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SUMMARY 

 

Tissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How 

the properties of single cells and their microenvironment contribute to the balance between order and 

disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-

organization of human mammary organoids as a model. We find that organoids behave like a dynamic 

structural ensemble at the steady state. We apply a maximum entropy formalism to derive the ensemble 

distribution from three measurable parameters – the degeneracy of structural states, interfacial energy, 

and tissue activity (the energy associated with positional fluctuations). We link these parameters with the 

molecular and microenvironmental factors that control them to precisely engineer the ensemble across 

multiple conditions. Our analysis reveals that the entropy associated with structural degeneracy sets a 

theoretical limit to tissue order and provides new insight for tissue engineering, development, and our 

understanding of disease progression. 
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INTRODUCTION  

Tissue structure, defined as the number, composition, and spatial arrangement of cells, has reproducible 

features (order) yet remains heterogeneous in its details (disorder). Individual cells, for example, can 

differ significantly in their pattern of contacts with other cell types, their shape, and their polarity despite 

having reproducible average properties. These and other types of spatial heterogeneity are well 

appreciated in the breast1, pancreas2, liver3 and intestine4, and temporal heterogeneity occurs during 

development5,6 and in response to stimuli7–9. Order in the spatial arrangement of cells is critical for tissue 

function10,11, and therefore, it may not be surprising that disorder can become accentuated in disease 

states like cancer12–16. Despite the ubiquity of structural heterogeneity in health and disease, its 

fundamental drivers remain poorly understood.  

 

Heterogeneity in the local arrangement of cells within tissues can be a consequence of extrinsic factors 

like microenvironmental variability and intrinsic factors like the stochasticity of cellular processes17,18. A 

systematic analysis of these extrinsic and intrinsic factors is limited by the complexity of the 

microenvironment and the challenges associated with measuring and perturbing live tissues in vivo. In 

vitro systems such as organoids – self-organizing tissues that closely mimic the structure and function of 

their source organ19 – offer a powerful alternative. Many extrinsic factors like cellular composition, tissue 

geometry, organization of the extracellular matrix (ECM), and the concentration of diffusible factors can 

be controlled in organoids using modern bioengineering techniques20–22. Remarkably, however, the 

resulting structures remain heterogeneous23–26, pointing to the importance of intrinsic factors including 

stochasticity in the position and timing of cell proliferation and differentiation1,27,28, among others.  

 

Structural order at the tissue-scale emerges from a combination of the mechanical and biochemical 

properties of single cells and their interactions, which together contribute to their programs of self-

organization29. How these mechanisms drive the emergence of order at the tissue-scale has been the 

subject of extensive investigation both experimentally and theoretically, but the opposing cell- and tissue-

intrinsic mechanisms promoting disorder have been explored less thoroughly. For example, 

mathematical models of cell sorting successfully predict the gross structural motifs of tissue when 

parameterized only with the energy associate with cellular contacts30,31, but fail to quantitatively 

reproduce the average arrangement of cells or its variance. Computational implementation of these 

models provides a means of incorporating stochasticity or random noise as a way to navigate metastable 

states during self-organization27, but the cellular basis of this noise and its quantitative mapping to tissue-

scale order and disorder has not been established. Therefore, it remains unknown precisely how patterns 

of order and disorder at the tissue scale emerge from the measurable properties of single cells. 

Consequently, we are unable to understand or engineer these fundamental features of tissues 
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effectively.  

 

To establish a quantitative link between the heterogeneity in tissue structure and the properties of single 

cells, the mammary epithelium provides an ideal model system. The structure, cell compositions, 

signaling, mechanics and dynamics of the mammary gland are well characterized both in vivo and in 

vitro31–35. Moreover, the broad rules through which the branched structure of the organ forms1, as well as 

the detailed mechanics through which cell positioning is regulated31, are well understood. Mammary 

organoids recapitulate multiple features of glandular biology in vivo and can be manipulated genetically 

and with a variety of bioengineering techniques32. Like other organoid systems, variability across a 

number of structural metrics spontaneously emerges in reconstituted mammary organoids even when 

starting from similar initial conditions31,36, suggesting that structural heterogeneity can emerge intrinsically 

during their self-organization. 

 

Here, we deploy a variety of bioengineering techniques to limit the impact of extrinsic sources of tissue 

structural heterogeneity on reconstituted human mammary organoids by controlling their initial size, 

composition, and microenvironment. This allows us to quantify the processes promoting order (tissue 

surface energies) and opposing processes promoting disorder (stochastic cellular dynamics and 

entropy). We use a maximum entropy formalism to derive the quantitative relationship between the 

biophysical and biomolecular properties of single cells and the probability distributions of tissue structure, 

thereby enabling the systematic engineering of the structural ensemble. Our analysis explains why 

observed tissue structures can deviate significantly from those predicted by energy-based models of 

tissue self-organization30,37,38. More broadly, it reveals that the capacity of self-organization to maintain 

order at the tissue-scale is fundamentally limited by fluctuations at the cellular-scale. We anticipate these 

conceptual and mathematical tools will find applications as diverse as regenerative medicine, tissue 

modeling, and disease prevention. 

 

RESULTS 

Cell positioning is intrinsically heterogeneous in vivo and in vitro. 
Structural order and disorder can be measured using a variety of quantitative metrics1,39,40. A metric 

central to the ability of the mammary gland to synthesize and pump milk is its bilaminar arrangement of 

luminal and myoepithelial cells (LEP and MEP, respectively)41, which can be quantified by the proportion 

of LEP in contact with the basement membrane (Fig. 1A, Supp. Fig. 1A, Supplemental Information). 

This structural motif is shared by numerous other secretory organs including the prostate42, salivary43 

and lacrimal glands44, and occurs frequently during development. Analysis of normal human breast 

tissue sections revealed the mean LEP contact with the basement membrane (LEP boundary occupancy 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2023. ; https://doi.org/10.1101/2023.07.01.546933doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.01.546933
http://creativecommons.org/licenses/by-nc-nd/4.0/


5  

or !!) differed significantly from tissue composition  (LEP proportion or F), indicating an active role for 

self-organization in promoting structural order (Fig. 1A, images from Shalabi et al.45).  However, it also 

revealed high variability in ϕ" (Fig. 1A). The variability can be partially ascribed to local differences in 

cell proportions, geometry, signaling and microenvironment33,46, which are challenging to constrain in 

vivo. Surprisingly, however, we noted that regions with similar composition and geometry remained 

heterogeneous (Supp. Fig. 1B, for e.g., mean, ϕ" = 0.19 and standard deviation, s = 0.19 for regions 

with F » 0.5), suggesting additional sources of variability remain.  

 

To further constrain extrinsic sources of variability we used primary human mammary 31organoids where 

cell state is stable on experimental timescales31,47, and organoid geometry, cell proportion and 

microenvironment can be independently specified using bioengineering techniques (Fig. 1C). Human 

mammary epithelial cells (HMEC) were isolated from breast reduction surgeries and expanded through 

several passages. We aggregated equal numbers of LEP and MEP (tagged with GFP and mCherry, 

respectively) in microwells, then transferred the organoids to laminin-rich hydrogels (Matrigel) for culture 

and imaging (Supp. Fig. 1C,D). These organoids self-organize under the influence of interfacial cellular 

mechanics to exclude LEP from the tissue boundary within two days31, without any significant changes to 

cell state (Supp. Fig. 1E). The boundary occupancy of LEP (ϕ") (Fig. 1D, Supplemental Information) 

was directly analogous to the structural metric we measured in vivo and correctly distinguished well-

organized from poorly-organized organoids (Supp. Fig. 1F-J). While individual organoids were 

heterogenous in their detailed structure (Fig. 1E,F), they had a reproducible average (ϕ" = 0.27, s = 

0.14) over time (Supp. Fig. 1J), across cells from different donors (Supp. Fig. 1K), and over 

experimental replicates (Supp. Fig. 1L). Additionally, the average in vitro structure was similar to the 

average in vivo structure for regions with similar size and composition (Fig. 1B). Thus, live imaging of 

reconstituted organoids enables the more systematic analysis of intrinsic sources of variability acting 

during mammary epithelial self-organization.  

 

The difference between the boundary and total proportion of LEP in mammary epithelial organoids was 

consistent with the notion that active processes promote order during their self-organization. However, it 

also raised the question of how we might quantify order and disorder in this system on an absolute scale.  

To answer this question, we began by investigating the form of a maximally disordered distribution of 

organoid structures, which we generated by preparing spheroids containing equal numbers of GFP- and 

mCherry-tagged MEP (Fig. 1C). In these MEP-only spheroids, all cells were mechanically and 

molecularly identical, and therefore, all possible cellular arrangements were equally probable. The 

average ϕ" of MEP spheroids now matched the cellular composition (ϕ" = 0.5, s = 0.14, Fig. 1D,E) and 

the distribution had a Gaussian form, the maximum entropy distribution for a given mean and variance. 
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This apparent discrepancy between the observed (Gaussian) and expected (uniform) distributions 

implied the existence of multiple degenerate cellular configurations (also known as microstates), all 

having the same measured ϕ" (defined as a macrostate). Macrostates comprising higher numbers of 

individual microstates would be both statistically and entropically favored48,49. This reasoning suggested 

that the principle of entropy maximization could represent a powerful paradigm for modeling organoid 

structural distributions.  

 

Tissues dynamically sample from the ensemble steady state distribution. 
Cells and tissues exist far from thermodynamic equilibrium, for which the principle of entropy 

maximization is typically valid50. However, the steady state of a non-equilibrium system can be modeled 

using equilibrium statistical mechanics given certain assumptions hold at the relevant time and length 

scales51–54. These assumptions include the time invariance of distributions and averages as well as the 

absence of flux across macrostates (also known as “balance”). To investigate whether these 

assumptions hold for mammary organoids at the steady state (day 2), we first measured temporal 

variation in the organoid structure across minutes to hours where the confounding effects of cell 

proliferation and death were minimal (Supplemental Information). The structure of both mammary 

organoids and MEP spheroids fluctuated around distinct averages that did not change over time (Fig. 

2A, Supp. Fig. 2A). The time-averaged distribution of each was qualitatively similar to the steady state 

distribution of the larger ensemble, suggestive of the ergodic-like behaviors characteristic of equilibrium 

systems (Fig. 2B). The organoids also had minimal net flux between structural macrostates, as indicated 

by a diagonally symmetric transition probability matrix at short- and long-time intervals (20 minutes and 3 

hours, respectively) (Fig. 2C, Supp. Fig. 2B). Additionally, organoids that transiently deviated away from 

the average structure relaxed back towards it within 3-5 hours (Fig. 2D), with relaxation times 

comparable to the decay time of the autocorrelation function for ϕ" (Supp. Fig. 2C). Finally, the steady 

state distribution was independent of the starting structures, as pre-segregated MEP spheroids made by 

combining smaller GFP+ and mCh+ cell aggregates also relaxed to a similar distribution as those starting 

as random structures (Supp. Fig. 2D). These combined analyses confirmed the existence of a steady 

state in these organoids, supporting the applicability of an equilibrium statistical mechanics framework to 

model the heterogeneity of organoid structural ensembles. 

 

A statistical mechanical framework provides a quantitative description of organoid structural 
distributions. 
The principle of maximum entropy allows statistical inference of the most likely distribution of microscopic 

states given partial information about the system (e.g., an average energy or concentration)48,49. In 

Boltzmann statistics, this distribution corresponds to one that maximizes entropy for a fixed average 
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energy among particles, and the probability of different states depends on their energy and temperature. 

Analogously, the maximum entropy distribution for a given average organoid structure also resembles a 

Boltzmann distribution, but where the average energy of the tissues is predicted to be proportional to ϕ" 

and with a minimum corresponding to ϕ" = 0 (Supplemental Information). We therefore asked whether 

we could identify and measure properties of mammary organoids that functioned analogously to an 

average energy, the distribution of microscopic states, and temperature in Boltzmann statistics. 

 

Tissue interfacial mechanics are the driving forces of cell sorting30,37,38, the process through which 

mammary organoids and many other tissues10,31,55,56 self-organize. During cell sorting, organoids trend 

towards structures that minimize the total surface energy across all cellular interfaces38. Accordingly, we 

hypothesized that the same surface energies also determine the average tissue mechanical energy, and 

therefore the probability, of different structures. The mammary organoids have two types of cell-ECM and 

three types of cell-cell interfaces, each with its unique interfacial tension (γ) (Fig. 3A). We calculated all 

five tensions using the Young’s equation, micropipette aspiration and contact angle analysis 

(Supplemental Information, Fig. 3B-E). Remarkably, both computational (Supplemental Information, 

Fig. 3F,G, Supp. Fig. 3A-E) and mathematical (Supplemental Information) analyses revealed that the 

average macrostate energies were proportional to ϕ" and had a minimum at ϕ" = 0, precisely as 

predicted by entropy maximization. The energies for different microstates within a macrostate were 

similar and symmetrically distributed around their average energy (Fig. 3G, Supp. Fig. 3D), allowing us 

to use a mean field approximation to estimate the average macrostate energy57. We defined the slope of 

the average energy with respect to ϕ" as the mechanical potential $%, which was roughly proportional 

to the difference between γ#$%&$'( and γ($%&$'( (Fig. 3G, Supplemental Information).  

 

In systems at the steady state, microstates with the lowest energy are the most likely to be observed. 

Macrostates, however, comprise multiple microstates, and their probability is additionally dependent on 

their degeneracy (W, number of microstates). Because MEP spheroids lack any controlling mechanical 

potential, we reasoned that their observed probability distribution (Fig. 1E) is an exact measure of the 

relative degeneracy of macrostates in mammary organoids. To test this notion, we applied a similar 

analytical and computational approach as with the energy calculations (Supplemental Information, Fig. 

3F,H, Supp. Fig. 3F-L). We predicted minimum and maximum values of W at ϕ"= 0 or 1 and ϕ"= 0.5 

respectively, matching the experimental distribution of MEP spheroids (Fig. 3H). The strong agreement 

between predictions and experiments suggests the model fully captures the degeneracy of the 

configurational phase space with no additional hidden degrees of freedom. Importantly, we confirmed 

that W is only a function of cell proportions and tissue geometry and not cell identity (Supp. Fig. 3M). 

Therefore, this approach allows a priori estimation of macrostate degeneracy and the maximum entropy 
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distribution in the absence of any mechanical driving forces, in contrast to inferring entropy from 

measured distributions48.  

 

The calculated DE and W  can be used to estimate the macrostate probabilities by modeling the 

ensemble structural distribution as a maximum entropy distribution, similar to a Boltzmann distribution 

(Fig. 3I, Supplemental Information), but requires we define an additional scaling factor for the 

mechanical energies analogous to temperature in equilibrium thermodynamics. At higher temperature, 

higher energy states are increasingly occupied, thereby decreasing order in the system. Temperature 

derives from the average kinetic energy of the microscopic parts of the system, and manifests as 

fluctuations across configurations with different energies. In the context of non-equilibrium biological 

systems like tissues, the magnitude of these fluctuations is instead primarily determined by the active 

mechanics of cellular interfaces58, which are impacted by stochastic processes associated with the 

actomyosin dynamics that power cell motility, contractility, division, apoptosis, and endocytosis59–62. 

Therefore, we defined tissue activity as an energy scaling factor, which we estimated by fitting organoid 

distributions to a maximum entropy distribution parameterized with the calculations for DE and W (Fig. 

3I,J, Supp. Fig. 3N). We note that the inferred activity (~ 10-13 J) is many orders of magnitude higher 

than the energy scale of molecular thermal fluctuations (k"T ~ 10-21 J at 300 K), but of a similar scale to 

measured interfacial energies (Fig. 3E), and therefore consistent with active processes. The magnitude 

of mechanical energies relative to activity determine the energetic constraints for the structural 

ensemble, regulating the extent of structural order (Fig. 3K).  

 

Tissue activity sets the balance between the mechanical potential and macrostate degeneracy. 
We next aimed to directly test whether activity is a tunable physical property of cells that sets the balance 

between DE and W. We reasoned that cell motility would be a measurable parameter associated with 

activity, as activity should scale with the average kinetic energy, or the integrated motion of cells within 

organoids (Fig. 4A). MEP consistently had a higher average speed than LEP, suggesting they were the 

primary source of tissue activity. Moreover, MEP proximal to the tissue boundary moved the fastest (Fig. 

4A), an observation consistent with other studies showing higher cell motility at tissue surfaces63–65. 

Therefore, we hypothesized that the primary driving forces of MEP motility, and thus tissue activity, are 

tractions between MEP and the ECM. Consistent with this hypothesis, cell motility was greatly reduced in 

organoids cultured in non-fouling agarose microwells as assessed by calculating an effective diffusion 

coefficient of cell nuclei (~2-fold reduction) (Supplemental Information, Fig. 4B-C, Supp. Fig. 4A,B). 

To test the impact of reduced activity on ensemble structure, we examined mammary organoid self-

organization in agarose microwells (Fig. 4D). Under these conditions we predicted two important impacts 

on steady state tissue organization: reduced activity due to the loss of ECM tractions but also an altered 
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mechanical potential due to the loss of cell-ECM adhesion, which is a principle driving force for self-

organization. We first confirmed that the measured macrostate degeneracy does not change under these 

conditions (Supp. Fig. 4C,D). We also confirmed that ∆E is significantly reduced in magnitude and has a 

negative slope in agarose (Fig. 4E), which without a corresponding reduction in activity, would result in 

only weak sorting of LEP to the tissue boundary. Surprisingly, however, we observed a strong boundary 

enrichment of LEP (ϕ" = 0.82,		σ = 0.11, Fig. 4F, Supp. Fig 4C). The unexpectedly high LEP enrichment 

implied a 5-fold lower activity in agarose compared to Matrigel (Fig. 4F). The lower predicted activity was 

consistent with reduced structural fluctuations (Fig. 4G, Supp. Fig. 4E) and the lower diffusion constant 

in agarose (Fig. 4C). Therefore, an increase in structural order can also emerge in tissues with small 

mechanical driving forces, so long as tissue activity is sufficiently reduced (Fig. 4H).  

 

Engineering the structural ensemble by programming the mechanical potential and activity. 
This model provides a framework for systematically engineering the ensemble structure by addressing 

cellular processes like motility and adhesion, and microenvironmental features such as tissue size, 

composition, and geometry. We first focused on engineering the mechanical potential, which emerges 

from cell type-specific differences in cell-cell and cell-ECM interfacial tensions. Therefore, we can alter 

DE by perturbing interfacial tensions. For example, the depletion of talin1 (TLN1) and p120 catenin 

(CTNND1) in MEP (Supp. Fig. 5A) increased the .($%&$'( and .($%&($%, respectively (Fig. 5A, Supp. 

Fig. 5B). The impact of these perturbations on structural distributions is further regulated by tissue 

activity. Therefore, to test if programming the mechanical potential and activity predictably alter the 

structure of organoid ensembles, we prepared spheroids containing equal numbers of normal MEP and 

TLN1- or CTNND1- knockdown (KD) MEP (tagged with mCh and GFP respectively) (Fig. 5A) and 

compared model predictions with their structural distribution and motility in Matrigel and agarose (Supp. 

Fig. 5C). In Matrigel, normal MEP have high motility and we therefore expect high tissue activity.  The 

estimated ∆E for TLN1-KD spheroids were comparable to that for mammary organoids, while CTNND1-

KD MEP spheroids had a small but negative ∆E (Fig. 5B, top). Modeling the impact of these mechanical 

potentials on high activity tissues predicted robust exclusion of TLN1-KD MEP from the spheroid 

boundary, but little or no sorting for CTNND1-KD MEP (Fig. 5C, top). In agarose, in contrast, we expect 

normal MEP to have low motility and we expect correspondingly low tissue activity.  The estimated ∆E 

was small and negative for both TLN1-KD MEP and CTNND1-KD MEP spheroids (Fig. 5B, bottom). 

Modeling the impact of these mechanical potentials in the context of a 5-fold lower activity predicted 

increased boundary enrichment for CTNND1-KD MEP in agarose compared to Matrigel (Fig. 5C, 

bottom). We tested these predictions and observed a remarkable agreement between experiment and 

theory (Fig. 5D). 
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Engineering the structural ensemble by programming macrostate degeneracy. 
The number and distribution of microstates across macrostates, /, depends on the cell type proportion 

(LEP fraction: Φ), tissue geometry (surface area to volume ratio) and the total number of cells (N) 

(Supplemental Information) – all of which can be perturbed quantitatively in organoids. For MEP 

spheroids with increasing proportion of GFP+ MEP (Fig. 6A), the average ϕ" increased and matched Φ, 

in agreement with the theory which predicts that / is maximum for ϕ" = 	Φ (Fig. 6B,C, top). For 

mammary organoids with varying Φ, ∆E (Supp. Fig. 6A) and activity (Supp. Fig. 6B) should remain 

constant, but the average ϕ" should increase due to the underlying shift in / (Fig. 6B, bottom). 

Remarkably, the model again accurately predicted the shift in the mean structure across these conditions 

(Fig. 6C, bottom). 

 

We also perturbed / by changing the organoid size (Fig. 6D), where an increase in the number of 

possible sites within the tissue increases the degeneracy of macrostates close to ϕ" = 	Φ. This had the 

effect of tightening probability distributions due to the larger difference in / between adjacent 

macrostates (Fig. 6E). Indeed, both larger MEP spheroids and mammary organoids had narrower 

distributions (Fig. 6F). For the mammary organoids, the larger tissue size also increased ΔE (Supp. Fig. 

6C), as more LEP must be added to the boundary for the same fractional increase in ϕ". Consequently, 

larger mammary organoids were additionally shifted toward a lower average ϕ" (Fig. 6F, bottom). Larger 

tissue size did not change the motility of cells at the tissue boundary, implying similar activity (Supp. Fig. 

6D). Taken together, these experiments identify the critical parameters in the tissue microenvironment 

(e.g., cell proportions, tissue size, and ECM) and in single cells (e.g., interfacial tensions and cell motility) 

that contribute to the average and variance of the structural ensemble. Therefore, quantitative 

manipulation of these parameters provides a means of systematically engineering the structural 

ensemble. 

 

The relative scale of mechanical potential and activity determine the extent of structural order. 
Analogous to thermodynamic systems, the partitioning of LEP between the core and the boundary is 

determined by the free energy change (DG) associated with their translocation between these two 

positions. In the absence of a mechanical potential (e.g., MEP spheroids), DG = 0 and there should be 

no LEP enrichment in either compartment (maximum disorder) (Fig. 1E). In contrast, a large absolute DG 

(e.g., mammary organoids in Matrigel or agarose) should lead to strong LEP enrichment in either the 

core or the boundary (high order) (Fig. 1E, 4F). Like thermodynamic state variables, the DG for tissues 

can be inferred from quantitative relationships between tissue state variables such as average total 

surface energy, average cell dynamics and cell proportions (analogous to enthalpy, temperature, and 

concentration, respectively). To explore this idea, we calculated an effective equilibrium constant (K)*) 
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for LEP translocation from the core to the boundary (Fig. 6G), where -log(K)*) is proportional to DG, and 

hence the favorability of enrichment of LEP at the tissue boundary. The predictions of the model once 

again proved surprisingly accurate.  For example, the ratio of DE and activity determines the magnitude 

of DG, and therefore, the efficiency of cell sorting (Fig. 6H, Supp. Fig. 6E). In contrast, changes to 

macrostate degeneracy have little effect on DG, even though these perturbations had a significant impact 

on the average and variance of tissue structure (Supp. Fig. 6F,G). Extensions of this analysis could help 

identify unexpected empirical relationships between state variables (analogous to equations of state in 

thermodynamics), predict structural transitions (analogous to transition state theory), and could be 

transformative in how we understand the emergence of a variety of other macroscopic properties of 

tissues from the properties and interactions of their individual cellular building blocks.  

 

DISCUSSION 

An ordered spatial arrangement of cells is universally essential to the function of tissues. It is therefore 

remarkable that at length scales approaching that of single cells, structure can be quite heterogeneous. 

This is a poorly understood feature of many tissues, both in vivo and in vitro, that has been attributed to 

both tissue-extrinsic and tissue-intrinsic factors. Here we reveal that this heterogeneity can emerge 

intrinsically as a consequence of cell mechanics and dynamics by deriving a quantitative relationship 

between the driving forces of order and disorder that act during the self-organization of human mammary 

organoids. We show that mammary organoids behave as a dynamic structural ensemble at the steady 

state, having a reproducible average and variance. This feature of the system allowed us to apply the 

principle of maximum entropy to link the probability of observing different structural configurations with 

three parameters: the tissue’s mechanical potential, the degeneracy of possible cellular configurations in 

space, and the mechanical energy associated with fluctuations in cell position. We then map these 

tissue-level state variables to the average properties of single cells and their microenvironment, providing 

a means to make surprisingly accurate predictions for how perturbations to cells and their interactions 

alter the distribution of structures at the tissue-scale. We conclude that heterogeneity can emerge 

spontaneously due to mechanical fluctuations, even in the absence of any extrinsic microenvironmental 

variability or intercellular heterogeneity in gene expression.  

 

Our analysis offers several important and broadly applicable conceptual insights into the self-

organization of tissues. First, it explains why the average structure of many tissues differs significantly 

from the predictions of existing energy-based models of cell sorting30,38. Specifically, this discrepancy is a 

consequence of entropy, which favors the occupancy of otherwise higher energy tissue configurations 

because they are more numerous compared to lower energy ordered configurations. This serves to shift 

the average structure away from what would be expected from the mechanical potential alone. Second, it 
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suggests that in all self-renewing tissues, a certain baseline level of structural heterogeneity should be 

expected because tissues must engage in homeostatic processes that are known to increase their 

activity, such as cell motility, cell division, apoptosis, immune cell trafficking, and the endocytosis of 

material from their environment59–61,66. 

 

Statistical mechanics provides a quantitative link between the average properties of non-living systems 

and the underlying properties of their interacting molecular building blocks. Therefore, an important 

contribution of this study is that it similarly draws an explicit link between the average macroscopic 

structure of living tissues and the measurable properties of their interacting cellular building blocks. In 

doing so, it bypasses the need to measure the microscopic state of every gene in every cell in order to 

understand the properties of tissues as a whole. While many cell-based models reduce the complexity of 

~20,000 gene products to several dozen parameters reflecting cellular state, interactions, dynamics, and 

tissue material properties67,68, these parameters can be hard to measure or can be difficult to map to 

concrete cell biology of physical processes. Further, many models build in stochasticity and 

heterogeneity as random noise of unclear origin27,69, whereas the statistical mechanical framework 

applied here allowed us to map tissue activity back to the motility of cells as they engage with the ECM. 

Consistently, recent studies have highlighted the importance of cell motility (a driver of activity) in 

regulating solid-to-fluid transitions in tissues during development and cancer progression66,69. These 

studies also invoke thermodynamic concepts like effective energy, temperature, and pressure63,70 to 

predict tissue-level phase transitions, but leave the quantitative relationship between these variables and 

their biophysical determinants unspecified. By deriving these quantitative relationships explicitly, as we 

do here, it is intriguing to speculate whether this approach can be extended to other state variables and 

their derivatives (analogous to Maxwell’s relations) in order to provide insight into how single cells 

change their state to tune the location of critical points in tissue-level properties like viscosity, pressure, 

density, volume, and cell positioning that are known to play essential roles in all aspects of tissue 

development, homeostasis, and breakdown during disease66,71,72. 

 

Our analysis of cell-intrinsic drivers of order and disorder in mammary organoids was facilitated by the 

stability of cellular phenotypes and the tissue microenvironment over experimental timescales. However, 

unlike this carefully controlled in vitro system, tissue state variables can vary either spatially or temporally 

(e.g., changes in composition and gene expression with hormone fluctuations33 or in breast cancers16) 

under the influence of signals extrinsic to the tissue. This provides one mechanism for tissues to tune 

their state variables in order to sharpen or re-shape their distribution of structures during development 

and disease. For example, while activity prevents tissues from getting trapped in metastable 

configurations during the early stages of self-organization26, it also prevents tissues from converging on 
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the most ordered configurations in the latter stages of self-organization. Thus, a gradual decrease in 

cellular activity (or conversely an increase in the steepness of the mechanical potential) can serve to 

“anneal” structure towards more ordered distributions. Consistent with this notion, cell motility is 

progressively reduced in ducts compared to the terminal endbuds during branching morphogenesis of 

the murine mammary gland73,74 and salivary gland56. Analogously, cell proliferation and death can modify 

tissue composition and size, which contribute to microstate degeneracy75. In all these cases, the 

trajectory of self-organization will evolve dynamically along with the changing state variables, channeling 

tissues towards new or more ordered configurations.  

 

Cells can also regulate their own identity and properties in response to the intrinsic exchange of signals 

that occurs as they sample different positions (or niches) within the tissue.  This property of cells as living 

materials is wildly different than classical physical systems that are incapable of information exchange 

and processing. This would suggest that cell state plasticity and tissue structural dynamics are intimately 

linked, and the coupling between them can drive tissue systems to evolve in unusual ways, for example 

during development and the progression of disease. In breast cancer, for example, transformed luminal 

cells must contact the basement membrane in order to break it down and invade76,77, and yet their 

physical properties are not compatible with a sustained position next to the basement membrane in the 

tissue. Intriguingly, however, transformed luminal cells that localize to the leading edges of invasive 

tumors and organoids acquire basal characteristics over several days77,78. Thus, contact with the 

basement membrane or the surrounding stroma may provide a new microenvironment for these cells, 

potentially reprogramming their biophysical properties in a positive feedback loop that facilitates their 

invasion. Extending these concepts to development, it is intriguing to imagine the guy wires in the 

Waddington’s famous landscape of cell states79 as emerging directly from, and changing with, the 

evolving structure of the tissue, consistent with the intricate co-evolution of cell state and tissue structure 

observed during embryogenesis. Therefore, elaborating the statistical mechanical model proposed here 

to incorporate the link between cell state and cell position80 could provide a more quantitative and 

physical basis for this hypothetical model that has implications for development, stem cell homeostasis, 

and progression toward diseases like cancer.  

 

The ability to model tissues as dynamic ensembles using concepts of equilibrium statistical mechanics is 

at its surface quite surprising, as cells and tissues exist far from equilibrium. However, it is now 

understood that the mathematical foundations of statistical mechanics are deeply linked to information 

theory, indicating they are far more generalizable than originally assumed49. Thus, so long as a system 

obeys the principle of “balance,” and is therefore at a steady state, one may assume that its most 

probable distribution of microscopic configurations is one that maximizes its entropy of states subject to 
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the constraint of macroscopic averages. Accordingly, the tools of information theory and statistical 

physics have now been successfully applied to several important questions in biology, including 

population dynamics of organisms51, stochasticity in cell fate decisions81–83, and the heterogeneity in 

single cell gene expression84 and morphology85,86, all of which are far from equilibrium processes. While 

we apply this concept specifically to the mammary gland here, we reason that the application of these 

principles to other tissue types is warranted and will reveal new strategies for understanding the outcome 

of development and disease progression. For example, many broad mechanisms of self-organization, 

such as cell-sorting, are well conserved across tissue types and species (e.g., prostate31, salivary 

gland56, neural tube55, cochleal epithelium87, and developing embryos10), even if the detailed structure 

and the hierarchy of interfacial tensions that guide them differ88. While more quantitative measurements 

of cell mechanics, activities, and tissue geometries are required to define the appropriate state variables 

in these other tissues, the framework described here should be equally applicable given a suitable 

structural metric that scales with tissue surface energy. In principle, this statistical mechanical framework 

could also be adapted to model structural transitions during other morphogenetic processes such as 

epithelial folding and branching given that tissue activity allows the system to sample across the relevant 

structural metric during the folding transition and that the corresponding energetic and geometric 

constraints can be defined quantitatively5,29. More broadly, by directly addressing and engineering 

heterogeneity as a fundamental property of tissues, similar approaches can greatly improve the 

reproducibility of organoids21 and other lab-grown tissues whose variability remains a major roadblock to 

their more widespread use19,89,90.  

 

MATERIALS AND METHODS 

Detailed descriptions for all experimental, analytical, and computational approaches are provided in the 

Supplemental Information.  

 

DATA AND CODE AVAILABILITY 

All source data will be made available upon publication. Custom MATLAB and R scripts are publicly 

available through GitHub as: 

Code for image analysis - https://github.com/Gartner-Lab/Organoid_Image_Processing.  

Code for lattice models - https://github.com/Gartner-Lab/BCC_Lattice_Model.  
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FIGURE LEGENDS 

 

Figure 1: Cell positioning is intrinsically heterogeneous in vivo and in vitro. 

A. A representative section of normal human mammary gland stained for keratin 19 and 14 (LEP and 

MEP markers, respectively). The cells are arranged in a bilaminar structure with MEP surrounding 

LEP (order), however the tissue also exhibits large variance in local geometry, cell proportions and 

cell positioning (disorder). A custom analysis workflow was used for pixel segmentation and image 

quantification (Supplemental Information). The density histograms show the distributions for 

effective tissue diameter (d), LEP proportion (F) and LEP positioning at the tissue boundary (ϕ"). 

Analysis of n=128 tissue objects from 14 donors is shown. Scale bar = 50 µm. 

B. Reconstituted organoids provide an in vitro model to study intrinsic sources of positional 

heterogeneity in tissues with defined composition and geometry. Finite-passage human mammary 

epithelial cells (HMEC) were isolated from breast reduction mammoplasty, expanded in vitro, sorted 

as single cells and reaggregated in defined numbers and proportions. Organoids were cultured in 

Matrigel for 2 days. 

C. Mammary organoids contained similar number of GFP+ LEP (gold) and mCh+ MEP (purple). MEP 

spheroids contained similar number of GFP+ MEP (blue) and mCh+ MEP. Confocal images were 

processed to quantify the total LEP/GFP fraction (Φ) and the boundary LEP/GFP fraction (ϕ") 

(Supplemental Information). For each organoid, three central sections spaced 5 µm apart were 

analyzed. Scale bar = 50 µm. 

D. Processed mammary organoid and MEP spheroid images following segmentation illustrate 

population-level structural heterogeneity. Scale bar = 50 µm. 

E. Probability density histograms showing the population distribution of mammary organoids (gold) and 
MEP spheroids (blue) two days post-assembly. The dashed line represents a Gaussian fit to the 

MEP spheroid distribution. The number of observations is noted at the top right of the graph. 
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Figure 2: Tissues dynamically sample from the ensemble steady state distribution. 

A. Snapshots from time lapse microscopy after segmentation for a representative mammary 

organoid and MEP spheroid illustrate temporal structural heterogeneity at the steady state. Scale 

bar = 50 µm. Quantification of fluctuations in ϕ" over time for the examples shown. Dashed line is 

the average of ϕ" over time for the corresponding tissue. 

B. Probability density histograms showing the temporal distribution of a small number of mammary 
organoids (n=18) and MEP spheroids (n=24) at the steady state. 

C. Organoids at different timepoints were binned into 10 structural states according to their ϕ". The 

probability of transitioning between any two structural states over a 20 min window is represented 

by the size of the circles. Any transitions not observed during this window are marked by ‘+’. For 

organoids at the steady state, the diagonal symmetry of the transition probability matrix suggests 

there is no net flux across states. The same tissues were used for this analysis as Fig. 2B.  

D. Organoids at each time point were classified into 5 groups based on the difference between the 

instantaneous and average ϕ". For each bin, the average structure at different time intervals from 

the initial classification is plotted. The colors in the graph on the right represent the bins on the 

example trace. The same tissues were used for this analysis as panel Fig. 2B . 
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Figure 3: A statistical mechanical framework provides a quantitative description of organoid 

structural distributions. 

A. Schematic illustrating tensions at different cell-cell and cell-ECM interfaces. The total tissue 

mechanical energy is the sum of interfacial energy at each interface (product of the tension, γ+,-, and 

the area, A+,-, of the interface). 

B. Cortical tensions of single LEP and MEP in suspension as measured by micropipette aspiration.  

C. Cell-ECM contact angles for cells on Matrigel-coated glass were measured after 4 h. 

D. Cell-cell contact angles for cell pairs were measured after 3 h. 

E. Estimated cell-cell and cell-ECM tensions for LEP and MEP based on Young’s equation. For cell-

ECM tensions, the γ($%&$'( was used as the reference and was assigned the value of 0. 

Confidence intervals were calculated using error propagation for standard error on cortical tension 

and contact angle measurements (Supplemental Information). 

F. 2D hexagonal or 3D body-centered cubic (BCC) lattice models were used to estimate the average 

mechanical energy and the degeneracy of structural macrostates (ϕ") (Supplemental Information). 

Only the 2D model is shown here for simplicity. Macrostates with ϕ" ≈ 0.5 comprise the greatest 

number of microstates (highest degeneracy). 

G. The average mechanical energy of mammary organoids for different values of ϕ" estimated from the 

BCC model. Ten thousand tissue configurations were sampled for each ϕ". The dots and error bars 

represent the mean and standard deviation. The gold line represents a linear fit for average 

macrostate energy against ϕ". The slope (DE) is roughly proportional to the product of the difference 

in cell-ECM tensions and the total ECM surface area. 

H. Macrostate degeneracy (W) was calculated analytically (inset) (Supplemental Information). The 

corresponding probability density assuming random sampling of all microstates is shown with the 

dotted line. Additional variance due to uncertainty in measurements and degeneracy along other 

structural metrics was built into the model (Supplemental Information), and its prediction is shown 

using the solid line. The superimposed histogram for comparison is the measured ensemble 

distribution of MEP spheroids (from Fig. 1E). 

I. The structural distribution of organoid ensembles is modeled as a maximum entropy distribution, a 

function of the macrostate degeneracy (calculated analytically or from the distribution for MEP 

spheroids), mechanical energy (calculated from interfacial tensions), and tissue activity. 

J. The maximum entropy model (gold line) was fit to the measured ensemble distribution of mammary 

organoids (histogram, from Fig. 1E) to estimate the tissue activity. The predictions for distributions 

arising from only the scaled energy or macrostate degeneracy are also shown for comparison (gray 

and blue lines respectively). 

K. The diagram illustrates how the relative weights of the mechanical energy and macrostate 
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degeneracy determine the extent of structural order. In the absence of a mechanical potential, the 

degeneracy dominates, and the system is maximally disordered. A large absolute mechanical 

potential drives the ensemble to an ordered state. 

The lines and hinges for boxplots in panels B-D show the median and the 1st and 3rd quartiles. The 

number of observations for panels B-D are noted at the bottom of the graphs. Asterisks represent the 

significance of difference from the reference group (MEP for B and C, MEP-MEP for D), as follows ns: p 

> 0.05; *: p < 0.05, **: p < 0.005; ***: p < 0.0005 based on Wilcoxon test. 
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Figure 4: Tissue activity sets the balance between the mechanical potential and macrostate 

degeneracy. 

A. Tissue activity is a measure of the kinetic component of the internal energy of tissues and is 

associated with cell motility. Cell speeds were measured by tracking cell nuclei in LEP- or MEP-only 

spheroids using time lapse microscopy (n=11 and 14 respectively). Speeds for MEP(purple) and LEP 

(gold) as a function of distance from the tissue boundary are shown. The Pearson’s correlation 

coefficients for linear regression are shown. Average speeds and their 95% confidence intervals are 

represented by the points and error bars respectively. 

B. The effective diffusion coefficients for cells in spheroids were calculated from the trends for the 
relative distance between cell pairs. This approach eliminates confounding dynamics from whole 

organoid movements. The left graph shows example traces of relative distance between cell pairs 

over time for a representative MEP spheroid. The change in relative distance (relative displacement) 

was calculated for different time intervals (Dt) and averaged across all times and cell pairs to get the 

mean squared relative displacement (MSRD). The MSRD vs Dt curves were used to estimate the 

effective cellular diffusion coefficients (D)..) for each organoid (Supplemental Information). 

C. Effective diffusion coefficients for LEP (gold) and MEP (purple) in the presence and absence of ECM 
interactions (in Matrigel and agarose microwells, respectively). The lines and hinges for boxplot show 

the median and the 1st and 3rd quartiles. The number of spheroids analyzed is noted at the bottom of 

the graph. Asterisks represent the significance of difference between conditions, as follows ns: p > 

0.05; *: p < 0.05, **: p < 0.005; ***: p < 0.0005 based on Wilcoxon test. 

D. Equal proportions of GFP+ LEP and mCh+ MEP were aggregated and cultured in Matrigel (high 

activity) or agarose microwells (low activity). 

E. The macrostate energy calculations for organoids in Matrigel (gold) and agarose (navy) using the 
BCC lattice model.  

F. The histogram shows probability density for organoids cultured in agarose. The gold line is the fit for 

organoids in Matrigel (+ECM), and the navy dotted line is the theoretical prediction based on DE for 

agarose with no change in activity. The solid navy line is the theoretical fit to the measured 

distribution, predicting 5-fold lower activity in agarose compared to Matrigel. 

G. Structural fluctuations in ϕ" over time for representative mammary organoids in Matrigel and agarose 

(gold and navy respectively). Dashed line is the average of ϕ/ for the corresponding condition. 
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Figure 5: Engineering the structural ensemble by programming the mechanical potential and 

activity. 

A. Experimental workflow: The MEP-ECM or MEP-MEP interfacial tensions were perturbed using 

shRNA against TLN1 (green) and CTNND1 (red). A non-targeting shRNA was used as control (blue). 

Equal proportion of mCh+ normal and GFP+ shRNA-transduced MEP were aggregated into 

spheroids (KD-MEP spheroids) and cultured either in Matrigel or agarose. 

B. The macrostate energy calculations for KD-MEP spheroids in Matrigel (top) and agarose (bottom) 
using the BCC lattice model.  

C. The predicted ensemble distributions for KD-MEP spheroids cultured in Matrigel (top) and agarose 

(bottom). 

D. The measured probability densities for KD-MEP spheroids cultured in Matrigel (top) and agarose 
(bottom). Histograms show the distribution of experimental data, dashed vertical lines are the 

average ϕ", and the solid curves are the theoretical predictions for each condition. The number of 

observations is noted at the top of the graphs.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2023. ; https://doi.org/10.1101/2023.07.01.546933doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.01.546933
http://creativecommons.org/licenses/by-nc-nd/4.0/


22  

Figure 6: Engineering the structural ensemble by programming macrostate degeneracy.  

A. Engineering structure by varying LEP proportion: the proportion of GFP+ LEP in mammary organoids 

or GFP+MEP in MEP spheroids was varied. Tissues with F = 0.25, 0.5 or 0.75 (light pink, magenta, 

and dark purple respectively) were generated. 

B. Theoretical predictions for MEP spheroids (top row) and mammary organoids (bottom row) with 

varying F. 

C. The measured probability densities for MEP spheroids (top row) and mammary organoids (bottom 

row) with varying F. Histograms show the distribution of experimental data, dashed vertical lines are 

the average ϕ", and the solid curves are the theoretical predictions for each condition. The number of 

observations is noted at the top of the graphs.  

D. Engineering structure by varying tissue size: the total number of cells per organoid was varied by 

changing the tissue diameter. Tissues with average diameter of 70 µm, 90 µm, and 110 µm were 

generated (light orange, orange, and brown respectively). The cell proportions were held constant (F 

= 0.5). 

E. Theoretical predictions for MEP spheroids (top row) and mammary organoids (bottom row) with 
varying size. 

F. The measured probability densities for MEP spheroids (top row) and mammary organoids (bottom 

row) with varying size. Histograms show the distribution of experimental data, dashed vertical lines 

are the average ϕ", and the solid curves are the theoretical predictions for each condition. The 

number of observations is noted at the top of the graphs.  

G. The equilibrium constant (K)*) for the partitioning of LEP between the tissue core to the boundary 

was calculated from the average occupancy of LEP and MEP in the tissue boundary and core. The 

free energy change (DG) associated with cell translocation is proportional to - log(K)*) and 

determines the favorability of cell translocation.  

H. Calculations of DG for different mechanical potentials and activities in tissues with a diameter = 80 

µm containing equal number of LEP and MEP. The contour lines are predictions from the model and 

are colored by the value of DE. Estimated values of DG for different experimental conditions are also 

shown, where points and error bars are the average and standard deviations. The symbols represent 

different conditions ( ○: mammary organoids, △: MEP spheroids, ◇: TLN1-KD spheroids, □: 

CTNND1-KD spheroids), and the points are colored by their calculated DE. 
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Supplemental Figure 1: Cell positioning is intrinsically heterogeneous in vivo and in vitro (related 

to Figure 1). 

A. Pixel classification and post-processing workflow for image segmentation. Following initial 

segmentation, images were processed to remove small features, holes, and debris. 

B. Structural distribution for human mammary gland sections with similar size composition reveals 
intrinsic heterogeneity in cell position. Data from Fig. 1A was divided by tissue size and LEP 

proportions. Distributions are shown for tissues smaller than 150 µm in diameter, with LEP proportion 

between 0.35 and 0.65 (red) or between 0.65 and 0.9 (blue). The number of tissues analyzed in each 

category are noted on the graph.  

C. Schematics illustrating the experimental workflow for mammary organoid reconstitution. Fourth 

passage HMEC were infected with lentivirus expressing cytoplasmic GFP or mCherry and purified by 

FACS between after 5-7 days. Equal numbers of GFP LEP and mCh MEP were aggregated in non-

adherent microwells for 4-6 h prior to transfer to Matrigel. Organoids were imaged two days after 

reconstitution. 

D. Cell isolation by FACS. Single cells were isolated based on forward and side scatter intensity. From 

singlets, GFP+ cells were isolated as GFP+ and mCherry-, while mCherry+ cells were isolated as 

GFP- and mCherry+. GFP+ LEP were isolated as GFP+, EpCAM-hi and CD271- or GFP+, EpCAM-hi 

and CD49f-low. mCherry+ MEP were isolated as mCherry+, EpCAM-low and CD271+ or mCherry+, 

EpCAM-low and CD49f- hi. 

E. Immunostaining of mammary organoids two and six days after culture in Matrigel. GFP (yellow) and 
mCh (purple) expression was used as markers for sorted LEP and MEP respectively. The expression 

of keratin-19 (red) and keratin-14 (cyan) marks luminal and myoepithelial lineages. 

F. Principal component analysis plot on different structural metrics for organoids containing roughly 
equal number of LEP and MEP. Organoids were manually annotated as LEP shell, MEP shell, mixed 

or split (schematics shown in panel g). 500-1000 images were sampled from each category for the 

analysis.  

G. Pearson’s correlation matrix for the structural metrics used in the analysis. Boundary LEP fraction 

and intermixing score were uncorrelated measures of tissue structure.  

H. The probability density for intermixing score for mammary organoids and MEP spheroids two days 
post-reconstitution. 

I. The probability density for the normalized inter-centroid distance for mammary organoids and MEP 

spheroids two days post-reconstitution. 

J. Boundary LEP occupancy and intermixing score are effective in separating the 4 annotated structural 
categories. 

K. The distribution of LEP boundary occupancy of mammary organoids in Matrigel at different times 
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post-reconstitution.  

L. LEP boundary occupancy for mammary organoids from different patient specimens in Matrigel, 2 

days post-assembly.  

M. LEP/GFP boundary occupancy for mammary organoids and MEP spheroids in Matrigel across 
experimental replicates two days post-assembly. 

Data was collected across multiple experiments. The number of observations is noted at the bottom or 

top of the graphs. The lines and hinges for boxplots show the median and the 1st and 3rd quartiles. 

Asterisks represent significance of difference from the reference group (day 2 for panel K, 240L for panel 

L, and base-mean for panel M), as follows ns: p > 0.05; *: p < 0.05, **: p < 0.005; ***: p < 0.0005 based 

on Wilcoxon test. 
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Supplemental Figure 2: Tissues dynamically sample from the ensemble steady state distribution  

(related to Figure 2). 

A. The trends for average ϕ" and F over time for mammary organoids (gold) and MEP spheroids (blue) 

analyzed by time lapse microscopy. The whisker plots show the mean and standard deviation for the 

data. 

B. The probability of transitioning between any two structural states over a 3-hour window is 

represented by the size of the circles, similar to Fig. 2C. Any transitions not observed are marked by 

‘+’. 

C. The autocorrelation function (ACF) of ϕ" for mammary organoids and MEP spheroids. The ACF 

approaches zero after approximately 2 hours (dashed line). The points and error bars are the mean 

and 95% confidence intervals from binning across all organoids. The lines represent the average for 

each organoid. 

D. Small spheroids of GFP- or mCh- were reaggregated to make spheroids with pre-sorted initial 
structures instead of random structures. There reaggregated spheroids relaxed to random 

configurations within a few hours, with their average ϕ" and intermixing scores resembling the steady 

state ensemble average. The whisker plots show the mean and 95% confidence interval for the data. 
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Supplemental Figure 3: A statistical mechanical framework provides a quantitative description of 

organoid structural distributions (related to Figure 3). 

A. A two-dimensional hexagonal lattice model for mammary organoids. Each cell is modeled as a 

hexagon with 6 neighbors. The cell centers are arranged in a hexagonal grid. 

B. A three-dimensional body-centered cubic (BCC) lattice model for mammary organoids. Each cell is 
modeled as a truncated octagon with 6 nearest neighbors (square interfaces) and 8 next nearest 

neighbors (hexagonal interfaces). The cell centers are arranged in a hexagonal grid. Tissue surface 

was modeled as a sphere to avoid overestimating the ECM surface area. 

C. The proportion of cell-cell interfaces (either LEP-LEP or LEP-MEP) do not predict the mechanical 

energies of the simulated tissues using the BCC lattice. The energies within a macrostate defined by 

either of these variables are asymmetrically distributed about the average. 

D. The distribution of microstate energies for the macrostates with ϕ" = 0.1, 0.2	and	0.5. For each 

macrostate, the energies are symmetrically distributed about the average macrostate energy (vertical 

line). The difference in energy across macrostates is much larger than that variance within a 

macrostate. All energies were estimated using the BCC model. 

E. Bootstrapping was used to obtain confidence intervals for the mechanical potential (DE). An example 

of 50 bootstrapping iterations is shown. The inset shows the distribution of DE from 1000 iterations. 

F. A schematic for the two-compartment lattice model for entropy estimation. Each boundary (dark gray) 

or core (light gray) lattice site can be occupied by either a LEP (gold) or MEP (purple). Macrostates 

are defined by the fraction of LEP in boundary (ϕ"). 

G. A schematic representation of structural degeneracy showing many microstates within the same 

macrostate (e.g., 3 LEP in the boundary). Cells with the same label are identical, and swapping two 

cells of the same identity yields identical microstates. 

H. Estimated number of cells and boundary fraction for tissues of different sizes, as a function of the 
diameter of a single cell and the thickness of the boundary compartment. Based on the average 

organoid size, tissues with diameter = 80 µm and a boundary thickness of 8 µm were used unless 

specified otherwise (dashed line). For these parameters, lattice sites were equally distributed 

between the boundary and the core. 

I. Schematic showing the effect of sampling the middle tissue section on the measured LEP fraction 
and LEP boundary occupancy. 

J. The relationship between the measured LEP boundary occupancy and the measured LEP fraction for 

different imaging depths in organoids with equal proportion of LEP and MEP. For sorted organoids, 

the measured LEP fraction is higher than the expected value. 

K. Estimated standard deviation for ϕ" due to volume sampling for different imaging depths. 

L. Predicted structural distributions for MEP spheroids resulting from combining structural degeneracy 
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and volume sampling for different imaging depths. 

M. Experimentally measured structural distributions for spheroids containing equal number of GFP+ and 

mCh+ LEP, MCF7 or MCF10A cells. The blue line is the fit for the distribution for MEP spheroids.  

N. Comparison of experimental and predicted structural distributions for mammary organoids and MEP 
spheroids. Histograms show the experimental distribution. Dashed and dotted lines are predictions 

based on degeneracy only or volume sampling only. The solid line is the final analytical model 

prediction. 
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Supplemental Figure 4: Tissue activity sets the balance between the mechanical potential and 

macrostate degeneracy (related to Figure 4). 

A. Example MSRD vs Dt curves for MEP (purple) or LEP (gold) spheroids in Matrigel and agarose. Time 

intervals less than 3 h we used to fit the data to the diffusion models to calculate D).. and a, as the 

curves were mostly linear at these time scales. 

B. The diffusion exponents for MEP (purple) or LEP (gold) spheroids in Matrigel and agarose. The cells 

show diffusive-like behaviors (a = 1). 

C. Example segmentations of mammary organoids and MEP spheroids in agarose at steady state (24 
h). Scale bar = 50 µm. 

D. The structural distribution for MEP spheroids in agarose. The blue line is the distribution of MEP 

spheroids in Matrigel. The number of spheroids is noted on the graph.  

E. Representative segmented mammary organoids and MEP spheroids cultured in agarose and 

followed by time lapse microscopy. Scale bar = 50 µm. Graph shows the quantification for the 

organoids shown.  
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Supplemental Figure 5: Engineering the structural ensemble by programming the mechanical 

potential and activity (related to Figure 5). 

A. Depletion of Talin-1 and p120 catenin protein expression in MEP upon treatment with shRNA against 

TLN1 and CTNND1 respectively. Top panels show representative western blots for Talin 1 and p120 

catenin expression along with a-tubulin expression (loading control). All intensity measurements were 

normalized to the loading control. The graphs show percent reduction in normalized protein 

expression in shRNA-treated cells compared to non-targeting shRNA-treated cells. 

B. Interfacial tension measurements for KD-MEP. Cortical tension, cell-cell contact angles and cell-ECM 

contact angles are shown using boxplots. Estimated cell-cell and cell-ECM interfacial tensions are 

listed in the table. 

C. Apparent diffusion coefficients for KD-MEP in Matrigel (top) and agarose (bottom). The number of 
spheroids analyzed is noted at the bottom of the graph.  

Asterisks represent significance of difference from the reference group (ctrl shRNA), as follows ns: p > 

0.05; *: p < 0.05, **: p < 0.005; ***: p < 0.0005 based on Wilcoxon test. 
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Supplemental Figure 6: Engineering the structural ensemble by programming macrostate 

degeneracy (related to Figure 6).  

A. The macrostate energy calculations for mammary organoids with increasing F using the BCC lattice 

model.  

B. Apparent diffusion coefficients for MEP in Matrigel for organoids with varying F. The number of 

spheroids analyzed is noted at the bottom of the graph.  

C. The macrostate energy calculations for mammary organoids with increasing diameter using the BCC 
lattice model. 

D. Cell speeds near the tissue boundary for MEP spheroids of varying sizes in Matrigel. The number of 

spheroids analyzed is noted at the bottom of the graph.  

E. Calculations of DG, average ϕ", and standard deviation of ϕ" for different mechanical potentials and 

activities in tissues with a diameter = 80 µm containing equal number of LEP and MEP. The lines are 

predictions from the model and are colored by the value of DE. Estimated values for different 

experimental conditions are also shown, where points and error bars are the average and standard 

deviations. The symbols represent different conditions ( ○: mammary organoids, △: MEP spheroids, 

◇: TLN1-KD spheroids, □: CTNND1-KD spheroids), and the points are colored by their calculated 

DE. 

F. Calculations of DG, average ϕ", and standard deviation of ϕ" for different mechanical potentials and 

LEP fractions in tissues with a diameter = 80 µm and activity corresponding to Matrigel. Estimated 

values for different experimental conditions are also shown, where points and error bars are the 

average and standard deviations. The symbols represent different conditions ( ○: mammary 

organoids, △: MEP spheroids), and the points are colored by their calculated DE. 

G. Calculations of DG, average ϕ", and standard deviation of ϕ" for different mechanical potentials and 

tissue sizes LEP fraction = 0.5 and activity corresponding to Matrigel. Estimated values for different 

experimental conditions are also shown, where points and error bars are the average and standard 

deviations. The symbols represent different conditions ( ○: mammary organoids, △: MEP spheroids), 

and the points are colored by their calculated DE. 
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Structural heterogeneity in the human mammary gland in vivo 
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FIGURE 4
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SUPPLEMENTAL FIGURE 2
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SUPPLEMENTAL FIGURE 4
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SUPPLEMENTAL FIGURE 5
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SUPPLEMENTAL FIGURE 6
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