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Abstract

Identifying informative predictors in a high dimensional regression model is a critical step for 

association analysis and predictive modeling. Signal detection in the high dimensional setting 

often fails due to the limited sample size. One approach to improving power is through meta-

analyzing multiple studies which address the same scientific question. However, integrative 

analysis of high dimensional data from multiple studies is challenging in the presence of 

between-study heterogeneity. The challenge is even more pronounced with additional data sharing 

constraints under which only summary data can be shared across different sites. In this paper, 

we propose a novel data shielding integrative large–scale testing (DSILT) approach to signal 

detection allowing between-study heterogeneity and not requiring the sharing of individual level 

data. Assuming the underlying high dimensional regression models of the data differ across 

studies yet share similar support, the proposed method incorporates proper integrative estimation 

and debiasing procedures to construct test statistics for the overall effects of specific covariates. 

We also develop a multiple testing procedure to identify significant effects while controlling the 

false discovery rate (FDR) and false discovery proportion (FDP). Theoretical comparisons of the 

new testing procedure with the ideal individual–level meta–analysis (ILMA) approach and other 

distributed inference methods are investigated. Simulation studies demonstrate that the proposed 

testing procedure performs well in both controlling false discovery and attaining power. The new 

method is applied to a real example detecting interaction effects of the genetic variants for statins 

and obesity on the risk for type II diabetes.
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1. Introduction

High throughput technologies such as genetic sequencing and natural language processing 

have led to an increasing number and types of predictors available to assist in predictive 

modeling. A critical step in developing accurate and robust prediction models is to 

differentiate true signals from noise. A wide range of high dimensional inference procedures 

have been developed in recent years to achieve variable selection, hypothesis testing and 

interval estimation (Van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhang 

and Zhang, 2014; Chernozhukov et al., 2018, e.g.). However, regardless of the procedure, 

drawing precise high dimensional inference is often infeasible in practical settings where 

the available sample size is too small relative to the number of predictors. One approach 

to improve the precision and boost power is through meta-analyzing multiple studies that 

address the same underlying scientific problem. This approach has been widely adopted 

in practice in many scientific fields, including clinical trials, education, policy evaluation, 

ecology, and genomics (DerSimonian, 1996; Allen et al., 2002; Card et al., 2010; Stewart, 

2010; Panagiotou et al., 2013, e.g.), as a tool for evidence-based decision making. Meta-

analysis is particularly valuable in the high dimensional setting. For example, meta-analysis 

of high dimensional genomic data from multiple studies has uncovered new disease 

susceptibility loci for a broad range of diseases including Crohn’s disease, colorectal cancer, 

childhood obesity and type II diabetes (Houlston et al., 2008; Bradfield et al., 2012; Franke 

et al., 2010; Zeggini et al., 2008, e.g.).

Integrative analysis of high dimensional data, however, is highly challenging especially with 

biomedical studies for several reasons. First, between study heterogeneity arises frequently 

due to the difference in patient population and data acquisition. Second, due to privacy and 

legal constraints, individual level data often cannot be shared across study sites. Instead, 

only summary statistics can be passed between researchers. For example, patient level 

genetic data linked with clinical variables extracted from electronic health records (EHR) of 

several hospitals are not allowed to leave the firewall of each hospital. In addition to high 

dimensionality, attention to both heterogeneity and data sharing constraints are needed to 

perform meta-analysis of multiple EHR–linked genomic studies.

The aforementioned data sharing mechanism is referred to as DataSHIELD (Data 

aggregation through anonymous Summary–statistics from Harmonised Individual levEL 

Databases) in Wolfson et al. (2010), which has been widely accepted as a useful strategy to 

protect patient privacy (Jones et al., 2012; Doiron et al., 2013). Several statistical approaches 

to integrative analysis under the DataSHILED framework have been developed for low 

dimensional settings (Gaye et al., 2014; Zöller et al., 2018; Tong et al., 2020, e.g.). In the 

absence of cross-site heterogeneity, distributed high dimensional estimation and inference 

procedures have also been developed that can facilitate DataSHIELD constraints (Lee et al., 
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2017; Battey et al., 2018; Jordan et al., 2019, e.g.). Recently, Cai et al. (2019a) proposed 

an integrative high dimensional sparse regression approach that accounts for heterogeneity. 

However, their method is limited to parameter estimation and variable selection. To the best 

of our knowledge, no hypothesis testing procedures currently exist to enable identification of 

significant predictors with false discovery error control under the setting of interest. In this 

paper, we propose a data shielding integrative large–scale testing (DSILT) procedure to fill 

this gap.

1.1 Problem statement

Suppose there are M independent studies and the mth study contains observations on an 

outcome Y (m) and a p-dimensional covariate vector X(m), where Y (m) can be binary or 

continuous, and without loss of generality we assume that X(m) contains 1 as its first 

element. Specifically, data from the mth study consist of nm independent and identically 

distributed random vectors, D(m) = Di
(m) = Y i

(m), Xi
(m) ⊤ ⊤, i = 1, …, nm . Let N = ∑m = 1

M nm and 

n = N/M. We assume a conditional mean model E Y (m) ∣ X(m) = g β0
(m) ⊤ X(m)  and that the 

true model parameter β0
(m) is the minimizer of the population loss function:

β0
(m) = argmin

β(m) ∈ ℝp
Lm β(m) , where Lm β(m) = E f Xi

(m)Tβ(m), Y i
(m) , f(x, y) = ϕ(x) − yx,

where ϕ̇(x) ≡ dϕ(x)/dx = g(x). When ϕ(x) = log 1 + ex , this corresponds to a logistic model 

if Y  is binary and a quasi-binomial model if Y ∈ [0, 1] is a continuous probability score 

sometimes generated from an EHR probabilistic phenotyping algorithm. One may take 

ϕ(x) = ex for some non-negative Y  such as the count (or log-count) of a diagnostic code in 

EHR studies 1. As detailed in Assumptions 2-3 of Section 3.1, our procedure allows for a 

broad range of models provided that g( ⋅ ) is smooth and the residuals Y i
(m) − g β0

(m) ⊤ Xi
(m)  are 

sub-Gaussian, although not all generalized linear models satisfy these assumptions.

Under the DataSHIELD constraints, the individual–level data D(m) is stored at the mth data 

computer (DC) and only summary statistics are allowed to transfer from the distributed DCs 

to the analysis computer (AC) at the central node. Our goal is to develop procedures under 

the DataSHIELD constraints for testing

H0, j:β0, j ≡ β0, j
(1), …, β0, j

(M) ⊤ = 0 v.s. Ha, j:β0, j ≠ 0 (1)

simultaneously for j ∈ H to identify H1 = j ∈ H:β0, j ≠ 0 , while controlling the false 

discovery rate (FDR) and false discovery proportion (FDP), where H ⊆ 2, …, p  is 

a user-specified subset with |H| = q ≍ p and |A| denotes the size of any set A. 

Here β0, j = 0 indicates that Xj is independent of Y  given all remaining covariates. To 

ensure effective integrative analysis, we assume that β0
(1), …, β0

(M) are sparse and share 

1. Though a Poisson distribution does not satisfy the required sub-Gaussian residual Assumption 3, the counts of EHR diagnostic 
codes are usually less heavy-tailed than Poisson and are accommodated by our analysis.
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similar support. Specifically, we assume that S0 ≪ p and, s(m) ≍ s for m = 1, 2, …, M, 

where S0 = j = 2, …, p:β0, j
(m) ≠ 0 = ∪m = 1

M S(m), S(m) = j = 2, …, p:β0, j
(m) ≠ 0 , s(m) = S(m) , and 

s = S0 .

1.2 Our contribution and the related work

We propose in this paper a novel DSILT procedure with FDR and FDP control for the 

simultaneous inference problem (1). The proposed testing procedure consists of three major 

steps: (I) derive an integrative estimator on the AC using locally obtained summary statistics 

from the DCs and send the estimator back to the DCs; (II) construct a group effect test 

statistic for each covariate through an integrative debiasing method; and (III) develop an 

error rate controlled multiple testing procedure based on the group effect statistics.

The integrative estimation approach in the first step is closely related to the group inference 

methods in the literature. Denote by βj = βj
(1), …, βj

(M) ⊤, β( • ) = β(1) ⊤ , …, β(M) ⊤ T
,

L(m) β(m) = nm
−1 ∑

i = 1

nm
f β(m)TXi

(m), Y i
(m) and L( • ) β( • ) = N−1 ∑

m = 1

M
nmLm β(m) .

Literature in group LASSO and multi-task learning (Huang and Zhang, 2010; Lounici et 

al., 2011, e.g.) established that, under the setting s(m) ≍ s as introduced in Section 1.1, 

the group LASSO estimator with tuning parameter λ:argminβ( • ) L( • ) β( • ) + λ∑j = 2
p βj 2, 

benefits from the group structure and attains the optimal rate of convergence. In this paper, 

we adopt the same structured group LASSO penalty for integrative estimation, but under 

data sharing constraints. Recently, Mitra et al. (2016) proposed a group structured debiasing 

approach under the integrative analysis setting, where they restricted their analysis to linear 

models and required that the precision matrices of the covariates be group-sparse across the 

distributed datasets. In contrast, our method accommodates non-linear models and imposes 

no sparsity or homogeneity structures on the covariate distributions from different local sites 

(see Assumption 1 in Section 3.1).

The second step of our method, i.e., the construction of the test statistics for each of the 

hypotheses, relies on the group debiasing of the above integrative estimation. For debiasing 

of M–estimation, nodewise LASSO regression was employed in the earlier work (Van de 

Geer et al., 2014; Janková and Van De Geer, 2016, e.g), while the Dantzig selector type 

approach was proposed more recently (Belloni et al., 2018; Caner and Kock, 2018, e.g). We 

develop in this article a cross–fitted group Dantzig selector type debiasing method, which 

requires weaker inverse Hessian assumptions (see Assumption 1 in Section 3.1) than the 

aforementioned approaches. In addition, the proposed debiasing step achieves proper bias 

rate under the same model sparsity assumptions as the ideal individual–level meta–analysis 

(ILMA) method. Compared with the One–shot distributed inference approaches (Tang et 

al., 2016; Lee et al., 2017; Battey et al., 2018), the proposed method additionally considers 

model heterogeneity and group inference; it further reduces the bias rate by sending the 
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integrative estimator to the DCs to derive updated summary statistics, which in turn benefits 

the subsequent multiple testing procedure. See Section 3.4 for detailed comparisons.

As the last step, simultaneous inference with theoretical error rates control is performed 

based on the group effect statistics. The test statistics are shown to be asymptotically chi-

square distributed under the null, and the proposed multiple testing procedure asymptotically 

controls both the FDR and FDP at the pre-specified level. Multiple testing for high 

dimensional regression models has recently been studied in the literature (Liu and Luo, 

2014; Xia et al., 2018b,a; Javanmard et al., 2019, e.g). Our testing step for FDR control 

as a whole differs considerably from these existing procedures in the following aspects. 

First, the proposed test statistics, the key input to the FDR control procedure, are brand 

new and the resulting estimation of false discovery proportion differs fundamentally from 

those of the literature. Second, we consider a more general M–estimation setting which 

can accommodate different types of outcomes. Third, we allow the heterogeneity in both 

the covariates and the coefficients. Fourth, the existing testing approaches developed for 

individual-level data are not suitable for the DataSHIELD framework. Last, because there 

are complicated dependence structures among the integrative chi-squared statistics under the 

DataSHIELD constraints, the theoretical derivations are technically much more involved. 

Hence, our proposal makes a useful addition to the general toolbox of simultaneous 

regression inference.

We demonstrate here via numerical experiments that the proposed DSILT procedure attains 

good power while maintaining error rate control. In addition, we demonstrate how our new 

approach outperforms existing distributed inference methods and enjoys similar performance 

as the ideal ILMA approach.

1.3 Outline of the paper

The rest of this paper is organized as follows. We detail the DSILT approach in Section 2. 

In Section 3, we present asymptotic analysis on the false discovery control of our method 

and compare it with the ILMA and One–shot approach. In Section 4, we summarize finite 

sample performance of our approach along with other methods from simulation studies. In 

Section 5, we apply our proposed method to a real example. Proofs of the theoretical results 

and additional technical lemmas and simulation results are collected in the Supplementary 

Material.

2. Data shielding integrative large–scale testing procedure

In this section, we study the detailed procedure of the proposed method. We start with some 

notation that will be used throughout the paper.

2.1 Notation

For any integer d, any vector x = x1, x2, …, xd
⊤ ∈ ℝd, and any set 

S = j1, …, jk ⊆ [d] ≡ 1, …, d , denote by xS = xj1, …, xjk ′, x−j the vector with its jth entry 

removed from x, ∥ x ∥q the ℓq norm of x and ∥ x ∥∞ = maxj ∈ [d] xj . For any d-dimensional 

vectors a(m) = a1
(m), …, ad

(m) ⊤, m ∈ [M]  and S ⊆ [d], let a( • ) = a(1) ⊤ , …, a(M) ⊤ ⊤, 
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aS
( • ) = aS

(1) ⊤ , …, aS
(M) ⊤ ⊤, aj = aj

(1), …, aj
(M) ⊤, and a−j

( • ) = a−j
(1) ⊤ , …, a−j

(M) ⊤ ⊤. Let ej be the unit 

vector with jth element being 1 and remaining elements being 0 and ej
( • ) = ej

⊤, …, ej
⊤ ⊤. 

Denote by a( • )
2, 1 = ∑j = 1

d aj 2 and a( • )
2, ∞ = maxj ∈ [d] aj 2 the ℓ2/ℓ1 and ℓ2/ℓ∞ norm 

of a( • ) respectively. For any K–fold partition of nm , denoted by Ik
(m), k ∈ [K] , 

let I−k
(m) = nm ∖ Ik

(m), Ik
( • ) = Ik

(m):m ∈ [M] , I−k
( • ) = I−k

(m):m ∈ [M] . For any index 

set I( • ) = I(m) ⊆ nm , m ∈ [M] , DI(m)
(m) = Di

(m): i ∈ I(m)  and DI( • )
( • ) = DI(m)

(m) :m ∈ [M] . 

Let ϕ̈(θ) = d2ϕ(θ)/dθ2 ≥ 0. Denote by β0, j and β0
( • ) the true values of βj and 

β( • ) respectively. For any I( • ) and β( • ), define the sample measure operators 

PI(m)ηβ(m) = I(m) −1∑i ∈ I(m)ηβ(m) Di
(m)  and PI( • )ηβ( • ) = I( • ) −1∑m = 1

M ∑i ∈ I(m)ηβ(m) Di
(m) , 

and the population measure operator P(m)ηβ(m) = Eηβ(m) Di
(m) , for all integrable functions 

ηβ( • ) = ηβ(m), m ∈ [M]  parameterized by β( • ) or β(m).

For any given β(m), we define θi
(m) = Xi

(m) ⊤ β(m), θ0, i
(m) = Xi

(m)Tβ0
(m), and the residual 

ϵi
(m): = Y i

(m) − ϕ̇ θ0, i
(m) . Similar to Cai et al. (2019b) and Ma et al. (2020), given coefficient 

β(m), we can express Y i
(m) ∼ Xi

(m) in an approximately linear form:

Y i
(m) − ϕ̇ θi

(m) + ϕ̈ θi
(m) θi

(m) = ϕ̈ θi
(m) Xi

(m)Tβ0
(m) + ϵi

(m) + Ri
(m) θi

(m) ,

where Ri
(m) θi

(m)  is the reminder term and Ri
(m) θ0, i

(m) = 0. For a given observation set D and 

coefficient β, we let θ = X⊤β, Y β = ϕ̈− 1
2(θ) Y − ϕ̇(θ) + ϕ̈(θ)θ , Xβ = ϕ̈

1
2(θ)X. Note that for the 

logistic model, we have Var Y β ∣ Xβ = 1, and Xβ and Y β can be viewed as the covariates and 

responses adjusted for the heteroscedasticity of the residuals.

2.2 Outline of the proposed testing procedure

We first outline in this section the DSILT procedure in Algorithm 1 and then study the 

details of each key step later in Sections 2.3 to 2.5. The procedure involves partitioning of 

D(m) into K folds Ik
(m):k ∈ [K]  for m ∈ [M], where without loss of generality we let K ≥ 2

be an even number. With a slight abuse of notation, we write D[k]
(m) = DIk

(m)
(m) , D[k]

( • ) = DIk
( • )

( • ) , 

D[ − k]
(m) = DI−k

(m)
(m) , and D[ − k]

( • ) = DI−k
( • )

( • ) .

Algorithm 1

DSILT Algorithm.

Input: D(m)
 at the mth DC for m ∈ [M].

 1. For each k ∈ [K], fit integrative sparse regression under DataSHIELD with D[ − k]
(•)

:

 (a) At the mth DC, construct cross-fitted summary statistics based on local LASSO estimator, and send them 
to the AC;

 (b) Obtain the integrative estimator β[ − k]
( • )

 at AC and send them back to each DC.
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 2. Obtain debiased group test statistics:

 (a) For each k, at the mth DC, obtain the updated summary statistics based on β[ − k]
( • )

 and D[k]
(m)

, and send 
them to the AC;

 (b) At the AC, construct cross-fitted debiased group estimators ζ̆ j, j ∈ H .

 3. Construct a multiple testing procedure based on the test statistics from Step 2.

2.3 Step 1: Integrative sparse regression

As a first step, we fit integrative sparse regression under DataSHIELD with D[ − k]
( • )

following similar strategies as given in Cai et al. (2019a). To carry out Step 1(a) 

of Algorithm 1, we split the index set I−k
(m) into K′ folds I−k, 1

(m) , …, I−k, K′
(m) . For 

k ∈ [K] and k′ ∈ K′ , we construct local LASSO estimator with tuning parameter 

λ(m):β −k, − k′
(m) = argminβ(m) ∈ ℝpPI−k

(m) ∖ I−k, k′
(m) f X⊤β(m), Y + λ(m) β−1

(m)
1. With D[ − k]

(m) , we then derive 

summary data S[ − k]
(m) = I−k

(m) , ξ [ − k]
(m) , ℍ[ − k]

(m)
, where

ξ [ − k]
(m) = K′ − 1 ∑

k′ = 1

K′
PI−k, k′

(m) Xβ −k, − k′
(m) Y β −k, − k′

(m) , ℍ[ − k]
(m)

= K′ − 1 ∑
k′ = 1

K′
PI−k, k′

(m) Xβ −k, − k′
(m) Xβ −k, − k′

(m)
⊤ .

(2)

In Step 1(b) of Algorithm 1, for k ∈ [K], we aggregate the M sets of summary data 

S[ − k]
(m) , m ∈ [M]  at the central AC and solve a regularized quasi–likelihood problem to obtain 

the integrative estimator with tuning parameter λ:

β[ − k]
( • ) = argmin

β( • )
I−k

( • ) −1 ∑
m = 1

M
I−k

(m) β(m)Tℍ[ − k]
(m) β(m) − 2β(m)Tξ [ − k]

(m) + λ β−1
( • )

2, 1 . (3)

These K sets of estimators, β[ − k]
( • ) , k ∈ [K] , are then sent back to the DCs. The summary 

statistics introduced in (2) can be viewed as the covariance terms of D[ − k]
(m)  with the local 

LASSO estimator plugged-in to adjust for the heteroscedasticity of the residuals. Cross–

fitting is used to remove the dependence of the observed data and the fitted outcomes - a 

strategy frequently employed in high dimensional inference literatures (Chernozhukov et al., 

2016, 2018). As in Cai et al. (2019a), the integrative procedure can also be viewed in such 

a way that β(m) ⊤ ℍ[ − k]
(m) β(m) − 2β(m) ⊤ ξ [ − k]

(m)
 provides a second order one–step approximation to 

the individual–level data loss function 2PI−k
(m)f X⊤β(m), Y  initializing with the local LASSO 

estimators. In contrast to Cai et al. (2019a), we introduce a cross–fitting procedure at each 

local DC to reduce fitting bias and this in turn relaxes their uniformly-bounded assumption 

on Xi
(m)Tβ(m) for each i and m, i.e., Condition 4(i) of Cai et al. (2019a).
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2.4 Step 2: Debiased group test statistics

We next derive group effect test statistics in Step 2 by constructing debiased estimators for 

β0
( • ) and estimating their variances. In Step 2(a), we construct updated summary statistics

ξ[k]
(m) = PIk

(m)Xβ[ − k]
(m) Y β[ − k]

(m) , ℍ[k]
(m) = PIk

(m)Xβ[ − k]
(m) Xβ[ − k]

(m)
⊤ and J[k]

(m) = PIk
(m)XX⊤ Y − ϕ̇ X⊤β[ − k]

(m) 2

at the mth DC, for k ∈ [K]. These mK sets of summary statistics are then sent to the AC in 

Step 2(b) to be aggregated and debiased. Specifically, for each j ∈ H and k ∈ [K], we solve 

the group Dantzig selector type optimization problem:

uj, [k]
( • ) = argmin

u( • )
max

m ∈ [M]
u(m)

1 s.t. ℍ[k]
( • )u( • ) − ej

( • )
2, ∞ ≤ τ, (4)

to obtain a vector of projection directions for some tuning parameter τ, where 

ℍ[k]
( • ) = diag ℍ[k]

(1), …, ℍ[k]
(M)

. Combining across the K splits, we construct the cross–fitted group 

debiased estimator for βj
(m) by β̆j

(m) = K−1∑k = 1
K βj, [ − k]

(m) + uj, [k]
(m)T ξ[k]

(m) − ℍ[k]
(m)β[ − k]

(m)
.

In Section 3.2, we show that the distribution of nm
1/2 β̆j

(m) − β0, j ) is approximately normal with 

mean 0 and variance σ0, j
(m) 2, estimated by σj

(m) 2 = K−1∑k = 1
K uj, [k]

(m) ⊤ J[k]
(m)uj, [k]

(m) . Finally, we test for 

the group effect of the j-th covariate across M studies based on the standardized sum of 

square type statistics

ζ̆ j = ∑
m = 1

M
nm β̆j

(m)/σj
(m) 2, for j ∈ H .

We show in Section 3.2 that, under mild regularity assumptions, ζ̆ j is asymptotically chi-

square distributed with degree of freedom M under the null. This result is crucial to ensure 

the error rate control for the downstream multiple testing procedure.

2.5 Step 3: Multiple testing

To construct an error rate controlled multiple testing procedure for

H0, j:β0, j = 0 versus Ha, j:β0, j ≠ 0, j ∈ H ⊆ 2, …, p ,

we first take a normal quantile transformation of ζ̆ j, namely Nj = Φ−1 F χM
2 ζ̆ j /2 , where 

Φ is the standard normal cumulative distribution function, Φ = 1 − Φ, and F χM
2 ( ⋅ ) is the 

survival function of χM
2 . Based on the asymptotic χM

2  distribution of ζ̆ j as will be shown 

in Theorem 1, we present in the proof of Theorem 2 that Nj asymptotically has the same 

distribution as the absolute value of a standard normal random variable. Thus, to test a single 

hypothesis of H0, j:β0, j = 0, we reject the the null at nominal level α > 0 whenever Ψα, j = 1, 

where Ψα, j = I Nj ≥ Φ−1(α/2) .
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However, for simultaneous inference across q hypotheses H0, j, j ∈ H , we shall 

further adjust the multiplicity of the tests as follows. For any threshold level t, 
let R0(t) = ∑j ∈ H0 I Nj ≥ t  and R(t) = ∑j ∈ HI Nj ≥ t  respectively denote the total 

number of false positives and the total number of rejections associated with t, where 

H0 = j ∈ H:β0, j = 0 . Then the FDP and FDR for a given t are respectively defined as

FDP(t) = R0(t)
R(t) ∨ 1 and FDR(t) = E FDR(t) .

The smallest t such that FDP(t) ≤ α, namely t0 = inf 0 ≤ t ≤ (2logq)1/2: FDP(t) ≤ α  would be 

a desirable threshold since it maximizes the power under the FDP control. However, since 

the null set is unknown, we estimate R0(t) by 2Φ(t) H0  and conservatively estimate H0  by q
because of the model sparsity. We next calculate

t = inf 0 ≤ t ≤ tq: 2qΦ(t)
R(t) ∨ 1 ≤ α where tq = (2logq − 2loglogq)

1
2 (5)

to approximate the ideal threshold t0. If (5) does not exist, we set t = (2logq)1/2. Finally, 

we obtain the rejection set j:Nj ≥ t , j ∈ H  as the output of Algorithm 1. The theoretical 

analysis of the asymptotic error rates control of the proposed multiple testing procedure will 

be studied in Section 3.3.

Remark 1.—Our testing approach is different from the BH procedure (Benjamini and 
Hochberg, 1995) in that, the latter obtains the rejection set j:Nj ≥ t BH, j ∈ H  with 

t BH = inf t ≥ 0:2qΦ(t)/ R(t) ∨ 1 ≤ α . Note that, first, the range 0, tq  in our procedure is 

critical, because when t ≥ (2logq − loglogq)
1
2 , R0(t) is no longer consistently estimated by 

2qΦ(t). As a result, the BH may not able to control the FDP with positive probability. 
Second, in the proposed approach, if t  is not attained in the range, it is crucial to threshold 

it at (2logq)1/2, instead of tq, because the latter will cause too many false rejections, and as a 

result the FDR cannot be properly controlled.

2.6 Tuning parameter selection

In this section, we detail data-driven procedures for selecting the tuning parameters 

η = λ( • ) = λ(1), …, λ(M) ⊤, λ, τ . Since our primary goal is to perform simultaneous testing, 

we follow a similar strategy as that of Xia et al. (2018a) and select tuning parameters to 

minimize ℓ2 distance between R0(t)/ 2 H0 Φ(t)  and its expected value of 1, where R0(t) is 

an estimate of R0(t) from the testing procedure. However, unlike Xia et al. (2018a), it is not 

feasible to tune η simultaneously due to DataSHIELD constraints. We instead tune λ( • ), λ
and τ sequentially as detailed below. Furthermore, based on the theoretical analyses of the 

optimal rates for η given in Section 3, we select η within a set of candidate values that are of 

the same order as their respective optimal rates.
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First for λ( • ) in Algorithm 1, we tune λ(m) via cross validation within the mth DC. Second, 

to select λ for the integrative estimation in (3), we minimize an approximated generalized 

information criterion that only involves derived data from M studies. Specifically, we 

choose λ as the minimizer of GIC λ, β[ − k], λ
( • ) = Dev β[ − k], λ

( • ) + γDF λ, β[ − k], λ
( • )

, where γ is some 

pre-specified scaling parameter, β[ − k], λ
(m)

 is the estimator obtained with λ,

Dev β( • ) = I−k
−1 ∑

m = 1

M
I−k

(m) β(m)Tℍ[ − k]
(m) β(m) − 2β(m)ξ [ − k]

(m) and

DF λ, β( • ) = ∂S
2 Dev β( • ) + λ β−1

( • )
2, 1

−1 ∂S
2 Dev β( • ) ,

are respectively the approximated deviance and degree of freedom measures, S is the set of 

non-zero elements in β( • ) and the operator ∂S
2  denotes the second order partial derivative 

with respect to βS
( • ). Common choices of γ include 2 I−k

−1(AIC), I−k
−1log I−k (BIC), 

I−k
−1log I−k loglogp (Wang et al., 2009, modified BIC) and 2 I−k

−1log I−k logp (Foster 

and George, 1994, RIC). For numerical studies in Sections 4 and 5, we use BIC which 

appears to perform well across settings.

At the last step, we tune τ by minimizing an ℓ2 distance between R0, null(t ∣ τ)/ 2qΦ(t)  and 

1, where R0, null(t ∣ τ) is an estimate of R0(t) with a given tuning parameter τ, and we replace 

H0 by q as in Xia et al. (2018a). Our construction of R0, null(t ∣ τ) differs from that of Xia 

et al. (2018a) in that we estimate R0(t) under the complete null to better approximate the 

denominator of 2qΦ(t). As detailed in Algorithm 2, we construct β̆j, null
(m)

 as the difference 

between the estimator obtained with the first K/2 folds of data and the corresponding 

estimator obtained using the second K/2 folds of data, which is always centered around 

0 rather than β0j
(m). Since the accuracy of R0, null(t ∣ τ) for large t is most relevant to the 

error control, we construct the distance measure d(τ) in Algorithm 2 focusing on t around 

Φ−1 Φ (2logq)1/2 ι  for some values of ι ∈ (0, 1].

Algorithm 2

Selection of τ for multiple testing.

1.
For any given τ and each j ∈ H, calculate ζ̆ j, null(τ) = ∑m = 1

M nm β̆j, null
(m) (τ)/σj

(m) 2
 with

β̆j, null
(m) (τ) = K−1∑k = 1

K ( − 1)k > K/2 βj, [ − k]
(m) + uj, [k]

(m)T(τ) ξ[k]
(m) − ℍ[k]

(m)β[ − k]
(m) ,

where uj, [k]
( • ) (τ) is the debiasing projection direction obtained at tuning value τ.

2. Define R0, null(t ∣ τ) = ∑j ∈ HI F χM
2 ζ̆ j, null(τ) ≤ 2Φ(t)  and a modified measure

d(τ) = ∫0
1 R0, null Φ−1(x) ∣ τ /(2qx) − 1

2
dω(x),
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where ω(x) = H−1∑ℎ = 1
H I Φ (2logq)1/2 ℎ/H ≤ x  and H > 0 is some specified constant.

3. Theoretical Results

In this section, we present the asymptotic analysis results of the proposed method and 

compare it with alternative approaches.

3.1 Notation and assumptions

For any semi–positive definite matrix A ∈ ℝd × d and i, j ∈ [d], denote by Aij the (i, j)th

element of A and Aj its jth row, Λmin(A) and Λmax(A) the smallest and largest eigenvalue of 

A. Define the sub-gaussian norms of a random variable X and a d-dimensional random 

vector X, respectively by ∥ X ∥ψ2 : = supq ≥ 1q−1/2 E|X|q 1/q
 and ∥ X ∥ψ2 : = supx ∈ Sd − 1 x⊤X ψ2, 

where Sd − 1 is the unit sphere in ℝd. For c > 0 and a scalar or vector x, define 

B(x, c): = x′: x′ − x 1 ≤ c  as its ℓ1 neighbor with radius c. Denote by Σ0
(m) = P(m)XX⊤, 

ℍβ
(m) = P(m)XβXβ

⊤, Jβ
(m) = P(m)XX⊤ Y − ϕ̇ X⊤β 2

 and Uβ
(m) = ℍβ

(m) −1. For simplicity, let 

ℍ0
(m) = ℍβ0

(m)
(m) , J0

(m) = Jβ0
(m)

(m)  and denote by u0, j
(m) the jth row of Uβ0

(m)
(m) . In our following analysis, we 

assume that the cross–fitting folds K′, K = O(1), nm ≍ N/M ≡ n for all m ∈ [M]. Here and in 

the sequel we use O(1) and OP(1) denote order 1. Next, we introduce assumptions for our 

theoretical results. For Assumption 4, we only require either 4(a) or 4(b) to hold.

Assumption 1—(Regular covariance). (i) There exists absolute constant CΛ > 0 such 

that for all m ∈ [M], CΛ
−1 ≤ Λmin Σ0

(m) ≤ Λmax Σ0
(m) ≤ CΛ, CΛ

−1 ≤ Λmin ℍ0
(m) ≤ Λmax ℍ0

(m) ≤ CΛ and 

CΛ
−1 ≤ Λmin J0

(m) ≤ Λmax J0
(m) ≤ CΛ. (ii) There exist CΩ > 0 and δ > 0 that for all m ∈ [M] and 

β ∈ B β0
(m), δ , ℓ1 norm of each row of Uβ

(m) is bounded by CΩ.

Assumption 2—(Smooth link function). There exists a constant CL > 0 such that for all 

θ, θ′ ∈ ℝ, ϕ̈(θ) − ϕ̈ θ′ ≤ CL θ − θ′ .

Assumption 3—(Sub-Gaussian residual). For any x ∈ ℝp, ϵi
(m) is conditional sub-Gaussian, 

i.e. there exists κ(x) such that ϵi
(m)

ψ2 < κ(x) given Xi
(m) = x. In addition, there exists 

some absolute constant Cϵ > 0 such that, almost surely for m = 1, 2…, M, κ Xi
(m) ≤ Cϵ and 

ϕ̈−1 Xi
(m) ⊤ β0

(m) κ2 Xi
(m) ≤ Cϵ.

Assumption 4(a)—(Sub-Gaussian design). Xi
(m) is sub-Gaussian, i.e. there exists some 

constant κ > 0 that Xi
(m)

ψ2 < κ.

Assumption 4(b)—(Bounded design). Xi
(m)

∞ is almost surely bounded by some absolute 

constant.
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Remark 2.—Assumptions 1 (i) and 4(a) (or 4(b)) are commonly used technical conditions 

in high dimensional inference in order to guarantee rate optimality of the regularized 

regression and debiasing approach (Negahban et al., 2012; Javanmard and Montanari, 2014). 

Assumptions 4(a) and 4(b) are typically unified by the sub-Gaussian design assumption 

(Negahban et al., 2012). In our analysis, they are separately studied, since Xi
(m)

∞ affects the 

bias rate, which leads to different sparsity assumptions under different design types. Similar 
conditions as our Assumption 1 (ii) were used in the context of high dimensional precision 
matrix estimation (Cai et al., 2011) and debiased inference (Chernozhukov et al., 2018; 
Caner and Kock, 2018; Belloni et al., 2018). Compared with their exact or approximate 
sparsity assumption imposed on the inverse Hessian, this ℓ1 boundness assumption is 

essentially less restrictive. As an important example in our analysis, logistics model satisfies 
the smoothness conditions for ϕ( ⋅ ) presented by Assumption 2. As used in Lounici et al. 
(2011) and Huang and Zhang (2010), Assumption 3 regularizes the tail behavior of the 
residuals and is satisfied in many common settings like logistic model.

3.2 Asymptotic properties of the debiased estimator

We next study the asymptotic properties of the group effect statistics ζ̆ j, j ∈ H. We shall 

begin with some important prerequisite results on the convergence properties of β[ − k]
( • )

 and the 

debiased estimators β̆j
(m), j ∈ H, m ∈ [M]  as detailed in Lemmas 1 and 2.

Lemma 1.—Under Assumptions 1-3, 4(a) or 4(b), and that s = o n(logp)−1 , there exist a 

sequence of the tuning parameters

λn
(m) ≍ (logp)

1
2

n
1
2

and λN ≍ (M + logp)
1
2

n
1
2M

+ sM− 1
2(logp + logN)a0logp

n ,

with a0 = 1/2 under Assumption 4(a) and a0 = 0 under Assumption 4(b), such that, for each 

k ∈ [K], the integrative estimator satisfies

β[ − k]
( • ) − β0

( • )
2, 1 = OP sMλN , and β[ − k]

( • ) − β0
( • )

2
2

= OP sM2λN
2 .

Remark 3.—Lemma 1 provides the estimation rates of the integrative estimator β[ − k]
( • )

. 

In contrast to the ILMA method, the second term in the expression of λN quantifies the 

additional noise incurred by using summary data under the DataSHIELD constraint. Similar 
results can be observed through debiasing truncation in distributed learning (Lee et al., 
2017; Battey et al., 2018) or integrative estimation under DataSHIELD (Cai et al., 2019a). 

When s = o n1/2(logp + logN)−a0(M + logp)−1(logp)−1/2  as assumed in Lemma 2, the above 

mentioned error term becomes negligible. The DSILT method allows for any degree of 
heterogeneity across sites with respect to both the magnitude and support of β0

(m). However, 

the cross-site similarity in the support determines the estimation rates as shown in Lemma 

1 above. Specifically, the DSILT estimator for β( • ) attains a rate-M improvement over the 
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local methods (Lounici et al., 2011; Huang and Zhang, 2010, e.g.) if S ≍ S(m) and has the 

same rate as that of the local estimators if s ≍ ∑m = 1
M s(m).

We next present the theoretical properties of the group debiased estimators.

Lemma 2.—Under the same assumptions of Lemma 1 and assume that

s = o n
1
2

(logp + logN)a0(M + logp)(logp)
1
2

∧ n
M4(logp)4(M + logp)

,

we have β̆j
(m) − β0, j

(m) = V j
(m) + Δj

(m) with V j
(m) = K−1∑k = 1

K PIk
(m)u0, j

(m) ⊤ Xϵ converging to a normal 

random variable with mean 0 and variance nm
−1 σ0, j

(m) 2, where σ0, j
(m) 2 = u0, j

(m)TJ0
(m)u0, j

(m). In addition, 

there exists τ ≍ (M + logp)1/2n−1/2 such that, simultaneously for all j ∈ H, the bias term Δj
(m)

and the variance estimator σj
(m) 2 satisfy that

Δj
(m) ≤ ∑

m = 1

M
Δj

(m) = oP (nlogp)−
1
2 and σj

(m) 2 − σ0, j
(m) 2 = oP (logp)−1 .

Remark 4.—The sparsity assumption in Lemma 2 is weaker than the existing debiased 

estimators for M–estimation where s is only allowed to diverge in a rate dominated by N
1
3

(Janková and Van De Geer, 2016; Belloni et al., 2018; Caner and Kock, 2018). This is 
benefited by the cross–fitting technique, through which we can get rid of the dependence on 
the convergence rate of u0, j

(m) − uj, [k]
(m)

1.

Finally, we establish in Theorem 1 the main result of this section regarding to the asymptotic 

distribution of the group test statistic ζ̆ j under the null.

Theorem 1.—Under all assumptions in Lemma 2, simultaneously for all j ∈ H0, we have 

ζ̆ j = Sj + oP(1), where Sj = ∑m = 1
M nm V j

(m)/σ0, j
(m) 2. Furthermore, if M ≤ Clogp and logp = o n1/C′

for some constants C > 0 and C′ > 6, we have

sup
t

P Sj ≤ t − P χM
2 ≤ t 0, as n, p ∞ .

The above theorem shows that, the group effect test statistics ζ̆ j is asymptotically chi-squared 

distributed under the null and its bias is uniformly negligible for j ∈ H0.

3.3 False discovery control

We establish theoretical guarantees for the error rate control of the multiple testing 

procedure described in Section 2.5 in the following two theorems.
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Theorem 2.—Assume that q0 = H0 ≍ q. Then under all assumptions in Lemma 2 with 

logp = o n1/10  and M = O(logp), we have

lim sup
(N, p) ∞

FDR(t ) ≤ α, and lim
(N, p) ∞

P FDP(t ) ≤ α + ϵ = 1 for any ϵ > 0.

Remark 5.—Assumption 1 (i) ensures that most of the group estimates ζ̆ j, j ∈ H0  are 

not highly correlated with each other. Thus the the variance of R0(t) can be appropriately 

controlled, which in turn guarantees the control of FDP. It is possible to further relax the 

condition logp = o n1/10  to logp = o nζ  for some 0 < ζ < 3/23, See, for example, Liu and 

Shao (2014) and Belloni et al. (2018), where they used moderate deviation technique to have 
tighter truncations and normal approximations for t-statistics. Because we used chi-squared 
type test statistics with growing M, the technical details on moderate deviation are much 
more involved and warrant future research.

As described in Section 2.5, if t  in equation (5) is not attained in the range 

[0, (2logq − 2loglogq)1/2 , then it is thresholded at (2logq)1/2. The following theorem states 

a weak condition to ensure the existence of t  in such range. As a result, the FDP and FDR 

will converge to the pre-specified level α asymptotically.

Theorem 3.—Let Sρ = j ∈ H: ∑m = 1
M nm β0, j

(m) 2 ≥ (logq)1 + ρ . Suppose for some ρ > 0 and 

some δ > 0, Sρ ≥ 1/ π1/2α + δ (logq)1/2. Then under the same conditions as in Theorem 2, 

we have, as (N, p) ∞,

FDR(t )
αq0/q 1, FDP(t )

αq0/q 1 in probability .

In the above theorem, the condition on Sρ only requires very few covariates to have the 

signal sum of squares across the studies ∑m = 1
M β0, j

(m) 2 exceeding the rate (logq)1 + ρ/nm for 

some ρ > 0, and is thus a very mild assumption.

3.4 Comparison with alternative approaches

To study the advantage of our testing approach and the impact of the DataSHIELD 

constraint, we next compare the proposed DSILT method to a One–shot approach and the 

ILMA approach, as described in Algorithms 3 and 4, through a theoretical perspective. The 

One–shot approach in Algorithm 3 is inspired by existing literature in distributed learning 

(Lee et al., 2017; Battey et al., 2018, e.g.), and is a natural extension of existing methods to 

the problem of multiple testing under the DataSHIELD constraint. The debiasing step of the 

One–shot approach is performed locally as in the existing literature.

Following similar proofs of Lemma 2 and Theorems 2 and 3, the One–shot, ILMA, and 

DSILT can attain the same error rate control results under the sparsity assumptions of
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s = o γ1 ∧ γ2 , One‐shot) and s = o γ1M ∧ γ2 (ILMA/DSILT),

Algorithm 3

One–shot approach.

1. At each DC, obtain the cross–fitted debiased estimator by solving a Dantzig selector problem locally, where β(m)
is estimated by local LASSO.

2. Send the debiased estimators to the AC and obtain the group statistics.

3. Perform multiple testing procedure as described in Section 2.5.

Algorithm 4

Individual–level meta–analysis (ILMA).

1. Integrate all individual–level data at the AC.

2. Construct the cross–fitted debiased estimator by (4) using individual–level integrative estimator analog to (3), and 
then obtain the overall effect statistics.

3. Perform multiple testing procedure in Section 2.5.

where under the high dimensional regime of logn = O(logp) and the assumptions of 

M = O(logp) and logp = o n1/10  as required in Theorems 2 and 3,

γ1 = n
1
2

M(logp + logn)a0(logp)
3
2

≍ n
1
2

M(logp)a0 + 3
2

, γ2 = n
M4(logp)5

,

and a0 = 1/2 for sub-Gaussian design and a0 = 0 for bounded design as in Lemma 1. If 

additionally M = o n1/6(logp)a0/3 − 7/6  which directly implies γ1 = o γ2 , then the respective 

sparsity conditions for One–shot and ILMA/DSILT reduce to s = o γ1  and s = o γ1M ∧ γ2 . 

Hence, when M grows with n and p at a slower rate of M = o n1/6(logp)a0/3 − 7/6 , 

we have γ1 = o γ1M ∧ γ2 , which implies that the ILMA and DSILT methods require 

strictly weaker sparsity assumption than the One–shot approach. On the other hand, if 

M = o n1/6(logp)a0/3 − 7/6  is not satisfied, then the rate γ2 dominates the rate of s and the 

three methods share the same sparsity condition s = o γ2 . Besides the sparsity condition 

comparisons in terms of the validity of tests, we learn from Cai et al. (2019a) that the 

estimation error rate of our integrative sparse regression in Step 1 is equivalent to the 

idealized method with all raw data and is smaller than the local estimator. Hence, we 

anticipate the power gain of the DSILT over the One–shot approach in finite-sample studies 

as the former uses more accurate estimator than the latter to derive statistics for debiasing. 

This advantage is also verified in our simulation studies in Section 4. Moreover, it is possible 

to follow the debiasing strategies proposed in Zhu et al. (2018) and Dukes and Vansteelandt 

(2019) that adapts to model sparsity, and construct a corresponding DSILT procedure with 

additional theoretical power gain compared with the One-shot method.
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Remark 6.—Our DSILT approach involves transferring data twice from the DCs to the AC 
and once from the AC to the DCs, which requires more communication efforts compared 
to the One–shot approach. The additional communication gains lower bias rate than the 
One–shot approach while only requiring the same sparsity assumption as the ILMA method 
as discussed above. Under its sparsity condition, each method is able to draw inference that 
is asymptotically valid and has the same power as the ideal case when one uses the true 
parameters in construction of the group test statistics. This further implies that to construct 
a powerful and valid multiple testing procedure, there is no necessity to adopt further 
sequential communications between the DCs and the AC as in the distributed methods of Li 
et al. (2016) and Wang et al. (2017).

4. Simulation Study

We evaluate the empirical performance of the DSILT procedure and compare it with the 

One–shot and the ILMA methods. Throughout, we let M = 5, nm = 500, and vary p from 

500 to 1000. For each setting, we perform 200 replications and set the number of sample 

splitting folds K = 2, K′ = 5 and false discovery level α = 0.1. The tuning strategies described 

in Section 2.6 are employed with H = 10.

The covariate X of each study is generated from either the (i) Gaussian auto–regressive (AR) 

model of order 1 and correlation coefficient 0.5; or (ii) Hidden Markov model (HMM) with 

binary hidden variables and binary observed variables with the transition probability and the 

emission probability both set as 0.2. We choose β0
(m)  to be heterogeneous in magnitude 

across studies but to share the same support with

β0
(m) = μ ν1

(m) + 1 ψ1, ν2
(m) + 1 ψ2, …, νs

(m) + 1 ψs, 0p − s
⊤

where the sparsity level s is set to be 10 or 50, and ψ1, …, ψs  are independently drawn 

from − 1, 1  with equal probability and are shared across studies, while the local signal 

strength νj
(m)’s vary across studies and are drawn independently from N 0, (μ/2)2 . To ensure 

the procedures have reasonable power magnitudes for comparison, we set the overall signal 

strength μ to be in the range of [0.21,0.42] for s = 10, mimicking a sparse and strong signal 

setting; and [0.14,0.35] for s = 50, mimicking a dense and weak signal setting. We then 

generate binary responses Y (m) from logitP Y (m) = 1 ∣ X(m) = β0
(m)TX(m).

In Figure 1, we report the empirical FDR and power of the three methods with varying p, 

s, and μ under the Gaussian design. Results for the HMM design have almost the same 

pattern and are included in the Supplementary Material. Across all settings, DSILT achieves 

almost the same performance as the ideal ILMA in both error rate control and power. All the 

methods successfully control the desired FDR at α = 0.1. When s = 10 or the signal strength 

μ is weak, all the methods have conservative error rates compared to the nominal level. 

While for s = 50 with relatively strong signal, our method and the ideal ILMA become close 

to the exact error rate control empirically. This is consistent with Theorem 3 that if the 

number of relatively strong signals is large enough, our method tends to achieve exact FDR 
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control. In contrast, the One–shot method fails to borrow information across the studies, 

and hence requires stronger signal magnitude to achieve exact FDR control. As a result, we 

observe consistently conservative empirical error rates for the One–shot approach.

In terms of the empirical power, the difference between DSILT and ILMA is less than 1% 

in all cases. This indicates that the proposed DSILT can accommodates the DataSHIELD 

constraint at almost no cost in power compared to ideal method. This is consistent with our 

theoretical result in Section 3.4 that the two methods require the same sparsity assumption 

for simultaneous inference. Furthermore, the DSILT and ILMA methods dominate the One–

shot strategy in terms of statistical power. Under every single scenario, the power of the 

former two methods is around 15% higher than that of the One–shot approach in the 

dense case, i.e., s = 50, and 6% higher in the sparse case, i.e, s = 10. By developing testing 

procedures using integrative analysis rather than local estimations, both DSILT and ILMA 

methods use the group sparsity structure of the model parameters β( • ) more adequately 

than the One–shot approach, which leads to the superior power performance of these two 

methods. The power advantage is more pronounced as the sparsity level s grows from 10 to 

50. This is due to the fact that, to achieve the same result, the One–shot approach requires 

a stronger sparsity assumption than the other two methods, and is thus much more easily 

impacted by the growth of s. In comparison, the performance of our method and the ILMA 

method is less sensitive to sparsity growth because the integrative estimator employed in 

these two methods is more stable than the local estimator under the dense scenario.

5. Real Example

Statins are the most widely prescribed drug for lowering low–density lipoprotein (LDL) 

and the risk of cardiovascular disease (CVD), with over a quarter of adults 45 years or 

older receiving the drug in the United States. Statins lower LDL by inhibiting 3-hydroxy-3-

methylglutaryl-coenzyme A reductase (HMGCR) (Nissen et al., 2005). The treatment 

effect of statins can also be causally inferred based on the effect of the HMGCR variant 

rs17238484 – patients carrying the rs17238484-G allele have profiles similar to individuals 

receiving statin, with lower LDL and lower risk of CVD (Swerdlow et al., 2015). While the 

benefit of statins have been consistently observed, they are not without risk. There has been 

increasing evidence that statins increase the risk of type II diabetes (T2D) (Rajpathak et al., 

2009; Carter et al., 2013). Swerdlow et al. (2015) demonstrated via both meta analysis of 

clinical trials and genetic analysis of the rs17238484 variant that statins are associated with 

a slight increase of T2D risk. However, the adverse effect of statins on T2D risk appears 

to differ substantially depending on the number of T2D risk factors patients have prior to 

receiving the statin, with adverse risk higher among patients with more risk factors (Waters 

et al., 2013).

To investigate potential genetic determinants of statin treatment effect heterogeneity, we 

studied interactive effects of the rs17238484 variant and 256 SNPs associated with T2D, 

LDL, high–density lipoprotein (HDL) cholesterol, and the coronary artery disease (CAD) 

gene which plays a central role in obesity and insulin sensitivity (Kozak and Anunciado-

Koza, 2009; Rodrigues et al., 2013). A significant interaction between SNP j and the statin 

variant rs17238484 would indicate that SNP j modifies the effect of statin. Since the LDL, 
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CAD and T2D risk profiles differ greatly between different racial groups and between male 

and female, we focus the analysis on the black sub-population and fit separate models for 

female and male subgroups.

To efficiently identify genetic risk factors that significantly interact with rs17238484, we 

performed an integrative analysis of data from 3 different studies, including the Million 

Vetern Project (MVP) from the Veteran Health Administration (Gaziano et al., 2016), 

Partners Healthcare Biobank (PHB) and the UK Biobank (UKB). Within each study, we 

have both a male subgroup indexed by subscript m, and a female subgroup indexed by 

subscript f, leading to M = 6 datasets denoted by MVPF, MVPM, PHBF, PHBM, UKBF and 

UKBM. Since T2D prevalence within the datasets varies greatly from 0.05% to 0.15%, we 

performed a case control sampling with 1:1 matching so each dataset has equal numbers 

of T2D cases and controls. Since MVP has a substantially larger number of male T2D 

cases than all other studies, we down sampled its cases to match the number of female 

cases in MVP so that the signals are not dominated by the male population. This leads to 

sample sizes of 216, 392, 606, 822, 3120 and 3120 at PHBM, PHBF, UKBM, UKBF, MVPM

and MVPF, respectively. The covariate vector X = Xmain
⊤ , Xint

⊤ ⊤ is of dimension p = 516, where 

Xmain consists of the main effects of rs17238484, age and the aforementioned 256 SNPs, 

and Xint consists of the interactions between rs17238484 and age, as well as each of the 

256 SNPs. All SNPs are encoded such that the higher value is associated with higher risk 

of T2D. We implemented the proposed testing method along with the One–shot approach 

as a benchmark to perform multiple testing of q = 256 coefficients corresponding to the 

interaction terms in Xint at nominal level of α = 0.1 with the model chosen as logistics 

regression and the sample splitting folds K = 2 and K′ = 5.

As shown in Table 1, our method identifies 5 SNPs significantly interacting with the 

statin SNP while the One–shot approach detects only 3 SNPs, all of which belong to 

the set of SNPs identified by our method. The presence of non-zero interactive effects 

demonstrates that the adverse effect of statin SNP rs17238484-G on the risk of T2D can 

differ significantly among patients with different levels of genetic predisposition to T2D. 

In Figure 2, we also present 90% confidence intervals obtained within each dataset for the 

interactive effects between rs17238484-G and each of these 5 detected SNPs. The SNP 

rs581080-G in the TTC39B gene has the strongest interactive effect with the statin SNP and 

has all interactive effects estimated as positive for most studies, suggesting that the adverse 

effect of statin is generally higher for patients with this mutation compared to those without. 

Interestingly, a previous report finds that a SNP in the TTC39B gene is associated with statin 

induced response to LDL particle number (Chu et al., 2015), suggesting that the effect of 

statin can be modulated by the rs581080-G SNP.

Results shown in Figure 2 also suggest some gender differences in the interactive effects. 

For example, the adverse effect of the statin is lower for female patients carrying the 

rs12328675-T allele compare to female patients without the allele. On the other hand, the 

effect of the statin appear to be higher for male patients with the rs12328675-T allele 

compared to those without genetic variants associated with a various of phenotypes related 

to T2D. The variation in the effect sizes across different data sources illustrates that it is 
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necessary to properly account for heterogeneity of β in the modeling procedure. Comparing 

the lengths of confidence intervals obtained based on the One–shot approach to those from 

the proposed method, we find that the DSILT approach generally yields shorter confidence 

intervals, which translates to higher power in signal detection. It is important to note that 

since MVP has much larger sample sizes, the width of the confidence intervals from MVP 

are much smaller than those of UKB and PHB. However, the effect sizes obtained from 

MVP also tend to be much smaller in magnitude and consequently, using MVP alone would 

only detect 2 of the 5 SNPs by multiple testing with level 0.1. This demonstrates the utility 

of the integrative testing involving M = 6 data sources.

6. Discussion

In this paper, we propose a DSILT method for simultaneous inference of high dimensional 

covariate effects in the presence of between-study heterogeneity under the DataSHIELD 

framework. The proposed method is able to properly control the FDR and FDP in theory 

asymptotically, and is shown to have similar performance as the ideal ILMA method and to 

outperform the One–shot approach in terms of the required assumptions and the statistical 

power for multiple testing. Our method allows most distributional properties of the data 

D(m) to differ across the M sites, such as the marginal distribution of X(m), the conditional 

variance of Y (m) given X(m), and the magnitude of each βj
(m). The support S(m) is also 

allowed to vary across the sites as well, but the DSILT method is more powerful when 

S(1), …, S(M) are more similar to each other. We demonstrate that the sparsity assumptions 

of the proposed method are equivalent to those for the ideal method but strictly weaker than 

those for the One–shot approach. As the price to pay, our method requires one more round 

of data transference between the AC and the DCs than the One–shot approach. Meanwhile, 

the sparsity condition equivalence between the proposed method and ILMA method implies 

that there is no need to include in our method further rounds of communications or adopt 

iterative procedures as in Li et al. (2016) and Wang et al. (2017), which saves a great deal of 

human effort in practice.

The proposed approach also adds technical contributions to existing literature in several 

aspects. First, our debiasing formulation helps to get rid of the group structure assumption 

on the covariates X(m) at different distributed sites. Such an assumption is not satisfied in 

our real data setting, but is unavoidable if one uses the node-wise group LASSO (Mitra et 

al., 2016) or group structured inverse regression (Xia et al., 2018a) for debiasing. Second, 

compared with the existing work on joint testing of high dimensional linear models (Xia 

et al., 2018a), our method considers model heterogeneity and allows the number of studies 

M to diverge under the data sharing constraint, resulting in substantial technical difficulties 

in characterizing the asymptotic distribution of our proposed test statistics ζ̆ j and their 

correlation structures for simultaneous inference.

We next discuss the limitation and possible extension of the current work. First, the 

proposed procedure requires transferring of Hessian matrix with O p2  complexity from 

each DC to the AC. To the best of our knowledge, there is no natural way to reduce the 

order of complexity for the group debiasing step, i.e., Step 2, as introduced in Section 
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2.4. Nevertheless, it is worthwhile to remark that, for the integrative estimation step, i.e., 

Step 1, the communication complexity can be reduced to O(p) only, by first transferring 

the locally debiased LASSO estimators from each DC to the AC and then integrating 

the debiased estimators with a group structured truncation procedure (Lee et al., 2017; 

Battey et al., 2018, e.g.) to obtain an integrative estimator with the same error rate as 

β[ − k]
( • )

. However, such a procedure requires greater efforts in deriving the data at each DC, 

which is not easily accomplished in some situations such as in our real example. Second, 

we assume q = |H| ≍ p in the current paper as we have q = p/2 in the real example of 

Section 5. We can further extend our results to the cases when q grows slower than p. In 

such scenarios, the error rate control results in Theorems 2 and 3 still hold. Meanwhile, the 

model sparsity assumptions and the conditions on p and N can be further relaxed because 

we have fewer number of hypotheses to test in total and as a result the error rate tolerance 

for an individual test H0, j can be weakened. Third, for the limiting null distribution of the 

test statistics ζ̆ j and the subsequent simultaneous error rate control, we require M = O(logp)
and logp = o n1/10 . Such an assumption is naturally satisfied in many situations as in our 

real example. However, when the collaboration is of a larger scale, say M ≫ logp or M > nm, 

developing an adaptive and powerful overall effect testing procedure (such as the ℓ∞–type 

test statistics), particularly under DataSHIELD constraints, warrants future research. Fourth, 

the sub-Gaussian residual Assumption 3 in our theoretical analysis does not hold for Poisson 

or negatively binomial response. Inspired by existing work (Jia et al., 2019; Xie and Xiao, 

2020, e.g.), our framework can be potentially generalized to accommodate more types of 

outcome models. Last, our method may be modified by perturbing the weighted covariates 

Xβ
(m) and response Yβ

(m), and transferring the summary statistics derived from the perturbed 

data. Designing such a method with more convincing privacy guarantees, as well as similar 

estimation and testing performance as in our current framework warrants future research.
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Figure 1: 
The empirical FDR and power of our DSILT method, the One–shot approach and the ILMA 

method under the Gaussian design, with α = 0.1. The horizontal axis represents the overall 

signal magnitude μ.
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Figure 2: 
Debiased estimates of the log odds ratios and their 90% confidence intervals in each local 

site for the interaction effects between rs17238484-G and the 5 SNPs detected by DSILT, 

obtained respectively based on the One–shot and the DSILT approaches.
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Table 1:

SNPs identified by DSILT to interact with the statin genetic variants rs17238484-G on the risk for T2D. The 

second column presents the name of the gene where the SNP locates. The third column presents the minor 

allele frequency (MAF) of each SNP averaged over the three sites. The last three columns respectively present 

the p–values obtained using One–shot approach with all the M = 6 studies, One–shot with solely the datasets 

MVPf and MVPm and the proposed method with all the M = 6 studies. The p–values shown in black fonts 

represent the SNPs selected by each method.

SNP Gene MAF One–shot MVP–only DSILT

rs12328675-T COBLL1 0.13 1.1×10−3 2.3 × 10−3 6.0×10−4

rs2200733-T LOC729065 0.18 3.7 × 10−2 5.7 × 10−3 6.2×10−4

rs581080-G TTC39B 0.22 3.6×10−6 1.1×10−6 2.6×10−6

rs35011184-A TCF7L2 0.22 1.9 × 10−2 5.2 × 10−2 8.6×10−4

rs838880-T SCARB1 0.36 6.7×10−4 6.0×10−5 6.2×10−4
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