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Abstract

Plate-based proteomic sample preparation offers a solution to the large sample throughput

demands in the biotechnology field where hundreds or thousands of engineered microbes

are constructed for testing is routine. Meanwhile, sample preparation methods that work effi-

ciently on broader microbial groups are desirable for new applications of proteomics in other

fields, such as microbial communities. Here, we detail a step-by-step protocol that consists

of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with

high-ionic strength acetone in 96-well format. The protocol works for a broad range of

microbes (e.g., Gram-negative bacteria, Gram-positive bacteria, non-filamentous fungi) and

the resulting proteins are ready for tryptic digestion for bottom-up quantitative proteomic

analysis without the need for desalting column cleanup. The yield of protein using this proto-

col increases linearly with respect to the amount of starting biomass from 0.5–2.0 OD*mL of

cells. By using a bench-top automated liquid dispenser, a cost-effective and environmen-

tally-friendly option to eliminating pipette tips and reducing reagent waste, the protocol takes

approximately 30 minutes to extract protein from 96 samples. Tests on mock mixtures

showed expected results that the biomass composition structure is in close agreement with

the experimental design. Lastly, we applied the protocol for the composition analysis of a

synthetic community of environmental isolates grown on two different media. This protocol

has been developed to facilitate rapid, low-variance sample preparation of hundreds of sam-

ples and allow flexibility for future protocol development.
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Introduction

As new applications of protein analysis increase there is a concurrent impact on analytics, such

as bottom-up, quantitative proteomics, to assay the samples. The impact of this is felt most

intensely in biotechnology where the construction of hundreds or thousands of samples for

testing is routine [1] and for analyses where the structure of microbial communities of diverse

organisms must be assayed [2]. Consequently, it is crucial to improve the quality and through-

put of sample preparation methods that facilitate such assays. Recently, multiple groups have

automated various steps (e.g., cell lysis, protein precipitation/isolation, protein quantification,

tryptic digestion) of the common bottom-up proteomic sample preparation methods for vari-

ous types of samples. There are a variety of automated protocols for the tryptic digestion and

peptide cleanup steps [3–7] because once the protein is purified from the cells or matrices the

digestion and cleanup steps are quite similar regardless of the original source.

In contrast, there are fewer examples of automation protocols for cell lysis or protein pre-

cipitation/isolation because the source of the protein sample greatly impacts those methods

and commonly-used mechanical lysis techniques (e.g., sonication, bead beating, French press)

are challenging to automate. But, chemical lysis methods by using detergents or surfactants (e.
g., SDS, Triton) [8–11], organic solvents [12, 13], acidification [14], chelating agents (EDTA),

and chaotropic agents (e.g., urea, guanidine) are more amenable to automation. Recently,

automated methods for FASP [8, 15, 16], SP3 [9], and several commercial options (e.g., iST,

S-Trap tips) leveraging these methods have been developed in plate format. These types of pro-

tocols effectively reduce both the total and hands-on time for sample preparation [11] but can

become quite costly for large numbers of samples. Alternatively, cell lysis by using detergents

under alkaline conditions coupled with purification by protein precipitation are rapid, easily

automated, and cost effective. Work by Doucette and co-workers detail how high-yield

(~98%) protein precipitation can be achieved in only two minutes by using a high ionic

strength 80% acetone solution [17–19]. Here, we describe a rapid protocol for samples in

96-well plate format including cell lysis, benzonase digestion of the nucleic acids, and precipi-

tation of the proteins with the salt-acetone method [17] that is applicable to monocultures and

microbial communities. Even though SDS is used for lysis, protein precipitation and subse-

quent washing steps efficiently remove the SDS from the samples, consequently, clean-up

steps are not necessary prior to LC-MS analysis. After resuspension of the proteins, we quan-

tify the amount of protein extracted and show a linear increase of protein released from Escher-
ichia coli, Pseudomonas putida, Streptomyces albus, Corynebacterium glutamicum,

Saccharomyces cerevisiae, and Rhodosporidium toruloides. Next, we used a previously described

automation protocol [20] to normalize the amount of protein and set up tryptic digestion and

then analyzed the peptides with a short 10-minute gradient LC-MS/MS data independent

acquisition (DIA) method [21] for both single organisms and mixtures of organisms. Lastly,

we analyzed a synthetic community of five bacteria (four Gram-negative, one Gram-positive)

isolated from the environment [22] to test the methods for composition analysis by quantify-

ing the contribution of each of the species to the total biomass. This protocol, combined with

previously established automated protein quantification and protein normalization protocols,

provides a rapid, cost-effective method to prepare LC-MS proteomic samples from bacteria

and non-filamentous fungi cell cultures.

Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, https://dx.

doi.org/10.17504/protocols.io.6qpvr6xjpvmk/v1 and is included for printing as (S1 File) with

this article.
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http://www.proteomexchange.org/. They are

publicly accessible with the dataset identifier
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Expected results

The alkaline-SDS cell lysis with acetone protein precipitation protocol (S1 File) is composed of

cell lysis with a mixture of 200 mM NaOH and 1% sodium dodecyl sulfate (SDS), neutraliza-

tion with HCl, benzonase treatment to remove nucleic acids, followed by the addition of ace-

tone (80% by volume) to precipitate the proteins. The protocol takes approximately 30

minutes to process one full 96-well plate of samples, including centrifugation steps. The proto-

col time is scalable to the number of samples to be processed. Application of this protocol with

an automated liquid dispenser offers cost-savings by reducing the number of pipette tips used

in the protocol and minimizing reagent waste due to extremely low dead volumes. The total

extracted protein amount using the described protein extraction protocol varies on our tested

microorganisms, but the protein amounts extracted from them all show a linear relationship

to the amount of biomass used in the test (Fig 1). With two OD*mL (~2 ×109 cells) of biomass,

we obtained up to 88 μg and 131 ug total proteins from Gram-positive bacteria species of C.

glutamicum and S. albus (Fig 1A), 417 ug and 258 ug total proteins from Gram-negative bacte-

ria species of E. coli and P. putida (Fig 1B), and 400 ug and 174 ug total proteins from non-fila-

mentous fungi species of S. cerevisiae and R. toruloides (Fig 1C). The amount of protein

extracted from the microbes will depend on the species of interest, consequently, the starting

amount of biomass may need to be adjusted for a given application. The protein amounts are

sufficient for typical nano- and standard-flow LC-MS data acquisition methods and can easily

be adjusted for applications requiring larger amounts of protein such as deep-proteome analy-

sis by fractionation or post-translational modification characterization experiments. The

upper limit on the amount of biomass that can be processed with this protocol is limited by the

amount of SDS-alkaline based lysis buffer that can be added to the PCR plate (~25 μL). For

applications that require larger amounts of protein, such as multi-dimensional chromatogra-

phy, the protocol can easily be adapted to extractions in deep-well plates with correspondingly

more lysis buffer and acetone. The protocol can also be scaled down to approximately 0.25
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Fig 1. Scatter plots with data points showing the total protein extracted by using the alkaline-acetone sample preparation protocol on different amounts of

biomass from: (A) Gram-positive; (B) Gram-negative; and (C) fungal cells. The error bars represent three replicates performed on separate days.

https://doi.org/10.1371/journal.pone.0288102.g001
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OD*mLs cells for gram negative bacteria and non-filamentous fungi species, and 0.5 OD*mLs

cells for Gram-positive bacteria with consistent protein recovery (n = 4). Sample types other

than microbial cell pellets, such as tissues and complex biofluids, haven’t been tested with this

protocol and may need additional sample preparation steps. Microbes that are highly resistant

to cell lysis may require stronger lysis buffer conditions or increased temperatures. Proteolytic

digestion of proteins resulting from these samples, however, are readily suitable for LC-MS

analysis without the need of additional desalting steps.

Because of its broad applicability, we tested the protocol on mock mixtures of microbial

community samples to assess community biomass composition structure using the metapro-

teomics analysis method established previously [23]. This method estimates the microbial

community structure by calculating the percentage of proteinaceous contribution from each

member, which is based on the quantitative measurements of the unique peptides that are

identified in each member. High-quality, high-throughput, reproducible metaproteomic data

will contribute to wider application of such experiments for microbial community analysis [2,

24, 25]. The expected microbial community composition results from samples prepared by the

protocol is demonstrated in Figs 2 and 3 by using an Agilent 1290 UHPLC coupled to a

Thermo Orbitrap Exploris 480 system operating in data-independent acquisition (DIA) mode

[21]. From a LC-MS/MS method (15 minute total run time) we identified more than 1100 pro-

teins and 7000 peptides of each microbe from a 12 μg load of the mock microbial community

mixture, consistent with previous applications of the digestion protocols [13]. We prepared

mixtures of mock microbial communities consisting of two Gram-negative bacteria (E. coli
and P. putida) or two non-filamentous fungi (S. cerevisiae and R. toruloides) at four biomass
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Fig 2. Community proteomic composition analysis of mock mixtures shows accurate estimation of biomass contribution. The

stacked bar plots display the percentage of biomass contribution from members in (A) Gram-negative mock community, and (B)

Non-filamentous fungi mock community. The error bar shows the standard deviation of calculated composition of each member

(n = 4). The LCMS analysis raw data have been deposited to the ProteomeXchange Consortium data depository at http://www.

proteomexchange.org/. They are publicly accessible with the dataset identifier PXD039268.

https://doi.org/10.1371/journal.pone.0288102.g002
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ratios. The estimated biomass compositions are reproducible (0.83% standard deviation of the

replicates; n = 4) and the measured ratios are in close agreement (<3.5%) of the expected ratios

as designed (Fig 2, Table 1).

Next, we tested the protocol on a synthetic microbial community of five environmental iso-

lates [22] consisting of one Gram-positive bacterium (ENIGMA isolate: FW305-3-2-15-F-LB2

(GenBank Accession number: OM867407) and four Gram-negative bacteria (ENIGMA iso-

lates: GW456-12-10-14-LB3 (GenBank Accession number: MH795608), GW458-12-9-14-LB2

(GenBank Accession number: MH795601), GW460-LB6 (GenBank Accession number:

MH795591), GW460-11-11-14-TSB4 (GenBank Accession number: MH795599)) grown

under different experimental conditions to determine composition changes. We started the

culture of the five-member microbial community at 20% composition of each and grew them

in two culture media, Reasoner’s 2A (R2A) [26] and glucose minimal medium.

Table 1.

Mix % measured % expected Mix % measured % expected

E. coli 4.4 ± 0.2 5 S. cerevisiae 8.4 ± 0.1 5

P. putida 95.6 ± 0.2 95 R. toruloides 91.6 ± 0.1 95

E. coli 8.2 ± 0.1 10 S. cerevisiae 12.1 ± 0.3 10

P. putida 92.8 ± 0.1 90 R. toruloides 87.9 ± 0.3 90

E. coli 23.0 ± 0.3 25 S. cerevisiae 26.2 ± 0.6 25

P. putida 77.0 ± 0.3 75 R. toruloides 73.8 ± 0.6 75

E. coli 48.6 ± 0.5 50 S. cerevisiae 52.7 ± 0.8 50

P. putida 51.4 ± 0.5 50 R. toruloides 47.3 ± 0.8 50

https://doi.org/10.1371/journal.pone.0288102.t001
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Fig 3. Community proteomic composition analysis shows accurate estimation of biomass contribution of

community structure changes upon different culture conditions. The stacked bar plots display the percentage of

biomass contribution from members of the synthetic microbial community, and the error bars show the standard

deviation of calculated composition of each member (n = 3). Synthetic microbial community shows distinct structure

when culturing in different media, Reasoner’s 2A (R2A) and glucose minimal medium. The LCMS analysis raw data

have been deposited to the ProteomeXchange Consortium data depository at http://www.proteomexchange.org/. They

are publicly accessible with the dataset identifier PXD039268.

https://doi.org/10.1371/journal.pone.0288102.g003
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We observed significant divergence from the initial composition in each culture medium

after 24 hours (Fig 3). The GW456-12-10-14-LB3 isolate decreased in both media while

GW458-12-9-14-LB2 increased in glucose minimal medium and GW460-LB6 increased signif-

icantly in R2A medium. These differences in community structure reflect the impacts of

medium compositions on species interactions and dynamics. This protocol is designed for lab-

based, culture conditions and synthetic community experiments where complex sample matri-

ces (e.g., feces, soil) are minimized. Additional sample preservation and/or protein extraction

methods may be required for environmental samples to minimize protein degradation and

maintain sample integrity. Overall, the flexible design of this protocol enables one researcher

to prepare thousands of bottom-up proteomic samples per week. Supporting publications for

other monoculture and synthetic community experiments are under development.

Supporting information

S1 File. Alkaline-SDS cell lysis with acetone protein precipitation for proteomic sample

preparation of microbes in 96-well plate format (PDF). Also available on protocols.io.

(PDF)
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