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Abstract 
 
We introduce mvSuSiE, a multi-trait fine-mapping method for identifying putative causal variants 
from genetic association data (individual-level or summary data). mvSuSiE learns patterns of 
shared genetic effects from data, and exploits these patterns to improve power to identify causal 
SNPs. Comparisons on simulated data show that mvSuSiE is competitive in speed, power and 
precision with existing multi-trait methods, and uniformly improves on single-trait fine-mapping 
(SuSiE) in each trait separately. We applied mvSuSiE to jointly fine-map 16 blood cell traits 
using data from the UK Biobank. By jointly analyzing the traits and modeling heterogeneous 
effect sharing patterns, we discovered a much larger number of causal SNPs (>3,000) 
compared with single-trait fine-mapping, and with narrower credible sets. mvSuSiE also more 
comprehensively characterized the ways in which the genetic variants affect one or more blood 
cell traits; 68% of causal SNPs showed significant effects in more than one blood cell type. 
 
Introduction 
 
Genome-wide association analyses (GWAS) have been performed for thousands of traits and 
have identified many genomic regions associated with diseases and complex traits [1, 2, 3, 4]. 
Many statistical fine-mapping methods have been developed to prioritize putative causal SNPs 
for a single trait [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] [15, 16], but much fewer methods are available 
to fine-map multiple traits simultaneously. A simple strategy to fine-map multiple traits is to fine-
map each trait separately then integrate the results post hoc. However, integration of results is 
not straightforward; for example, it is difficult to say whether signals identified in different single-
trait analyses likely correspond to the same underlying causal SNP. Further, analyzing each trait 
independently is inefficient in that it cannot exploit the potential for increased power of a 
multivariate analysis [17]. Therefore, it is desirable to fine-map the traits simultaneously—that is, 
to perform multi-trait fine-mapping. 
 
Although several methods have been developed for multi-trait fine-mapping [18, 19, 20, 21, 22, 
23, 24, 25, 26] (Table 1), these methods have important practical limitations. For example, 
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several methods are computationally impractical for more than a small number of traits, and 
most methods make restrictive assumptions about how SNPs affect the traits, such as that the 
effects of causal SNPs are uncorrelated among traits (e.g., [18, 19]). These assumptions are 
easily violated in fine-mapping applications; for example, in the blood cell traits considered in 
this paper, some genetic effects are specific to subsets of the traits (e.g., red blood cell traits). 
There are also several methods developed for the problem of colocalization of two traits (e.g., 
[27, 28, 29, 30]), which has different analysis aims, but overlaps with multi-trait fine-mapping. 
 
Here we introduce mvSuSiE, a fast and flexible method for multi-trait fine-mapping. The name 
“mvSuSiE” evokes its origins as an extension of the Sum of Single Effects (SuSiE) model [13] to 
the multivariate analysis setting. In particular, mvSuSiE combines the SuSiE model with ideas 
from [31] to learn, in a flexible way, the patterns of shared genetic effects among traits. In this 
way, mvSuSiE automatically adapts to the patterns of effect sharing in the particular traits being 
analyzed, making it widely applicable to fine-mapping any set of related traits. We also leverage 
ideas from [16] to allow the analysis of summary statistics generated from a genetic association 
study which are often more accessible than individual-level data [32, 33]. mvSuSiE is 
computationally practical for jointly fine-mapping many traits in “biobank scale” data. We 
demonstrate its effectiveness compared with existing methods in simulations and by fine-
mapping 16 blood-cell traits in 248,980 UK Biobank samples. 
 
Results 
 
Methods overview. Consider fine-mapping R traits in a region containing J SNPs (or other 
biallelic loci). For each individual i = 1, …, N, let 𝑦!" denote trait r measured individual i, and let 
𝑥!# denote the genotype of individual i at SNP j, encoded as the number of copies of the minor 
allele. We perform multi-trait fine-mapping using the following multivariate linear regression 
model: 

𝑦!" =	𝜇" +'𝑥!#𝑏#" + 𝑒!"

$

#%&

, 

 (1) 
where 𝜇" reflects the mean of trait r, 𝑏#" is the effect of SNP j on trait r, and the 𝑒!"s are 
normally-distributed error terms (which may be correlated among the R traits). Within this 
regression model, we frame fine-mapping as a “variable selection problem”: most SNPs are 
assumed to have no effect on any trait—that is, most effects 𝑏#" are zero—and the goal of multi-
trait fine-mapping is to identify which SNPs have a non-zero effect on which traits, and to 
assess uncertainty in these inferences. (For brevity, we use the term “causal SNP” to mean a 
SNP with non-zero effect.) 
 
Our mvSuSiE method achieves this goal by extending the Sum of Single Effects (SuSiE) model 
[13] to the multivariate setting. By using ideas from [16], it can perform fine-mapping using either 
individual-level data (genotypes and phenotypes) or summary data (e.g., LD matrix and 
marginal z-scores); see Online Methods for details. 
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Among existing approaches to fine-mapping, mvSuSiE is most closely related to CAFEH [23], 
which also extends SuSiE to perform multi-trait fine-mapping. Both CAFEH and mvSuSiE inherit 
much of the simplicity and benefits of single-trait SuSiE. Like SuSiE, both mvSuSiE and CAFEH 
require the user to specify an upper bound, L, on the number of causal SNPs in a region, and 
are robust to this upper bound being larger than needed. And both methods exploit SuSiE 's 
simple fitting procedure, Iterative Bayesian Stepwise Selection [13], which is similar to simple 
forward stepwise selection, but improves on it by (i) using Bayesian computations to take into 
account uncertainty in which SNPs are selected at each step; and (ii) iterating through selection 
events to allow errors in initial selections to be corrected as fitting progresses. 
 
However, mvSuSiE improves on CAFEH in two key ways: 
  
(a) mvSuSiE uses a flexible prior distribution—a mixture of multivariate normal distributions, as 
in [31]—to model effect sharing patterns across traits. Further, the parameters of this prior are 
estimated from the data, allowing mvSuSiE to adapt to each data set. This flexible approach 
allows that different causal SNPs may show different patterns of association; for example, in 
analyses of blood cell traits shown later, mvSuSiE learns that some SNPs may affect primarily 
red blood cell (erythrocyte) traits, some may affect primarily white blood cell (leukocyte) traits, 
and some may affect both, or a subset of one or the other. In contrast, CAFEH assumes a less 
flexible and less adaptive prior in which causal effects are independent across traits. 
 
(b) mvSuSiE allows for correlations in measurements among traits, with these correlations again 
being estimated from the data. In contrast, CAFEH assumes measurements are independent 
across traits, which is often not the case because association studies often involve correlated 
traits. 
  
For (a), estimating the prior distribution from the data involves combining information across 
many causal SNPs from many regions, which is an additional step compared with standard 
single-trait fine-mapping analyses. This additional step can be avoided by using a simpler fixed 
prior (see Online methods) but at potential loss of power. 
 
We also introduce novel ways to summarize the inferences from multi-trait fine-mapping. Again, 
this builds on SuSiE, which summarizes single-trait results by reporting, for each SNP, a 
“posterior inclusion probability” (PIP) quantifying the probability that the SNP is causal, and by 
reporting “credible sets” (CSs) [7, 13] that are designed to capture, with high probability, at least 
one causal SNP. Informally, each CS represents an independent association signal in the data, 
and the size of a CS (i.e., the number of SNPs in the CS) indicates how precisely one can 
pinpoint the causal SNP underlying this signal. For multi-trait analyses, it may seem natural to 
report PIPs and CSs separately for each trait. However, this raises tricky issues; for example, if 
the reported CSs for two traits overlap, do these represent the “same” signal, with a single 
underlying causal SNP, or different signals with multiple causal SNPs? To avoid this problem, 
we separate inference into two questions. 
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First question: Which SNPs are causal for at least one trait? This question is answered by 
cross-trait PIPs and CSs that summarize the inferences across all traits. 
  
Second question: For each causal SNP (i.e., CS) identified, which traits does it affect? This is 
answered by computing a trait-wise measure of significance, the local false sign rate (lfsr) [31, 
34], for each SNP in each trait (with small lfsr indicating high confidence in the sign of the 
effect). Because SNPs in a CS are typically in high LD, their trait-wise lfsr values are typically 
similar, and it is convenient to use a single number, the average lfsr, as a trait-wise measure of 
significance of each CS. If the average lfsr for trait r is small, this indicates high confidence in 
the sign of the effect (i.e., small posterior probability that the true effect is zero or that its 
estimated sign is incorrect), and we say the CS is “significant for trait r.” 
  
In summary, the reported results from a mvSuSiE analysis are the cross-trait PIPs and CSs 
together with trait-wise measures of significance (lfsr) for each SNP and each CS in each trait. 
Fig. 1 summarizes the mvSuSiE analysis workflow for a typical genetic association study. 
[35] 
Evaluation in simulations using UK Biobank genotypes. We compared mvSuSiE with 
existing multi-trait fine-mapping methods and a single-trait fine-mapping method, SuSiE [13, 16], 
in simulations. Among available multi-trait fine-mapping methods (Table 1), MT-HESS [18] and 
BayesSUR [21, 36, 37] are similar to mvSuSiE in features and modeling assumptions, but are 
computationally impractical for large fine-mapping data sets. msCAVIAR [22] shares the ability 
of mvSuSiE to model effect sharing, but is designed for analyzing data from multiple studies, 
and therefore makes modeling assumptions that are less appropriate for analyzing multiple 
traits. MFM [24] is another multi-trait fine-mapping method, but is specific to multiple case-
control traits with a shared set of controls. Therefore, we focussed our comparisons on CAFEH 
[23] which can handle large multi-trait fine-mapping data sets. We also compared with flashfm 
[20] and PAINTOR [19] on smaller fine-mapping data sets with two traits. 
 
To make our simulations reflective of current large-scale genomic data sets, we obtained 
imputed genotype data from the UK Biobank [38] and simulated quantitative traits with 1–5 
simulated causal SNPs in each fine-mapping region. We simulated from a variety of effect 
sharing patterns, with effect sizes scaled to roughly reproduce the distributions of z-scores 
observed in genome-wide association analyses of complex traits from UK Biobank data. The 
fine-mapping regions were drawn from autosomal chromosomes and varied in size (0.4–1.6 
Mb), number of SNPs (1,000–5,000 SNPs) and LD patterns. 
 
We simulated traits under two scenarios: 
 
(a) “Trait-specific + Shared Effects,” in which the SNP effects on 20 independent traits were 
either specific to one trait, or shared among traits in simple ways (e.g., equal effects on a pair of 
traits and no effect on the remaining traits); 
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(b) “Complex Shared Effects,” in which the SNP effects on 16 correlated traits were generated 
from a variety of sharing patterns derived from the UK Biobank blood cell traits. 
 
To compare with PAINTOR and flashfm, we also simulated a third smaller set of data with 2 
independent traits and shared effects. 
 
We compared methods in their detection of cross-trait causal SNPs—in which we define a 
cross-trait causal SNP as one that affects at least one trait—and trait-wise causal SNPs. We 
assessed the performance of both SNP-wise measures (e.g., PIPs) and Credible Sets (CSs) for 
these tasks. In practice, we recommend focusing on CS-based inferences (Fig. 2C, D) rather 
than SNP-wise measures (Fig. 2A, B) because the CSs account for uncertainty in the causal 
SNP due to LD. However, not all competing methods provide comparable CS-based inferences 
(e.g., CAFEH does not provide trait-wise CSs), so for completeness and to allow comparisons 
with other methods we also evaluated performance of SNP-wise significance measures, both 
cross-trait (Fig. 2A) and trait-wise (Fig. 2B). 
 
In all our comparisons, mvSuSiE improved power, coverage and resolution (purity and 
proportion of 1-SNP CSs) over the SuSiE single-trait analyses (Fig. 2A, B, D; n = 600 
simulations). The greatest gains were in Scenario b, where mvSuSiE had the advantage that it 
accounted for correlations among traits. Comparing CAFEH and single-trait SuSiE in SNP-wise 
inferences (Fig. 2A, B, Supplementary Table 1), CAFEH improved performance in Scenario a, 
but performed slightly less well for detecting causal SNPs in Scenario b, where it produced 
poorly calibrated PIPs (Fig. 2A, B, Supplementary Fig. 11). Comparing CSs (Fig. 2C), CAFEH 
improved the purity of the CSs and the proportion of 1-SNP CSs, but these improvements were 
tempered by CAFEH's reduced power and coverage, particularly in Scenario b. A partial 
explanation for these results is that Scenario b contradicts CAFEH's assumptions of 
independent traits and independent causal effects. In support of this explanation, when we 
forced mvSuSiE to make the same independence assumptions as CAFEH, mvSuSiE's 
performance was reduced and the PIPs were also poorly calibrated (see the “random effects 
prior” and “independent traits” results in Supplementary Figures 1, 2, 11). These results 
illustrate the benefits of having a flexible model that can adapt to different fine-mapping 
scenarios by learning effect-sharing patterns from the data (Supplementary Figures 1, 12–15). 
This flexibility comes at a computational cost—CAFEH was consistently faster than mvSuSiE 
(Fig. 2E, Supplementary Table 2)—but mvSuSiE was fast enough to handle the largest fine-
mapping data sets we considered. 
 
We also compared mvSuSiE with CAFEH, PAINTOR and flashfm in a variety of simpler fine-
mapping data sets simulated in a similar way to above but with only two traits (Supplementary 
Figures 3–8). Even when the traits were simulated independently in accordance with 
PAINTOR's modeling assumptions, PAINTOR had much lower power to detect causal SNPs 
than both SuSiE and mvSuSiE (Supplementary Fig. 3A). Both flashfm and mvSuSiE improved 
power over the SuSiE single-trait analyses, but mvSuSiE achieved much greater gains in power 
(Supplementary Figures 3–10). mvSuSiE also had considerably lower computational cost than 
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PAINTOR and flashfm (Supplementary Fig. 4, Supplementary Table 2). The performance of 
CAFEH in these simpler simulations was similar to mvSuSiE except when the two traits were 
highly correlated (Supplementary Figures 5, 6). 
 
In summary, these simulations demonstrate the benefits of mvSuSiE as an efficient and flexible 
multi-trait fine-mapping method. In particular, mvSuSiE consistently increased power to detect 
causal SNPs, improved precision (reduced CS size) compared with fine-mapping each trait 
separately, and is the only method that provides both cross-trait and trait-wise significance 
measures. 
 
Multi-trait fine-mapping of blood cell traits from UK Biobank. To illustrate mvSuSiE in a 
substantive application, we fine-mapped blood cell traits using data from the UK Biobank [38]. 
Previous analyses of these data include association analyses [39, 40] and single-trait fine-
mapping [41, 42], but multi-trait fine-mapping using mvSuSiE has the potential to improve power 
and precision of fine-mapping. Multi-trait fine-mapping is also better for answering questions 
about shared genetic effects—which SNPs affect which traits—and hence provide insights into 
the underlying biology. 
 
Focusing on a subset of 16 blood cell traits (Supplementary Table 3), we performed standard 
PLINK association analyses [43] with n = 248,980 UK Biobank samples for which all 16 traits 
and imputed genotypes were available (Online Methods). We included covariates such as sex 
and age, as well as genotype principal components to limit spurious associations due to 
population structure. From the results of these association analyses, we obtained 975 candidate 
genomic regions for fine-mapping (Supplementary Table 4). We then applied the mvSuSiE 
analysis pipeline to these 975 candidate regions (Online Methods). To understand the benefits 
of a multi-trait fine-mapping, we also ran SuSiE on the same regions, separately for each trait. 
 
Genetic relationships among blood traits inform discovery of multi-trait causal SNPs. 
From the 975 candidate regions, mvSuSiE identified 3,396 independent causal signals (95% 
cross-trait CSs). The median size of a CS was 7 SNPs. Among these CSs, 726 contained just 
one SNP (“1-SNP CS”); therefore, mvSuSiE identified 726 high-confidence candidate causal 
SNPs (PIP > 0.95; Supplementary Table 5). Several of these 1-SNP CSs (36) were not 
identified in any of our single-trait (SuSiE) analyses, underscoring the benefits of combining 
evidence across genetically related traits. Reassuringly, 496 of the 726 SNPs were also 
identified as high-confidence causal SNPs (PIP > 0.95) in the single-trait analyses of [42] (and 
145 of 726 overlapped with [41]). 
 
The number of CSs significant in each trait (average lfsr < 0.01) ranged from 370 (basophil 
percentage) to 1,423 (platelet count), and the number of 1-SNP CSs ranged from 108 to 335 
(Fig. 3C). (Note that 10 of the 3,396 CSs were not significant in any traits at average lfsr < 0.01.) 
Notably, mvSuSiE increased fine-mapping discovery and resolution compared to SuSiE single-
trait fine-mapping: the number of trait-wise significant CSs increased, on average, 2.2-fold 
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compared with SuSiE, and the number of trait-wise significant 1-SNP CSs increased, on 
average, 3.5-fold (Fig. 3C). 
 
The fine-mapped SNPs from mvSuSiE were generally slightly more enriched for genomic 
regulatory annotations than those for SuSiE (Supplementary Fig. 17), providing indirect support 
for the additional mvSuSiE findings being driven by real signals rather than false positives. For 
example, the mvSuSiE-fine-mapped SNPs had an enrichment odds ratio of 11.9 for being an 
eQTL compared to 9.7 from SuSiE. We also analyzed enrichment of the fine-mapped SNPs for 
accessible chromatin regions in hematopoietic cell-types [41] (Supplementary Figures 18, 19 
and Supplementary Tables 7, 8). Similar to [42], both the SuSiE and mvSuSiE results showed 
some of the expected enrichments such as enrichment of SNPs affecting platelet-related traits 
for open chromatin in platelet-producing megakaryocytes. 
 
mvSuSiE improved discovery and resolution over single-trait analysis by learning and exploiting 
patterns of shared (and not shared) genetic effects from the data. In these data, the most 
prominent learned patterns involved strong sharing of effects amongst traits for the same blood 
cell type (Fig. 3D). However, many other patterns were also identified (Supplementary Fig. 13), 
including both trait-specific and broad effects, suggesting that SNPs can affect blood cells in a 
wide variety of ways, presumably reflecting a wide variety of underlying biological mechanisms. 
By applying mvSuSiE with a prior that incorporates these learned sharing patterns, we obtain a 
genome-wide summary that underscores the diversity of genetic effects on blood cell traits (Fig. 
3A, B, D). Genetic effects are more commonly shared among traits within the same blood cell 
type as one might expect (Fig. 3E), but SNPs affecting multiple blood cell types are also 
common (Fig. 3B). 
 
Multi-trait fine-mapping reveals highly heterogeneous genetic determination of blood 
traits. To illustrate the potential for mvSuSiE to help dissect complex genetic association 
signals, we examine four example regions in more detail (Fig. 4). 
 
Fig. 4A shows the mvSuSiE results for the EXT1–SAMD12 locus. Single-trait association 
analysis of this region shows only one trait, basophil percentage, with a genome-wide significant 
association (PLINK two-sided t-test p-value < 5 × 10-8). Similarly, single-trait fine-mapping with 
SuSiE identified a single CS for basophil percentage containing 10 candidate SNPs and no CSs 
in other traits. From the SuSiE results one might conclude that the causal SNP is specific to 
basophil percentage. However, the mvSuSiE fine-mapping results assess the CS as significant 
in most traits, suggesting that in fact the causal SNP has broad effects across many traits. 
(Indeed, all traits had marginal association p-values less than 0.003 with the lead SNP, which in 
other settings might be considered “significant”.) The mvSuSiE CS is smaller than the single-
trait CS (8 vs. 10 SNPs), illustrating the improved fine-mapping resolution that can come from 
combining information across traits. 
 
Fig. 4B shows mvSuSiE results for the Tensin 3 (TNS3) locus. Vuckovic et al [42] used single-
trait fine-mapping to identify causal signals for several red and white blood cell traits in this 
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region. However, a single-trait analysis does not tell us whether these signals are due to one or 
a few causal SNPs affecting many blood cell traits, or many causal SNPs affecting individual 
traits. The multi-trait mvSuSiE analysis identified three causal signals (cross-trait CSs) with 
three distinct patterns of genetic effect: one mostly affects red blood cell traits (CS3); another 
has a detectable effect in HLR% only (CS1); and a third has smaller effects in both white blood 
cell and platelet traits (CS2). The three very different patterns suggest that the biological effects 
of these SNPs are also very different, and suggest a multi-faceted role for TNS3 in affecting 
blood-cell traits. This example illustrates the flexibility of mvSuSiE, including its ability to capture 
different patterns of effect-sharing even within a single locus, and its ability to extract relatively 
simple inferences in quite complex situations. 
 
Fig. 4C shows a more complex example involving many signals in and around the gene 
RUNX1. SNPs in the RUNX1 locus have previously been associated with rheumatoid arthritis 
[44, 45] and other immune-related diseases (e.g., [46, 47]), and colocalization analyses have 
suggested that the causal SNPs are also associated with eosinophil proportions in blood [42]. 
Multi-trait fine-mapping results from mvSuSiE suggest a complex picture with 11 signals (cross-
trait CSs), each with detectable effects in many different blood-cell traits, and some with no 
detectable effect on eosinophil proportions. These results suggest that the mechanisms by 
which this gene affects immune-related diseases may be more complex than just through 
eosinophils, possibly involving many platelet, red blood cell and other white blood cell traits. 
 
Finally, Fig. 4D shows a more complex example still, where many causal signals are mapped to 
a region containing many genes, including PIEZO1 and ZFPM1. This is a gene-dense region 
with well-studied connections to blood cell traits and blood-related diseases [48, 49, 50, 51, 52]. 
mvSuSiE identified 14 independent signals (cross-trait CSs) in the region. These 14 signals 
show a wide variety of effect patterns; for example, some are significant only in a few traits 
related to mature red blood cells (e.g., CS12, CS14), some are significant across a broader 
range of red blood cell traits (CS2), and some are significant across most traits (CS13). Regions 
of this complexity may take considerable additional investigation to fully understand. Although 
this is a complex example, we note that of the 14 CSs identified in this region, 7 contain a single 
SNP, demonstrating that even in complex regions mvSuSiE can identify high-confidence causal 
SNPs. 
 
Discussion 
 
We have introduced mvSuSiE, a fast and flexible multi-trait fine-mapping method. mvSuSiE 
outperformed single-trait fine-mapping methods in both power and resolution. Unlike most 
available multi-trait fine-mapping methods, mvSuSiE can efficiently analyze dozens of 
correlated traits and can model complex patterns of effect size variation via a flexible data-
driven prior distribution. The prior model also includes as special cases several simpler models 
that are commonly used in meta-analyses, such as the fixed effects model which assumes 
equal effects in all traits and the random effects model which allows for different effect sizes 
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among traits [53]. These models can be used in place of the data-driven prior to speed 
computation if users desire, though at a potential loss of power. 
  
The mvSuSiE model is “sparse” in that it assumes a small number of causal SNPs. However, 
the data-driven prior model for the effect sizes at these causal SNPs will not generally be 
sparse. That is, each causal SNP is effectively assumed to affect all traits, with some exceptions 
(such as when the prior includes sharing patterns reflecting an effect in one trait and no effects 
in the others). Instead of inducing trait-specific sparsity on the effects of causal SNPs, we 
focussed on estimating these effects and assessing their significance by computing the lfsrs. 
This approach simplifies computation and worked well in our examples. Indeed, in additional 
simulation studies we found that mixture models constructed using our data-driven approach 
could capture the predominant sparsity patterns reasonably well (Supplementary Figures 14, 
15), and so mvSuSiE did not suffer from a loss of power to detect such sparse association 
signals. That being said, it is possible that explicitly modeling trait-specific sparsity of causal 
SNPs could be helpful in settings with large numbers of traits that are less related; with a large 
number of less related traits, the SNP effects may be shared primarily among small subsets of 
more related traits. This could perhaps be achieved by combining the mvSuSiE prior with 
indicator variables for each trait, similar to the strategy used by CAFEH. 
  
mvSuSiE assumes a standard (Gaussian) multivariate linear model (1) and so is most 
applicable to quantitative traits. However, provided the effect sizes are small, there is good 
theoretical and empirical justification for applying standard linear models directly to binary traits 
[54, 55]. Thus, in genetic association studies where individual SNP effects are small, it would be 
reasonable to apply mvSuSiE directly to studies where some or all of the traits are binary (e.g., 
disease status). When fine-mapping with summary data, this would mean applying mvSuSiE-
RSS to the summary statistics from a linear regression analysis of the binary traits. While it may 
seem more intuitive to generate the summary statistics from a logistic regression analysis of the 
binary traits, there seems to be less theoretical or empirical support for this approach, even in 
the univariate case. More generally, there has been little theoretical or empirical assessment of 
univariate fine-mapping methods using summary data from linear mixed models or from 
generalized linear models, or for that matter any model other than a simple linear regression 
model; more work in this area seems important. 
 
The multivariate linear model (1) assumes that the traits are measured in the same samples, 
with no missing data. When the traits involved are not independent—or, more precisely, when 
the residual error terms are not independent—correctly dealing with missing data in this model 
is complicated. Indeed, even maximum-likelihood estimation under a simple “missing-at-
random” assumption becomes quite involved [56]. In cases with small amounts of missing data, 
we suggest imputing the missing values before fine-mapping. (This suggestion applies to both a 
full-data analysis and a summary-data analysis. Analyses of summary data computed with large 
or unknown amounts missingness should proceed with caution, if at all.) This “pre-imputation” 
approach may lose power compared with more rigorous approaches, but is more 
straightforward. If there are larger amounts of missing data, then it may be necessary to focus 
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on a subset of samples with more overlap in available measurements. This may result in a 
tradeoff between sample size and number of traits analyzed; for example, with a large amount 
of missing data, it may be more powerful to analyze a subset of the traits at a larger sample 
size. 
  
Some multivariate association analyses involve traits measured in non-overlapping sets of 
individuals. Examples include colocalization of expression QTLs and GWAS traits in different 
samples [28]; multi-ancestry [22] [57]; and meta-analysis fine-mapping of multiple non-
overlapping diseases with a common control set. Another important case is fine-mapping in 
which the summary statistics are generated from multiple studies (“meta-analysis fine-mapping”) 
[32], as well as fine-mapping of multiple related traits from multiple studies (“multi-trait meta-
analysis fine-mapping”). Formally, these analyses could all be implemented as extensions of 
mvSuSiE that allow for missing trait data. However, in practice these special cases yield 
important simplifications, and therefore it may be preferable to treat these special cases 
separately, with dedicated software implementations. Indeed, other groups have already 
successfully developed versions of SuSiE for some of these settings [57, 58, 59]. 
 
URLs. SuSiE R package, https://github.com/stephenslab/susieR; mvSuSiE R package, 
https://github.com/stephenslab/mvsusieR; ashr R package, 
https://github.com/stephens999/ashr; mashr R package, https://github.com/stephenslab/mashr; 
flashr R package, https://github.com/stephenslab/flashr; CAFEH Python package, 
https://github.com/karltayeb/cafeh; PAINTOR software, 
https://github.com/gkichaev/PAINTOR_V3.0; BayesSUR R package, https://cran.r-
project.org/package=BayesSUR; flashfm R package, https://github.com/jennasimit/flashfm; 
FINEMAP software, http://www.christianbenner.com; msCAVIAR software, 
https://github.com/nlapier2/MsCAVIAR; HyPrColoc R package, 
https://github.com/cnfoley/hyprcoloc; moloc R package, 
https://bogdan.dgsom.ucla.edu/pages/MOLOC; gchromVAR R package, 
https://github.com/caleblareau/gchromVAR; GREGOR, http://csg.sph.umich.edu/GREGOR/; 
PLINK, https://www.cog-genomics.org/plink2; LDStore, http://christianbenner.com; R, 
https://cran.r-project.org; Python, https://www.python.org; Dynamic Statistical Comparisons 
(DSC) software, https://github.com/stephenslab/dsc; UK Biobank, https://www.ukbiobank.ac.uk; 
code for processing of UK Biobank data, https://doi.org/10.5281/zenodo.8400278; PLINK 
association test statistics for UK Biobank blood traits, https://doi.org/10.5281/zenodo.8088040; 
code and data resources for fine-mapping simulations and fine-mapping analyses of UK 
Biobank blood cell traits, https://doi.org/10.5281/zenodo.8094982; simulation results, 
https://doi.org/10.5281/zenodo.8087907. 
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Figure legends 
 
Figure 1 | Overview of multivariate fine-mapping using mvSuSiE. mvSuSiE accepts as 
input traits and SNP genotypes measured in N individuals, R traits and M target fine-mapping 
regions. Alternatively, mvSuSiE-RSS accepts SNP-level summary statistics (a) computed from 
these data (see Online Methods, “mvSuSiE with summary data: mvSuSiE-RSS”). The weakest 
SNP association signals are extracted from these data (b), which are used in (c) to estimate 
correlations in the trait residuals (see Online Methods, “Estimating the residual variance 
matrix”). Separately, the strongest association signals are extracted (d) to estimate effect 
sharing patterns (e) using Extreme Deconvolution (ED) [35] (see Online Methods, “Specifying 
the prior”). Finally, the effect-sharing patterns estimated by ED, together with the estimated 
weights, are used to construct a prior for the unknown multivariate effects, and this prior is used 
in mvSuSiE to perform multivariate fine-mapping simultaneously for all SNPs in a selected 
region (g). Steps f and g are repeated for each fine-mapping region of interest. The key 
mvSuSiE outputs are: a list of credible sets (CSs), each of which is intended to capture a 
distinct causal SNP; a posterior inclusion probability (PIP) for each SNP giving the probability 
that the SNP is causal for at least one trait; average local false sign rates (lfsrs) summarizing 
significance of each CS in each trait; and posterior estimates of SNP effects on each trait. For 
example, if a region contains 3 distinct causal SNPs, mvSuSiE will, ideally, output 3 CSs, each 
containing a true causal SNP, with the average lfsr indicating which traits are significant for each 
CS. These quantities are defined in the Online Methods. 
 
Figure 2 | Comparison of fine-mapping methods in simulated data. Panels A and B show 
power vs. FDR in identifying causal SNPs, either cross-trait (A) or trait-wise (B), using SNP-wise 
measures. In each scenario, FDR and power were calculated by varying the measure threshold 
from 0 to 1 (n = 600 simulations). The specific SNP-wise measures used in A are PIP 
(mvSuSiE, CAFEH), max-PIP (SuSiE); in B, PIP (SuSiE), minimum lfsr (mvSuSiE) and “study 
PIP” (CAFEH). Open circles are drawn at a PIP threshold of 0.95 or an lfsr threshold of 0.05; 
closed circles in B are at a PIP threshold of 0.99 or a lfsr threshold of 0.01. FDR = FP/(TP + FP) 
and power = TP/(TP + FN), where FP, TP, FN, TN denote, respectively, the number of false 
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positives, true positives, false negatives and true negatives. (See also Supplementary Table 1 
giving power and FDR statistics at commonly used thresholds.) Panels C and D evaluate the 
estimated 95% CSs using the following metrics: coverage, the proportion of CSs containing a 
true causal SNP; power, the proportion of true causal SNPs included in at least one CS; the 
proportion of CSs that contain a single SNP (“1-SNP CSs”); and median purity, in which “purity” 
is defined as the smallest absolute correlation (Pearson's r) among all SNP pairs in a CS. 
Histograms of CS sizes (number of SNPs in a 95% CS) are given for each scenario. Target 
coverage (95%) is shown as a dotted horizontal line. Error bars show 2 times the empirical s.e. 
from the results in all simulations. Panel E summarizes runtimes; the SuSiE runtimes are for 
running SuSiE independently on all traits. The box plot whiskers depict 1.5 times the 
interquartile range, the box bounds represent the upper and lower quartiles (25th and 75th 
percentiles), the center line represents the median (50th percentile), and points represent 
outliers. Note that SuSiE analyzes each trait independently and therefore is not included in Part 
B. CAFEH does not provide trait-wise CSs and therefore is not included in Part C. 
 
Figure 3 | mvSuSiE fine-mapping and primary effect sharing patterns in UK Biobank 
blood cell traits. Panels A, B and E give summaries of the 3,396 mvSuSiE CSs identified from 
the 975 candidate fine-mapping regions: (A) number of significant (average lfsr < 0.01) traits in 
each CS; (B) significant traits in CSs grouped by blood cell-type subsets; (E) pairwise sharing of 
significant CSs among the traits. In E, for each pair of traits we show the ratio of the number of 
CSs that are significant in both traits to the number of CSs that are significant in at least one 
trait. (C) Number of CSs and 1-SNP CSs for each trait identified by SuSiE and mvSuSiE (after 
removing CSs with purity less than 0.5). In C, each mvSuSiE count is the number of mvSuSiE 
CSs or 1-SNP CSs that are significant (average lfsr < 0.01) for the given trait. (D) Covariance 
matrices in the mvSuSiE data-driven prior capturing the top sharing patterns (these are the 
covariance matrices with the largest mixture weights in the prior). The covariance matrices were 
scaled separately for each plot so that the plotted values lie between –1 and 1. See 
Supplementary Fig. 13 for the full set of 15 sharing patterns. 
 
Figure 4 | Examples of blood cell trait loci fine-mapped using mvSuSiE. The left-hand plots 
are “PIP plots” showing the cross-trait posterior inclusion probabilities (PIPs) for each SNP 
analyzed in the given fine-mapping region. The cross-trait PIP is an estimate of the probability 
that the SNP is causal for at least one trait. The labeled SNPs are the “sentinel SNPs”, the 
SNPs with the highest cross-trait PIP in each CS. “Purity” is defined as the minimum absolute 
pairwise correlation (Pearson's r) among SNPs in the CS. The right-hand plots show the 
posterior effect estimates of the sentinel SNPs whenever the CS is significant for the given trait 
(average lfsr < 0.01). All estimates and tests are from a data sample of size n = 248,980. 
 
Tables 
 

 
upper limit on 
number of data accepted  

allows 
correlated 

models 
effect sample runtimes   

method causal SNPs summary sufficient CSs traits sharing 2 traits 20 traits software version 
mvSuSiE  user-specified yes yes yes yes Yes 41 s 2 min R 9f28916 
flashfm† [20] 10 yes yes  yes yes Yes 5 min – R 0.0.0.9000 
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MT-HESS [18] no limit no no no yes Yes >1 day – R 1.99 
BayesSUR [21] no limit no no no yes Yes 7 h – R 2.0-1 
msCAVIAR [22] user-specified yes no no no Yes >1 day – command-line 0.1 
CAFEH [23] user-specified yes yes yes no No 20 s 37 s Python 1.0 
PAINTOR [19] user-specified yes no no no No 30 min – R 3.1 
MFM§ [24] user-specified no no yes no No – – R 0.2-1 
HyPrColoc [25] 1 yes no yes‡ no No <1 s <1 s R 1.0 
moloc [26] 1 yes no yes‡ no No <1 s – R 0.1.0 
 
Table 1 | Overview of available statistical methods for multi-trait fine-mapping. Sample 
runtimes were obtained by running on data sets with J = 5,000 SNPs, N = 250,000 individuals 
(relevant for methods that do not accept summary data), and R = 2 or 20 traits. When possible, 
the upper limit on the number of causal SNPs, L, was set to 10. In our tests, PAINTOR ran for a 
very long time when allowing 3 or more causal SNPs, so we set L = 2. (This was without the 
“MCMC” option, because at the time of our experiments the “MCMC” option produced 
unreasonable results.) moloc was computationally impractical with more than 4 traits [25]. See 
the Supplementary Note for details. §MFM is specific to multiple case-control traits with a shared 
set of controls. †flashfm's properties depend on the single-trait fine-mapping method; to 
illustrate, the properties shown here are for flashfm with FINEMAP [10]. flashfm with FINEMAP 
was limited to at most 5 traits. (Another flashfm interface allows up to 6 traits.) ‡Calculation of 
CSs is trivial when limiting to at most 1 causal SNP. 
 
Online Methods 
 
Multivariate multiple regression. mvSuSiE is based on a basic multivariate multiple 
regression model for R quantitative traits observed in N individuals, 
 

𝒀	~	𝑀𝑁'×)(𝑿𝑩, 𝑰' , 𝑽), 
(2) 

where 𝒀 ∈ ℝ'×) is a matrix storing N observations of R traits, 𝑿 ∈ ℝ'×$ is a matrix of N 
genotypes at J SNPs, 𝑩 ∈ ℝ$×) is a matrix of regression coefficients (“effects”) for the J SNPs 
and R traits, V is an R × R covariance matrix (we assume V is invertible), 𝐼' is the N × N identity 
matrix, and 𝑀𝑁'×)8𝑴,  𝚺*+,,  𝚺-+.< denotes the matrix normal distribution [1, 2] with mean 𝑴 ∈
ℝ'×) and covariance matrices 𝚺*+,, 𝚺-+. (of dimension N × N and R × R, respectively). 
 
Intercept. We do not explicitly include an intercept in (2). Instead, we account for an intercept 
implicitly by “centering” the columns of X and the columns of Y so that the mean of each column 
is zero. From a Bayesian perspective, centering the columns of X and Y is equivalent to 
integrating with respect to an (improper) uniform prior on the intercept. (This is a multivariate 
generalization of the result for univariate regression given in [3]. See the Supplementary Note 
for a more formal proof of this result.) In short, centering eliminates the need to explicitly include 
an intercept in (2), and we proceed with mvSuSiE assuming that X and Y have been centered. 
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The mvSuSiE model. mvSuSiE generalizes the “Sum of Single Effects” (SuSiE) model [4] to 
the multivariate setting: 

𝑩 = ∑ 𝑩(0)2
0%&   

(3) 
𝑩(0) = 𝜸(0)⨂𝒃(0), 

(4) 
where 𝜸(0) ∈ {0,1}$ is a vector of indicator variables in which exactly one of the J elements is 
one and the remaining are zero, 𝒃(0) ∈ ℝ) is a vector of regression coefficients, and 𝒖⨂𝒗 = 𝒖𝒗⊺ 
denotes the outer product of (column) vectors u and v. The coefficients B defined in this way 
are a sum of L “single effects” 𝑩(0) In particular, matrix 𝑩(0) ∈ ℝ$×) has at most one row 
containing non-zero values, and these non-zero values are determined by 𝒃(0). We therefore 
refer to 𝑩(0) as a “single effect matrix” because it encodes the effects of a single SNP. The final 
set of coefficients, B, is a matrix with at most L rows containing non-zero values. 
 
Similar to SuSiE, we introduce priors for the indicator variables 𝜸(0) and regression coefficients 
𝒃(0), 

𝜸(0) ∼ Multinom(1, 𝝅) 
(5) 

𝒃(0) ∼ 𝑔0, 
(6) 

in which Multinom(1, 𝝅) denotes the multinomial distribution for m random multinomial trials with 
category probabilities 𝝅 = 8𝜋&, … , 𝜋$<, such that 𝜋# ≥ 0, ∑ 𝜋#

$
#%& = 1. The 𝜋# 's are the prior 

inclusion probabilities. By default, we assume a uniform prior; that is, 𝜋# = 1/𝐽, for 𝑗 = 1,… , 𝐽. 
(All the results in this paper use this default prior.) Our software implementation of mvSuSiE 
also support for other choices of 𝝅; for example, 𝝅 could be determined by external biological 
information about the SNPs (e.g., [5]). 
 
The prior distribution 𝑔0 for each single effect 𝒃(0) should capture the variety of effect sharing 
patterns we expect from the multiple traits. To this end, we use a prior similar to the mixture of 
multivariate normals prior introduced in [6], 
 

𝑔0(𝒃) = ∑ 𝜔45
4%& 𝑁)8𝒃; 0, 𝜎607𝑼4<,  

(7) 
in which each 𝑼4 is a (possibly singular) covariance matrix, 𝜎607 ≥ 0 scales the prior for each 
single effect l, 𝝎 = (𝜔&, … , 𝜔5) is a vector of mixture weights, such that 𝜔4 ≥ 0, ∑ 𝜔45

4%& = 1, 
and 𝑁8(𝒙; 𝝁, 𝚺) denotes the multivariate normal distribution on 𝒙 ∈ ℝ8   with mean 𝝁 ∈ ℝ8 and d 
× d covariance 𝚺. The covariance matrices 𝒰 = {𝑈&,   … ,  𝑈5} and the mixture weights 𝝎 must be 
chosen beforehand, whereas prior scaling parameters 𝜎6&7 , … , 𝜎627  are treated as unknown, and 
are estimated from the data. 
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In summary, mvSuSiE is a multivariate regression model with a flexible mixture-of-normals prior 
on the “single effects,” 𝒃(0). The unknowns of primary interest are the single effect matrices 𝑩(0). 
As we explain in more detail below, we compute a posterior distribution of the single effects, 
which is then used to compute key fine-mapping statistics, specifically the posterior inclusion 
probabilities (PIPs) and credible sets (CSs). The scaling factors 𝜎607  are not of primary interest to 
the fine-mapping (“nuisance parameters”), and are estimated from the data to aid in better 
posterior estimation of the single effects. Other model parameters, such as the residual 
covariance matrix V, are assumed to be known, or should have been estimated previously. 
Below we give guidance on choosing these parameters or estimating them from data. 
 
Posterior computation approach. Here we outline our approach to estimating the posterior 
distribution for the unknowns of primary interest, the single effect matrices 𝑩(&), … , 𝑩(2), building 
on the ideas introduced in [7]. A more formal mathematical development of the mvSuSiE 
algorithms is given in the Supplementary Note. 
 
In this section, we assume that the model parameters V, 𝝅, 𝝎 and 𝒰	, as well as L, the 
maximum number of single effects, are known, or have been estimated in earlier steps in the 
analysis. We also assume in this section that the scaling factors 𝜎6&7 , … , 𝜎627  are known (in the 
Supplementary Note we describe how the scaling factors are estimated). 
 
The posterior distribution of 𝑩(&), … , 𝑩(2), as in other Bayesian variable selection models, is 
intractable, and therefore we must resort to numerical approximations. A key consideration is 
that we would like these computations to scale well to large genetic data sets, which makes 
intensive Monte Carlo techniques such as Markov chain Monte Carlo (e.g., [8, 9, 10, 11, 12, 13, 
14, 15] less attractive. Another key consideration is that we would like accurate estimates of 
posterior quantities which can be difficult to achieve when many variables (the SNPs) are highly 
correlated, or correlated in complicated ways, which is typically the case in genetic fine-
mapping. These considerations, as well as others, motivated us to develop an alternative 
posterior computation approach for SuSiE based on variational approximation ideas [4]. The 
algorithm for performing the approximate posterior computations in SuSiE was called “Iterative 
Bayesian Stepwise Selection” (IBSS). In this paper, we have extended the SuSiE variational 
approach to the mvSuSiE model. Therefore, applying the ideas developed in [4] leads to an 
IBSS algorithm for fitting the mvSuSiE model (Algorithm 1 in the Supplementary Note). 
 
Choice of L. The number of effects, L, is typically not known in advance. However, mvSuSiE is 
generally robust to misspecification of L so long as L is chosen to be larger than the (true) 
number of effects. That's because mvSuSiE prunes single effects when they are not needed by 
estimating the scaling factors 𝜎607  in the prior (7) as zero or close to zero. This approach to 
estimating the number of single effects, L, by adapting the prior is closely related to “automatic 
relevance determination” [16, 17], and this same approach was used in SuSiE [4]. 
 
Extension of posterior computation approach to work with summary data. The strategy 
used in [7] to extend SuSiE to summary data is quite general, and we take this same here: first, 
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in “mvSuSiE with sufficient statistics,” we describe an algorithm that uses sufficient statistics, 
and produces the same result as running the mvSuSiE IBSS algorithm on the individual-level 
data; in “mvSuSiE with summary data: mvSuSiE-RSS”, we consider summary data that 
approximate the sufficient statistics, and therefore yield results that do not exactly reproduce 
mvSuSiE with individual-level data; and since many genetic association studies provide z-
scores, or other summary statistics that can be used to compute z-scores, we describe 
mvSuSiE-RSS with z-scores in greater detail (“Special case when X, Y are standardized: 
mvSuSiE-RSS with z-scores”). 
 
mvSuSiE with sufficient statistics. The data enter the mvSuSiE model only through the 
likelihood, which from (2) is  
 

𝑙(𝑩; 𝑿, 𝒀) = 	 |2𝜋V|9
!
" exp g− &

7
tr[𝑽9&(𝒀⊺𝒀 − 2𝑩⊺𝑿⊺𝒀 + 𝑩⊺𝑿⊺𝑿𝑩)]k.  

(8) 
Here we treat V as a fixed quantity so we do not explicitly mention this dependency in the 
notation for the likelihood. It is clear from this expression that the data influence the likelihood 
only through the quantities 𝑿⊺𝒀 and 𝑿⊺𝑿. Therefore, 𝑿⊺𝒀 and 𝑿⊺𝑿 are sufficient statistics for B. 
Thus, by rearranging the computations, we obtain a variant of the IBSS algorithm that fits the 
mvSuSiE model using only sufficient statistics. We call this algorithm “IBSS-ss”, and it is 
outlined in Algorithm 2 in the Supplementary Note. 
 
We use IBSS(X, Y) to denote the result of applying the IBSS algorithm (Algorithm 1 in 
Supplementary Note) to the individual-level data, and we use IBSS-ss(𝑿⊺𝑿, 𝑿⊺𝒀) to denote the 
result of applying the IBSS-ss algorithm (Algorithm 2 in Supplementary Note) to the sufficient 
statistics. These two algorithms will give the same result, IBSS(X, Y) = IBSS-ss(𝑿⊺𝑿, 𝑿⊺𝒀). 
However, the computational complexity of the two approaches is different. The computational 
complexity of one iteration of the IBSS algorithm is 𝑂8𝐿 × (𝑁𝐽𝑅 + 𝐾𝐽𝑅:)<, whereas the 
complexity of a single iteration of the IBSS-ss algorithm is 𝑂8𝐿 × (𝐽7𝑅 + 𝐾𝐽𝑅:)<. Therefore, 
when 𝑁 ≫ 𝐽	, which is often the case in fine-mapping studies, IBSS-ss will usually be faster. We 
note, however, that computing the J × J matrix 𝑿⊺𝑿 can be expensive, and potentially more 
expensive than running mvSuSiE itself. So IBSS-ss will be more computationally attractive than 
IBSS if N is much larger than J and if 𝑿⊺𝑿 can be computed efficiently using a software such as 
PLINK [18] or LDStore [19]. 
 
mvSuSiE with summary data: mvSuSiE-RSS. We define mvSuSiE-RSS as the application 
the IBSS-ss algorithm to the sufficient statistics or approximations to these statistics (e.g., an LD 
estimate obtained from different genotype data than the genotype data used to obtain the other 
statistics). Conceptually, this approach combines the mixture prior (7) with an approximation to 
the likelihood (8). To formalize this, we write the likelihood as a function of the sufficient 
statistics, 

𝑙;;8𝑩; 𝑺𝒙𝒙, 𝑺𝒙𝒚, 𝑁< = |2𝜋𝑽|9
!
" exp s− '

7
tr t𝑽9& s>

⊺>
'
− 2𝑩⊺𝑺𝒙𝒚 +𝑩⊺𝑺𝒙𝒙𝑩uvu,  
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(9) 
so that 

𝑙;; s𝑩;
𝑿⊺𝑿
'
,   𝑿

⊺𝒀
'
,  𝑁u = 𝑙(𝑩;  𝑿,  𝒀).  

(10) 

Replacing 𝑺𝒙𝒙 =
𝑿⊺𝑿
'

 with an estimate 𝑺w𝒙𝒙 ≈ 𝑺𝒙𝒙 is therefore the same as replacing the sufficient-
statistics likelihood (9) with 

𝑙)AA(𝑩) = 𝑙;; s𝑩;  𝑺w𝒙𝒙,  
𝑿⊺𝒀
'
, 𝑁u. 

(11) 
Note that when 𝑺w𝒙𝒙 = 𝑺𝒙𝒙, the approximation is exact; that is, 𝑙)AA(𝑩) = 𝑙(𝑩;𝑿, 𝒀). 
 
In summary, applying mvSuSiE with 𝑺𝒙𝒙 is equivalent to using the individual-data likelihood (8), 
and applying mvSuSiE with 𝑺w𝒙𝒙 is equivalent to using the approximate likelihood (11). 
 
Special case when X, Y are standardized: mvSuSiE-RSS with z-scores. Now we consider 
the special case when X and Y are standardized, which is common in genetic association 
studies. By “standardized”, we mean that the columns of X and Y have been scaled to have unit 
variance; ∑ 𝑥!#7'

!%& = 𝑁, 𝑗 = 1,… , 𝐽	, and ∑ 𝑦!"7'
!%& = 𝑁, 𝑟 = 1,… , 𝑅	. (See [7] for exact definitions of 

the z-scores and the LD matrix R.) This is in addition to the assumption, mentioned earlier, that 
the columns of X and Y are centered to have means of zero. See [20, 21] for a discussion on 
the choice to standardize. 
 
With standardized X and Y, the sufficient statistics 𝑿⊺𝒀 and 𝑿⊺𝑿 can be recovered from the 
sample size, N, the (in-sample) LD matrix, R, and the marginal association z-scores, 𝑧̂#", which 
are obtained from simple linear regressions between the traits r and the SNPs j. (The z-scores 
should ideally be computed using the same samples for each trait so that the correlations 
among SNPs are same for all traits.) In particular, the sufficient statistics are recovered by the 
following two equations, 
 

𝑿⊺𝑿 = 𝑁 × 𝑹 
(12) 

𝑿⊺𝒀 = √𝑁 × 𝒁�,  
(13) 

in which 𝒁� denotes the J × R matrix of “adjusted z-scores”, 
 

𝑧̃#" =
'

'BĈ$%
× 𝑧̂#". 

(14) 
Note that, when the effects are small, 𝑧̃#" ≈ 𝑧̂#".  
 
Substituting equations (12–13) into the sufficient-statistics likelihood (9) gives 
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𝑙;;8𝑩; 𝑺𝒙𝒙, 𝑺𝒙𝒚, 𝑁< = 𝑙;; s𝑩;𝑹,
𝒁F

√'
, 𝑁u.  

(15) 
When the in-sample LD matrix R is not available, and is replaced with 𝑹w  ≈ 𝑹, the mvSuSiE-
RSS likelihood (11) becomes 

𝑙)AA(𝑩) = 𝑙;; s𝑩;𝑹w,  
𝒁F

√'
, 𝑁u. 

(16) 
In summary, when X and Y are standardized, applying mvSuSiE with R is equivalent to using 
the individual-data likelihood (8), and applying mvSuSiE with 𝑹w is equivalent to using the 
approximate likelihood (16). 
 
mvSuSiE posterior statistics. Here we describe the posterior statistics used in an mvSuSiE 
fine-mapping analysis. 
 
Basic posterior quantities. We start with two basic posterior statistics that are used to 
calculate other statistics. The first posterior quantity is the posterior probability that the lth single 
effect is nonzero for SNP j, 

𝛼#
(0) ≔ Prs𝛾#

(0) = 1	�	𝑿, 𝒀u. 
(17) 

 
The second posterior quantity, denoted 𝑐𝑙𝑓𝑠𝑟#"

(0), is the local false sign rate [6, 22] for SNP j in 
trait r and single effect l conditioned on SNP j having a nonzero effect in single effect l, 
 

𝑐𝑙𝑓𝑠𝑟#"
(0) ≔ 1−max	 gPr s𝑏#"

(0) > 0	�	𝑿, 𝒀, 𝛾#
(0) = 1u , Pr s𝑏#"

(0) < 0	�	𝑿, 𝒀, 𝛾#
(0) = 1uk. 

(18) 
Intuitively, the clfsr (“conditional lfsr”) measures how confident we can be (in terms of posterior 
probability) in the sign of the effect of SNP j in trait r and single effect l given that SNP j has a 
nonzero effect in single effect l. A small clfsr indicates a small posterior probability that the sign 
of the estimated effect is incorrect, and thus a high confidence in the sign of an effect. The lfsr is 
similar to the commonly used local false discovery rate (lfdr), but more robust to modeling 
assumptions [22], which is helpful for reducing sensitivity to the choice of prior. 
 
Cross-trait PIP. The posterior inclusion probability (PIP) is a standard quantity reported by most 
fine-mapping methods, so PIPs are convenient for comparing performance of different fine-
mapping methods. PIPs are also useful for visualizing the fine-mapping signal within a 
candidate fine-mapping region. For mvSuSiE, we define the PIP for SNP j as the posterior 
probability that at least one of the regression coefficients for the jth SNP is not zero, 
 

PIP# ≔ Pr8𝒃# ≠ 0	�	𝑿, 𝒀< 
               = 1 − Pr8𝒃# = 0	�	𝑿, 𝒀< 

                = 1 −∏ s1 − 𝛼#
(0)u2

0%& ,  
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(19) 
in which 𝛼#

(0) is defined in (17). 
 
min-lfsr. The PIP tells us whether or not a SNP has an effect on at least one trait, but it does 
not tell us which traits are affected by the SNP. To quantify this, we calculate a minimum lfsr 
(min-lfsr), which we define as the smallest lfsr among the L single effects, 
 

𝑙𝑓𝑠𝑟#" ∶= min
0	∈	{&,…,2}

𝑙𝑓𝑠𝑟#"
(0), 

(20) 
in which 𝑙𝑓𝑠𝑟#"

(0) is the (unconditional) lfsr for SNP j in outcome r and single effect l, 
 

𝑙𝑓𝑠𝑟#"
(0) ∶= 1 −max	 gPr s𝑏#"

(0) > 0	�	𝑿, 𝒀u , Pr s𝑏#"
(0) < 0	�	𝑿, 𝒀uk  

(21) 
= 1 − 𝛼#

(0)(1 − 𝑐𝑙𝑓𝑠𝑟#"
(0)), 

(22) 
and we use the definition of 𝑐𝑙𝑓𝑠𝑟#"

(0) from (18). In other words, SNP j is considered “significant” 
in trait r if and only if it is significant in at least one of the L effects. 
 
Credible sets. A cross-trait credible set CS(𝜶(0); 𝜌) is defined as a set of SNPs that has 
probability at least 𝜌 of containing an effect SNP [23]. The calculation of cross-trait CSs is 
described in [4]. 
 
A CS does not indicate which traits are affected by the SNPs. To assess significance of a CS for 
a specific trait r, we compute the average lfsr, defined as a weighted average of the conditional 
lfsr's for all SNPs, 

𝑙𝑓𝑠𝑟"
(0) ∶= ∑ 𝛼#

(0)𝑐𝑙𝑓𝑠𝑟#"
(0)2

0%& .  
(23) 

If the average lfsr for trait r is small, this indicates high confidence in the sign of the effect (small 
posterior probability that the sign is incorrect), and so we say the effects of the SNPs in the CS 
are significant for trait r (“trait-wise CS”). 
 
Specifying V and g. In order to run mvSuSiE or mvSuSiE-RSS, we must first specify the R × R 
residual variance-covariance matrix, V, and the prior on the regression coefficients, g. In the 
next two sections, we describe the steps that were taken to specify these model parameters in 
the simulations and the UK Biobank blood traits case study. Since we always applied mvSuSiE 
to summary data (“mvSuSiE-RSS”), and specifically z-scores, we describe estimation of V and g 
using the z-scores. 
 
Estimating the residual variance matrix. When the traits are measured in the same samples, 
it is important to account for possible correlations among the measurements of the different 
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traits; failure to do so can result in miscalibrated fine-mapping statistics (Supplementary Figures 
2 and 9). The residual covariance matrix V is used to account for correlations among the 
measurements; the special case of independent measurements can be modeled by setting V to 
a diagonal matrix. 
 
To estimate V, we adapted the approach described in [6], in which V was estimated from z-
scores (e.g., z-scores obtained from marginal association tests). Specifically, we took the 
following steps. First, we pooled the z-scores from all the fine-mapping regions considered. 
Then we filtered out large (in magnitude) z-scores; specifically, we only considered SNPs in 
which the largest z-score magnitude for any trait was less than 2. This improved the estimate of 
V by removing SNPs that might affect one or more of the traits. Denoting the number of SNPs 
used in this calculation by 𝐽N, and letting 𝒛�𝒋 denote the vector of z-scores obtained from the R 
association tests for SNP j, we estimated V as 
 

𝑽w = &
$N
∑ 𝒛�𝒋𝒛�𝒋⊺	
$N
#%& . 

(24) 
 
To verify this estimator, in the simulations we compared mvSuSiE using the estimate (24) to 
mvSuSiE with the sample covariance of Y (Supplementary Fig. 2). Although genetic effects 
should also ideally be removed before estimating V, in the simulations the genetic effects were 
all very small, and so should have little impact on this estimate. 
 
We estimated V for the UK Biobank blood cell trait data using J’ = 1,950 SNPs (2 SNPs with 
small z-scores were selected from each of the 975 fine-mapping regions). This estimate of V is 
given in Supplementary Table 6 (n = 1,950). Since the blood cell traits were standardized, we 
scaled the estimate so that the final V used in the fine-mapping analyses was a correlation 
matrix. 
 
Specifying the prior. The prior (7) can accommodate many different effect sharing patterns. 
However, to maximize the benefit of using this prior, it should capture the effect sharing patterns 
that are actually present in the data. Following [6], we considered three approaches to obtaining 
g (in the simulations, we assessed the advantages of each of these approaches; see 
Supplementary Fig. 1): 
 
• The simple “random effects prior” that assumes the effects are independent across traits. 

This is a special case of (7) in which the mixture consists of a single mixture component 
(𝐾 = 1,𝜔& = 1) with covariance matrix 𝑼& = 𝑰). Although simple, this prior is used—
implicitly or explicitly—by methods that assume the effects are independent across traits. 

• Prior with a mixture of “canonical” sharing patterns. (See “Canonical prior” below for 
details.) This prior is not as flexible as the “data-driven” prior described next, but has the 
advantage of being easy to implement because it does not involve any separate estimation 
steps. 
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• A “data-driven” prior in which the covariances and weights are estimated from the data. The 
basic idea behind this prior is to adapt the sharing patterns 𝑼4 and corresponding mixture 
weights 𝜔4 to be consistent with the data. (See “Data-driven prior” below for details.) This 
requires more work to design but has a potentially greater payoff. 

 
Canonical prior. The generation of the canonical covariance matrices for the prior g is 
implemented by the create_cov_canonical function in the mvsusieR package. Following 
[6], this function generates the following covariance matrices: the R × R identity matrix, 𝑰), 
modeling the case when all effects are independent (the same as the “random effects” prior); 
the “equal effects” matrix, an R × R matrix of all ones, which models the case in which all effects 
are the same; rank-1 matrices modeling trait-specific effects of the form 𝒆"𝒆"⊺ , in which 𝒆" is a 
vector of length R containing all zeros except for a 1 in the rth position; and matrices modeling 
uniformly heterogeneous effects, with ones on the diagonal and 𝜎 on the off-diagonal, where 𝜎 
is 0.25, 0.5 or 0.75. In total, this resulted in R + 5 covariance matrices, where R is the number of 
traits. 
 
Note that the canonical covariance matrices are all at the same scale (each matrix has entries 
spanning the range 0 to 1), and none of the matrices allow for negatively correlated effects (all 
of the entries in these matrices are non-negative).  
 
To complete the canonical prior, we assigned uniform weights 𝜔4 = 1/𝐾 to the K = R + 5 
mixture components. 
 
Data-driven prior. We also took an approach similar to [6] to generate the covariance matrices 
𝑼4 and mixture weights 𝜔4 in the “data-driven” prior. 
 
First, we prepared a data set to learn the prior. For each candidate fine-mapping region, we 
identified the top z-score which was defined as the vector of association z-scores for the R traits 
containing the largest (in magnitude) z-score among all SNPs in the given fine-mapping region. 
Letting M denote the number of fine-mapping regions, we formed an M × R matrix containing 
the top z-scores. Here we denote this matrix by Z. 
 
Next, we generated initial estimates of covariance matrices using a variety of approaches: 
 

• R + 5 canonical covariance matrices (see “Canonical prior” above). 
• The empirical covariance matrix 𝒁⊺𝒁/𝑀. 
• Three rank-1 matrices of the form 𝒗"𝒗"⊺ , 𝑟 = 1, 2, 3, in which 𝒗" is the rth right singular 

vector of the reduced singular value decomposition (SVD) of 𝒁, 𝒁 = ∑ 𝜎"𝒘"𝒗"⊺)
"%& , in 

which 𝜎" is the r-th singular value and 𝒘" is the rth left singular vector. 
• A rank-3 approximation of 𝒁 based its SVD, 𝑼 ≈ ∑ 𝜎"7𝒗"𝒗"⊺ /𝑀:

"%& . 
• A sparse, low-rank approximation of 𝒁 obtained using the R package flashr [24] 

(version 0.6-8), 𝑼 ≈ 𝑭𝑳⊺𝑳𝑭⊺/𝑀, where 𝑳 is the M × R’ loadings matrix and 𝑭 is the R × R′ 
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matrix of estimated factors, and R’ ≤ R is the rank of the approximation. The rank, R’, 
was automatically determined by flashr. 

• R’ rank-1 matrices of the form 𝒇"𝒇"⊺ , 𝑟 = 1,… , 𝑅′, in which 𝒇" denotes the rth column of 𝑭. 
 
After completing these steps, we had initial estimates for K = R + R’ + 1	covariance matrices. 
 
Next, we ran Extreme Deconvolution (ED) [25] to refine the initial estimates of the 𝑼4 and 
simultaneously estimate the mixture weights 𝜔4. (We used the ED algorithm implemented in the 
cov_ed function from the mashr R package, version 0.2.59, which was adapted from [25].) The 
mixture weights initialized to uniform values, 𝜔4 = 1/𝐾, 𝑘 = 1,… , 𝐾. 
 
Finally, to avoid poor estimation of the lfsr that can happen when the prior covariances are 
singular (i.e., not invertible), we added a small positive constant to the diagonals of all the 
covariance matrices 𝑼4 in the data-driven prior. This step ensured that these matrices were all 
invertible. 
 
The data-driven prior obtained by running the above procedure on the UK Biobank data is 
shown in Supplementary Fig. 11. The data-driven priors obtained by running the above 
procedure separately in Scenarios a and b of the simulations are shown in Supplementary 
Figures 12 and 13, respectively. 
 
UK Biobank data. The UK Biobank is a prospective cohort study with detailed phenotype and 
genotype data collected from approximately 500,000 participants recruited in the United 
Kingdom, with ages between 40 and 69 at time of recruitment [26, 27]. For fine-mapping, we 
focused on a subset of 16 blood cell traits from the UK Biobank haematology data collection 
[28]. These blood cell traits were also the focus of a recent association analysis [29, 30] and 
fine-mapping studies [31, 32]. Several of the UK Biobank blood cell traits are based on the 
same measured quantities and are therefore highly correlated so we did not include all the 
blood cell traits in our analyses. For example, relative volume of erythrocytes, also known as 
“hematocrit” (HCT), is calculated from mean corpuscular volume (MCV) and red blood cell count 
(RBC#), so to avoid including highly correlated traits we did not include HCT. The blood cell 
traits used in our fine-mapping analyses are summarized in Supplementary Table 3. 
 
The UK Biobank imputed genotypes feature a high density of available SNPs, so they are well-
suited for fine-mapping [26, 27]. We used a subset of the 502,492 available UK Biobank 
genotypes (version 3), removing samples that met one or more of the following criteria for 
exclusion: mismatch between self-reported and genetic sex; pregnant; one or more data entries 
needed for the analysis or data preparation steps are missing; and, following [29, 32], a blood-
related disease was reported in the hospital in-patient data (blood-related diseases included 
were leukemia, lymphoma, bone marrow transplant, chemotherapy, myelodysplastic syndrome, 
anemia, HIV, end-stage kidney disease, dialysis, cirrhosis, multiple myeloma, lymphocytic 
leukemia, myeloid leukemia, polycythaemia vera, haemochromatosis). Additionally, we 
excluded outlying genotype samples based on heterozygosity and/or rate of missing genotypes 
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as defined by UK Biobank (data field 22027), and we removed any individuals having at least 
one relative in the cohort based on UK Biobank kinship calculations (samples with a value other 
than zero in data field 22021). Finally, to limit confounding due to population structure, we 
included only genotype samples marked as “White British” (based on a principal components 
analysis of the genotypes [26] stored in data field 22009). After filtering genotype samples 
according to these criteria, 257,605 samples remained. 
 
We applied quantile normalization to the 16 blood cell traits measured in the 257,605 samples, 
separately for each trait, to transform each trait to the standard normal distribution. Since 
ultimately we aimed to jointly model the 16 blood cell traits, we removed outlying phenotypes 
according to a simple multivariate normal distribution of the phenotypes. Specifically, after 
quantile normalization, we measured the Mahalanobis distance 𝒚!⊺𝚺w9&𝒚! for each individual i, 
where 𝒚! is the vector of 16 blood cell traits measured in individual i, and 𝚺w is the sample 
covariance matrix estimated from the 257,605 UK Biobank samples. We discarded samples 
with Mahalanobis distance falling within the [0.99, 1] quantile of the chi-square distribution with 
16 degrees of freedom. This step removed 8,625 samples, for a final total of 248,980 UK 
Biobank samples. 
 
Base-pair positions of the SNPs in the UK Biobank genotype data are reported using Genome 
Reference Consortium human genome assembly 37 (hg19). 
 
Association analyses of UK Biobank blood cell traits. Using the UK Biobank genotype and 
phenotype data prepared as described above, we computed association statistics for each of 
the 16 blood cell traits and for all available biallelic SNPs on autosomal chromosomes meeting 
the following criteria: minor allele frequency of 0.1% or greater; information (“INFO”) score of 0.6 
or greater (the INFO score quantifies imputation quality). The same criteria were used in [33] to 
filter the SNPs. 
 
Association statistics were computed using the --glm function in PLINK (version 2.00a2LM, 64-
bit Intel, Feb 21, 2009) [18] with hide-covar no-x-sex omit-ref –vif 100. Following 
[34, 32], we included the following covariates in the association analyses: sex (data field 31), 
age at recruitment (21022), age × age, assessment center (54), and genotype measurement 
batch (22000). To limit inflation of spurious associations due to population structure, we also 
included the top 10 genotype PCs as covariates following previous association analyses of UK 
Biobank data (e.g., [35]). (These PCs were previously computed by UK Biobank [26] and stored 
in data field 22009.) The covariates input file for PLINK was prepared by calling the 
model.matrix function in R and standardizing quantitative covariates (age, PCs) to have 
mean 0 and variance 1. 
 
The summary data provided as input to SuSiE and mvSuSiE were the z-scores and p-values 
extracted from the T_STAT and P columns in the plink2 --glm outputs. The association 
statistics computed using PLINK have been made available in a Zenodo repository (see URLs). 
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Selection of regions for fine-mapping. To select regions for fine-mapping, we adapted the 
approach used in [32] to the multivariate setting. In brief, we began by identifying regions 
separately for each trait. For each significant association (PLINK two-sided t-test p-value less 
than 5 × 109P), we defined the fine-mapping region as all SNPs within ±250 kb of the significant 
association. Next, any regions overlapping by one or more SNPs were combined into a larger 
region. We repeated combining regions until no regions overlapped. This resulted in a set of 
fine-mapping regions for each of the 16 blood cell traits, similar to [32]. To form a single set of 
fine-mapping regions for all 16 traits, we then merged two regions from different traits whenever 
they overlapped. The end result of this procedure was a set 975 of disjoint fine-mapping regions 
satisfying these properties: all “significant SNPs” (with PLINK p-value for two-sided t-test less 
than 5 × 109P) belong to exactly one region; all SNPs within 250 kb of a significant SNP belong 
to exactly one region. This procedure generated fine-mapping regions that varied considerably 
in size: their lengths ranged from 411 kb to 8.73 Mb (average size: 961 kb; median size: 686 
kb); and the number of SNPs ranged from 93 SNPs to 36,605 SNPs (average number of SNPs: 
4,776; median number of SNPs: 3,514). A listing of all 975 regions is given in Supplementary 
Table 3. These same regions were used in both single-trait and multi-trait fine-mapping. 
 
Note that we did not fine-map the extended MHC [36], defined as base-pair positions 25--36 Mb 
on chromosome 6. The MHC is particularly challenging to analyze and interpret, and therefore is 
typically analyzed separately [37, 38, 39]. 
 
Simulations using UK Biobank genotypes. We evaluated the fine-mapping methods on data 
sets generated using real genotypes X and simulated phenotypes Y. For the genotypes, we 
used the UK Biobank imputed genotypes. We simulated Y from different mvSuSiE models. 
 
The genotype data were curated following the data preparation steps described above, so N = 
248,980 in all our simulations. To clarify, these data preparation steps included removing 
outlying blood cell trait observations (see above). Even though this particular filtering step was 
not needed since we did not use the UK Biobank phenotype data in the simulations, for 
convenience we used the data prepared with this filtering step. 
 
Simulation scenarios. We implemented three fine-mapping scenarios in the simulations. 
 
In the simplest simulations, which we used to compare all of the methods (SuSiE, mvSuSiE, 
CAFEH, PAINTOR and flashfm), we simulated 2 traits under a variety of conditions: (i) 
independent traits with independent effects; (ii) independent traits with correlated effects; and 
(iii) correlated traits with independent effects. This simpler scenario was intended mainly for 
comparisons with PAINTOR and flashfm so as to not unfairly disadvantage these methods: 
flashfm cannot handle a large number of traits; PAINTOR cannot handle a large number of 
causal SNPs, and assumes independent traits and independent effects (Table 1). However, for 
completeness we also compared with SuSiE and CAFEH in this simulation scenario. 
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For comparing other fine-mapping methods (SuSiE, mvSuSiE, CAFEH), we simulated data sets 
under two more complex scenarios, which we refer to as “Scenario a” and “Scenario b”. 
 
In Scenario a, we simulated 20 independent traits in which the SNP effects were either specific 
to one trait or shared among traits in simple ways (equal effects among 2 traits, equal effects 
among half of the traits, or correlated equally among all 20 traits). In the results, we call 
Scenario a the “Trait-specific + Shared Effects” scenario. 
 
Scenario b was intended to capture a combination of factors that one might more realistically 
encounter in fine-mapping studies. It is also more challenging because the traits are correlated 
and the effects are shared among the traits in complex ways. Specifically, we simulated using a 
residual covariance matrix V and sharing patterns 𝑼4 obtained from our analyses of the UK 
Biobank blood cell traits. In the results, we refer to Scenario b as the “Complex Shared Effects” 
scenario. 
 
Simulation procedure. Let X denote the N × J genotype matrix for a given fine-mapping 
region, where J is the number of SNPs in the region, and N = 248,980. 
 
The procedure we used to simulate an N × R matrix Y was the following. 
 

1. Center and scale the columns of X so that each column has a mean of 0 and a variance 
of 1. 

2. Choose S, the number of causal SNPs. For Scenarios a and b, set S to 1, 2, 3, 4 or 5 
with probabilities 0.3, 0.3, 0.2, 0.1, 0.1, respectively. For the 2-trait simulations, set S = 2. 

3. Sample the indices of the S causal SNPs uniformly at random from {1, … , 𝐽}. Denote the 
set of causal SNPs by 𝒞. 

4. For each SNP 𝑗 ∈ 𝒞, simulate the R effects, 𝒃# ∈ ℝ), from the mixture of multivariate 

normals (7), in which 𝜎607 = 1. In the 2-trait simulations, we set 𝐾 = 1,𝜔& = 1,𝑼& = ¢1 𝜌
𝜌 1£, 

in which the correlation 𝜌 between the two effects was 0, 0.5 or 1. We also simulated 2-
trait data sets in which the effects were drawn from a mixture of R + 5 = 7	“canonical” 
covariance matrices (see “Canonical prior” above). To draw each effect 𝒃# from this 
mixture, the mixture component probabilities were specified as follows: one of the 2 trait-
specific covariances was chosen each with probability 0.2; or one of the remaining 
canonical covariances was chosen each with probability 0.12. In Scenario a, we 
simulated the effects of the causal SNPs 𝒃# using a mixture of 19 covariance matrices 
(Supplementary Fig. 10). For Scenario b, we simulated the effects using the mixture of 15 
covariance matrices estimated from the UK Biobank data (Supplementary Fig. 11). 

5. For each SNP 𝑗 ∉ 𝒞, set 𝒃# = 𝟎. 

6. Choose the residual variance 𝜎7. To set 𝜎7 to a realistic value, we set 𝜎7	so that the 
greatest proportion of variance in a trait explained by the SNPs was 0.05%, which roughly 
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corresponds to the proportion of variance explained in the mvSuSiE fine-mapping 
analyses of the UK Biobank blood cell traits. In particular, we solved for 𝜎7 satisfying 
Q&"

Q"BQ&"
= 0.0005, where 𝜎R7 ∶= Var(𝒚̈") is the variance in the rth trait explained by the SNPs, 

in which Var(𝜽) denotes the sample variance, 𝒚̈" ∶= 𝒙&𝑏&" +⋯+ 𝒙$𝑏$", and 𝑟
∶= argmax"'∈{&,…,)}Var(𝒚̈"). 

7. Specify the R × R residual correlation matrix C, then set 𝑽 = 𝜎7𝑪. For Scenario a and the 
2-trait scenario, 𝑪 = 𝑰). For Scenario b, the 16 × 16 covariance matrix C was set to the 
correlation matrix estimated from the 16 blood cell traits after removing the linear effects 
of covariates (Supplementary Table 6). (Note that, although this correlation matrix was 
estimated from the UK Biobank data, for the simulations, the V used in the mvSuSiE 
analyses of the simulated data was estimated using the simulated data and so the V used 
by mvSuSiE differed from the V used to simulate Y.) In the 2-trait simulations, we set 𝑪 =

¢ 1 𝑐&7
𝑐7& 1 £, in which the correlation 𝑐&7 between the two effects was 0, 0.4 or 0.8. 

8. Simulate Y using model (1). 
9. Center and scale the columns of Y so that each column has a mean of zero and a 

variance of 1. 

10. Compute the summary statistics—effect estimates 𝛽®#", standard errors 𝑠̂#", z-scores 𝑧#" 
and the in-sample LD matrix R—using PLINK [18] and LDstore [19]. For these summary 
statistics, we extracted the BETA, SE, T_STAT and P columns from the plink2 --glm 
output (see “Association analyses of UK Biobank blood cell traits” for more details on how 
PLINK was called). Note PLINK was applied to the raw genotypes without centering or 
scaling. We computed the J × J in-sample LD matrix 𝑹w = 𝑫9&/7𝑿⊺𝑿𝑫9&/7, where 𝑫
∶= diag(𝑿⊺𝑿), using LDstore version 1.1. 

 
This procedure produced an empirical distribution of z-scores roughly similar to the z-scores 
seen in association analyses of the blood cell traits; in our simulations, the largest z-score 
magnitude in each fine-mapping region had a median of 11.05, mean of 10.97 and a third 
quantile of 11.71, whereas the corresponding statistics for the UK Biobank blood cell traits were 
8.01, 10.85 and 12.18. 
 
For each of the three scenarios (Scenario a, Scenario b, and the 2-trait scenario), we simulated 
600 data sets for 600 fine-mapping regions selected from the curated set of 975 regions for the 
UK Biobank blood cell traits (Supplementary Table 4). All selected regions had at least 1,000 
SNPs and no more than 5,000 SNPs, and were at least 400 kb in size and at most 1.6 Mb. In 
total, we simulated 600 × 3 = 1,800 fine-mapping data sets. 
 
Details of the methods compared. In this section we describe how we ran the methods on the 
simulated data sets. 
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SuSiE, mvSuSiE and PAINTOR were run using the z-scores and in-sample LD. CAFEH and 
flashfm were run using the effect estimates, standard errors of these effect estimates, and in-
sample LD. Some methods, including mvSuSiE, also accepted an additional input, the sample 
size (N), in which case we provided this as well. flashfm also required the “reference” allele 
frequencies, which in all our analyses were the minor allele frequencies. 
 
PAINTOR. We ran PAINTOR [40] in only the 2-trait simulations. PAINTOR was designed to 
work with functional genomic annotation data, so to run PAINTOR we created a single “dummy” 
annotation in which all SNPs were assigned to this annotation (that is, all entries of the 
annotation matrix were set to 1). For all data sets, we asked PAINTOR to enumerate all 
possible configurations up to 2 causal SNPs. (In the 2-trait simulations, the true number of 
causal SNPs was always 2.) We did not use the “mcmc” option (-mcmc) because the outputted 
PIPs when using this option were all zero in our tests. (The same issue was reported in 
https://github.com/gkichaev/PAINTOR_V3.0/issues/5.) All other PAINTOR options were kept at 
their default settings. Note that PAINTOR does not accept N (the sample size) as input. Also 
note that PAINTOR assumes that both traits and effects are independent across traits (Table 1). 
 
flashfm. We ran flashfm [41] in only the 2-trait simulations. We ran flashfm by calling function 
FLASHFMwithFINEMAP from R package flashfm (version 0.0.0.9000). This function internally 
calls FINEMAP [19, 42] (we used FINEMAP 1.4.1) with settings --sss --n-configs-top 
1000 --n-causal-snps 10, which allows configurations of up to 10 causal SNPs. We ran 
flashfm with 4 CPUs (NCORES = 4). All other flashfm settings were kept at their defaults. The 
inputs to FLASHFMwithFINEMAP were the effect estimates, the standard errors of these effect 
estimates, minor allele frequencies, vector of trait means, and sample size N. Since Y was 
centered and standardized in the simulations, the vector of trait means was simply a vector of 
zeros of length R. 
 
CAFEH. We ran CAFEH [43] on all data sets in Scenarios a and b. Specifically, we used the 
fit_cafeh_summary interface in CAFEH 1.0 installed with Python 3.7.4. The 
fit_cafeh_summary function accepts the following data inputs: effect estimates, standard 
errors of those estimates, LD matrix, and sample size N. When calling fit_cafeh_summary, 
all optional arguments were kept at the software defaults. CAFEH's default setting for the upper 
limit on the number of single effects (denoted as “K” in the CAFEH model), is 10, which is the 
same default used in SuSiE and mvSuSiE. Note that CAFEH assumes that both traits and 
effects are independent across traits (Table 1). 
 
For assessing performance of CAFEH PIPs and trait-wise PIPs (in CAFEH, these are called 
“study PIPs”), we called get_pip and get_study_pip. 
 
CAFEH outputs credible sets without any filter on the purity of the CSs. Therefore, to make the 
CAFEH credible sets comparable to SuSiE and mvSuSiE credible sets, we filtered out CSs with 
purity less than 0.5. 
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Note that the two CAFEH summary data interfaces—fit_cafeh_summary and 
fit_cafeh_z—produce the same or very similar results when X is standardized, so we expect 
that both CAFEH summary-data interfaces would perform similarly when X is standardized. 
Both functions internally call function CAFEHSummary with the same LD matrix, but provide 
different effect estimates and standard errors of the effect estimates. Let 𝜷w denote the vector of 
effect estimates (with one entry per SNP) and let 𝒔� denote the vector of standard errors (also 
with one entry per SNP). If fit_cafeh_summary calls CAFEHSummary with inputs 𝜷w, 𝒔�, and 
assuming X is standardized, then it can be shown that fit_cafeh_z calls CAFEHSummary 
with inputs √𝑁𝜷w, √𝑁𝒔�	. Since CAFEHSummary is invariant to rescaling of 𝜷w, 𝒔�—that is, 
CAFEHSummary generates the same result with inputs 𝑎𝜷w and 𝑎𝒔� for any choice of scalar 𝑎 >
0—it follows that fit_cafeh_summary and fit_cafeh_z also produce the same result when 
X is standardized. In practice, this invariance does not hold exactly since it requires that the 
prior on the effects also be appropriately rescaled, but empirically we have found that the 
CAFEH PIPs and posterior effect estimates are almost the same for different choices of 𝑎 > 0. 
(See 
https://github.com/karltayeb/cafeh/blob/current_working_branch/notebooks/CAFEHS_scale_inv
ariance.ipynb.) 
 
SuSiE. We ran SuSiE in all simulations by calling function susie_rss from the susieR R 
package [4] (version 0.12.12). In each data set, we ran susie_rss once per trait. The 
susie_rss interface accepts different types of summary data; we provided z-scores, in-sample 
LD, and sample size N. For all simulations, we set L, the maximum number of non-zero effects, 
to 10. We also set L = 10 for the 2-trait simulations even though there were never more than 2 
causal SNPs in these simulations. We estimated the residual variance 
(estimate_residual_variance = TRUE), which is the recommended setting when the LD 
is estimated from the “in-sample” data. We set the maximum number of IBSS iterations to 1,000 
(max_iter = 1000). The remaining optional arguments were kept at their defaults. 
 
Since SuSiE analyzes each trait separately, it does not directly provide a systematic way to 
quantify evidence for a SNP being a cross-trait causal SNP. To quantify performance in this task 
and compare with mvSuSiE, we quantified the evidence for a cross-trait causal SNP using an 
ad hoc metric, the “maximum PIP”, defined as 
 

max-PIP# ∶= max
"	∈	{&,…,)}

PIP#", 

(25) 
where PIP#" is the trait-wise PIP for SNP j obtained from the SuSiE analysis of trait r. 
 
mvSuSiE. We ran mvSuSiE using the mvsusie_rss interface from the mvsusieR R package 
(version 0.0.3.0518, git commit id 9f28916). While susie_rss accepts a vector of z-scores, 
mvsusie_rss accepts a matrix of z-scores (specifically, a J × R matrix). In the simulations, we 
compared several mvSuSiE variants using different prior choices; for more details, see 
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“Specifying the prior” above and Supplementary Fig. 1. (In the 2-trait simulations, we only used 
the canonical prior. This was a mixture of multivariate normals with K = 7 components.) We also 
compared mvSuSiE with different settings of the residual covariance V; see “Estimating the 
residual variance matrix” above, and Supplementary Figures 2 and 9. In all cases, we ran 
mvsusie_rss with the following settings: L = 10, max_iter = 1000, 
estimate_prior_variance = TRUE, estimate_prior_method = “EM”, 
precompute_covariances = TRUE and n_thread = 4. We set L = 10 for the 2-trait 
simulations even though there were never more than 2 causal SNPs in these simulations. All 
other options were kept at the default settings. 
 
Computing environment. All analyses of the simulated data sets were run on Linux machines 
(Scientific Linux 7.4) with 4 Intel Xeon E5-2680v4 (“Broadwell”) processors, and with R 4.1.0 
[44] linked to the OpenBLAS 0.3.13 optimized numerical libraries. At most 10 GB of memory 
was needed to perform a fine-mapping analysis of a single simulated data set using one of the 
methods. We used DSC version 0.4.3.5 to perform the simulations. 
 
Fine-mapping of UK Biobank blood cell traits using SuSiE and mvSuSiE. We fit a mvSuSiE 
model to each fine-mapping data set—specifically the prepared z-scores matrix Z and LD matrix 
R—by calling mvsusie_rss from the mvsusieR package with the following settings: L = 10, 
N = 248980, precompute_covariances = TRUE, estimate_prior_variance = 
TRUE, estimate_prior_method = “EM”, max_iter = 1000 and n_thread = 1. 
We ran SuSiE on each data set {Z, R} separately for each trait (i.e., column of Z) by calling 
susie_rss with the following settings: n = 248980, L = 10, max_iter = 1000, 
estimate_prior_variance = TRUE, refine = TRUE. Any CSs returned by susie_rss 
or mvsusie_rss with purity less than 0.5 were removed. 
 
Enrichment analysis of regulatory annotations using GREGOR. We performed enrichment 
analyses of the SuSiE and mvSuSiE blood cell trait fine-mapping results using GREGOR [45] 
(we used GREGOR version 1.4.0). In brief, GREGOR performs an enrichment analysis for 
given “positive set” of SNPs by calculating overlap with the given regulatory annotation, then 
estimates the probability of the observed overlap against its expectation using a set of “matched 
control SNPs”. We ran GREGOR with the following settings: pop = ‘EUR’, r2_threshold 
= 0.7, ld_window_size = 10000, min\_neighbor = 10, job_number = 10. 
 
Although GREGOR provides p-values, we found some issues with these p-values (e.g., some 
exceeded 1). Therefore, for each annotation, we extracted the intermediate GREGOR outputs 
to get a 2 × 2 table of the SNP counts of inside and outside the annotation intersected with 
positive set and matched control set. We then used this 2 × 2 table to perform Fisher’s exact 
test and this was the final p-value reported. Additional details about the GREGOR analysis can 
be found in the 20231106_GREGOR_functional_enrichment.ipynb Jupyter notebook in 
the “mvarbvs” Zenodo repository (see URLs). 
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We assessed enrichment for a total of 19 regulatory genomic annotations, including: enhancer 
promoter regions and transcription factor binding sites [46]; genomic structural elements [47]; 
eQTLs in multiple tissues (based on different false discovery rates) [48]; RNA polymerase II 
binding in EPC-treated HESCs [49]; and binding intervals for specific transcription factors. The 
specific transcription factors included were promyelocytic leukemia zinc finger protein (PLZF), 
FOSL2, NR2F2 and FOXO1 [49]. The BED annotation files are included in the Zenodo 
repository (see URLs). 
 
Using these regulatory genomic annotations, we performed two sets of GREGOR enrichment 
analyses, one using the SuSiE fine-mapping results, and another set using the mvSuSiE fine-
mapping results. We performed these enrichment analyses separately for the fine-mapping 
results for each blood cell trait, as well as the “global” (cross-trait) results. For mvSuSiE, we 
included a SNP in the cross-trait positive set if the SNP was included in at least one 95% CS 
and/or the global PIP was greater than 0.7. We included a SNP in the positive set for a given 
blood cell trait if the SNP was included in at least one 95% CS and the lfsr for the given trait was 
less 0.01. 
 
For SuSiE, we included a SNP in the positive set for a given trait if the SNP was included in at 
least one 95% CS and/or the PIP was greater than 0.7. The SuSiE cross-trait positive set was 
defined as the union of the 16 positive sets from the SuSiE analyses of each of the 16 traits. 
 
Enrichment analysis of hematopoietic cell-types using gchromVAR. We performed 
additional enrichment analyses of the SuSiE and mvSuSiE blood cell trait fine-mapping results 
using gchromVAR [31]. In brief, gchromVAR assesses overlap of the fine-mapped SNPs and 
regions of accessible chromatin, separately in different hematopoietic cell types. (This is actually 
a weighted overlap in which we have defined the weights as the SuSiE or mvSuSiE PIPs.) Each 
enrichment analysis was performed following the steps described in the gchromVAR R package 
vignette (we used version 0.3.2 of the gchromVAR R package). The z-scores returned by the 
computeWeightedDeviations function were then refined using the adaptive shrinkage 
method [22] (ashr package 2.2-57). The adaptive shrinkage posterior z-scores (posterior 
means divided by posterior standard deviations) and lfsr values were used to report the final 
enrichment results. 
 
Similar to the GREGOR enrichment analyses, we performed two separate enrichment analyses 
with gchromVAR, one using the SuSiE results, and another using the mvSuSiE results. For 
SuSiE, we included a SNP for a given trait if the PIP > 0.01 for that trait. A total of 100,090 
SNPs had PIP > 0.01 in at least one of the blood cell traits. For mvSuSiE, we included a SNP 
for a given trait if the global PIP > 0.01 and if the CS was significant for the given trait (lfsr < 
0.01). A total of 39,884 SNPs had a global PIP > 0.01. 
 
Data availability. The genotype and phenotype data used in our analyses are available from 
UK Biobank. Association test statistics for the UK Biobank blood cell traits, results of the 
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simulations, results of the blood cell trait fine-mapping analyses, and other results needed to 
reproduce the figures in the paper are also available online (see URLs). 
 
Code availability. Source code implementing our methods, including SuSiE, mvSuSiE, and the 
code implementing the simulations and analysis of the UK Biobank blood cell traits, is available 
online and is distributed under the BSD and MIT open source licenses (see URLs). 
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