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Abstract 25 

HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral 26 

therapy (ART) have been well characterized, but little is known about the dissemination 27 

of HIV-1-infected cells across multiple anatomical tissues, especially the central 28 

nervous system (CNS). Here, we performed single-genome, near full-length HIV-1 29 

next-generation sequencing to evaluate the proviral landscape in distinct anatomical 30 

compartments, including multiple CNS tissues, from 3 ART-treated participants at 31 

autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary 32 

tissues represented tissue hotspots for the persistence of intact proviruses, we also 33 

observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. 34 

Multi-compartment dissemination of clonal intact and defective proviral sequences 35 

occurred across multiple anatomical tissues, including the CNS, and evidence for the 36 

clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal 37 

lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 38 

reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies. 39 

 40 
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Introduction 42 

 43 

Combination antiretroviral therapy has extended the life expectancy of people living 44 

with HIV (PLWH) to near-normal levels, but it is clear that antiretroviral therapy (ART), 45 

in its present form, does not lead to a sustained, drug-free remission of HIV-1 infection; 46 

instead, a long-lived reservoir of virally-infected cells persists despite ART (1, 2) and 47 

can effectively fuel rebound viremia in case of treatment interruptions. Hence, 48 

antiretroviral therapy needs to be taken life-long; finding a way to eliminate HIV-1 49 

reservoir cells remains critical to finding a cure for HIV-1 infection. 50 

 51 

HIV-1 reservoir cells that circulate in the peripheral blood have been well-described in 52 

recent years (3). These circulating reservoir cells mostly consist of memory CD4 T cells 53 

that persist life-long and harbor chromosomally-integrated viral DNA, also referred to 54 

as a “provirus”. The pool size of HIV-1-infected cells during suppressive antiretroviral 55 

therapy is frequently maintained or replenished by clonal proliferation of viral reservoir 56 

cells, during which an identical viral DNA copy is passed on to daughter cells (4-7). 57 

Important advances in recent technology development, including single-genome near 58 

full-length proviral sequencing, have demonstrated that the vast majority of HIV-1 DNA 59 

species encountered in ART-treated persons are defective (8-10), mostly due to errors 60 

occurring during reverse transcription of viral RNA into DNA. Such errors can lead to 61 

large deletions, premature stop codons, or defects in the viral packaging signal region; 62 

moreover, specific host proteins such as APOBEC-3G/3F can induce lethal 63 

hypermutations into the proviral sequence. The ability of viral reservoir cells to persist 64 

indefinitely is frequently attributed to very limited or absent proviral gene transcription; 65 

this viral latency protects infected cells from host immune responses and reduces 66 

possible cytopathic effects associated with viral gene expression. However, recent 67 

studies have emphasized that proviral gene expression can be ongoing in some HIV-68 

1-infected cells during antiretroviral therapy (11), typically when proviruses are 69 

integrated in immediate proximity to activating chromatin marks (12).  70 

 71 
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Much less is currently known about HIV-1 reservoir cells in other body compartments 72 

that are more difficult to access for analytic purposes. Lymph nodes and lymphoid 73 

tissues in the gastrointestinal tract harbor the vast majority of all lymphocytes and are 74 

likely to represent a prime location for the persistence of virally-infected cells (13-16); 75 

however, studies that interrogate viral reservoir cells in these tissues remain limited. 76 

Even less is known about HIV-1 persistence in other organs, and, in particular, in the 77 

CNS, although recent studies have started to explore viral reservoir cells in such 78 

specific body compartments (17). In the present study, we used single-genome proviral 79 

sequencing to conduct a detailed analysis of HIV-1 proviral sequences in autopsy 80 

samples from up to n=18 different organ systems from three study participants.  81 

 82 

 83 
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Methods 85 

 86 

Study Participants 87 

HIV-1-infected study participants were recruited at the Massachusetts General 88 

Hospital (MGH) and the Brigham and Women’s Hospital in Boston, MA. Fresh tissues 89 

were sampled during routine autopsy according to protocols approved by the 90 

Institutional Review Board and cryopreserved for future study according to standard 91 

protocols. The clinical characteristics of study participants are summarized in Figure 92 

S1.  93 

 94 

HIV-1 DNA quantification by IPDA 95 

Tissue samples were dissected and subjected to genomic DNA extraction using the 96 

DNeasy Blood and Tissue Kit (QIAGEN DNeasy, #69504). HIV-1 DNA was analyzed 97 

by the Intact Proviral DNA Assay (IPDA), using primers and probes described 98 

previously (18). PCR was performed using the following program: 95 °C for 10 min, 45 99 

cycles of 94 °C for 30 s and 59 °C for 1 min, 98 °C for 10 min. The droplets were 100 

subsequently read by the QX200 droplet reader (Bio-Rad), and data were analyzed 101 

using QuantaSoft software (Bio-Rad). 102 

 103 

Near full-length HIV proviral sequencing 104 

Genomic DNA diluted to single HIV-1 genome levels based on Poisson distribution 105 

statistics and IPDA results was subjected to near full-genome HIV-1 amplification using 106 

a one-amplicon approach (9, 19). PCR products were visualized by agarose gel 107 

electrophoresis. Amplification products were individually subjected to Illumina MiSeq 108 

sequencing at the MGH DNA Core facility. The resulting short reads were de novo 109 

assembled using Ultracycler v1.0 and aligned to HXB2 to identify large deleterious 110 

deletions (<8000 bp of the amplicon aligned to HXB2), out-of-frame indels, 111 

premature/lethal stop codons, internal inversions, or 5′-LTR defect (≥15 bp insertions 112 

and/or deletions relative to HXB2), using an automated in-house pipeline written in 113 

Python scripting language (https:// github.com/BWH-Lichterfeld-Lab/Intactness-114 
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Pipeline). The presence/absence of APOBEC-3G/3F–associated hypermutations were 115 

determined using the Los Alamos HIV Sequence Database Hypermut 2.0 program. 116 

The sequences of individual genes were extracted by GeneCutter, and the start codons 117 

of Gag, Pol, and Env were examined and considered. Viral sequences that lacked all 118 

defects listed above were classified as “genome-intact”. Multiple sequence alignments 119 

were performed using MUSCLE (20). Phylogenetic analyses were conducted using 120 

MEGA X, applying maximum likelihood approaches. Viral sequences were considered 121 

clonal if they had completely identical consensus sequences; single-nucleotide 122 

variations in primer binding sites were excluded for clonality analysis. When viral DNA 123 

sequences were undetectable, data were reported as LOD (limit of detection), 124 

calculated as 0.5 copies per maximum number of cells tested without target 125 

identification. The sensitivity of proviral species to broadly-neutralizing antibodies 126 

(bnAb) was estimated by calculating the number of amino acid signature sites 127 

associated with sensitivity to four bnAb classes within the env amino acid sequence 128 

from each intact provirus, as previously described (21). 129 

 130 

Data Analysis and Statistics 131 

Data are summarized as bar graphs. Phylogenetic relationships were evaluated using 132 

maximum-likelihood phylogenetic trees. Images were prepared using Adobe Illustrator. 133 

HIV-1 tropism was computationally inferred using Geno2pheno 134 

(https://coreceptor.geno2pheno.org/). HIV-1 tropism was classified as “CCR5” if the 135 

false-positive rate (FPR) predicted by Geno2pheno was >2%, however, 92% of our 136 

proviral sequences meeting this definition had a FPR score >10%; proviruses were 137 

considered “CXCR4-tropic” if FPR was <2%. Due to confidentiality concerns, proviral 138 

sequencing data cannot be publicly released, but will be made available upon 139 

reasonable request and after signing an institutional data-sharing agreement.  140 
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Results 142 

 143 

Frequency of intact and defective proviruses in tissue compartments 144 

To investigate the proviral landscape across multiple anatomical tissues, including the 145 

central nervous system (CNS), we focused on 3 participants from whom post-mortem 146 

tissue samples were available for HIV-1 research. Tissue samples from the CNS and 147 

other organs were collected by a rapid (<24 hour) autopsy after death. The clinical and 148 

demographic characteristics of these study participants are shown in Figure S1A. All 149 

study participants adhered to antiretroviral treatment until death; plasma viral loads 150 

were undetectable by commercial assays in study participants 1 and 2, in whom 14 151 

and 15 different tissue sections were sampled, respectively (Figure S1B). Organ-152 

specific tissues analyzed in these two study participants included lymph node, spleen, 153 

colon, liver, pancreas, kidney, thyroid gland, and adrenal gland; in the female study 154 

participant 1, ovarian and uterus tissues were analyzed, while in the male study 155 

participant 2, prostate and testicular tissues were studied. In both of these study 156 

participants, four different CNS tissue sections (basal ganglia, thalamus, frontal lobe, 157 

and occipital lobe) were collected for investigation. In study participant 3, plasma viral 158 

load was 136 copies/ml at the time of death; 5 different tissue sections from the CNS 159 

(basal ganglia, thalamus, occipital lobe, frontal lobe, periventricular white matter) were 160 

analyzed in this person.  161 

 162 

Near full-length single-template next-generation HIV-1 proviral sequencing was 163 

performed to profile the proviral reservoir landscape at single-molecule resolution in 164 

tissue samples. The number of cells analyzed from each organ in each participant is 165 

listed in Figure S1B. In total, 846.53, 425.54, and 199.66 million cells were assayed 166 

in study participants 1, 2, and 3, respectively, resulting in 1471.73 million cells analyzed 167 

in all study participants combined. A total of 1497 individual proviral sequences were 168 

amplified, of which n=497 were selected for next-generation sequencing based on their 169 

amplicon sizes on gel electrophoresis; the remaining sequences were classified as 170 

proviruses with large deletions. All amplicons (n=74) from CNS tissues were 171 
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sequenced, regardless of their length. Using a previously-described computational 172 

pipeline to identify lethal defects in proviral sequences, we identified 48 proviruses 173 

(3.21% of all proviruses) that met our criteria for genome-intactness (Figure 1A-C); 174 

this number is consistent with the small number of genome-intact proviruses detected 175 

in previous studies. Many sequences, both genome-intact and defective, were 176 

identified multiple times, consistent with clonal proliferation of infected cells (Figure 177 

1B), as reported in prior work (7, 9, 10, 22).  178 

 179 

To evaluate HIV-1 persistence in selected tissue compartments, the frequencies of 180 

total, intact, and defective HIV-1 proviruses in each tissue were analyzed (Figure 2A-181 

C). Intact proviral sequences were only detected in 8 tissue sites, including basal 182 

ganglia, periventricular white matter, lymph node, spleen, colon, kidney, prostate, and 183 

thyroid (Figure 2B). The numbers of intact HIV-1 sequences in these 8 tissues varied 184 

from 0.01 to 0.6 copies per million cells. Consistent with previous studies, the 185 

frequency of intact proviral sequences was highest in the lymph node in participant 1 186 

(0.52 intact proviruses/million cells) and participant 2 (0.58 intact proviruses/million 187 

cells), followed by kidney, spleen, colon, and basal ganglia in participant 1 and by 188 

prostate, spleen, thyroid in participant 2. Intact proviruses were detected in the basal 189 

ganglia in study participant 1 (frequency of 0.015/million cells) and in study participant 190 

3 (0.030 intact proviruses/million cells). Moreover, one intact provirus was also 191 

detected in periventricular white matter in participant 3 (0.027 intact proviruses/million 192 

cells), in whom analysis was limited to brain tissues. No intact proviruses were 193 

detected in the CNS tissues of study participant 2, despite analyzing 66.29 million cells. 194 

Together, these results indicate that intact HIV-1 proviruses are preferentially detected 195 

in lymphoid and gastrointestinal (GI) tissues. The frequency of intact proviruses in the 196 

CNS is comparatively low; however, this study is the first one to document the 197 

presence of genome-intact proviral sequences in CNS tissues using near full-length 198 

proviral sequencing.  199 

 200 

Defective proviral sequences were detected in all analyzed tissue samples except for 201 
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the thalamus from participant 1 (Figure 2C). In participant 1, the frequency of defective 202 

proviral sequences was highest in lymph nodes (5.7 defective proviruses/million cells), 203 

followed by colon, spleen, and kidney. In participant 2, the frequency of defective 204 

proviral sequences was highest in lymph nodes (13.0 defective proviruses/million cells), 205 

followed by prostate, colon, and spleen. Notably, the prostate had a very high 206 

frequency of virally-infected cells. The ratio of intact to defective proviral species was 207 

relatively high among sequences isolated from the basal ganglia of participants 1 and 208 

3 (Figure S2). Taken together, these results demonstrate the highest frequencies of 209 

defective proviruses in lymph nodes, in the colon and in the prostate. CNS tissues 210 

contained relatively low frequencies of proviral sequences, compared to other tissue 211 

sites; however, defective proviruses were isolated in all but one of the analyzed 13 212 

different CNS samples. 213 

 214 

Phylogenetic associations and clonality 215 

A series of prior studies demonstrated large sequence-identical clones of intact and 216 

defective proviruses in the peripheral blood of ART-treated study participants. In our 217 

subsequent analysis, we studied the dissemination of clonal proviral sequences across 218 

different tissues. In participant 1, a total of 24 intact proviral sequences were detected. 219 

Two large clones of intact proviruses were observed, one of which included sequences 220 

detected in kidney, lymph node, and spleen samples (Figure 3A-B). The other clone 221 

involved intact proviral sequences from basal ganglia and lymph node tissues. Among 222 

218 defective proviruses sequenced in participant 1, 14 clones were observed across 223 

multiple tissues (Figure 3C). In participant 2, among 22 intact proviral sequences, only 224 

one clone with two member sequences was identified; both of these clonal sequences 225 

were located in the prostate (Figure 3A-B). Fourteen clones of defective proviruses 226 

were observed across multiple tissues in participant 2 (Figure 3C).  227 

Clonal proviral sequences in CNS tissues were detected in all three study participants. 228 

In study participant 1, members of a clone of defective proviruses were observed in 229 

the basal ganglia and the frontal lobe (Figure 4A-B). In participant 2, two clones of 230 

defective proviruses were noted in the thalamus, one clone was detected in cells from 231 
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the basal ganglia, and members of a fourth clone were detected in the thalamus and 232 

the occipital lobe (Figure 4C-D), demonstrating rather extensive evidence for clonal 233 

proliferation of virally-infected cells in the brain. Two of the 44 proviral sequences 234 

detected in the central nervous system of participant 3 met the criteria for genome-235 

intactness; one of those was isolated from the basal ganglia and one from 236 

periventricular white matter. Defective proviruses, most of them harboring large 237 

deletions, were detected in all 5 CNS tissues from participant 3 (Figure 4E-F). One 238 

large clone involving 9 defective proviral sequences in participant 3 was broadly 239 

distributed across different brain tissues, encompassing sequences in the occipital 240 

lobe, basal ganglia, thalamus, and periventricular white matter. The other clone of 241 

defective proviruses was only detected in the periventricular white matter. Again, these 242 

data suggest that clonal proliferation is a rather common feature of HIV-1 reservoir 243 

cells in the CNS. 244 

 245 

Viral tropism and immune selection footprints 246 

Viral tropism was evaluated based on the env V3 region of the proviruses using the 247 

Geno2pheno algorithm. Notably, all proviral sequences containing the env V3 region 248 

of participant 1 (n=130, 53.7%) and 3 (n=6, 13.6%) were predicted to be CCR5-tropic 249 

(Figure 5A). In participant 2, 62.1% of proviral sequences (n=131) were predicted to 250 

be likely CXCR4-tropic, while 18.5% (n=39) were classified as CCR5-tropic; the 251 

remaining 19.4% (n=41) were classified as undetermined due to the lack of env V3 252 

regions in this study participant (Figure 5A). Notably, approximately half of the 131 253 

proviruses with predicted CXCR4 tropism from study participant 2 (n=66, 50.4%) were 254 

isolated from the prostate, followed by the spleen (n=38, 29.0%), lymph node (n=20, 255 

15.3%) and thyroid gland (n=3, 2.3%) (Figure 5B-C). Among all proviruses (n=16) from 256 

CNS tissues of participant 2, only one provirus with a large deletion, isolated from the 257 

occipital lobe, had predicted CXCR4-tropism; the tropism of other proviruses from the 258 

CNS was unknown due to the lack of env V3 regions. As an additional analysis step, 259 

we evaluated footprints of immune selection pressure and mutations resulting in 260 

resistance to antiretroviral agents in intact proviral sequences from our study subjects. 261 
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We noted that the frequency of viral amino acid residues associated with resistance to 262 

broadly-neutralizing antibodies did not notably differ among sequences isolated from 263 

different tissue compartments (Figure S3). We did not observe sequence variations 264 

consistent with escape from antiretroviral agents in any of the intact proviral sequences 265 

analyzed here.  266 

 267 
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Discussion 269 

The lifelong persistence of viral reservoir cells makes HIV-1 infection an incurable 270 

disease that necessitates indefinite antiretroviral suppression therapy. However, the 271 

location of HIV-1 viral reservoir cells across different tissues has been difficult to assess 272 

in the past, due to the limited availability of tissue samples. Recent studies, pioneered 273 

by investigators of the “Last Gift Cohort”, have catalyzed investigations to characterize 274 

HIV-1 sequences in diverse organ systems, specifically in the CNS (23, 24). In our 275 

study, we used single-genome near full-length proviral sequencing to evaluate the 276 

distribution of HIV-1 reservoir cells in multiple anatomical compartments from autopsy 277 

samples of three individuals living with HIV-1 and receiving antiretroviral therapy until 278 

the time of their decease. Consistent with previous studies (25, 26), intact proviruses 279 

were readily detected in lymph nodes; moreover, we detected relatively high 280 

frequencies of intact proviruses in the colon, likely reflecting viral infection of CD4 T 281 

cells residing in gut-associated lymphoid tissues (GALT). Of note, our study is among 282 

the first investigations to identify near full-length proviral sequences from the central 283 

nervous system in two study participants, supporting the hypothesis that CNS cells can 284 

serve as reservoirs for long-term HIV-1 persistence despite antiretroviral therapy. 285 

Importantly, we noted that large clones of virally infected cells were broadly 286 

disseminated across multiple tissues, and, in selected cases, involved cells from the 287 

CNS; this suggests that HIV-1 reservoir cells seeded to the brain via hematogenous 288 

spread can proliferate in the local tissue microenvironment of the central nervous 289 

system. Together, our work suggests that HIV-1 reservoir cells harboring intact 290 

proviruses are broadly distributed across multiple anatomical locations, involving 291 

lymphoid tissues, gastrointestinal tissues, genitourinary tissues, and, importantly, 292 

central nervous system tissues.   293 

 294 

HIV-1 can invade the central nervous system (CNS) within days after infection, as 295 

demonstrated in animal (27) and in human studies (28). Most likely, infection of CNS 296 

cells occurs as a result of transmigration of infected CD4 T cells and, possibly, 297 

macrophages across the blood-brain-barrier (BBB) (29, 30), a process that may be 298 
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facilitated by the increased permeability of the BBB during the initial, highly-replicative 299 

stage of HIV-1 infection. Infected cells that successfully enter the CNS may frequently 300 

be short-lived, however some infected CD4 T cells in the brain may persist long-term. 301 

Moreover, invading infected cells can transmit the virus to resident CNS cells via 302 

effective cell-to-cell transmission (30). At least three different CNS cell types seem to 303 

be susceptible to HIV-1 infection: perivascular macrophages, microglial cells, and 304 

astrocytes, although the role of the latter as HIV-1 target cells is more controversial 305 

(31-33). Yet, due to the difficulties in accessing brain tissues for analytic purposes, the 306 

role of the central nervous system in HIV-1 persistence during antiretroviral therapy 307 

remained largely unknown for a long time. Using the intact proviral DNA assay (IPDA), 308 

a ddPCR-based technique allowing to identify proviruses with a high probability of 309 

being genome-intact, previous investigators identified intact proviruses in 6 out of 9 310 

ART-treated persons (17), although the precise proviral DNA sequence and their 311 

possible clonality was not assessed with this technology. In our study, a total of 13 312 

CNS tissue samples from three study participants were analyzed, including specimens 313 

from the basal ganglia, thalamus, occipital lobe, frontal lobe, and periventricular white 314 

matter. In two study persons (participants 1 and 3), intact proviral sequences were 315 

detected in basal ganglia, suggesting that HIV-1 may preferentially persist in this 316 

anatomical compartment in the CNS; an additional intact provirus was detected in 317 

periventricular white matter. Notably, the intact provirus from basal ganglia in one of 318 

our study persons (participant 1) was clonal with 4 intact proviruses from the lymph 319 

node, indicating, to our knowledge for the first time, that CNS tissue can be involved 320 

in the multi-compartment dissemination of large clones of HIV-1 proviruses in ART-321 

treated persons. Moreover, in multiple instances, we observed clones of HIV-1-infected 322 

cells that were distributed across different autologous CNS tissues, specifically in study 323 

participant 3, suggesting local spread of virally infected cells through clonal 324 

proliferation within the immune microenvironment of the CNS.  325 

 326 

Our study did not allow to determine which cell types were infected by HIV-1 and 327 

responsible for clonal expansion of viral reservoir cells in the CNS; however, it is 328 
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possible that infected microglia are involved. Microglial cells originate from 329 

erythromyeloid progenitors in the yolk sac and colonize the developing CNS during 330 

embryogenesis (34); these cells act as the main innate immune cell population of the 331 

CNS. Due to their long half-life (typically several years), their ability to divide and self-332 

renew, and their high cell-intrinsic susceptibility to HIV-1 (35), these cells may 333 

represent a primary cellular site for long-term HIV-1 persistence in the CNS. In 334 

particular, self-renewal through homeostatic proliferation in microglia (36) may support 335 

HIV-1 persistence through clonal expansion. A recent study indeed identified HIV-1 336 

DNA and RNA in microglia cells from autopsies from ART-treated PLWH who did not 337 

have specific (HIV or non-HIV associated) CNS pathology (37). Evidence for HIV-1 338 

persistence in CD68+ myeloid cells, most likely microglia cells, was also described by 339 

previous investigators (17). That said, the presence of clonal proviral sequences 340 

shared between the CNS and lymphoid tissues suggests that migrating CD4 T cells 341 

infected with R5-tropic viruses may infect the brain as “Trojan horses”, and then 342 

potentially clonally expand in situ in the CNS; this hypothesis is consistent with recent 343 

findings from Kincer et al (38). In the future, it may be possible to capture the 344 

phenotypic characteristics of HIV-1 reservoir cells from the CNS directly with single-345 

cell assays that permit combined assessments of the phenotype and the proviral 346 

sequence; an example for such an assay system was recently described (39). 347 

 348 

In our study, CXCR4-tropic proviruses were exclusively detected in participant 2. 349 

Compared to the other two participants who began ART shortly after HIV-1 diagnosis, 350 

participant 2 was diagnosed with HIV-1 25 years prior to starting antiretroviral therapy 351 

and died 10 months after ART commencement; therefore, viral CXCR4 tropism most 352 

likely resulted from “coreceptor switch” frequently occurring during advanced stages of 353 

immune deficiency (40). Whether the preferential persistence of CXCR4-tropic viruses 354 

in study participant 2 was associated with our inability to detect intact proviruses in the 355 

CNS in this person is unclear; however, prior studies suggested that CCR5 can act as 356 

the principal co-receptor for HIV-1 isolates in the brain (41, 42). Moreover, rebound 357 

viremia in cerebrospinal fluid after ART interruption is mostly fueled by CCR5-tropic 358 
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virus (38), further supporting the assumption that R5-tropic viruses are better adjusted 359 

to persist in the brain. Another notable finding in our study was the high number of HIV-360 

1 proviruses isolated from the prostate, which had the second highest proviral 361 

frequency among all analyzed tissues in study participant 2, second only to lymph node 362 

samples. Other studies also reported that the prostate can represent a tissue reservoir 363 

for HIV-1 (24). We were unable to identify the precise cell type harboring HIV-1 in the 364 

prostate, but it is possible that myeloid cells may harbor HIV-1 in this location. A prior 365 

study indeed demonstrated that intact, replication-competent HIV-1 can persist in 366 

myeloid cells from the urethra, located in immediate anatomical proximity to the 367 

prostate (43).   368 

 369 

Our study has several limitations. Importantly, this work includes only 3 participants, 370 

and brain tissues were the only samples available from participant 3. Moreover, due to 371 

limited tissue sizes, very few cells were assayed from the terminal ileum and testes; 372 

prior studies suggested high HIV-1 DNA levels in these 2 tissues during suppressive 373 

antiretroviral therapy (44, 45). Another limitation was that peripheral blood samples 374 

were not available from the 3 participants, which made it impossible to study 375 

phylogenetic associations between tissue reservoirs of HIV-1 relative to viral species 376 

circulating in peripheral blood. Moreover, we cannot fully exclude contamination of 377 

tissue samples with cells from peripheral blood. However, after autopsy, the tissue 378 

samples were washed thoroughly with PBS to eliminate blood as much as possible. 379 

Notably, we failed to detect intact proviral sequences from over 100 million liver cells 380 

of 2 participants, despite the fact that the liver contains about 13% of all human blood 381 

supply at any given time point, arguing against contamination of tissues with blood 382 

cells. 383 

 384 

In sum, this study provides a deep analysis of tissue reservoirs for HIV-1 that includes 385 

a detailed assessment of HIV-1 sequences in CNS tissues. Our work supports the 386 

persistence of genome-intact HIV-1 in many tissues, including CNS tissues, 387 

emphasizing the difficulties in finding strategies to effectively eliminate HIV-1 from the 388 
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human body in clinical settings.   389 
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Figure legends  552 

 553 

Figure 1. Proviral sequence classification in all analyzed HIV-1-infected cells 554 

from 3 study participants. (A) Pie charts reflecting proportions of proviruses 555 

classified as intact or defective. All proviruses identified by single-genome, near-full- 556 

length, next-generation sequencing and by counting amplification products in agarose 557 

gel electrophoresis were included. The total number of individual sequences included 558 

is listed below each pie chart. (B) Pie charts indicating proportions of intact and 559 

defective proviruses detected once (classified as non-clonal) and detected multiple 560 

times (classified as clonal). The total number of proviral sequences identified by single-561 

genome, near-full-length, next-generation sequencing is listed below each pie chart. 562 

(C) Virograms summarizing individual HIV-1 proviral sequences aligned to the HXB2 563 

reference genome from each participant; color coding reflects the classification of 564 

proviral sequences.  565 

 566 

Figure 2. Distribution of total, intact, and defective HIV-1 proviruses in individual 567 

tissue compartments. Bar diagrams reflect relative frequencies of total (A), intact (B), 568 

and defective (C) proviruses in all analyzed tissues in study participants 1-3. The total 569 

number of individual proviral sequences determined by single-genome, near-full-length, 570 

next-generation sequencing and by counting amplification products in agarose gel 571 

electrophoresis from each tissue site of each participant is listed aside each bar.  The 572 

red bars reflect samples with detectable proviral sequences; grey bars reflect samples 573 

at limit of detection for proviral sequences, calculated as 0.5 (single genome near–full-574 

length PCR) copies per maximum number of cells tested without target identification 575 

(see Materials and Methods for details). N.d. (not done) indicates that the samples 576 

were not available from the indicated tissue sites. 577 

 578 

Figure 3. Dissemination of HIV-1-infected cells across multiple anatomical 579 

tissues in participants 1 and 2. (A and B): Circular maximum likelihood phylogenetic 580 

trees (A) and circus plots (B) of intact proviral sequences from participant 1 (P1) and 581 
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participant 2 (P2). HXB2, reference HIV-1 sequence. Color coding reflects tissue 582 

origins. Each symbol reflects one intact provirus. Clonal intact sequences, defined by 583 

complete sequence identity, are indicated by blue arches in (A) and by internal 584 

connections in (B). (C) Circos plots reflecting the clonality of defective proviral 585 

sequences from participant 1 (left panel) and participant 2 (right panel). Each symbol 586 

reflects one defective provirus. Clonal sequences, defined by complete sequence 587 

identity, are highlighted. Color-coded arches around the plots indicate types of defects 588 

in HIV-1 genomes. 589 

 590 

Figure 4. Dissemination of HIV-1-infected cells across CNS tissues. (A, C, and E) 591 

Circular maximum likelihood phylogenetic trees of all proviral sequences derived from 592 

CNS tissues of the 3 study participants (A, participant 1; C, participant 2; E, participant 593 

3). Color coding reflects tissue origins. Clonal sequences, defined by complete 594 

sequence identity, are indicated by blue arches. (B, D, and F) Circos plot reflecting the 595 

clonality of all proviral sequences isolated from CNS tissues of 3 participants (B, 596 

participant1; D, participant 2; F, participant 3). Each symbol reflects one provirus. 597 

Clonal sequences, defined by complete sequence identity, are highlighted. Color-598 

coded arches around the plots indicate types of proviral sequences. 599 

 600 

Figure 5. HIV-1 tropism analysis of proviral sequences. (A) Pie charts indicating 601 

the proportions of all proviruses from each participant with CCR5-tropic or non–602 

CCR5/CXCR4-tropic V3 envelope sequences are shown. The total number of proviral 603 

sequences included in this analysis is listed below each pie chart. (B) The proportions 604 

of proviruses with CCR5-tropic or non-CCR5/CXCR4-tropic V3 env sequences in each 605 

tissue from participant 2 are shown. (C) Pie charts indicating the proportions of all non–606 

CCR5-tropic proviruses from participant 2 are shown. Color coding reflects tissue 607 

origins. The total number of analyzed proviral sequences is listed below the pie chart. 608 

HIV-1 tropism was computationally inferred using Geno2pheno 609 

(https://coreceptor.geno2pheno.org/). HIV-1 tropism was classified as “CCR5” if the 610 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.06.26.546135doi: bioRxiv preprint 

https://coreceptor.geno2pheno.org/
https://doi.org/10.1101/2023.06.26.546135
http://creativecommons.org/licenses/by-nc-nd/4.0/


false-positive rate (FPR) predicted by Geno2pheno was >2% and “CXCR4” if FPR was 611 

<2%.  612 
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Supplemental Material 613 

 614 

Supplemental Figure 1: (A) Clinical and demographical data of study participants. (B) 615 

Cell numbers analyzed from each tissue of each study participant. 616 

 617 

Supplemental Figure 2: (A) Bar diagrams reflect the ratios of intact to defective HIV-618 

1 proviruses in all analyzed tissues in study participants 1-3. The red bars reflect 619 

samples with detectable proviral sequences; grey bars reflect samples at limit of 620 

detection for proviral sequences, calculated as 0.5 proviral copies per maximum 621 

number of cells tested without target identification (see Materials and Methods for 622 

details). N.d. (not done) indicates that the samples were not available from the 623 

indicated tissue sites. 624 

 625 

Supplemental Figure 3: (A-F) Numbers of broadly neutralizing antibody (bnAb) 626 

sensitivity (A, C, and E) and resistance (B, D, and F) signature sites in intact proviral 627 

sequences from indicated tissues from each participant are shown. Each dot 628 

represents one intact provirus. Amino acid residues associated with susceptibility or 629 

resistance to bnAbs were inferred based on the study by Bricault (21).  630 

 631 

 632 

 633 

 634 
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 636 
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 640 

 641 

 642 
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