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Abstract: This review evaluates
physical activity as a candidate for an
adjunct treatment, in conjunctionwith
antiretroviral therapy (ART), for people
living with HIV (PLWH). Evidence is
summarized that chronic, non-
resolving inflammation (a principal
feature of immune systemdysfunction)
and a dysfunctional state of the gut
environment are key factors in HIV
infection that persist despite treatment
with ART. In addition, evidence is
summarized that regular physical
activitymay restore normal function of
both the immune system and the gut
environment and may thereby
ameliorate symptoms and non-
resolving inflammation-associated
comorbidities that burden PLWH.
Physicians who care for PLWH could
thus consider incorporating physical
activity into treatment plans to
complement ART. It is also discussed
that different types of physical activity
can have different effects on the gut
environment and immune function,
and that future research should
establish more specific criteria for the
design of exercise regimens tailored to
PLWH.
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Introduction

Current treatment of infection with
human immunodeficiency virus
(HIV) focuses on countering the
destruction of human immune cells
and associated weakening of
immune defenses.1 Such
intervention aims to prevent

progression to stage 3 HIV, or
acquired immunodeficiency
syndrome (AIDS).2-4 At the same
time, people living with HIV (PLWH)
exhibit systemic, low-grade immune
system activation, a hallmark of
immune system dysfunction, that
persists even when viral replication
is effectively suppressed5 by
antiretroviral therapy (ART). This
prolonged immune system
activation is commonly referred to as
chronic inflammation, but the term
non-resolving inflammation has
recently been introduced to
emphasize that this persistent
immune response primarily

constitutes a failure to terminate pro-
inflammatory signaling.6,7 Such non-
resolving inflammation is a root
cause of multiple diseases and
disorders that can occur as
comorbidities in PLWH.8-13

This review presents an overview
of HIV effects that are successfully

addressed by ART, as well as effects
that persist in ART-treated PLWH.
These lingering effects are aspects of
immune system dysfunction, and
can be linked to a persistent
disruption of the gut environment.
Since ART-treated PLWH experience
such dysfunction, it is necessary and
relevant in modern HIV treatment to
understand how to restore
a functional immune system and gut
environment. Because dysfunction
of these systems is implicated in
chronic illnesses that
disproportionately burden PLWH,
ameliorating non-resolving
inflammation should be a priority for
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physicians aiming to improve the
quality of life of their patients with
HIV.
Here, we review the effect of

physical activity on immune system
function and the gut environment.
Attention is given to various types of
physical activity and their apparent
different impacts on the gut
environment. Based on review of the
available evidence, a proposal is
made that certain types of physical
activity may be candidates for
adjunct treatment, complementary
to ART, that may restitute the gut
environment and restore normal
immune system function (eliminate
non-resolving inflammation) in
PLWH. We propose that regular,
voluntary (interest-based) physical
activity with adequate periods of
recovery is most likely to have
a restorative effect on the gut
environment and immune system
function and is therefore an
attractive candidate for an additional
treatment complementary to ART in
PLWH. Incorporating physical
activity into treatment plans may
ameliorate lingering effects of HIV
that are not addressed by ART and
enhance the quality of life of PLWH.

HIV Effects and
Antiretroviral Therapy

Viruses like HIV interact with the
immune system in complex ways;
they use components of the immune
system for their own replication, and
at the same time precipitate
a dysfunctional state of the immune
system as a whole. The retrovirus
HIV enters immune cells (especially
CD4+ T cells) and employs their
molecular vehicles for its own
replication.14 To do this, HIV
activates gene regulators that trigger
replication, such as the transcription
factor NF-kB.15,16 The latter is a key
regulator of the immune response
and orchestrates inflammatory
signaling.17,18 Constitutive, low-
grade activation of NF-kB is
associated with non-resolving

inflammation in HIV-infected
individuals.15,19 Furthermore, the
take-over of CD4+ T cells by HIV
eventually results in destruction of
immune cells via programmed cell
death—mainly as triggered by the
human host’s immune system in an
attempt to eliminate the virus.5

Doitsh and Greene state that, during
HIV infection, “most cells are not
dying because of a toxic action of
products encoded by HIV. Rather,
death occurs as a consequence of
a powerful defensive innate
immune response launched by the
host against the virus leading to
a cellular form of suicide rather
than virological murder.”5 This
attack by the immune system
reverberates system-wide as non-
resolving inflammation. The attack
on immune cells involves reactive
oxygen species (ROS) that function
in the programmed cell death of
CD4+ T cells20 and also serve as
signals that trigger a system-wide,
snow-balling, and continuous
mobilization of the immune
system,21 that is, non-resolving
inflammation. This non-resolving
inflammation involves systemic
disruption of redox homeostasis
(balance between oxidants and
antioxidants) and the gut
environment (see next section), and
plays a key role in cardiovascular
disease, obesity, GI distress, cancer,
mental illness and many other
conditions.22-27 The recognition of
the role of non-resolving
inflammation as a root cause for
disease has been called “one of the
most important scientific discoveries
in health research in recent
years.”28,29 Notably, PLWH exhibit
a higher incidence of many of these
and other comorbidities, which
emphasizes the critical importance
of addressing non-resolving
inflammation in this population.
Another key component of the

human immune system that interacts
with HIV is the interferon system that
detects pathogens and triggers
defenses. The interferon system

exhibits low activity in CD4+ cells30

and is further suppressed by HIV
infection.31 Such impaired interferon
activation in CD4+ cells allows
sustained viral replication in these
cells. Subsequent activation of
interferon in other cells—once HIV
infection is established—fails to
eradicate the virus and may even
promote non-resolving
inflammation and further
deterioration of host health.30 As
stated above, all aspects of immune-
system activation involve ROS
production that has the potential to
snow-ball into non-resolving
inflammation under exacerbating
conditions, such as a dysfunctional
gut environment (see section
below). However, additional
research is needed to elucidate the
complex interactions between HIV
and the interferon system.32

Current HIV treatment based on
ART arrests the replication cycle of
HIV and has been shown to increase
immune cell numbers in most
PLWH.33-35 However, some PLWH
are “immunological nonresponders”
who do respond to ART with
cessation of viral replication, but fail
to exhibit restoration of CD4+ cell
counts.36-38 More commonly yet,
PLWH who receive regular ART
treatment that halts viral replication
typically show varying levels of
persistent non-resolving
inflammation.8,39-41 Addressing
immune-system dysfunction in the
context of HIV infection is thus
critical even in the era of ART.

HIV and the Gut-Immune
Link

Additional mechanistic insight into
the repercussions of non-resolving
inflammation induced by HIV
focuses on the gastrointestinal tract
and the gut microbiome.42-46

Figure 1 depicts the gut environment
in its functional state without HIV
infection (Figure 1A) as well as in its
dysfunctional state during chronic
HIV infection (Figure 1B).
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The Gut-Immune Link in Health

Figure 1A depicts a functional,
health-promoting (eubiotic) gut
microbiome characterized by
prominent presence of anaerobic,
fermenting bacteria that thrive in
low-oxygen environments.47 These
microbes produce short-chain fatty
acids (SCFAs) that serve as an energy
source for the cells (enterocytes)
lining the gut48-50 (for details, see
below) and can also diffuse into the
bloodstream.51,52 Locally, these
SCFAs have essential roles in
supporting gut-barrier integrity.53,54

For example, they act as gene
activators for the production of
proteins that maintain gut-barrier
integrity.54-56 An example of a key
SCFA is butyrate (produced by
fermenting gut microbes) that
increases expression of the tight-
junction protein Claudin-1 involved

in supporting gut-barrier integrity.57

In addition, butyrate also represses
a protein (Claudin-2)58 that has been
suggested to increase barrier
permeability.59 Gut-barrier integrity
supports beneficial gut microbes and
these gut microbes, in turn, maintain
gut-barrier integrity.47

A healthy gut is characterized by
a steep oxygen gradient between the
(hypoxic) gut lumen and the distal
zone of the intestinal epithelium.60,61

The enterocytes of the intestinal
epithelium require oxygen for their
oxidative metabolism that supports
their roles in barrier formation,55

nutrient absorption62 and
immunity.61,63,64 Enterocytes use
butyrate as the fuel they burn with
oxygen to produce ATP for these
various functions.61 Therefore,
butyrate produced by fermenting gut
microbes stimulates oxygen uptake
by enterocytes and helps maintain

a low oxygen environment within
the gut.55,65 By requiring oxygen for
their own metabolism, enterocytes
thus contribute to maintaining
hypoxic concentrations within the
gut lumen,61 which supports
anaerobic, SCFA-producing
fermenting microbes.60,66 In addition
to directly supporting gut-barrier
integrity, SCFAs play a role in
dampening the activity of NF-kB and
the inflammatory response.67-71 In
the state where gut microbial
eubiosis and gut-barrier integrity are
maintained, the immune cells
associated with the gut lining are not
activated to induce systemic
effects72,73 (Figure 1A). Any
condition that interferes with
enterocyte function (eg, as seen
during HIV infection) triggers
production of messengers that
initiate a pro-inflammatory cascade
involving pro-inflammatory

Figure 1.

Schematic depiction of a healthy gut environment (A) and a gut environment (B) that is disturbed as the result of chronic HIV
infection. Depicted are the gut content (bottom; fermenting microbes producing short-chain saturated fatty acids, SCFAs, especially in
(A)), the cells forming the gut lining (enterocytes), immune cells (between enterocytes and blood vessels) that are either inactivated or
activated, and a blood vessel that receives either SCFAs or pro-inflammatory cytokines, bacteria and bacterial products from the gut.
Created with BioRender.com.
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cytokines.74,75 Such adverse
conditions include an insufficient
supply of butyrate (as fuel) for
enterocytes or of oxygen (to burn
butyrate) as can be the case during
exhaustive exercise (see Figure 2B in
the next major section below).

The Gut-Immune Link as
Affected by HIV

Figure 1B illustrates a feed-forward
loop of loss of gut-barrier integrity
and non-resolving inflammatory
responses in PLWH. Early HIV
infection is characterized by
widespread destruction of CD4+

T cells present in gut mucosa tissue.
While ART causes some recovery of
these cells, this recovery is not
always complete and mucosa
impairment may persist after
individuals receive treatment.76-78

Disruption of T cells in the gut

mucosa results in impaired gut-
barrier integrity, which allows
leakage of gut microbes and
microbial products into the
bloodstream (Figure 1B).
Specifically, lipopolysaccharide
(LPS), a cell surface component of
gram-negative bacteria, is often
identified as a marker of such
microbial translocation and
increased levels of LPS are observed
during chronic HIV infection.79,80

Translocation of LPS activates the
immune cells associated with the gut
lining (Figure 2B) in a process
mediated, for example, by NF-
kB.81,82 Continuous activation of NF-
kB contributes to a cascade of non-
resolving immune system activation
and may explain the persistent
inflammatory state observed in
PLWH.83-85

Furthermore, the disrupted gut
barrier in chronic HIV infection
(Figure 1B) results in increased
oxygen concentrations within the
gut, which shifts the gut microbiome
to a disrupted state (dysbiosis) with
specific losses in anaerobic
fermenters and SCFA production.
Increased concentrations of oxygen
in the gut as a result of gut-barrier
impairment also favor increases in
gut bacteria that are facultative
anaerobes capable of switching to
aerobic (oxygen-dependent) cellular
respiration and fast growth.86-88

These fast-growing facultative
anaerobes can become pathogenic
when undergoing such rapid
growth.26,88,89 In addition to
accelerating the cycle of leaky gut
and non-resolving inflammation in
PLWH shown in Figure 1B, this shift
in microbiome composition is

Figure 2.

The effects of a regimen of regular moderate physical activity (A) compared with the effects of exhaustive exercise (B). Acclimation
to regular moderate physical activity (A) restores (splanchnic) blood flow to the gut during physical activity, which supports maintenance
of low oxygen concentrations within the gut lumen and the activity of fermenting, SCFA-producing microbes, strengthens the gut
barrier and decreases inflammation. Continuous exhaustive exercise (B) continuously reduces blood flow to the gut, leading to
enterocyte dysfunction, gut microbiome dysbiosis, gut-barrier impairment, microbial translocation out of the gut, and non-resolving
inflammation. Created with BioRender.com.
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associated with GI distress and other
symptoms.86,90

Since non-resolving inflammation
and a dysfunctional gut microbiome
are implicated in several conditions
that disproportionately burden both
untreated and treated PLWH,
including cardiovascular disease,
chronic kidney disease, cancer, and
depression, restoration of the gut
environment and normal immune
function must be a priority for
improving the quality of life of
PLWH. The next section examines
the potential of regular, moderate
physical activity, used as a therapy
complementary to ART, to reduce
non-resolving inflammation and
restore gut barrier integrity.

Physical Activity and the
Gut-Immune Link

Figure 2 summarizes effects of
physical activity on the gut
microbiome, gut-barrier integrity,
and inflammation that have
emerged from recent studies in
various human populations (Figures
2A and 2B).
Intensity, duration, and frequency

of exercise, as well as age and
training status of individual
participants, can all influence the
effect of exercise on health.91-95

More research is needed to elucidate
the threshold of the transition
between beneficial and detrimental
exercise. A key consideration may
be the effect of physical activity on
blood flow to the gut, and the fact
that acclimation (habituation) to
a regular exercise regimen can
restore this blood supply.

Effect of Regular Physical
Activity With Replete
Blood Flow to the Gut

It is well established that regular
physical activity can reduce
inflammation in various
populations.96-98 In principle,
physical activity has the potential to
divert blood flow from the gut to

the working muscles.99 However,
during the establishment of
a regular regimen of physical
activity, a process of acclimation
(habituation) takes place that
restores blood supply to the gut
during physical activity.75 Such
regular physical activity is
associated with fully functional
enterocytes and a high abundance
of fermenting, butyrate-producing
microbes75,100-102 (Figure 2A).
While some gut microbes produce
butyrate from sugars derived from
fiber or complex sugars,103,104

other microbes convert lactate
produced by working muscles to
SCFAs like butyrate.105,106 The
butyrate produced serves to
strengthen the gut barrier through
the above-described support for
enterocytes and, for example,
stimulated expression of proteins
involved in barrier tightening and
downregulation of proteins
involved in barrier loosening. A
strengthened barrier and
associated microbiome eubiosis
decrease leakage of microbial
products into the bloodstream, and
decrease activation of immune
system regulators such as NF-kB
and the resulting non-resolving
inflammation107-113 (Figure 2A).
Suppression of NF-kB by physical
activity was associated with
reduced muscle loss in a mouse
model114 and this effect should also
be assessed in humans. Exercise-
associated decreases in muscle loss
could offer important relief for
PLWH since PLWH are often
burdened by loss of muscle mass
and function.115

Effect of Physical Activity
Associated With Continuous
Low Blood Flow to the Gut

The type of exercise that increases
the risk for non-resolving
inflammationmay be identified by its
effect on the gut—as exercise that
continuously exceeds the capacity
for acclimatory restoration of blood
flow to the gut at a level sufficient to

prevent hypoxia in enterocytes. As
far as impacts on the gut
environment are concerned,
a regimen of continuously
exhaustive exercise has similar
effects to those seen during the initial
transition phase from inactivity to an
established regimen of regular,
moderate physical activity.74,75 Both
activities draw blood away from the
gut—either continuously or only
during a transition phase of
acclimation. Whereas acclimation to
regular physical activity can restore
blood flow to GI cells,75 this may not
be the case for a regimen of
continuously exhaustive exercise.116

Insufficient oxygen supply to the
enterocytes is as detrimental as
hypoxia within the gut lumen is
beneficial. The ability to maintain
sufficient blood flow to the gut
during exercise is critical to
supporting gut barrier integrity and
gut microbiome eubiosis74,75,117,118

(Figure 2A). As detailed above,
insufficient blood flow to
enterocytes interferes with their
functions and triggers production of
messengers such as pro-
inflammatory cytokines74,75

(Figure 2B).
In summary, exercise that

continuously exceeds the capacity to
maintain sufficient blood flow to the
gut results in enterocyte hypoxia,
which impairs gut-barrier
integrity,119 increases oxygen
concentrations in the gut lumen, and
decreases the abundance of
anaerobic fermenting
microbes120,121 (Figure 2B). Such
microbiome dysbiosis and impaired
barrier parallel changes observed
during chronic HIV infection and
promote microbial translocation,
chronic activation of gut mucosa-
associated immune cells, upward-
spiraling immune system activation
and further impairment of the gut
barrier (Figure 2B).
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Additional Effects of Physical
Activity on the Gut and Immune
System

Additional mechanisms may also
contribute to the effects of physical
activity on the immune system. For
example, adipose tissue around the
waist (visceral fat) is metabolically
active and releases inflammatory
hormones.122 Excess visceral fat
thereby leads to chronic NF-kB
activation and non-resolving
inflammation.123,124 Exercise can
contribute to preventing excess
adipose tissue as one avenue to
reduce non-resolving
inflammation.96,125-127

Moreover, regular physical activity
may also restore immune system
balance by supporting redox
homeostasis.128 All exercise
generates oxidants (reactive oxygen
species, ROS) in working muscles
which, in turn, stimulate production
of endogenous antioxidant enzymes
that help keep ROS in check.129,130

Moderate amounts of ROS are
essential to induce these important
antioxidant enzymes.131 Redox
homeostasis supports immune
function, that is, stimulates immunity
against infection without inducing
excessive self-attack or non-
resolving inflammation.132 Regular
non-exhaustive physical activity
presumably stimulates ROS and
antioxidant production in a balanced
ratio that maintains redox
homeostasis. Antioxidants are
needed to keep ROS from triggering
excessive NF-kB activation and
programmed cell death.133,134

Continuously exhaustive exercise
may produce ROS at a level that
exceeds the capacity for antioxidant
enzyme production and results in
chronic redox imbalance. It should
also be noted that most of the
antioxidant enzymes induced by
physical activity require dietary
mineral cofactors, such as zinc,
selenium, copper, and manganese,
and also cooperate with dietary
antioxidant vitamins, such as
vitamins C and E.135

The Transition Between
Beneficial and Detrimental
Exercise

Intensity and Habituation. There is
interest in identifying a quantifiable
transition point between beneficial
and detrimental physical activity.
The authors136 of a recent review of
the relevant evidence proposed that
“vigorous endurance training
with ≥60 min at ≥70% of VO2max

increases the intestinal permeability,
with an enhanced effect observed in
hot environments, at high altitude,
and under dehydration.” Exercise at
70-80% of VO2max (maximal aerobic
capacity, or maximal oxygen
consumption) was reported to be the
point at which blood flow to the gut
decreased by other authors.137,138 It
should be noted that this
recommendation ties the threshold
to individual work capacity as
a feature of individual fitness level
that is, in turn, presumably
associated with acclimation/
habituation to a particular exercise
regimen and varies with individual
differences in training status as well
as other personal factors.

Evidence for Effects of Physical
Activity on Inflammatory Markers in
PLWH. There is some evidence that
exercise may influence immune
markers in PLWH (Table 1). Table 1
shows that exercise can either lower
inflammation markers, have no
effect, or increase inflammation
markers. The intensity at which
training programs are completed
may affect the response, with
moderate and intense exercise
reported as having contrasting
effects on inflammatory markers in
PLWH.139 However, some of the
studies finding decreases in pro-
inflammatory markers in PLWH also
involved what can be considered
rather intense exercise.
A recent clinical trial consisting of

combined aerobic and resistance
training over six months, with
aerobic exercise performed at 65–
80% maximal heart rate, resulted in

statistically significant decreases in
percent body fat and decreased
levels of the pro-inflammatory
cytokines IL-6 and TNF-α.140 A 12-
week resistance training program
also significant decreased
subcutaneous body fat, IL-6 and
TNF-α in sedentary PLWH141 as well
as in PLWH with metabolic
syndrome.142 A recent review143

concluded that physical activity is
associated with positive changes in
the inflammatory environment of
PLWH. However, other trials found
a mix of decreases in some
inflammatory markers and no
change in others (eg, Dudgeon et al,
2012).144 A meta-analysis145 of
a limited number of studies using
diverse training regimens concluded
that physical activity does not
significantly reduce inflammation in
PLWH.
Table 1 also includes a summary of

recent studies on the effect of
exercise on CD4+ T cell counts in
PLWH. Non-resolving inflammation
and dysbiosis are linked to
diminished CD4+ cell counts146 and
low CD4+ counts persist in
immunological non-responders (see
above). Restoring CD4+ cells is
a priority of HIV treatment, and
elimination of non-resolving
inflammation may facilitate recovery
of CD4+ T cell counts in PLWH.
Exercise increased CD4+ cell counts
in some trials on exercise in
PLWH141,147-151 but not in
others.152-154 The potential of
physical activity to increase CD4+

counts thus warrants further study as
a potential avenue to strengthen
immunity in PLWH.

Resolving Inflammation and
Recovery Time

It should be noted that
classification of inflammation
regulators into pro- vs anti-
inflammatory molecules does not
capture the context-dependent roles
of these molecules, which applies to
both cytokine hormones155 and
another key class of inflammation
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Table 1.

Summary of Selected Studies Published Over the Past Ten Years on the Effects of Interventional Physical Activity Programs on
Inflammatory Markers and/or CD4+ Cell Counts in PWLH. Significant Effects (P<.05) Are Noted in Relation to the Duration and Type of
the Physical Activity Completed. Longitudinal Study Assesses Variables Over an Extended Period of Time.

Author(s)
Type of study (original

or review)
Duration and type of physical

activity
Effects on inflammatory

markers
Effects on CD4+ T-cell

count

Anti-inflammatory effects

Bonato et al,179

2017
Original study 12 weeks of a) combined

aerobic (walking) and strength
training or b) aerobic training
(walking) alone

Both groups: decrease in pro-
inflammatory hsCRP and IL-18;
aerobic-only group: decrease in
pro-inflammatory IL-6

No longitudinal measure

Bonato et al,143

2020
Review Longitudinal, interventional

training program
Decrease in pro-inflammatory
CRP, IL-8 and IL-6

No longitudinal measure

Dudgeon et al,144

2012
Original study 6 weeks of moderate intensity

combined aerobic and strength
training

Decrease in salivary cortisol as
a stress marker at wake

No longitudinal measure

Ghayomzadeh
et al,140 2021

Original study 6-month combined aerobic and
resistance training; aerobic
exercise completed at 65–80%
maximal heart rate

Decrease in pro-inflammatory
IL-6 and TNF-α

No longitudinal measure

Pedro et al,180 2017 Original study 16-week heart rate-guided
aerobic program

Decrease in pro-inflammatory
IL-8

No longitudinal measure

Zanetti et al,141

2016a
Original study 12-week resistance training

program
Decrease in pro-inflammatory
IL-1β, IL-6, IL-8 and TNF-α

Increase in CD4+ count

Zanetti et al,181

2016b
Original study 12-week resistance training

program
Decrease in pro-inflammatory
CRP

No longitudinal measure

Zanetti et al,142

2017
Original study 12-week resistance training

program
Decrease in pro-inflammatory
IL-1β, IL-6, IL-8, and TNF-α

No longitudinal measure

Zanetti et al,182

2020
Original study 12-week resistance training

program; mild to moderate
intensity

Decrease in pro-inflammatory
IL-1β and CRP; increase in anti-
inflammatory IL-10

No longitudinal measure

No significant effects

Cutrono et al,183

2016
Original study 12 weeks of combined aerobic

and resistance training; aerobic
sessions completed at 60-80%
of age-determined maximum
heart rate

No significant changes in
inflammatory markers

No longitudinal measure

Ibeneme et al,145

2019a
Review Aerobic training alone,

resistance training alone, and
combination of aerobic and
resistance training

No significant changes in
inflammatory markers

No longitudinal measure

Vingren et al,184

2018
Original study 6-week resistance training

program
No significant changes in
inflammatory markers

No longitudinal measure

(continued)
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regulators, the fatty-acid-based
eicosanoids.156,157 Moreover,
increased acute inflammation
following physical activity is not
problematic and instead plays
a critical role in triggering the

synthesis of antioxidant enzymes131

and thus maintaining immune
balance.129,132,158 In fact, when
oxidative signals are eliminated by
high-dose antioxidant vitamins
taken during athletic training,

synthesis of endogenous antioxidant
enzymes as well as muscle building
is prevented.131 Similarly, anti-
inflammatory treatments (eg,
NSAIDS) targeting exercise-
associated injury can actually

Table 1. (continued)

Zanetti et al,151

2021
Review 6–24 weeks of resistance

training programs
No significant changes in
inflammatory markers

Increase in CD4+ cell
count

Pro-inflammatory effects

Erlandson et al,139

2020
Original study 24 weeks of combined aerobic

and strength training; first 2
weeks at low intensity; next 10
weeks at moderate intensity
(40–50% baseline VO2max); last
12 weeks at moderate or high
(60–70% of week 12 VO2max)
intensity

Increase in pro-inflammatory
IL-6 in high intensity group

No longitudinal measure

Zanetti et al,142

2017
Original study 12-week resistance training

program
Decrease in anti-inflammatory
IL-10

No longitudinal measure

No inflammatory markers
measured

Asogwa et al,150

2020
Original study 6 weeks of moderate intensity

aerobic training
NA Increase in CD4+ count

de Brito-Neto
et al,149 2019

Original study 12-week resistance training
program

NA Increase in CD4+ cell
count

Dianatinasab
et al,185 2018

Original study 12-week combined aerobic and
resistance training

NA Decrease in CD4+ cell
count

Ezema et al,147

2014
Original study 8 weeks of moderate intensity

aerobic training completed at
60–79% of maximum heart rate

NA Increase in CD4+ cell
count

Ibeneme et al,154

2019b
Review Aerobic and/or resistance

training
NA No significant changes in

CD4+ count

Maduagwu et al,148

2017
Original study 12-week moderate intensity

aerobic training program
completed at 50–75% of heart
rate reserve

NA Increase in CD4+ count

O’Brien et al,153

2016
Review Aerobic training alone or

a combination of aerobic and
resistance training

NA No significant changes in
CD4+ count

Tiozzo,152 2011 Original study 12-week moderate intensity
combined aerobic and
resistance training program

NA No significant changes in
CD4+ count

Abbreviations: CRP, C-reactive protein; hsCRP, high-sensitivity C-reactive protein; IL, interleukin; NA, not applicable (no inflammatory marker measured) TNF,
tumor necrosis factor.
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prevent healing by blocking the pro-
resolution “stop signals” involved in
the inflammatory response.159

Physical activity can thereby acutely
increase inflammatory markers
while also strengthening pro-
resolution pathways.160 Taken
together, these results suggest that
short-term increases in markers of
inflammation following physical
activity may boost, rather than
weaken, the anti-inflammatory
resolution of inflammation.
The recovery time available for the

resolution of acute inflammation
may play a role. In other words,
exercise performed at an excessive
duration,161 without sufficient
recovery time between sessions,162

may be what is most detrimental.163

For example, what was described as
“vigorous” exercise by the
authors164,165 increased the levels of
the stress hormone cortisol, whereas
“moderate” exercise had no such
effect. Likewise, “forced” treadmill

running in mice promoted
significantly greater increases in
cortisol than “voluntary” wheel
running.166 For such exhaustive
exercise, constitutive activation of
NF-kB and subsequent tissue
degeneration, oxidative stress, gut
barrier breakdown, gut microbiome
dysbiosis and non-resolving
inflammation have been
demonstrated.167-171 At this point, it
can thus not be excluded that
detrimental exercise modalities
described as “high-intensity,”
“vigorous,” or “forced,” may also be
lacking in adequate time for
recovery and resolution of
inflammation between sessions. A
notable study by Schlabe et al
(2017)172 suggests that even
marathon training, performed as
“moderate endurance training” over
a period of 12 months, can be safe
for PLWH.
Future research is needed that

includes assessment of time allowed

for recovery and resolution of
inflammation, and uses consistent
standards to quantify work capacity
(such as VO2max), what percent of
this capacity was reached and for
how long during the physical
activity, as well as blood flow to the
gut across a range of different
physical activities. Furthermore,
individualized physical activity
regimens likely need to be
customized for different needs. As
stated above, acclimation to
a regimen of physical activity can
restore blood supply to the gut
during exercise. Such acclimation
presumably raises the ceiling of
work capacity. However, there likely
is an upper limit of this acclimation
effect that may be exceeded by
certain types of exhaustive exercise.
The current understanding thus
suggests that physical activity
recommendations should be
expanded to comprehensively
emphasize movement that is

Figure 3.

Schematic depiction of proposed changes in the gut of PLWH induced by regular, moderate intensity, interest-driven physical activity.
(A) Dysbiosis and impaired barrier present during chronic HIV infection (B) Restored blood flow, eubiosis and reduction of inflammation
due to regular physical activity. Created with BioRender.com.
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interest-based, voluntary, completed
at an enjoyable intensity, performed
regularly, and allows adequate time
for recovery and resolution of
inflammation.75,173-178

Proposed Benefits of
Physical Activity for
PLWH

The evidence reviewed above
supports a proposal that regular
physical activity—allowing sufficient
acclimation and recovery that restore
blood flow to the gut—may facilitate
the resolution of inflammation by
ameliorating the leaky gut present in
many treated and untreated PLWH
(Figure 3). As stated above
(Figure 1B), many PLWH experience
a dysbiotic gut microbiome,
characterized by gut-barrier
disruption and microbial
translocation that persist despite ART
treatment (Figures 1B and 3A). This
microbial translocation activates the
immune system and leads to release
of pro-inflammatory cytokines,
microbes, and microbial products
into the bloodstream, further
triggering widespread immune
activation and gut barrier
breakdown (see above; Figures 1B
and 3A). The non-resolving
inflammation experienced by PLWH
(Figure 3B) may thus be reduced by
adoption of a regimen of regular
physical activity that allows sufficient
blood flow to the GI tract, increases
abundance of fermenting microbes
and SCFAs, and strengthens the gut
barrier integrity. This type of
physical activity may protect against
various comorbidities in both treated
and untreated PLWH and serve as
a complement to traditional ART
(Figure 3B).
At this time, there is some evidence

that exercise can reduce markers of
inflammation and improve body
composition in PLWH (see above;
Table 1).141,143,179 However, more
research is needed to establish this
because findings are presently not
consistent.145 It is clear, however,

that physical activity interacts with
the same molecular players that are
affected by HIV, such as NF-kB.
Whereas an acute bout of exercise
was associated with acute activation
of NF-kB, acclimation to regular
exercise suppressed NF-kB in mice
models and prevented non-
resolving inflammation.114

Physical activity thus offers great
promise as a potential lifestyle
modification for reducing non-
resolving inflammation and
inflammation-associated
comorbidities in PLWH. Physicians
and other healthcare providers
should be aware of the specific
benefits physical activity may offer
to PLWH and consider
incorporating physical activity into
treatment plans as a complement
to ART. Additional research is
needed to design individualized
training plans customized to match
individual fitness levels and
interest.
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