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High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional 
and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. 
Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators 
mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3′-end 
processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter 
and terminator combination affects gene expression. In the present article, we review the function and 
features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and 
benchmarking strategies for regulating gene expression.

Introduction

A plant’s DNA sequence can be fragmented into its smallest 
functional units to generate standardized, functionally inter-
changeable biological parts (bioparts) or biobricks. Bioparts 
are the fundamental building blocks in plant synthetic biology 
for assembling novel functional units or synthetic devices [1,2]. 
Bioparts include gene promoters, promoter cis-regulatory ele-
ments or motifs, exons, introns, terminators, and open reading 
frames (ORFs). Identification and characterization of individ-
ual bioparts and their respective biological interactions with 
other bioparts allows for improved understanding of transcrip-
tion and gene expression as a whole. These bioparts are imple-
mented in the design and construction of synthetic devices, 
which are integrated into plant (and nonplant) biological sys-
tems for precise regulation of gene transcription [3].

A plant gene promoter encompasses the DNA sequence 
flanking the transcription start site(s) (TSSs) of a gene that 
contains various promoter cis-regulatory elements, to which 
trans-acting transcription factors (TFs) bind and promote (or 
repress) initiation of gene transcription. Initiation of transcrip-
tion is the first step for the designated genetic information of 
a synthetic device or system to be able to function as expected. 
Typically, a plant promoter spans the DNA region several hun-
dred to a few thousand base pairs upstream of the TSS, with 

each promoter containing a core, a proximal, and a distal region 
based upon the function of the regulatory elements present in 
each region and their proximity to the TSS. The core promoter 
directly flanks the gene’s TSS and facilitates the assembly of a 
pre-initiation complex (PIC) upon the TSS(s), which consists 
of RNA polymerase (Pol) II and general transcription factors 
(GTFs). The PIC determines the basal transcription level of a 
gene, the direction of transcription, and the selection of TSSs, 
as one plant core promoter may harbor multiple and some-
times mutually exclusive TSSs [4]. The core promoter directs 
the assembly and recruitment of TFs through its cis-regulatory 
elements. A plant core promoter may contain conserved, direction- 
sensitive core promoter motifs such as the TATA-box (for 
TATA-box-containing promoters), downstream promoter ele-
ment (DPE; for TATA-less promoters), initiator element (Inr), 
Y patch, CCAAT-box, and TSS(s) (Fig. 1). The TATA-box is 
named for its 8-base pair (bp) consensus sequence TATA(A/T)
A(A/T)(A/G) and is commonly located 30 to 70 bp upstream 
of the TSSs in plants [5,6]. Binding of the TATA-binding pro-
tein (TBP), a subunit of the transcription factor IID (TFIID), 
to the TATA-box recruits RNA polymerase II (Pol II) to form 
the PIC and initiate transcription. In plants, most TATA-box-
containing promoters are mainly involved in tissue-specific 
expression and stress responses [7,8]. Yamamoto et al. [9] 
found that the TATA-box-containing promoters in Arabidopsis 
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thaliana tend to be associated with the presence of Y-patches 
and Inr elements, and have high promoter strength with sharp-
peaked TSS clusters. In TATA-less promoters such as house-
keeping photosynthesis-related gene promoters [7,8], a DPE 
with the consensus sequence RGWCGTG plays a similar func-
tion to that of the TATA-box for TFIID binding. DPEs are usu-
ally present approximately 30 bp downstream of the TSSs 
and are often found in plant promoters controlling stimulus-
responsive genes [10]. The Inr element is another important 
core promoter motif directly covering TSSs [11] with a con-
sensus sequence of PTCA+1NTPP, where A+1 is the initiator 
and the first base transcribed [11]. The TFIID binds to the Inr 
cooperatively with the TATA-box or the DPE to initiate recruit-
ment of the PIC [12]. A Y patch is an 8-bp motif consisting 
mostly of pyrimidine C and T dimers (CT or TC), located 1 to 
100 bp upstream of the TSSs, and has a distribution peak 
around the TSSs [13]. The CCAAT-box is the binding site for 
the CCAAT-binding factor (CBF) nuclear transcription factor 
Y (NF-Y). The binding of NF-Y to the CCAAT-box can result 
in positive or negative posttranslational histone modifications, 
contributing to activation or repression of gene expression [15]. 
Regarding the sequences surrounding the TSSs, Yamamoto et al. 
[13] reported a “YR Rule,” indicating that there is usually a C 
or T nucleotide 1 bp upstream of the TSSs and an A or G nucle-
otide 1 bp downstream of the TSSs (i.e., Y, C−1 or T−1; R, A+1 
or G+1) for both Arabidopsis and rice.

The basal transcription level conferred by core promoters 
can be greatly increased (or inhibited) by enhancers (or repressors/
silencers), which are promoter motifs located upstream of 

the core promoter regions and define the proximal and distal 
promoter regions (note: enhancers and repressors can also be 
located downstream of the TSSs). Cis-regulatory elements 
interact bidirectionally and in tandem with TFs, cofactors, and 
chromatin-remodeling complexes to determine the strength 
and the temporal and spatial expression patterns of a gene dur-
ing plant growth and development and in response to changing 
environmental conditions. Studies in which promoters were 
functionally analyzed for constitutive, tissue-specific, or induc-
ible expression have been extensively reviewed recently [10,16–22] 
and are not part of this review. Cis-regulatory elements used 
for plant synthetic promoter engineering have also been reviewed 
recently [23–28].

The proper combination of a promoter and a terminator is 
essential for successful gene transcription as the processing of 
the 3′-end of an RNA transcript is the last essential step in 
mRNA biogenesis. The terminator is one of the 3′-end regula-
tory elements and marks the end of an RNA transcript. It 
assists transcription initiation by interacting with TFs and the 
C-terminal domain of Pol II, and halts transcription by adding 
termination signals on the newly synthesized transcript, trig-
gering the release of the transcript from the transcription 
machinery. Proper mRNA termination promotes the transport 
of mRNAs from the nucleus to the cytoplasm [29,30] and sta-
bilizes and protects the mRNAs from degradation [31–35]. 
Thus, proper mRNA termination is necessary for the transla-
tion of mRNAs into proteins [31,35–37]. Proper mRNA ter-
mination also prevents read-through transcription of downstream 
sequences [38,39]. Termination factors interact with many RNA 

Fig. 1. Locations of the cis-regulatory elements (CREs) and core promoter motifs CCAAT, Y patch, TATA-box, and TSS/Inr within dicot and monocot promoters. (A) Representative 
structure of a plant promoter. (B and C) Local distribution of short sequences (LDSS)-positive octamer CREs, normalized frequency distribution profiles of CCAAT, Y patch, 
and Inr, and the percentage of TATA-box-containing promoters at the indicated positions on the dicot (B) and monocot (C) promoters. The images of dicot and monocot CREs 
were adapted from [14] (Arabidopsis) and [13] (rice), respectively. The images of CCAAT, Y-patch, and Initiator (Inr) were adapted from [6] (soybean, Arabidopsis, poplar, grape, 
Brachypodium distachyon, sorghum, rice, and maize). The images of TATA-box were adapted from [5] (Arabidopsis and maize).
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processing and degradation enzymes, which in turn define the 
fate and half-life of the transcripts. There are 2 termination 
pathways, i.e., transcription termination of protein coding tran-
scripts (i.e., mRNAs) and transcription termination of non-
coding RNAs (ncRNAs). Termination of mRNAs leads to the 
production of stable RNA transcripts that are transported to 
the cytoplasm, while termination of ncRNAs leads to their 
sequestration in the nucleus and subsequent degradation. In 
this review, we will only discuss mRNA transcriptional termi-
nation and its relevance for synthetic biology.

Thus, plant core promoters, proximal and distal promoters, and 
terminators are the starting bioparts regulating gene expression, 
and it is of crucial importance to determine the best promoter and 
terminator combination for highly efficient transcription of trans-
genes in high-precision plant bioengineering.

Plant Core Promoters
Generally, dicot and monocot core promoters perform well 
when used in respective dicot and monocot species [5]. Core 
promoter performance is attributed to the nucleotide sequence, 
position, and number of copies of each core promoter motif, 
as well as the core promoter’s chromatin configuration. It was 
reported that 32%, 19%, and 38% genes in Arabidopsis [7], rice 
(Oryza sativa) [8], and maize (Zea mays) [40], respectively, are 
TATA-box-containing genes. Kumari and Ware [6] conducted 
an in silico genome-wide analysis of core promoter motifs in 
the dicot species Arabidopsis, soybean (Glycine max), poplar 
(Populus trichocarpa), and grape (Vitis vinifera), and in the 
monocot species rice, maize, sorghum (Sorghum bicolor), and 
purple false brome (Brachypodium distachyon). They found that 
the Inr motifs were located −20 to +240 bp upstream of the 
TSSs of the promoters in the 4 dicot species, while for the pro-
moters of the 4 monocot species the Inr motifs stretched from 
−60 to +60 bp and from +100 to +120 bp, suggesting a distinct 
difference in the genome-wide distribution of the motif between 
dicot and monocot species. Similarly, the CCAAT-box was 
mainly positioned −120 to −40 bp in dicot promoters but posi-
tioned −460 to −140 bp in monocots [6]. Additionally, it was 
reported that less than 18% of Arabidopsis promoters and 50% 
of rice promoters contain Y patches [8,41]. All these distinctions 

indicate the differences in the functions of the core promoters 
between monocots and dicots. Thus, it is reasonable to use dicot 
and monocot core promoters for synthetic promoter engineer-
ing in respective species types.

To date, the most widely used core promoter is the minimal 
CaMV 35S promoter, which has shown functional expression 
in nearly all dicot species and one monocot species, i.e., rice 
[42,43] (see Table 1 for a list of representative plant core pro-
moters used for gene expression). While plant core promoter 
engineering is still in its infancy, a pivotal study was recently 
published describing plant core promoter analysis and engi-
neering [5]. Jores et al. [5] constructed individual core pro-
moter libraries from Arabidopsis, maize, and sorghum genomes. 
These libraries included the core promoter regions −165 to +5 
nucleotides (nt) (relative to the TSSs) of 18,329, 34,415, and 
27,094 protein-encoding and microRNA genes from each of 
the respective species. Evaluation of the core promoters using 
tobacco leaf agroinfiltration and maize leaf protoplast expres-
sion revealed substantial differences in core promoter strength, 
indicating that dicot and monocot plants interact with the same 
core promoter in different manners. Interestingly, core pro-
moter strength was positively associated with gene expression 
levels only in some of the genes. GC content of the core pro-
moters showed negative correlation with core promoter strength 
in the tobacco leaf expression system but had no correlation in 
the maize protoplast expression system. This finding could be 
attributed to the differences between the GC content of the 
promoters in these species because tobacco and Arabidopsis 
promoters are AT-rich, while maize and sorghum promoters 
tend to be higher in GC content. Moreover, the distribution 
locations of TATA-box have one peak ~30 bp upstream of the 
Arabidopsis TSSs, but 2 or 3 peaks upstream of the sorghum 
(~30 and ~40 bp) and maize (~30, ~55, and ~70 bp) TSSs. They 
also noticed that maize promoters with TATA-boxes in one of 
the 3 peaks or closer to the TSSs have higher strength than 
those with TATA-boxes elsewhere. In addition, TATA-box-
containing core promoters exhibited up to 4-fold higher strength 
than TATA-less core promoters, and interestingly, the presence 
of Inr elements and Y patches was linked with significantly 
increased core promoter strength in Arabidopsis, maize, and 
sorghum [5].

Table 1. List of representative plant core promoter elements used for gene expression.

Core promoter element Consensus sequence Approximate location Reference

TATA-box TATAWAW −70 to −20 bp [5,6]

Inr YYA(+1)NWYY Overlapping +1 [44]

Y patch CYTCYYCCYC +20 to +80 [13]

TC motif YYYYYY −39 to −26 [41]

GA element RRRRRRRR +25 bp to +75 bp [9]

CA element YMMMMMMM +1 bp to +30 bp [9]

GC-box GGGCGG −70 bp to +250 bp [6]

CAAC MCMAMCCM −50 bp to +40 bp [9]

DPE RGWCGTG +30 bp [10]

CCAAT-box CCAAT −80 bp [10,15]
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More importantly, Jores et al. [5] conducted plant core pro-
moter engineering by generating random core promoters with 
average nucleotide frequencies similar to those of Arabidopsis 
or maize, followed by the addition of TATA-box, Inr, and/or Y 
patch motifs. As expected, the randomized core promoters had 
very weak strength, but the addition of the 3 motifs significantly 
increased the random core promoter activities individually or 
in combination, with TATA-box and Inr increasing the strength 
the most and the least, respectively. The strongest synthetic core 
promoters they developed had strength comparable to the min-
imal 35S promoter. These results demonstrate that rational 
design and construction of plant synthetic core promoters with 
varying strength can be achieved by inserting core promoter 
motifs into an appropriate nucleotide background. Based on 
these results, computational models were developed for in silico 
evolution of synthetic core promoters to predict and improve 
core promoter strength. The models showed that the developed 
synthetic core promoters could work independent of the choices 
of enhancers [5]. Additionally, Jores et al. [5] found that insert-
ing a TATA-box into the previously TATA-less core promoters 
of Arabidopsis, maize, and sorghum enhanced the core promot-
er’s strength. This is different from the finding by Nakamura 
et al. [11], which mutated the TATA-less Inr-containing core 
promoter of the tobacco psaDb gene to then contain a TATA-box 
without Inr, and found that the Inr rather than the TATA-box 
contributed to light-responsive transcriptional regulation of the 
photosynthesis gene.

It was reported that active (constitutive or housekeeping) 
core promoters are featured by the presence of nucleosome 
depletion regions (NDRs) since their nucleosomes are highly 
dynamic, ensuring the accessibility of the transcription machin-
ery [45,46]. It was also reported that the NDRs in the active core 
promoters in Arabidopsis, rice, sorghum, and maize have high 
G/C content [46–48]. Srivastava et al. [49] identified that muta-
tions in TATA-boxes or Inr elements of the Arabidopsis light-
regulated promoters could result in the formation of nucleosomal 
structures, inhibiting gene expression. Oldfield et al. [50] found 
that the histone-fold domain protein NF-Y maintains the core 
promoter region in a nucleosome-depleted state in metazoans. 
Oldfield et al. [50] also found that loss of NF-Y binding to the 
core promoters disrupts the core promoter’s chromatin archi-
tecture, resulting in nucleosome enrichment on the core pro-
moters and repression of gene expression. NF-Y is a ubiquitously 
expressed, heterotrimeric TF and the key player of TSS selec-
tion. Binding of NF-Y to its binding site CCAAT in the Flowering 
Locus T (FT) gene promoter in Arabidopsis and rice activated 
FT expression [51]. Still, the key differences in the chromatin 
landscapes of the dicot and monocot core promoters remain 
largely unknown.

It is worthwhile to point out that the practical use of plant 
promoters for gene expression almost always includes the use 
of 5′-untranslated regions (UTRs) and leader introns that are 
located within 5′-UTRs since they affect mRNA levels post-
transcriptionally [50] and gene function in a length-dependent 
manner [52]. The average length of 5′-UTRs is 155 and 259 bp 
in Arabidopsis and rice, respectively [49]. It was reported that 
the length, GC content, and leader intron number of a 
5′-UTR showed significant positive correlation with the 
expression breadth in various tissues of Arabidopsis, rice, 
maize, and sorghum [46]. It was also reported that the pres-
ence of leader introns enhanced gene expression. Examples 
include the leader introns of the Arabidopsis ubiquitin3/10/11 

(UBQ3, UBQ10, and UBQ11) [53], Mg2+/H+ exchanger (MHX) 
[54], and cytochrome c oxidase subunit 5c (COX5c) [55], tobacco 
Ubiquitin.U4 (Ubi.U4) [56] and carnation S-adenosylmethionine 
decarboxylase9 (CSDC9) [57], tomato (Solanum lycopersicum) 
ascorbate peroxidase20 (APX20) [58], potato (Solanum tuberosum) 
sucrose synthase3 and 4 (Sus3; Sus4) [59,60], mustard (Brassica  
juncea) S-adenosylmethionine decarboxylase2 (SAMDC2) [61], 
rice β-tubulin isotype 6 (Ostub6) [60,62] and 16 (Ostub6) [63], 
and ubiquitin3 (rubi3) [64]. Leader introns may contain 
cis-regulatory elements [65] and affect transcription, mRNA 
stability and export, and tissue-specific gene expression 
[53,66–74].

Plant Proximal and Distal Promoters
Plant natural promoters contain numerous cis-regulatory ele-
ments widely distributed across their proximal and distal pro-
moter regions, with many of them acting as specific regulators 
of gene expression, i.e., stimulating (enhancers) or repressing 
(repressors) the basal expression levels conferred by the core 
promoters. Enhancers and repressors are direction-insensitive 
and are not typically position-restricted, increasing the likeli-
hood of functioning in both dicot and monocot systems. It was 
found that about 30 to 50% of 8-bp promoter motifs are con-
served between Arabidopsis and rice [13], indicating that tran-
scriptional regulation is relatively conserved between dicots and 
monocots. As demonstrated by Belcher et al. [75], cis-regulatory 
elements from a different source (yeast in this case) could be 
used together with a plant core promoter to develop functional 
synthetic promoters that work well with plant endogenous tran-
scriptional machinery. Screening of a synthetic promoter library 
consisting of 5 cis-regulatory elements from yeast and 5 plant 
core promoters showed that each cis-regulatory element has an 
independent effect on promoter strength, indicating the orthog-
onality of the cis-regulatory elements in engineering of synthetic 
promoters with tunable expression levels in a heterologous plant 
system.

Various native plant promoters have been functionally char-
acterized and used for constitutive or conditional transgene 
expression (Table 2; also see the listed plant native promoters 
in [16,18–22]). Plant promoter databases have also been created 
for the annotation and curation of the information about func-
tionally active promoters from various plant species. These 
include PlantProm (http://linux1.softberry.com/berry.phtm-
l?topic=plantprom&group=data&subgroup=plantprom) 
[117], TransGene Promoters (TGP; http://wwwmgs.bionet.
nsc.ru/mgs/dbases/tgp/home.html) [118], Plant Promoter 
Database (PPDB; https://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/
index.cgi#about) [119,120], and Root-associated Genes and 
Promoters Database (RGPDB; http://sysbio.unl.edu/RGPDB/) 
[121].

The strength and expression patterns of plant native pro-
moters are determined by the presence of combinatorial cis-
regulatory elements and their 3-dimensional structures following 
the binding of their respective TFs [122,123]. Although reports 
have been published for the 3-dimensional structures of pro-
moters from Escherichia coli [124,125], Xenopus tropicalis [126], 
and Homo sapiens [127,128], 3-dimensional structures have 
not been constructed for any plant promoters. Fortunately, 
cis-regulatory elements can be taken out of their natural context 
and be implemented as bioparts for synthetic promoter engi-
neering. Known cis-regulatory elements can be identified in 
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Table 2. List of representative plant promoters used for gene expression.

Promoter Source Transgenic plant Expression pattern References

Constitutive promoters

  Act2 A. thaliana A. thaliana Constitutive [76]

  Act-1 O. sativa O. sativa Constitutive [77]

  UBQ1 A. thaliana N. tabacum Constitutive [78]

  Ubi1, Ubi2 Panicum virgatum P. virgatum; O. sativa; N. tabacum Constitutive [79]

  Ubi1 Zea mays Z. mays Constitutive [80,81]

Tissue-specific promoters

  SlREO S. lycopersicum S. lycopersicum Root [82]

  NAC10 O. sativa O. sativa Root [83]

  PAT21 S. tuberosum S. tuberosum Tuber [84]

  hspr A. thaliana A. thaliana Vascular tissue [85]

  Pfn2 P. virgatum O. sativa Vascular tissue [86]

  PEPC Z. mays Z. mays Leaf [87]

  Lhcb P. virgatum O. sativa Green tissue [88]

  TA29 N. tabacum N. tabacum Flower [89]

  Lat52 S. lycopersicum N. tabacum Pollen [90]

  Zm13 Z. mays Tradescantia paludosa; Z. mays Pollen [91]

  Oleosin A. thaliana G. max Seed [92]

  Glutenin T. aestivum T. aestivum Seed [93]

  D-hordein T. aestivum Z. mays Seed (endosperm) [94]

  E8 S. lycopersicum S. lycopersicum Fruit [95]

Abiotic stress-inducible promoters

  Adh-1 Z. mays N. tabacum Anaerobic conditions [96]

  wun1 S. tuberosum N. tabacum Wounding [97]

  GBSS S. tuberosum S. tuberosum Sugar [98]

  HSP18.2 A. thaliana A. thaliana Heat shock [99]

  Rd29 A. thaliana A. thaliana; N. tabacum; O. sativa Drought, cold, salt [100]

  SR2 Phaseolus vulgaris N. tabacum Heavy metals [101]

  CCA1 A. thaliana A. thaliana Light cycle [102]

  UGT71C5 A. thaliana A. thaliana Light [103]

  GSE O. rufipogon A. thaliana Light [104]

Biotic stress-inducible promoters

  win3.12 Populus sp. hybrid S. tuberosum Fusarium solani [105]

  R2329 O. sativa O. sativa Magnaporthe grisea [106]

  Bs3 Capsicum annuum N. benthamiana Xanthomonas campestris pv. vesicatoria [107]

  CaPrx Coffea arabica N. tabacum Meloidogyne incognita [108]

  4×M1.1, 4×M2.3 G. max G. max Heterodera glycines [107, 109]

  IFS2 G. max G. max Bradyrhizobium japonicum [110]

  SAG12 A. thaliana S. lycopersicum Senescence [111]

  SEOF1 Pisum sativum N. tabacum Methyl jasmonate, auxin, abscisic acid (ABA) [112]

  Em T. aestivum O. sativa ABA [113]

  Rd29 A. thaliana A. thaliana, N. tabacum ABA [114]

  SAUR15A G. max N. tabacum Auxin [115]

  Chn48 N. tabacum N. tabacum Ethylene [116]
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a plant promoter by searching against the 3 promoter motif 
databases PlantCARE [129], PLACE [130], and TRANSFAC 
[131], while novel cis-regulatory elements can be discovered 
through promoter serial deletion and de novo motif discovery 
[26]. It was shown that bioinformatics tools developed for 
de novo motif discovery have limited prediction efficiency (15 to 
25%) of true motifs [132,133], thus making experimental func-
tion validation necessary. Liu et al. [134] developed an ensem-
ble approach by focusing on overlapping motif regions detected 
by multiple de novo motif discovery tools, which improved the 
prediction efficiency to be 68.8% and led to the discovery of 23 
experimentally validated, novel soybean cyst nematode (SCN)-
inducible motifs in soybean. Using the same approach, Yang et al. 
[135,136] identified well-conserved salt- or drought-responsive 
promoter motifs in hybrid poplar, which were used to generate 
functionally validated water-deficit stress-, salt stress-, and 
osmotic stress-inducible synthetic promoters.

With the availability of functionally characterized cis-
regulatory elements, it still remains largely undetermined how 
to rationally and reliably engineer plant synthetic promoters. To 
date, most plant synthetic promoter engineering studies have 
implemented a trial-and-error approach by using multiple cop-
ies of one or multiple motifs in front of a core promoter. Recently, 
Cai et al. [137] established a design system for plant synthetic 
promoter engineering by inserting various cis-regulatory ele-
ments between a 19-bp random nucleotide sequence and a 
TATA-box motif (TATATAA) in front of a 43-bp-long core 
promoter region and a TSS (Fig. 2). They found that random 
combinations of different trimerized cis-regulatory elements 
gave rise to increases in synthetic promoter strength than indi-
vidual trimers. They also found that changes to the flanking 
sequences or relative positions of the cis-regulatory elements 
and moderate increases in spacing contributed negligible effects 
to promoter strength, implying that the corresponding TFs may 
work relatively independently other than via direct protein-
protein interactions. However, they also reported that the >50-bp 
distance between the first motif at the 5′-end and the TATA-box 
significantly affected promoter strength. This raises an inter-
esting nuance regarding motif spacing. The short spacing limit 
identified here may be pertinent to the specific motifs tested 
but may not be applicable to other classes of motifs, e.g., stress-
inducible motifs that may function in a much less distance-
restricted manner [138].

Although it remains largely unknown how fine-tuning gene 
expression is achieved via a combination of cis-regulatory ele-
ments, machine learning algorithms could be applied to build 
models for predicting synthetic promoter expression patterns 
by using multiple features, e.g., the presence and absence, 
location, copy number, and combinatorial relationships of 
cis-regulatory elements, as input variables. Cis-regulatory infor-
mation has been implemented to predict biotic and abiotic 

stress- [139], high salinity- [140], and iron deficiency-responsive 
[141] transcription of Arabidopsis native promoters. Zou et al. 
[139] found that the prediction models based on combinatorial 
relationships (obtained by using a classification algorithm 
to integrate association rule mining) performed significantly 
better than those based on only singular traits, i.e., copy num-
ber or location.

Plant Terminators
A gene’s terminator sequence mediates transcriptional termi-
nation, 3′-end processing, stability, translation efficiency, and 
nuclear to cytoplasmic export of the mRNA transcripts [142]. 
A terminator may contain one or more polyadenylation signals 
(PASs; with consensus sequence of AAUAAA) in the 3′-UTR. 
Once the poly-A signals are transcribed, a cleavage and pol-
yadenylation specificity factor (CPSF) recognizes the PAS(s) 
and cleaves the pre-mRNA 10 to 30 bp downstream of the PAS, 
freeing the mRNA from the Pol II transcription machinery 
[143]. After the cleavage, a poly(A) tract of ~200 nt in length 
is added to the mRNA at the cleavage site (CS). Improper ter-
mination or unpolyadenylated mRNA transcripts serve as the 
templates for RNA-dependent RNA polymerase 6 (RDR6) to 
generate small interfering RNAs (siRNAs), leading to posttran-
scriptional gene silencing (PTGS) due to homology-based 
mRNA cleavage or translational repression [144,145].

In plants, 3 cis-termination elements function cooperatively 
to find the correct PAS(s) in the 3′-UTRs and initiate transcrip-
tional termination. The 3 cis-termination elements include the 
near upstream element (NUE; AAUAAA-like motifs), the far 
upstream element (FUE), and the CS [146–149]. NUEs are 
short (6 to 10 bp) A-rich sequence located approximately 10 to 
40 nt upstream of the poly(A) sites. FUEs are also short (6 to 
18 bp) sequence with a more diverse nucleotide enrichment 
(U>A>G) and are typically found starting 30 bp upstream of 
the poly(A) sites. FUEs enhance processing efficiency at the 
CSs. The CS is a dinucleotide (CA or UA) typically located 
within the FUE where polyadenylation takes place. Less than 
10% of terminators in Arabidopsis [146,150] and rice [151] 
contain the canonical PAS (AAUAAA). Genes can also contain 
multiple PASs [152].

Evidence shows that transgene expression level is significantly 
affected by the chosen terminators. In Arabidopsis, Pérez-
González and Caro [153] demonstrated a comparison between 
the Arabidopsis heat shock protein 18.2 terminator (tHSP18) and 
the 35S terminator (t35S). The tHSP18, when used with the 
firefly luciferase (LUC) reporter gene driven by the 35S pro-
moter (35S:LUC), showed significantly higher protein levels 
and lower rates of promoter DNA methylation in transgenic 
Arabidopsis plants than the t35S. Using various promoters, de 
Felippes et al. [154] observed higher green fluorescent protein 
(GFP) fluorescence in Agrobacterium-infiltrated tobacco leaves 
when the Arabidopsis tHSP18 was used, followed by the A. 
tumefaciens Nopaline synthase terminator (tNos), and then 
the Arabidopsis RuBisCO small subunit terminator (tRbcS). 
Differences in selection accuracy between terminator CSs may 
contribute to the differences in trans(gene) expression by var-
ious terminators. de Felippes et al. [154] found that only 40% 
of the transcripts generated from the overexpressed GFP trans-
gene with tRbcS had the same poly(A) sites, while 76% of 
the GFP transcripts with tHSP18 were cleaved at the same 
locations.

Fig. 2. Schematic design of the synthetic promoters by Cai et al. [137], which contain 
a 19-bp random sequence (NNNNN), a region of variable length to which CREs are 
added, a TATA-box, and a 43-bp core sequence plus a transcription start site (TSS).

https://doi.org/10.34133/bdr.0013


Brooks et al. 2023 | https://doi.org/10.34133/bdr.0013 7

Terminators isolated from exogenous sources such as tNos, 
A. tumefaciens Octopine synthase terminator (tOcs), and t35S 
are frequently used in plant transgenic experiments. However, 
evidence shows that the terminator sequences from plant endog-
enous genes have shown even greater potential to increase trans-
gene expression than exogenous terminators [155] (Table 3). 
Production of the miraculin (MIR) protein by the 35S promoter 
was greatly increased (6.5×) in transgenic tomato when the 
tomato tHSP18 was used over tNos [159]. Similarly, the native 
MIR terminator showed significantly higher MIR production 
in transgenic tomato than tNos when the MIR gene was driven 
by the 35S promoter or the native or a sequence-optimized MIR 
promoter [165]. Diamos and Mason [156] compared the expres-
sion levels of 35S:GFP using one of 20 native terminator sequences 
from various plant species and found that, in most cases, plant 
native terminators led to higher GFP protein production than 
t35S or tNos. Moreover, these plant native terminators showed 
variable abilities in regulating gene expression. Ingelbrecht et al. 
[166] studied the effects of a handful of tobacco native termi-
nator sequences, including the terminators from a 2S seed stor-
age protein gene, an RbcS gene, an extensin gene, and a chalcone 
synthase gene on transcription of the neomycin phosphotrans-
ferase II (nptII) gene driven by the 35S promoter (35S:nptII). 
They found that tRbcS led to the highest mRNA accumulation 
and protein production, corresponding to 3, 5, 10, and 60 times 
that of the Ocs, 2S, extensin, and chalcone synthase terminators, 
respectively. These results suggest that terminators play an 
important role in posttranscriptional processes including the 
3′-end processing efficiency and/or mRNA stability. Interestingly, 
Nagaya et al. [152] found that Arabidopsis tHSP18 always pro-
cured the highest mRNA and protein abundance of the Renilla 
and firefly luciferase (Rluc and Fluc) reporter genes when driven 
by the 35S promoter in both Arabidopsis and rice protoplasts, 
indicating that a plant native terminator could function well in 
both dicot and monocot species.

Plant terminators determine which PASs the gene’s mRNA 
is processed at. For example, Yang et al. [167] overexpressed a 
modified house dust mite allergen gene mDerf2 in transgenic 
rice using the maize Ubiquitin promoter together with different 
terminators and examined where the transgene mRNA was 
processed in the seeds and leaves of the transgenic rice plants. 
They found that the transgene mRNA with the rice glutelin B-1 
terminator (tGluB-1) was processed at 2 specific PAS sites in 
the seed but at 6 sites in the leaf. The 2 PAS sites in the seed 
were identical to those in the native GluB-1 mRNA. However, 
when regulated by tNos, the transgene mRNA was processed 
at 8 PAS sites in the seed and at 6 sites in the leaf.

Plant terminators also affect the length of read-through 
mRNA transcripts, which is a normal phenomenon of gene tran-
scription. Xing et al. [168] studied the effects of soybean native 
terminators on transgene expression in transgenic soybean 
plants. They found that read-through transcription occurred in 
all the transgenic plants, with ~1% of total transgene mRNA 
being generated from this process. In addition, Hiwasa-Tanase 
et al. [165] observed longer read-through mRNA transcripts 
when the transgene was processed by tNOS rather than tMIR.

Interestingly, studies showed that 2 terminators can be linked 
together for enhanced transgene expression; perhaps the addi-
tion of a second terminator can lead to better detection of 
read-through transcription and potentially inhibit it [169]. 
Diamos and Mason [155] combined the Nicotiana benthamiana 
extensin terminator (tEU) with the terminator of a tobacco Actin 

(NbACT3) gene to regulate 35S:GFP expression. Transient 
expression of the reporter gene was observed at levels of 37.7 
times greater when the combined terminators were used over 
tNos. Similarly, Yamamoto et al. [170] measured transient GFP 
expression in lettuce (Lactuca sativa), tomatoes, eggplants 
(Solanum melongena), hot peppers (Capsicum frutescens), melons 
(Cucumis melo), orchids (Phalaenopsis aphrodite), and tobacco 
by using combined terminators. Combination of Arabidopsis 
tHSP18 and tobacco tEU rendered the highest expression when 
compared to each terminator by itself or a double terminator 
of the same kind. The combined tHSP18-tEU terminator also 
worked better than a triple terminator made up of one tHSP, one 
t35S, and one tEU.

The presence of a matrix attachment region (MAR) in a 
terminator enhances gene expression. MARs are AT-rich DNA 
sequences that act as epigenetic regulatory sequences by medi-
ating the binding of the chromatin to a protein nuclear matrix 
and changing chromatin conformation, leading to enhanced 
gene expression [171]. Matsui et al. [161] compared transient 
reporter gene expression in tobacco protoplasts when an 878-bp 
version versus a 250-bp version of the tHSP18 was used. Higher 
protein abundance of the Rluc and Fluc reporter genes was 
detected when the longer version was used due to the presence 
of a MAR in the longer version. It was reported that adding 
MARs into terminators enhanced GFP mRNA accumulation 
and protein production in Agrobacterium-infiltrated tobacco 
leaves [155,158].

Rosenthal et al. [158] tested the effects of the tobacco tEU 
with and without an intron in tEU on transient 35S:GFP 
expression in tobacco leaves. They found that the intronless 
tEU significantly increased transient 35S:GFP expression when 
compared to the intron-containing tEU. de Felippes et al. [154] 
also found that introns located close to the terminator can lead 
to aberrant termination and splicing in a terminator-dependent 
manner. They found that having a well-defined poly(A) site 
increased the likelihood that the transcripts were cleaved at 
the same site, and inefficient termination leads to transgene 
silencing. Thus, terminators have a great effect on transgene 
silencing because they affect siRNA production and splicing 
efficiency.

Utilization of Promoters and Terminators for 
Plant Biodesign
Promoters control the strength and spatiotemporal expression of 
a gene, while the terminators mainly contribute to the expression 
level of a gene [19,154,172]. Based on expression patterns, pro-
moters can be categorized into constitutive promoters, responsive/
inducible promoters, and tissue-specific (or cell type-specific) 
promoters (Table 2). With the advent of plant synthetic biology, 
elegant genetic circuits are needed for fine-tuning gene expression 
and high-precision genome engineering in plants. Hence, pro-
moters with various strengths and specific expression patterns 
are necessary for bioengineering of complex plant systems. 
In this section, we discuss how promoters have been utilized for 
plant biodesign, with a focus on some representative examples 
such as plant transformation, plant metabolic engineering, plant-
based biosensing, and genome editing (Fig. 3). Through these 
cases, we cover multiple technical aspects including expression 
strength, expression patterns, and terminator and promoter 
configuration.
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Table 3. List of representative plant terminators used for gene expression.

Terminator Terminator source Length (bp) Effect a
Transformed 
species

Expression system References

tACT3 N. benthamiana 617 3.9× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

1,044 ~7.5× higher GFP 
than with tNOS

Lactuca sativa

tACT3
–tRb7MAR

N. benthamiana 
(tACT3); N. 
tabacum (tRb7; 
tTM6)

2,213 ~8× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tACT3
–tTM6MAR

2,243 ~7× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tEU N. tabacum 732 2.5× higher GFP 
mRNA and 2.5× 

higher GFP protein 
than with tVspB3 

(Tobacco etch virus 
(TEV) promoter)

N. benthamiana Transient b [157]

1,900 ~1.5×higher DsRed 
than with tNOS; 

~44× higher 
DsRed than with 

tNOS

N. benthamiana;
L. sativa

Transient b [157]

tEU
–tTM6MAR

N. tabacum 1,931 ~23× higher GFP 
than with tNOS; 

~10× higher 
DsRed than with 

tNOS

N. benthamiana Transient b [156]

tEU (intronless) N. tabacum 480 ~10× higher GFP 
than with tNOS

L. sativa Transient b [156,158]

11.9× higher GFP 
than with tVspB3;

N. benthamiana

2.8× higher GFP 
than with t35S;

~15× higher DsRed 
than with tNOS

tEU (intronless)
–tACT3
–tRB7MAR

N. tabacum (tEU; 
tRB7); N. benth-
amiana (tACT3)

2,693 ~56× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tHSP18 A. thaliana 249 6.5× or 8.4× 
higher miraculin 
protein than with 

tNOS

S. lycopersicum Stable c [159,160]

249 4× higher mirac-
ulin protein (SlE8 
promoter) than 
with MIR-tNOS

S. lycopersicum Stable c

tHSP18 A. thaliana N.A. 1.5× or 2.5× 
higher GUS or Fluc 

than with t35S, 
tOCS or tNOS

A. thaliana; O. 
sativa

Transient 
(protoplasts)

[152]

878 1.5× higher Rluc or 
Fluc than with 250 

bp tHSP18

N. benthamiana Stable c [161]

(Continued)
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Application of promoters for improving  
plant transformation

Tissue culture-based plant transformation is a rate-limiting 
step for plant biodesign. Since 2016, morphogenic regula-
tors have been applied to transform recalcitrant cultivars, 
increase transformation efficiency, shorten the time for plant 

regeneration, and generate desirable phenotypes while bypass-
ing the tissue culture process [173–175]. Constitutive expres-
sion of the maize morphogenic regulators Baby Boom (BBM) 
and Wuschel2 (WUS2) promoted direct somatic embryogenesis 
and thereby increased transformation efficiency in maize [173]. 
However, this overexpression approach caused side effects, e.g., 
phenotypic abnormalities and sterility [173], which could be 

Terminator Terminator source Length (bp) Effect a
Transformed 
species

Expression system References

249 ~7.5× higher GFP 
than with tNOS

L. sativa Transient b [156]

249 2.5× higher GFP 
than with tNOS

N. benthamiana

tHSP18
–tEU
–tRb7MAR

A. thaliana 
(tHSP18); N. 
tabacum (tEU; 
tRb7)

1,898 ~20× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tHSP18
–tACT3

N. benthamiana 
(tHSP18; tACT3); 
N. tabacum (tTM6; 
tRb7); S. tubero-
sum (tPINII)

1,485 ~25× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tHSP18
–tACT3
–tRb7

2,654 ~50× higher GFP 
than with tNOS

tHSP18
–tPINII
–tRb7MAR

2,580 ~15× higher GFP 
than with tNOS

tHSP18
–tPINII
–tTM6MAR

2,610 ~15× higher GFP 
than with tNOS

tHSP18
–tRb7MAR

1,610 ~14× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

tProteinase inhibitor 
II (tPINII)

S. tuberosum N.A. 20× higher HBsAg 
than with tNOS

S. tuberosum Stable c [162]

970 8.5× higher GFP 
than with tNOS

N. benthamiana Transient b [156]

trbcS M. domestica 582 11.1× higher GUS 
than with tNOS (M. 

domestica rbcS 
promoter – 1,679 

bp)

N. benthamiana Transient b [163]

Medicago sativa 400 ~1.4× higher GUS 
than with tNOS 

(Figwort mosaic vi-
rus 35S promoter)

M. sativa Stable c [164]

Pisum sativum 684 5.4× higher GFP 
than with tNOS; 

~10× higher 
DsRed than with 

tNOS

N. benthamiana Transient b [156]

a The 35S promoter was used except when specified.
b Transient, leaf agroinfiltration.

c Stable, Agrobacterium-mediated transformation.

(Table 3 Continued)
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minimized by using tissue-specific or inducible expression of 
the genes. When the maize leaf- and embryo-specific phospho-
lipid transferase protein (PLTP) gene promoter was used to 
confer a strong tissue-specific expression of BBM and the maize 
auxin-inducible AXIG1 promoter was used to drive WUS2 
expression, normal transgenic plants were obtained [174] (Fig. 
3A).

Application of promoters for metabolic  
engineering in plants
Expression of partial or complete biosynthetic pathways from one 
species can be used for plant metabolic engineering in another 
species. Multiple genes can be stacked into a plant genome via the 
use of a single T-DNA sequence. For example, a fungal caffeic acid 
biosynthesis and recycling pathway containing 4 fungal genes plus 
a LUC reporter gene, with each gene in a constitutive expression 
cassette, has been used to generate luciferase-based autolumines-
cent tobacco, tomato, Arabidopsis, periwinkle (Catharanthus 
roseus), petunia (Petunia hybrida), and rose (Rosa rubiginosa) 
plants [176,177]. The stability of transgene expression is always 
a concern for plant metabolic engineering when the identical 
expression cassettes are used for the expression of multiple genes 
[178]. Thus, different promoters are preferred to be used in a multi-
gene construct for the expression of different genes [179]. For 
example, 8 different rice endosperm-specific promoters have been 

used to drive the expression of 8 anthocyanin biosynthesis path-
way genes individually to develop purple endosperm rice [180] 
(Fig. 3B).

Application of promoters for engineering  
biosensors in plants
Precise control of gene expression is essential for plant responses 
to various environmental stimuli. Stimulus-responsive promoters 
ensure accurate timing of gene expression. They can be used to 
drive the expression of optical (fluorescent proteins/luciferases) 
or morphological reporter genes to form stimulus-responsive 
“promoter–reporter” systems (Fig. 3C). Whenever a stimulus sig-
nal is present, the reporter gene’s expression is activated by the 
stimulus-responsive promoter, illuminating the dynamics of the 
signal in real time. Hence, stimulus-responsive promoters are very 
useful components in plant biodesign for building transcriptional 
regulation-based plant biosensors. Several phytohormone-
responsive promoters have been generated for monitoring phy
tohormone signaling pathways. For example, the auxin-responsive 
DR5 promoter has been used to build biosensors monitoring 
auxin levels at various developmental stages of Arabidopsis 
roots [181]. In addition, the abscisic acid (ABA)-responsive 
DR29 promoter, the cytokinin-responsive TCS promoter, and 
the salicylic acid (SA)-responsive FLS2 promoter have been used 
to drive the expression of optical reporters for monitoring the 

Fig. 3. Illustration of construct design for application of promoters in plants. (A) Illustration of the use of promoters for improving plant transformation [174]. (B) Illustration 
of the use of promoters for metabolic engineering in plants [180]. (C) Illustration of the use of promoters for engineering biosensors in plants. (D) Illustration of the use of 
promoters for CRISPR/Cas9-based genome editing in plants [185]. Zm-PLTPpro, maize phospholipid transfer protein gene promoter; Zm-Axig1pro, maize auxin-inducible AXIG1 
promoter; Os-10Kdapro, rice 10-kDa prolamin promoter; trbc, tobacco RuBisCO terminator; tmas, mannopine synthase gene terminator from A. tumefaciens; Os-npr33pro, 
rice 13-kDa prolamin promoter; tNos, nopaline synthase terminator from A. tumefaciens; tOcs, octopine synthase terminator from A. tumefaciens; Os-Glb5pro, rice globulin 5 
promoter; tags, agropine synthase terminator from A. tumefaciens; Os-Glb4pro, rice globulin 4 promoter; Os-Glb1pro, rice globulin 1 promoter; Os-GluCpro, rice glutelin C promoter; 
PolIIpro, polymerase II promoter; t35S, 35S terminator; PolIIIpro, polymerase III promoter; polyT, the poly T termination signal for Pol III transcription.
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dynamic changes in the levels of their corresponding phytohor-
mones [182–184]. With the availability of rich omics resources, 
novel cis-regulatory elements can be identified and used to gen-
erate synthetic stimulus-responsive promoters by multimerizing 
cis-regulatory elements upstream of a core promoter sequence 
[134–136].

Application of promoters for CRISPR/Cas9-based 
genome editing in plants
CRISPR/Cas9-based genome engineering tools are important 
for plant synthetic biology. There are 2 functional components 
in the CRISPR/Cas9 system. The short guide RNA (gRNA) 
determines the target specificity, while the Cas9 endonuclease 
generates a double-strand break at each target region [185]. 
These 2 functional components are usually driven by different 
expression cassettes. The Cas9 gene is often driven by a strong 
constitutive promoter, such as the 35S, AtUbi10, and ZmUbi 
promoters, while the gRNA is usually under the control of a 
RNA polymerase III (Pol III) promoter such as the U3 or U6 
promoter [185–187] (Fig. 3D). One limitation of using Pol III 
promoters is that a specific nucleotide is required in the first 
position of each transcript, e.g., the U3 and U6 promoters in 
plants have discrete TSSs that are adenine (A) and guanine (G), 
respectively [188]. Compared with Pol III promoters, Pol II 

promoters can also be used to express a polycistronic gRNA 
array, which can be processed posttranscriptionally into indi-
vidual gRNAs by RNA-cleaving enzymes [189,190], providing 
a flexibility for spatiotemporal control of multiplexed gene 
editing.

Tissue-specific promoters can be used to improve the effi-
ciency of genome editing in plants. The Arabidopsis meristem-
atic tissue-specific YAO, Egg Cell 1 (EC1), and CLAVATA3 
(CLV3) promoters have been used to drive Cas9 expression in 
Arabidopsis, resulting in enhanced CRISPR/Cas9-induced muta-
tion efficiency [191]. Similarly, the Arabidopsis root cap-specific 
SOMBRERO (SMB) promoter, stomatal lineage-specific TOO 
MANY MOUTHS (TMM) and FAMA promoters, and lateral 
root primordia-specific GATA23 promoter have been utilized 
to drive root cap-, stomatal lineage-, and lateral root primordia-
specific knockouts in Arabidopsis [192,193].

Application of combined promoter-terminator 
combinations for genetic engineering in plants
Promoters can be used together with terminators to fine-tune 
transgene expression. For example, a total of 105 promoter–
terminator combinations have been evaluated in N. benthamiana 
leaves and N. tabacum cells, providing a wide range of expres-
sion strength [172]. Moreover, Schaart et al. [163] studied 
the effects of the promoter–terminator combinations on the 

Fig. 4. Aspects of promoter and terminator evaluation for plant biodesign.
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β-glucuronidase (GUS) reporter gene expression by using the 
35S promoter, 2 variants (with different lengths) of the apple 
(Malus × domestica) RbcS (MdRbcS) promoter, and the tNos 
and MdRbcS terminator (tMdRbcs). Using transient expression 
in tobacco leaves, they found that the 35S promoter–tMdRbcs 
combination generated the highest GUS mRNA and protein 
levels, followed by the 35S promoter–tNOS, and each MdRbcS 
promoter–tMdRbcs. The lowest GUS expression was rendered 
by the MdRbcS promoter–tNos combination. Similarly, Kurokawa 
et al. [160] found that the transgenic tomato plants expressing 
the MIR transgene by the tomato fruit-ripening specific E8 pro-
moter–Arabidopsis tHSP18 produced 4 times more MIR pro-
tein per fruit fresh weight than the transgenic tomato plants 
containing 35S:MIR–tNos. Thus, it is important to select an appro-
priate promoter–terminator combination for optimal transgene 
expression in plant biodesign [172].

Strategies for Benchmarking Promoters and 
Terminators for Plant Biodesign
To date, more than 8,000 plant promoter sequences have been 
identified through transcriptomic and genomic analyses and 
documented in various plant promoter databases such as 
PlantProm DB [117], PlantPromoterDB [119], and PlantCARE 
[129]. However, only a small number of promoters and termi-
nators have been experimentally characterized and validated in 
plants (see above). Thus, there is high demand to expand the 
number of functionally characterized promoters and termina-
tors to serve as standard biological parts for plant synthetic 
biology research and bioengineering. Benchmarking via stand-
ardized procedures is an essential step for providing necessary 
semiquantitative and quantitative information about the per-
formance of promoters and terminators.

Fig. 5. The technologies for benchmarking promoters and terminator in plants. (A) Methods and tools used for performance analysis of plant promoters and terminators. 
(B) Different architectures of single-reporter and dual-reporter systems. ddPCR, droplet digital PCR; LUC, luciferase.

https://doi.org/10.34133/bdr.0013


Brooks et al. 2023 | https://doi.org/10.34133/bdr.0013 13

Requirements for evaluating promoters and 
terminators in plants
The features and performance of promoters and terminators can 
be systematically evaluated in 4 aspects: (a) temporal expres-
sion pattern, (b) spatial expression pattern, (c) environmental 
responses, and (d) cross-species variation (Fig. 4). For each of the 
4 aspects, the strength of promoters and promoter–terminator 
combinations needs to be quantitatively evaluated. Promoters 
can be explored based on seasonal and diurnal patterns. In terms 
of spatial expression patterns, numerous tissue- and cell type-
specific promoters have been identified in plants including leaf-, 
stem-, root-, flower-, fruit-, guard cell-, root hair-, and compan-
ion cell-specific promoters [194]. Developmental gradient is also 
one of the aspects that reflect the spatial expression patterns of 
some promoters. For instance, the developmental gradient in 
maize leaves has been exploited to redefine the current C4 model 
and gain new insights into the regulation of C4 photosynthesis 
[195]. Notably, the performance and the relative usefulness of 
individual promoters and terminators may be different across 
plant species. It would be necessary to characterize promoters 
and terminators in different plant species representing dicots 
(e.g., Arabidopsis, tobacco, poplar) and/or monocots (e.g., rice, 
maize, wheat (Triticum aestivum)). Bioengineering of stress tol-
erance in plants requires the identification and characterization 
of environmental stress-responsive promoters [196], which 
can be tested under biotic treatments (e.g., pathogens and ben-
eficial microbes) and abiotic stresses (e.g., drought, salinity, and 
temperature).

Methodologies for benchmarking promoters and 
terminators in plants
Many different methodologies for validating plant promoters 
and terminators have been developed and applied to various 
plant species. These methodologies can be classified into 2 
main categories, i.e., transient expression approaches and 
stable expression approaches (Fig. 5A). Transient expression 
approaches are relatively simple and effective and can be quickly 
completed in various plant cells and tissue/organs. Examples 
for transient expression systems include protoplast transfec-
tion, leaf agro-infiltration, and hairy root transformation. 
In contrast, stable expression systems involve complex and 
lengthy stable plant transformation but provide the most robust 
information on the function and strength of promoters and ter-
minators. Reporter genes such as GFP, GUS, and LUC are often 
used to pinpoint the performance of a target promoter and/or 
terminator in either transient or stable expression systems (Fig. 
5A). The reporter assay for the analysis of promoter and/or 
terminator activity in a transient expression system allows for 
semiquantitative determination of reporter gene expression 
using microscope and/or plate reader, leading to variable output 
due to the use of different cell types and sample preparation 
methods. Reverse transcription quantitative polymerase chain 
reaction (RT-qPCR) and droplet digital PCR (ddPCR) analysis 
of transgenic plant samples can provide more reliable and robust 
information on promoter and terminator features (Fig. 5B). 
Moreover, certain features (e.g., environmental response or 
time-course development) of a target promoter and/or termi-
nator can only be investigated using stable transformed plants 
or samples.

Both single-reporter and dual-reporter systems have been 
used to examine promoter and terminator performance in either 

transient or stable expression systems. A single-reporter system 
allows reporter gene expression to be imaged and detected in 
the samples of interest through a microscope and/or a plate 
reader when compared to the samples of mock treatments (Fig. 
5A and B). A dual-reporter system provides the means for normal-
ization of the reporter gene expression when a weak promoter–
terminator combination is used to drive the expression of a 
second reporter gene that serves as a reliable internal standard 
for normalization. The use of a dual-reporter system permits 
the elimination of the difference in delivery efficiency (for tran-
sient expression systems) or positional effects of the transgene 
(for stable expression systems). To date, multiple dual-reporter 
systems have been developed for the quantitative characteriza-
tion of plant-based promoters (Fig. 5B). For example, a GUS/
LUC system, whereby LUC was used to normalize and calculate 
the relative GUS activities, was used to generate relative promoter 
activities in wheat protoplasts [197]. A dual-color luciferase 
ratiometric reporter system with green- and red-emitting lucif-
erases was developed for fast characterization of transcriptional 
regulatory elements in plants [198]. However, the partial signal 
overlap between green/LUC and red/LUC hinders the highly 
precise evaluation of the genetic parts. For more precise pro-
moter characterization, the FLUC/RLUC luciferase reporter 
system is more sensitive since the assay is based on a chemilu-
minescence reaction and has markedly reduced interference 
between the 2 luciferases [172]. The FLUC/RLUC assay was used 
to examine the strength of combinations of promoters and ter-
minators, revealing a 326-fold difference in the level of reporter 
gene expression between the strongest and the weakest promot-
ers tested in plants [172]. Using a GUS/LUC reporter system, it 
was reported that appropriate selection of terminator sequences 
is an important factor for transgene expression in both monocot 
and dicot plants [199].

Conclusion and Perspectives
Gene expression is largely under the control of promoters and 
terminators. Although the selection of promoters and terminators 
is important for plant bioengineering, efforts to conduct compre-
hensive sequence analysis of promoters, promoter motifs, and 
terminators remain limited, hindering high-precision plant bio-
engineering. The traditional means of identifying regulatory 
elements in the upstream, intronic, and downstream sequences 
of genes of interest have limitations. For instance, promoter 
lengths are frequently chosen in an arbitrary manner (e.g., 1 or 
2 kb from the start codons or the TSSs) and regulatory ele-
ments at distal sites are sometimes missed. Sequencing-based 
approaches now permit precise determination of TSSs by map-
ping nascent transcripts [200]. A recent study used template-
switching reverse transcription in conjunction with rolling circle 
amplification (Smart-Seq2 Rolling Circle to Concatemeric 
Consensus, or Smar2C2) for global mapping of TSSs in multiple 
plant species [201]. The growing adoption of ATAC-seq (assay 
for transposase-accessible chromatin using sequencing) provides 
a rich resource for mining the regulatory landscape in open chro-
matin regions, which are genomic sites accessible by TFs. ATAC-
seq analysis across multiple plant genomes revealed that the 
majority of accessible regions fall within 3 kb upstream of the 
TSSs [202,203]. Those studies also uncovered a substantial num-
ber of distal cis-regulatory elements. For instance, more than 10% 
of ATAC-seq signals are located at >20 kb away from their nearest 
genes in maize [204]. Integration of RNA-seq and ATAC-seq 
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across a wide range of tissues and increasingly with single-cell res-
olution should facilitate discovery of tissue-specific cis-regulatory 
elements for precision gene manipulation. Benchmarking cis-
regulatory elements, promoters, and terminators with different 
expression patterns and strength will provide invaluable insight 
for characterizing, curating, and constructing genetic circuits and 
pathways in plant biodesign.

The orthogonality of the key regulatory elements present in 
the promoters and terminators permits the use of these bio-
bricks in a heterologous system for plant biodesign. However, 
these regulatory elements (as well as the promoters and termi-
nators themselves) are optimized to function properly in their 
native contexts, and their regulation in a heterologous system 
may be different from that in their natural contexts [205]. Thus, 
whether these biobricks function in an orthogonal manner in 
a different species must be taken into consideration. Combining 
a trial-and-error approach with fine-tuning for design, testing, 
and validation will help obtain the desired functions and prop-
erties [1].
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