890 
interactions (both ensembles and single interactions), and histone (H3K27ac, 891 
H3K27me, H3K4me3, and H3K4me1) coverage across the mm10 genome. Those 892 
intersection loci were further stratified into the neighborhood binding clusters, as laid out 893 
above. We also overlapped those stratified loci against transcriptional enhancers from 894 
the VISTA database32, as well as novel ones generated as part of this study. 895 
 896 
Additionally, gene-ensemble association was annotated, based on the presence of 897 
annotated gene promoters in interaction ensembles. Those interactions were used to 898 
infer a gene expression model from the transcriptional regulation by three-dimensional 899 
chromatin combinatorially-bound by the TFs. In doing so, we also employed 900 
transcriptomic data in published mouse E13.5 GEs18. 901 
 902 
Chromatin State Inference 903 
We created a 9-state HMM model of chromatin states using E13.5 BG WT histone data 904 
previously reported18 and ChromHMM79 and assigned chromatin states based on the 905 
emission probabilities. The number of states was determined by the minimum time for 906 
convergence of the algorithm as well as assessment for biological relevance. Symbols 907 
were assigned to each state parallel to previously published assessment80. Our model 908 
chromatin states were assessed as below. 909 
 910 
 911 

HMM 
state 

Assigned 
symbol Chromatin state 

1 EnhLo active enhancer with transcriptional history 

2 EnhTx highly active enhancer with transcriptional history 

3 Enh active enhancer without transcriptional history 

4 EnhPoi poised/weak enhancer 

5 EnhBiv bivalent enhancer with transcriptional history 

6 ReprPC polycomb-repressed locus 

7 Quies no signal (quiescent) 

8 TxWk weak transcriptional signal 

9 TssBiv bivalent promoter element 
 912 
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 913 
Other inferences 914 
Non-Gaussian distribution comparisons were performed by computing sample means 915 
(N = 10000) and comparing the means distributions by pairwise t-test; samples were 916 
collected without replacement with a size of 75-80% of the sampling space. For the log 917 
likelihood comparisons between observed and expected, the expected value was 918 
derived from the frequency of the category in each class as per the overall frequency of 919 
that category (Figure S3). 920 
 921 
We compared our results with published data to validate our inferences. We intersected 922 
our neighborhood binding clusters with the clusters derived from the analysis of single-923 
nucleus chromatin accessibility (scATAC-seq) of developing and post-natal mouse 924 
forebrain28, using custom R scripts. Predominant cell fates in those clusters emerged 925 
from that overlap, allowing the inference of TF roles in the regulation of forebrain 926 
development in the GEs. 927 
 928 
For the assessment of overall and base-level evolutionary conservation of stratified 929 
genomic loci as previously described, we used published Vertebrate Phastcons (60 930 
species)81 and PhyloP (59-way)82 scores for the mm10 mouse genome, respectively, 931 
downloaded from the UCSC genome browser 932 
(http://hgdownload.cse.ucsc.edu/goldenPath/mm10/). 933 
 934 
We further validated our model by comparing the inferences with previously published 935 
findings of regulatory roles of DLX218 and NKX2.120 in activating (a.RE) and repressing 936 
(r.RE) gene expression. 937 
 938 
 939 
Comparison with Cortex TF binding 940 
To make the comparison against known TF binding in developing cortex at a similar 941 
developmental stage, we reanalyzed published cortex ChIP-seq datasets38 under the 942 
same parameters herein, and overlapped those binding loci with those obtained in our 943 
study, using custom R scripts. 944 
 945 
 946 
Data and Code Availability 947 
This article made use of published and unpublished genomic and epigenomic data that 948 
are deposited in the NCBI database, as outlined below. The data can be downloaded 949 
from (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GEO accession), as below. 950 
 951 
 952 
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Data type Source GEO accession 
E13.5 GE ChIP-seq   
 ARX this study GSE222183 
 ASCL1 this study GSE222183 
 DLX1 Lindtner et al, 2019 GSE124936 
 DLX2 Lindtner et al, 2019 GSE124936 
 DLX5 Lindtner et al, 2019 GSE124936 
 GSX2 this study GSE222183 
 LHX6 Sandberg et al, 2016 GSE85705 
 NKX2.1 Sandberg et al, 2016 GSE85705 
 NR2F1 this study GSE222183 
 OTX2 Hoch et al, 2015 GSE69724 
 PBX1 this study GSE222183 
 SP9 this study GSE222183 
E13.5 GE PLAC-seq this study GSE222183 
E13.5 GE RNA-seq   
 DLX1/2 Lindtner et al, 2019 GSE124936 
 NKX2.1 Sandberg et al, 2016 GSE85705 

 953 
 954 
Data can be visualized in UCSC track hub format whose information is provided on 955 
Nord Lab GitHub page 956 
(https://github.com/NordNeurogenomicsLab/Publications/tree/master/Catta-957 
Preta_XXX_2023). All R scripts were created in-house and can be provided upon 958 
request. 959 
 960 
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