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Abstract

Immunoinformatics is a discipline that applies methods of computer science to study and 

model the immune system. A fundamental question addressed by immunoinformatics is how 

to understand the rules of antigen presentation by MHC molecules to T cells, a process that is 

central to adaptive immune responses to infections and cancer. In the modern era of personalized 

medicine, the ability to model and predict which antigens can be presented by MHC is key to 

manipulating the immune system and designing strategies for therapeutic intervention. Since the 

MHC is both polygenic and extremely polymorphic, each individual possesses a personalized 

set of MHC molecules with different peptide-binding specificities, and collectively they present 

a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC 

allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics 

component. Computational tools for the prediction of peptide–MHC binding have thus become 

essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine 

and cancer research. Here, we describe the development of several such tools, from pioneering 

efforts to the current state-of-the-art methods, that have allowed for accurate predictions of 

peptide binding of all MHC molecules, even including those that have not yet been characterized 

experimentally.
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INTRODUCTION

Our survival depends on an immune system that can eradicate biological threats like 

infections and cancer. Studying and modeling the immune system, in both health and 

disease, are central to the development of clinical interventions to a wide array of diseases, 

from cancer to infections and autoimmune disorders. As in many other fields in biology, 

the growing amount of immunological data generated by increasingly high-throughput 

methods requires the development of efficient computational methods. The emerging field of 

immunoinformatics sits at the intersection of immunology and computer science and aims to 

provide algorithms and analytical tools to aid the interpretation of immunological data and 

processes (1).

The ability to recognize targets of foreign origin (nonself) without attacking the tissues 

of the host (self) is a hallmark of the immune system and is primarily the function 

of T cells. T cells recognize their targets in cell–cell interactions, which involve T 

cell receptors (TCRs) and, as ligands, peptide–major histocompatibility complex (MHC) 

complexes (pMHCs) expressed by antigen-presenting cells (APCs). In the thymus, highly 

diverse peptide-specific, MHC-restricted TCR repertoires are generated by somatic gene 

rearrangements, each of which is expressed by a rare T cell clone. Through positive 

and negative selection, the T cells are educated to recognize self-MHC and tolerate any 

presented self-peptide. This creates a naïve T cell repertoire that is self-MHC restricted 

and prepared to recognize foreign (nonself) peptides encountered in the periphery at later 

times (2). Should that happen, a specific primary adaptive immune response occurs in which 

one or more naïve T cell clones of appropriate specificities are selected, activated, and 

expanded. Eventually, such expanded T cell clones contract, leaving behind persistent pools 

of specific memory T cells, which upon reexposure to the pathogen are rapidly recruitable 

and potentially afford lifelong protection.

Antigen processing and presentation involve a series of events starting with enzymatic 

fragmentation of the source protein antigen, selection of one or more of the resulting 

peptides by MHC molecules, and export of the resulting pMHCs to the APC cell membrane, 

where these complexes are stably displayed awaiting T cell arrival and scrutiny (Figure 

1). CD8+ cytotoxic T cells recognize peptides from the cytosol presented by MHC class 

I molecules, which are expressed by all nucleated cells. In contrast, CD4+ T helper cells 

recognize peptides that have been sampled from the endocytic pathway and presented by 

MHC class II molecules, which are expressed by professional APCs. This dichotomy hints 

at the overall recognition and effector functions of the two classes of MHC molecules: 

Through MHC class I, CD8+ cytotoxic T cells gain access to information about intracellular 

threats in any dividing cell and may try to eradicate infected or transformed cells; through 

MHC class II, CD4+ T helper cells gain access to information about extracellular threats and 

may coordinate the response of other cells (3).

MHC classes I and II are heterodimeric, transmembrane glycoproteins forming a unique, 

extended peptide-binding groove that accommodates peptides (Figure 2). Through a few 

primary anchor positions, the MHC establishes a stable and broadly specific peptide 

interaction. A subtle but important difference exists between MHC classes I and II: Peptides 
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bound to MHC class I tend to be short (typically 9 amino acids) and confined within the 

peptide-binding site of MHC class I, whereas peptides bound to MHC class II tend to be 

longer (typically 15 amino acids) and extend out of the peptide-binding site of MHC class II 

(5).

A brief historical account of the paradigm shift to the modern view of T cell recognition 

is warranted. Since the early 1900s, it has been known that the outcome of allogeneic 

transplantation is under genetic control. This eventually led to the identification of the 

MHC gene complex [generically MHC, H2 in mice, and HLA (human leukocyte antigen) 

in humans]. The genetic organization and polymorphisms of the HLA were established 

through a seminal series of international histocompatibility workshops. The importance of 

HLA typing and matching became apparent, in particular for bone marrow transplantation, 

and the association between HLA and autoimmune disease was established (6). Seemingly 

unrelated experiments conducted in the mid-1940s hinted at antibody responses being under 

genetic control. Eventually, single immune-response (Ir) genes could be identified (7), MHC 
was found to be in close genetic linkage with Ir (8) [today, we know that MHC and Ir genes 

are one and the same (6)], and MHC was found to be in control of collaborations between 

B and T cells, as well as between macrophages and T cells (6). In 1974, Zinkernagel & 

Doherty (9) showed that virus antigens were recognized in an MHC-restricted manner. In 

1978, Benacerraf (10) and Rosenthal (11) independently proposed that MHC specifically 

selected antigen fragments and presented them to T cells; however, the nature of MHC 

control of immune responsiveness remained hotly contested for almost another decade (see 

Reference 12 for a vivid account by Jan Klein of a period of “great, great confusion”). 

All of the components that are now known to control the specific interaction between T 

cells and APCs—the TCR, the MHC, and the antigen—were initially poorly defined, as 

was the cellular interaction: Did it involve one or two T cell–derived receptors recognizing 

one or two APC-derived ligands (antigen and MHC), either as two separate ligands, as 

a single complex ligand, or as an altered ligand? These puzzles were answered, one at a 

time: Peptides, not intact proteins, are the true antigenic ligands (13, 14); the MHC is the 

only other APC-derived ligand needed (15); and the TCR is responsible for both peptide 

specificity and MHC restriction (16).

The core question of the nature of the interaction between peptides and MHC was finally 

answered in a series of functional, biochemical, and structural experiments culminating 

around 1985–1987. In 1985, Babbitt et al. reported that appropriate peptides interacted 

in a specific and saturable manner with affinity-purified MHC class II molecules in a 

biochemical in vitro assay (17) and demonstrated that this correlated with the ability to 

stimulate T cells with peptide–MHC class II complexes. Shortly thereafter, Buus et al. 

reproduced and extended these biochemical and functional findings (18). Rather surprisingly 

and despite the low affinity of the interactions measured, the biochemically generated 

peptide–MHC class II complexes were found to be very stable. In rapid succession, it 

was shown that immunogenic peptides bind strongly to their MHC restriction elements, 

supporting the hypothesis of determinant selection (19); that different peptides restricted to 

the same restriction element compete for biochemical binding to that MHC (19–21) and 

compete for presentation to T cells restricted to that MHC (19); and that the peptide binding 

site is made up of both chains of the MHC class II molecule (19). The first indications 
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of amino acid similarities between peptides binding to the same MHC class II molecule 

were also provided (19–21). Observing that less than 10% of MHC class II molecules 

could bind the offered peptides, Buus et al. suggested that affinity-purified MHC molecules 

were largely preoccupied with natural self-peptides (22), an observation that was confirmed 

by acid elution experiments (23). Completing this paradigm shift, in 1987 Bjorkman et 

al. (24) crystallized an MHC class I molecule and identified a structure with a unique 

peptide-binding groove, which appeared to hold peptides in an extended conformation. The 

polymorphic amino acid positions of the MHC were predominantly found in this peptide-

binding region, where they affected peptide binding and T cell recognition (25). A similar 

polymorphic peptide-binding structure was eventually found in MHC class II molecules 

(26).

Peptide binding to MHC is the single most selective event contributing to the outcome 

of antigen processing and presentation (27). It is currently determined using one of two 

complementary experimental approaches: one that investigates which synthetic peptides will 

bind to MHC molecules in vitro, and another that investigates what the MHC has already 

bound in vivo. The in vitro binding approach uses biochemical assays such as gel filtration, a 

robust and accurate assay (18) and, more recently, high-throughput, preferably homogenous, 

assays (for an overview, see Reference 28) to quantitate the binding of synthetic peptides 

to MHC molecules that have been purified from appropriate cell lines (28) or generated 

recombinantly (29). Any peptide that can be synthesized can be examined. A variant using 

positional scanning combinatorial peptide libraries affords a particularly comprehensive and 

unbiased analysis of MHC class I specificity (30). A large body of this kind of data has been 

deposited at the Immune Epitope Database (IEDB) (31). The in vivo binding approach uses 

natural peptides that have been acid-eluted off affinity-purified MHC molecules. In 1991, 

seminal work by Falk et al. used Edman degradation to analyze pools of eluted peptides 

(32). In 1992, similarly seminal work by Engelhard used tandem mass spectrometry to 

sequence individually eluted peptides (33).

Several earlier manuscripts and reviews have described the developments within the field of 

immunoinformatics and prediction of MHC antigen presentation, including References 34–

36. Annually more than 30 papers are published describing novel approaches to resolve the 

task of predicting antigen presentation by MHC. In this review, we do not seek to provide a 

comprehensive overview of all the different contributions within the field, but rather provide 

a focused perspective of the essential discoveries and achievements, provide guidance on 

best practices, and outline limitations and remaining challenges. A summary of the tools 

described in this review is included in Table 1.

PREDICTION OF PEPTIDE-MHC BINDING

Simple Motif-Based Models

The observation that MHC molecules have binding preferences that could be characterized 

in terms of simple binding motifs led to the development of the first motif-based MHC 

binding prediction methods. In early work by Sette et al. (45), motifs for the two mouse 

MHC class II molecules, I-Ed and I-Ad, were described in terms of quantitative scores 

defined from position-specific propensities. Later work refined this picture of MHC binding 
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motifs by defining anchor positions located with well-defined sequential spacing in the 

peptide where only a limited set of tolerated amino acids substitutions were allowed (32). 

These works further demonstrated how the anchor positions often were shared between 

different MHC molecules but that the binding motifs were unique (32). Based on this, more 

refined motif-based prediction schemes were defined with differential scoring of the amino 

acid propensity depending on the peptide position. A prominent example is the SYFPEITHI 

prediction model (46) where binding propensity scores are estimated based on statistics 

from MHC class I eluted-ligand data (EL data). Using direct binding assays, Stryhn et 

al. employed positional scanning combinatorial peptide libraries to identify both the MHC 

class I anchor positions and propensity scores of the different amino acids at each peptide 

position, thus providing a full characterization of the MHC binding motif (30). Alternatively, 

the scores were based on measured binding data from single-substitution analogs of known 

ligands (47). Eventually, both the eluted ligand approach (48) and the single-substitution 

approach were extended to MHC class II binding ligands (49).

Toward the First Machine Learning Models

While these pioneering motif-based prediction methods enabled the first cataloging and 

classification of MHC binding preferences, it soon became clear that they very often 

suffered from low sensitivity and hence often failed to identify large proportions of 

validated MHC-binding peptides. Inspired by advances in machine learning, the mid- to 

late 1990s saw the development of a second generation of prediction models. In this kind 

of approach, models were trained on experimental data, aiming to minimize the error 

between the predictions of the model and a set of experimental measurements. The resulting 

mathematical model could then be applied to make predictions on new data: in this case, 

new peptide–MHC pairs of interest.

The BIMAS model proposed by Parker et al. was the first example of a predictor trained 

directly on experimental data, fitting a matrix model using linear regression (LR) on the 

measured half-life of HLA-A2 complexes with bound peptide (41). Later, more complex 

models were proposed, including artificial neural networks (ANNs) (50–55), hidden Markov 

models (HMMs) (56, 57), and QSAR (quantitative structure-affinity relationship)-based 

regression models (58).

A common factor limiting the success of these models was the insufficient availability of 

experimental data characterizing peptide binding to the investigated MHC molecules. By 

way of example, the ANN model proposed by Milik et al. (51) was trained on merely 

~200 data points. Because machine learning models built on small datasets often contain 

more parameters than can be confidently estimated from the data, the performance of the 

early machine learning methods often suffered from a phenomenon generally known as 

overfitting. Nonetheless, some of the simpler models such as BIMAS have, over the years, 

demonstrated a high performance in epitope prediction.

Larger Peptide–MHC Databases: More Reliable Prediction Methods

With the formulation of novel, high-throughput peptide–MHC-binding assays (see above) 

and with the creation of large publicly available databases covering both a broader set 
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of MHC molecules and a more in-depth characterization of individual MHC molecules 

[SYFPEITHI (46), MHCBN (59), MHCPEP (60), and IEDB (31)], it became possible 

to develop and validate more complex prediction models, including methods based on 

machine learning. Early examples of such models included LR models such as stabilized 

matrix method (SMM) (43, 61) and higher-order regression (HR) models such as SVMHC 

(62), SVRMHC (63), and NetMHC (55). Here, the HR models allow incorporation 

of correlations between neighboring residues and are hence expected to better capture 

nonlinear relationships between peptide sequence and MHC binding.

With the growing list of available methods, the lack of objective benchmarks and criteria 

for the evaluation of predictive performance became critical. Peters et al. (64) published 

one of the first attempts to rigorously assess the state of the art in the field by comparing 

the performance of a panel of previously published and publicly available methods to the 

performance of three methods, ARB (average relative binding), SMM, and NetMHC, that 

had been retrained and benchmarked on common data. One important conclusion from this 

benchmark study was that SMM and NetMHC (called ANN in the benchmark) overall 

outperformed all other methods included in the analysis. Furthermore, the retrained versions 

of the tools outperformed the earlier versions of the same methods, strongly suggesting 

that continuous retraining of prediction methods as additional data become available is 

essential to maintain optimal performance. Another observation was that the SMM and 

NetMHC methods achieved comparable performance for larger datasets, suggesting that 

the abovementioned nonlinear correlations play a minor role in defining the peptide–MHC 

interaction. Peptides bind to the MHC in an extended conformation (Figure 2) (65), and as a 

first approximation, the strength of the interaction should depend on the sum of the binding 

energies of the individual amino acids, suggesting that peptide–MHC binding is mostly a 

linear problem. This may explain why simple LR methods have achieved high predictive 

performance for the peptide–MHC system, outperforming more complex structure-based 

methods (66). Later benchmark studies demonstrated that neural network–based methods, 

such as NetMHC, can indeed improve the prediction of T cell epitopes (67). However, 

these neural network methods were all shallow (most often limited to a single hidden 

layer), further supporting the notion that nonlinear contributions to peptide–MHC binding 

are limited.

In parallel with the development of accurate prediction methods for the MHC class I 

system, similar efforts were dedicated to the prediction of peptide binding to MHC class 

II molecules. The open binding groove of MHC class II, which allows longer peptides to 

protrude out of the binding cleft (68), makes peptide binding predictions of MHC class II 

considerably more challenging compared to MHC class I. While peptides interact with MHC 

class II using a binding core of nine residues, they are generally out of frame in terms of 

the location of this binding core. Therefore, to ensure accurate model training, peptides must 

be aligned to a common binding core. The list of machine learning frameworks proposed 

to solve this challenge is long, including HMMs (69), SVMs (support vector machines) 

(70, 71), Gibbs sampling (72), and ANNs (53, 73), among others. An important algorithmic 

development toward accurate modeling of pMHC II binding was the NNAlign method 

(Figure 3) (73, 74). Using an iterative loop over a set of training peptide data with measured 

MHC binding values, NNAlign identifies the optimal binding core of nine amino acids and 
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at the same time predicts binding for a given peptide given the current model parameters; 

next, it updates the model parameters to minimize the difference between the predicted and 

measured binding. Through this iterative procedure, the algorithm achieves simultaneous 

alignment and binding motif characterization.

Benchmark studies soon demonstrated that, in addition to MHC class I, ANN-based models 

also achieved the highest predictive power for class II (75). Over the years, the NNAlign 

framework (73) has been refined continuously, and it now serves as the main framework for 

training NetMHC and NetMHCII (as well as NetMHCpan/NetMHCIIpan, further discussed 

below) (44, 76, 77).

An important shortcoming of the early machine learning prediction methods for MHC class 

I peptide binding was that they (as most other early machine learning methods) required 

the input data to be of uniform length. Consequently, individual prediction methods had 

to be developed for each peptide length separately. This severely limited the predictive 

power of these tools since very limited binding data were available for peptides with lengths 

outside the canonical range of 9–10 amino acids. As a workaround, approximation methods 

were used to assess the binding of peptides of a length that was different from that used 

to train a given prediction model. For instance, Lundegaard et al. (78) proposed a simple 

approximation where prediction models trained on 9-mer peptides were used to predict 

binding of peptides of length 8, 10, and 11. This approximation assumes that peptides of 

length other than 9 are accommodated through a structural change maintaining the MHC 

anchor binding preferences while adapting to the closed MHC class I binding pocket. For 

longer peptides, this results in a binding mode where one or more (depending on the peptide 

length) consecutive residues bulge out of the binding cleft, whereas 8-mers assume a more 

extended conformation. By representing these different binding modes as deletions (in the 

case of bulging) and insertions (in the case of extension), one can calculate the affinity of 

any peptide of length 8–11 as the average predicted affinity of all possible pseudo-9-mer 

binding modes.

Whether length-specific modeling or approximation methods were used, the results were 

a lower accuracy for predictions of non-9-mer peptides (37). Moreover, these approaches 

could account for neither the length distribution of MHC-bound peptides nor the peptide 

length preference variations between individual MHC alleles. For example, in the earlier 

versions of NetMHC, predictions for non-9-mer peptides were extrapolated from prediction 

models trained on 9-mer peptides using the approximation as described above. As a result, 

on average, the method predicted the same number of binders for each peptide of length 

8–11. This was in clear contrast to the length preference observed for epitopes and naturally 

presented HLA binders (79, 80), where the vast majority of peptides are 9 amino acids long, 

leading to a large proportion of false positives among the predicted non-9-mer binders.

Aiming to address the differential peptide length preferences of MHC class I molecules, 

Trolle et al. (80) suggested an empirical length-dependent correction of the peptide 

prediction score. This length correction effectively adjusted the modeled peptide length 

preference to that observed in naturally presented HLA binders and greatly improved 

the identification of T cell epitopes. Concurrently, advances in the NNAlign framework 
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allowed it to train prediction methods based on datasets of different peptide lengths (37). 

In this case, however, the reconciliation of peptides of any length onto the 9-mer binding 

mode was performed during training, allowing peptides of all lengths to be included in 

the construction of the model and effectively enabling the development of a pan-length 

prediction method. In addition, the method allowed for binding modes with C- or N-terminal 

extensions—a phenomenon suggested to occur with a small, but non-negligible, frequency 

for a list of HLA-A and HLA-B molecules (examples reported in References 81–83). This 

extension to the NNAlign framework afforded two important advantages. Firstly, training 

single models on datasets covering different peptide lengths allowed the method to leverage 

information obtained from datasets representing peptides of different length. Secondly, but 

perhaps more importantly, the pan-length approach allowed the peptide length profile to be 

learned for different MHC molecules. Later, an alternative approach for pan-length model 

development was proposed by O’Donnell et al. (40). In their MHCflurry model, peptides 

of variable length were transformed using a fixed-length 15-mer peptide and an encoding 

designed to preserve the location of MHC anchor positions. Several benchmark studies have 

demonstrated comparable performance between these two approaches (84–87).

Selecting a Threshold to Define Binders

Another critical issue faced when applying (predicted or measured) MHC binding as a 

filter for rational epitope discovery is the definition of the binding classification threshold 

to be used to identify immunogenic T cell epitopes. Early work by Sette et al. (88) 

suggested that a measured binding threshold of 500 nM captured most of the immunogenic 

CD8+ T cell epitopes for HLA-A*02:01. Likewise, Southwood et al. (89) analyzed the 

relationship between measured binding affinity and T cell immunogenicity for a panel of 

HLA-DR molecules and found that a measured binding threshold of 1,000 nM captured 

most of the immunogenic CD4+ T cell epitopes. However, it became clear that such a 

universal binding threshold was suboptimal for epitope discovery, as several studies could 

demonstrate that different HLA molecules shared peptide binding repertoires of varying 

sizes (90, 91) and presented peptides in complex with MHC molecules at very different 

affinity values (92). This effect was demonstrated when assessing MHC binding using both 

experimental binding assays and prediction models (90, 92). To reconcile different affinity 

thresholds between different HLA molecules, we have suggested that, for immunogenicity 

classification purposes, percentile rank scores rather than binding affinity values should be 

used as thresholds (93). In short, percentile rank scores are calculated as the percentage of 

peptides (in a precalculated score distribution derived from a large set of random natural 

peptides) that have a better score than the peptide in question. For example, a percentile 

rank score of 0.1% indicates that only one out of a thousand random peptides is expected 

to obtain a prediction score better than the query peptide. In practice, rank scores act as 

a normalization of binding affinity scores over the underlying score distribution of the 

individual MHC molecule and are therefore useful when equating and comparing different 

MHCs. Subsequent work has demonstrated how the use of such rank scores, rather than 

predicted binding affinity values, led to an overall higher predictive power when analyzing 

the peptidome repertoires in the context of multiple HLA molecules (94). In this context, 

Paul et al. (92) went further and demonstrated, for a limited set of HLA molecules, that 

using an experimentally defined allotype-specific binding threshold was optimal. The debate 
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on this issue is still open, but the consensus of the field is leaning toward using percentile 

rank score for epitope classification.

Dealing with HLA Polymorphism

All the prediction methods discussed up to this point have been allotype specific, 

meaning that a separate prediction model needs to be developed for each individual 

MHC molecule. Since 11,405 HLA I allotypes are described in the current version 3.37 

of the IMGT (International Immunogenetics Project)/HLA database (95), it would be a 

very large undertaking to generate binding data characterizing each of them. The extreme 

polymorphism of the MHC is a major constraint in the development of allotype-specific 

prediction methods covering all human MHC molecules, a goal that otherwise would be 

of great interest for rational epitope discovery and personalized vaccine/immunotherapy 

design.

A first approach to solve this problem was based on the realizations that MHC molecules 

can be clustered into groups (so-called HLA supertypes) of molecules that bind largely 

overlapping peptide repertoires (96, 97) and that population-wide epitope discovery hence 

could be achieved by predicting binding to individual MHC molecules representing each 

supertype. While this approach was somewhat successful, it also became clear that the 

supertype concept was an oversimplification. Although MHCs within a given supertype 

share overlapping peptide repertoires, the overlap is far from perfect, and the success of 

epitope discovery could be greatly improved by using prediction methods matching the exact 

MHC allotype of the population/patient of interest rather than a supertype representative 

(93). A crucial advance toward achieving full and accurate coverage of the MHC space 

was the development of NetMHCpan, the first pan-specific method for MHC class I (98). 

NetMHCpan was inspired by the work of Brusic et al. (99), who complemented the peptide 

binding information used to train the prediction model with information about the amino 

acids defining the MHC binding cleft. This made it possible to leverage information between 

MHC molecules and, for the first time, to generate accurate predictions for allotypes with 

limited or even no binding data. Other pan-specific approaches have subsequently been 

proposed, such as ADT (adaptive double threading; 100), KISS (kernel-based inter-allele 

peptide binding prediction system; 101), and PickPocket (102), each implementing different 

representations of the MHC binding environment to allow for the development of pan-

specific prediction models. For class II, the first pan-like prediction model was TEPITOPE 

(103), which enabled peptide binding prediction for a library of 51 HLA-DR molecules. 

TEPITOPE achieved this by using virtual matrices based on similarity between binding 

pocket residues from a small database of experimentally determined binding pocket profiles. 

Other prediction models for class II, based on approaches similar to that of NetMHCpan 

described above, include MultiRTA (104), MHCII-Multi (105), and NetMHCIIpan (44, 76, 

77, 106), the last of which covers all class II proteins of known sequence, thus enabling 

true pan-specificity. Independent benchmarking has subsequently demonstrated the superior 

performance of the NetMHCpan/NetMHCIIpan methods for prediction of peptide binding, 

MHC ligands, and T cell epitopes (107–109).
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The Role of MHC Binding Stability

The methods described so far have primarily been constructed to predict the peptide binding 

affinity of the MHC. However, MHC molecules must not only bind the peptides generated 

inside the cell but also retain them at the cell surface long enough to be available to rare 

circulating T cells of the appropriate specificity. It has been argued that the stability of 

the peptide–MHC interaction, rather than binding affinity, is a more relevant property to 

predict T cell immunogenicity (110, 111). The main reason why pMHC I stability has 

not been used more extensively is related to the cumbersome or low-throughput nature 

of current biochemical methods used to measure the dissociation of pMHC I complexes 

(111). In 2011, Harndahl et al. proposed an assay to resolve this experimental bottleneck 

(112). Inspired by the earlier work of Parker et al.(41), they radiolabeled β2 microglobulin 

(β2m) rather than the peptide and used β2m dissociation as measured by a scintillation 

proximity assay to accurately monitor peptide dissociation. Using this assay, they could 

demonstrate that peptide–MHC stability rather than peptide affinity is a better predictor of 

CTL immunogenicity (111). These data were later used to construct predictors of peptide–

MHC binding stability, and benchmarking of these predictors further suggested that binding 

stability plays an important role in defining peptide immunogenicity (113, 114). At present, 

datasets of peptide-MHC stability remain limited in terms of amount of data, peptide 

diversity, and MHC alleles covered. This, combined with a shifting focus toward mass 

spectrometry (MS) for sequencing immunopeptidomes (see below), has halted further the 

development and a wider application of prediction methods based on peptide–MHC stability 

in T cell epitope discovery.

Methods Predicting MHC Antigen Presentation

Peptide binding to MHC is arguably the single most selective event in antigen processing 

and presentation. Nonetheless, other events can affect the availability of peptides for T 

cell recognition. Prediction methods have been developed for proteasomal cleavage (115, 

116) and TAP (transporter associated with antigen processing) efficiency (117, 118). Two 

important observations can be made from these studies. Firstly, the steps involved in antigen 

processing have specificities that can be learned and applied to identify MHC ligands. 

Secondly, the events of proteasomal cleavage and TAP transport are much less specific 

compared to that of MHC binding. Different methods integrating the prediction of the 

various steps in antigen processing and presentation have been proposed, including NetCTL 

(119), NetCTLpan (93), and MHC-pathway (120) (reviewed in Reference 107). However, 

only minor improvements in predictive power have been obtained (93). A comparison of the 

specificity of the proteasome, TAP, and MHC suggested that the MHC molecules appear to 

have (co)evolved to accept binding of peptides generated by the proteasome and translocated 

by the TAP molecules (115). Taken together, these results suggested that, rather than serving 

as a specificity filter, the major concerted role for the proteasome and TAP in the context of 

MHC class I antigen presentation is to deliver peptides of the appropriate length for MHC 

binding. That is, the proteasome predominantly generates short peptide fragments with an 

average length of 7–8 amino acids (121, 122), TAP preferably translocates peptides of length 

11 (118), and the combination of these two length preferences as first approximation results 

in a length distribution centered around 9–10 amino acids—in agreement with the observed 

peptide length distribution of presented MHC ligands (79, 80). Note that the specificity of 
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other proteases such as ERAP1 and ERAP2 can also influence the repertoire of ligands 

available for MHC binding (123, 124), but they have not been included in any of these 

prediction approaches.

Mass Spectrometry Characterization of MHC Ligandomes and Prediction Methods Trained 
on Mass Spectrometry Ligandome Data

The peptide repertoire presented by MHC molecules on the cell surface is commonly 

referred to as the MHC ligandome or immunopeptidome. In the past decade, technological 

advances in proteomics and MS have enabled the study of such MHC ligandomes (EL data) 

at an unprecedented scale and level of detail and have established a new way of studying 

peptide–MHC presentation (reviewed in Reference 125). As cells normally express multiple 

types of MHC molecules, a key challenge for the interpretation of immunopeptidome data is 

to identify the different MHC specificities and assign/annotate the individual peptides to one 

or more of these specificities. Several experimental approaches have been proposed to solve 

this task, including the use of monoallelic cell lines (126) and cell lines expressing a secreted 

form of specific MHC molecules (127). However, these approaches might not always be 

feasible, and it would obviously be more desirable to analyze and interpret EL data obtained 

from cell lines, and eventually patient samples, that express several MHC allotypes. In this 

context, a pioneering method, GibbsCluster, was proposed by Andreatta et al. (128). As 

input, GibbsCluster takes a list of peptide sequences (potentially of variable length) and uses 

a heuristic search to group them into clusters by optimizing the peptide similarity within 

clusters and the dissimilarity between clusters. Besides the sequence motif defining each 

cluster, additional properties such as the ligand length distribution of each cluster can be 

analyzed. Bassani-Sternberg et al. (129) demonstrated how this method could effectively 

be used to deconvolute and characterize MHC class I ligand data. Later, Bassani-Sternberg 

& Gfeller (39) proposed a similar method, MixMHCp, with comparable performance and 

predictive power. Unfortunately, and irrespective of which method is applied, it is not always 

possible to deconvolute the complete number of MHC specificities expressed in a given cell 

line, especially if some of the different MHC molecules have overlapping binding motifs 

or have highly varying expression levels. Moreover, assigning specific MHC molecules 

to the different clustered solutions relies on manual annotation and prior knowledge of 

allotype-specific MHC binding (130, 131). Gfeller et al. suggested an elegant, unsupervised 

solution to this problem by deconvoluting and automatically annotating HLA I motifs based 

on co-occurrence of alleles across large MHC ligand datasets (132), thereby allowing the 

MHC ligands to be associated with their putative MHC restriction elements.

Whichever of the above experimental or computational solutions is adopted, the outcome 

is an EL dataset with putatively annotated MHC restriction. Such data are a rich source of 

information for learning the rules of MHC-mediated antigen processing and presentation 

and for identifying potential T cell epitopes for both class I and class II. The amount 

of EL data available in the public domain is large (and rapidly growing); however, a 

very large body of complementary information exists in the form of conventional peptide 

binding data. By way of example, as of August 8, 2019, IEDB contains close to 1,200,000 

MHC ligand data points. Of these, more than 300,000 are derived from MHC binding 

assays, and the remaining are from MHC ligand elution assays. Investigating the subset of 
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these data characterized by single, high-resolution-typed MHC restriction, and limiting the 

binding affinity data to quantitative assays, the two datasets individually cover around 140 

distinct MHC molecules. However, only 80 of these are shared between the binding affinity 

(BA) and EL data types. Given this complementarity, it is attractive to develop prediction 

algorithms that can benefit from both data types. One such approach was proposed by Jurtz 

et al.(38), who used a novel neural network architecture that integrated BA and EL data 

into a single training scheme, allowing information to be leveraged across the two data 

types. This resulted in a machine learning method that could learn (and predict) both the 

binding affinity of a given peptide and its likelihood of being an MHC ligand. This modeling 

framework, which resulted in the NetMHCpan-4.0 method, was shown to achieve predictive 

performance beyond that of models trained on each data type (BA or EL) separately for both 

for class I and class II (38, 133). An alternative approach of integrating BA and EL data 

was later implemented by the MHCflurry tool (40), where the difference between qualitative 

EL and quantitative BA data was handled in the data presentation to the machine learning 

method. The results of this approach further supported that combining BA and EL data 

generated superior prediction models and in particular demonstrated improved performance 

for prediction of EL data.

As stated above, a key challenge and limiting factor for the interpretation and use of EL 

data is the deconvolution step required to assign each ligand to its putative MHC restriction 

element(s). Recently, we have proposed a framework that allows complete MHC peptidome 

deconvolution of EL data and, simultaneously, its automatic annotation to individual MHC 

molecules (85). The framework is inspired by the work of Gfeller et al. (132) and is an 

extension of the NNAlign neural network framework described above. The method, termed 

NNAlign_MA, is capable of taking single-allele datasets (peptides assigned to single MHCs) 

and multiallele datasets (peptides with multiple options for MHC assignments) as input 

and fully deconvoluting the individual MHC restriction of all peptides while simultaneously 

training a pan-specific MHC binding predictor. Benchmark studies of the method have 

demonstrated an improved performance of this framework compared to other state-of-the-art 

methods for prediction of MHC eluted ligands and T cell epitopes for both MHC class I and 

II. Importantly, this method could effectively expand the knowledge base of MHC molecules 

with characterized binding motifs (85).

EL data inherently contain information about the antigen processing preceding MHC 

presentation. For MHC class II, analyses of large-scale EL datasets have revealed the 

presence of clear C- and N-terminal motifs consistent with specific proteolytic cleavage 

signals (131, 133), and incorporation of these cleavage signals has been demonstrated to 

boost prediction of MHC class II ligands (133).

Exceptions to the Canonical Rules of MHC Antigen Presentation

The availability of large and diverse ligand datasets covering a broad range of different 

MHC molecules from a diverse list of species, including humans, nonhuman primates, 

mice, cattle, and swine, has allowed the field to investigate in great detail the rules that 

define antigen presentation, especially for MHC class I. The striking conclusion from these 

analyses is that the rules are surprisingly simple and largely consistent across mammalian 
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species. In the vast majority of cases, the selection for antigen presentation is predominantly 

governed by the MHC [in nonmammalian species like chicken, this selection is also affected 

by polymorphic genes such as TAP and tapasin (TAPBP) controlling antigen processing and 

peptide loading (for a review, see Reference 134)], and the rules for binding to MHC across 

species are defined by MHC-specific binding motifs characterized by anchor positions with 

a well-defined spatial separation shared among the majority of MHCs (P2 and PΩ for 

class I, and P1, P4, P6, and P9 for class II). Historically, there has been some controversy 

about whether all presented peptides adhere to these rules. However, recent analyses of 

extensive MHC ligand datasets, and reanalysis of historic epitope data, have confirmed 

that the vast majority of the outliers contain nested peptides that do adhere to the rules 

(82, 135). This being said, analyses have also revealed a minor MHC ligand population 

that follows noncanonical modes of MHC antigen presentation. These noncanonical modes 

include presentation of ligands extending beyond the C terminus (and to a lesser degree N 

terminus) of the class I binding cleft (81–83), ligands with 8- or 10-mer cores for binding 

to MHC class II (136), and nongenomically templated peptides generated by proteasomal 

splicing of protein fragments (137, 138). While the true nature of these exceptions to 

the conventional rules of MHC antigen presentation has been indicated in several studies, 

the vast majority of currently characterized T cell epitopes adhere to the canonical rules. 

In terms of MHC presentation, it is important to underline that current peptide–MHC 

binding prediction models such as NetMHC, NetMHCpan, and NetMHCIIpan all provide 

the possibility of incorporating and learning from peptides with noncanonical binding modes 

as more data supporting their biological relevance become available.

BENCHMARKING

As in most of computational biology, evaluating different MHC binding prediction 

algorithms relies on the availability of metrics and datasets that allow researchers to 

benchmark and compare their performances (139). Such benchmarks are valuable for both 

users, who are getting guidance on what algorithm to apply, and developers, who can 

objectively demonstrate if they have found a superior approach. Ideally, such benchmarks 

should be conducted on new data, meaning that the benchmark data were not used 

in the development and training of the evaluated algorithms. Assembling large enough 

experimental datasets for this purpose can be costly and time consuming, and keeping 

such data from public view just for benchmarking purposes is not justifiable. Automated 

benchmarks for MHC class I and MHC class II binding predictions have been added to the 

IEDB website to circumvent this problem; these benchmarks run all data that are newly 

included in the weekly database releases through a set of prediction tools and compare the 

predicted and measured binding assessments (108, 109). Any tool developer can register 

to include their tool in these benchmarks. While each of these microbenchmarks tends to 

have few data points, aggregating their results over time should reflect the overall reliability 

of different algorithms. One issue that has arisen with this automated approach is that 

new experimental datasets that characterize peptide–MHC binding in an appropriate way 

for inclusion in these benchmarks are published much less frequently than one would 

hope for. Many datasets only include positive data points or do not report any quantitative 

measurements at all. Furthermore, as not all prediction methods can make predictions for all 
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MHC alleles or all peptide lengths, comparisons between different methods are nontrivial. 

While this makes the results of these automated benchmarks less definitive than one would 

hope for, the general principle of automating the evaluation of prediction algorithms on 

newly available data is an important addition to the traditional approach of having tool 

developers demonstrate their algorithm performance as part of their tool publication.

T CELL EPITOPE DISCOVERY

While prediction of peptide–MHC binding is an interesting problem in itself, the ultimate 

goal of most real-life applications is the prediction and identification of T cell epitopes. 

Most pipelines for T cell epitope discovery include prediction of either MHC binding 

or likelihood of MHC antigen presentation (representative examples include References 

140–143). Given this, it is important to assess the performance of different prediction 

methods in terms of predicting T cell epitopes and to define the optimal modus operandi 

for each method. While substantial efforts have been dedicated to assessing the power of 

current tools’ ability to predict MHC–peptide binding (see above), limited work has been 

published evaluating available methods for their predictive power relative to T cell epitope 

discovery. However, the current consensus in the field is that the following methods are 

leading: MixMHCpred (39), MHCflurry (40), and NetMHCpan-4.0 (38) for MHC class I, 

and NetMHCIIpan (44) for MHC class II. For class I, these methods have been applied 

and benchmarked in a series of recent publications (36, 84–87), each demonstrating a very 

high and comparable performance for T cell epitope identification. As discussed above, the 

recommended use of these methods is to select predicted epitopes by use of a percentile rank 

threshold. The value of this threshold depends on the scope of the given application. If the 

goal is to find some epitopes (not necessarily all) and avoid spending excessive resources 

on false positives, a stringent threshold of 0.25% or 0.5% rank should be used. Benchmark 

studies including References 38, 86, and 144 have demonstrated that this threshold will 

identify ~70% of the epitopes while discarding up to 99.5% of nonimmunogenic peptides. 

In contrast, if one is interested in identifying all epitopes—or in avoiding any false negatives 

(i.e., for avoidance of immunogenic biosimilars)—a less stringent threshold of 2% rank 

should be selected. Using such a threshold will ensure that the vast majority of epitopes are 

identified (~95%), albeit at the expense of a loss in specificity (38, 86).

In the context of immunogenicity, where there is a need to identify a few epitopes out of 

many thousands of peptide candidates, even a specificity of 99% translates into a relatively 

high proportion of false-positive predictions, and the false-discovery rate (FDR) in epitope 

discovery projects rarely falls below 50%. This has contributed to the notion that epitope 

prediction remains a daunting problem (145). However, these FDRs should be appreciated 

in light of the fact that peptide immunogenicity is in general a rare event. Less than 0.05% 

of randomly selected peptides within a given pathogen are immunogenic (27); this would 

result in an FDR of 99.95% if peptides were selected at random. Seen in this light, an FDR 

of, for instance, 75% is a large improvement. However, from an applied perspective, this 

might still be prohibitive. Several issues are at play in explaining the high proportion of 

false predictions. Yewdell & Bennink (27) suggested that the TCR repertoire only matched 

50% of the presented pMHCs; thus, even a perfect predictor of presented pMHCs would, 

in terms of immunogenicity, never achieve an FDR lower than 50%. When focusing on 
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single proteins with known epitopes, current peptide–MHC binding prediction tools identify 

the majority of ligands and epitopes within the top 0.5% of the peptides of the source 

proteins (38, 86). However, studies suggest that not all proteins are available for MHC 

antigen presentation; if not accounted for, this could in itself lead to a high FDR (131). It 

is not fully understood what dictates this differentiation between the proteins that provide 

peptides for antigen presentation and those that do not, but besides protein expression and 

abundance (146, 147), properties related to protein degradation and translation efficiency 

are likely involved (131). MS has been suggested as an approach to limit the FDR, either 

as a means to identify proteins available for MHC antigen presentation or as a strategy for 

antigen discovery (148, 149). While such approaches are powerful, it is critical to realize 

that the gain in specificity provided by MS comes at a very high price in terms of loss 

of sensitivity. Even with the most recent technological (150) and computational (151, 152) 

advances, MS studies of peptides eluted off MHC only capture a small proportion of the set 

of peptides presented by MHC, and most often fail to identify a substantial proportion of 

validated epitopes (148, 149, 153). Given this, we believe that any rational, real-time T cell 

epitope discovery will remain dependent on in silico prediction methods (148).

Studies have suggested that properties of the peptide side chains facing out from the 

MHC binding groove can favor interaction with the TCR, and such properties have been 

implemented into T cell epitope prediction models with some success (154, 155). Likewise, 

studies have investigated how the similarity between MHC-presented peptides and the self-

peptidome (144, 156) and microbiome can impact the likelihood of a relevant TCR being 

present in the T cell repertoire of a given individual due to positive and negative T cell 

selection (157). The common conclusion of these studies is that, while some deselection of 

peptides with high self-similarity could be observed, the predictive power of the proposed 

similarity models has been modest at best. This suggests that we still have a very inadequate 

picture of the rules of TCR cross-reactivity that define functional similarities between 

peptides.

Another critical issue faced when doing rational epitope discovery is the inherent diversity 

of the pathogens and the resulting host immune responses; rarely will different members of 

a population share the same HLA allotypes and be infected with the same pathogen strains. 

Different approaches have been suggested to deal with this problem, including focusing 

on binding to sets of prevalent and functionally different HLA alleles [using for instance 

the HLA supertypes (96, 97)] and selecting peptides from genomic regions conserved 

across pathogenic strains (158). Other approaches such as Mosaic, OptiTope, Episelect, 

and PopCover (reviewed and benchmarked in Reference 159) have explicitly dealt with the 

pathogen or HLA diversity by selecting peptides that in concert provide a broad HLA and 

pathogen strain coverage.

DISCUSSION AND CURRENT CHALLENGES

In 1999, we proposed a Human MHC Project describing and predicting peptide binding for 

all human MHC molecules (160). Covering even the 413 classical HLA class I molecules 

registered in the contemporary version 1.1 of the IMGT-HLA database was a challenging 

and distant goal. The past decades have seen significant improvements in how peptide–MHC 
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binding data are addressed experimentally. However, the number of registered molecules has 

increased to 11,405 (version 3.37, July 2019) and is still growing, and the development of 

pan-specific predictors is the only reason why the peptide binding characteristics can be said 

to have been solved for all human MHC molecules, now and in the future.

In this review, we have outlined the development of these highly successful prediction 

methods. Not only do they cover all current and future MHC molecules, but they have also 

achieved levels of accuracy that are second to none compared to computational predictors 

in other areas of biology. Nonetheless, there is still a lot to do: Current predictors have 

important limitations, including significant aspects of antigen presentation or recognition 

that are covered poorly, or not at all. There are undoubtedly important new biological 

discoveries waiting to be made and included in future predictors. Some examples are given 

below.

The predictive power of a machine learning tool is only a good as the data used for 

training. Posttranslational modifications (PTMs) such as phosphorylation, glycosylation, 

deamidation, etc. are known to influence the specificity of MHC binding and presentation 

(161–163); however, very limited data and no reliable prediction methods incorporating 

PTMs are currently available. Similarly, there is a known underrepresentation of the amino 

acids cysteine in MHC ligand datasets (132), leading to low predictive power for cysteine-

containing peptides. Different corrective measures have been suggested to correct for this, 

including replacing cysteine with an X when representing a peptide sequence in NetMHC 

predictions (144).

All models described in this review are very simple in terms of the underlying 

machine learning framework: All are either simple linear-matrix-based (MixMHCpred) or 

feedforward neural network (the NetMHC suite and MHCflurry) models. Over the last 

few years, the field of machine learning has been revolutionized by the development and 

application of so-called deep neural network methods combining different network functions 

such as CNN (convolutional neural network) layers, LSTM (long short-term memory) 

layers, and FFNN (feedforward neural network) layers into deep (i.e., containing multiple 

layers) and complex network architectures. While such deep methods have proven useful 

within bioinformatics and biology in general (164, 165), their impact on the prediction of 

peptide–MHC binding has been limited (36, 86, 166). The meager benefit may be attributed 

to the binding of short peptides in an extended conformation, as described earlier, which 

largely can be approximated as a linear system, as attested by the satisfactory performance 

of shallow neural networks and even matrix-based prediction methods. However, future 

work and further independent benchmarking are needed to fully evaluate the potential of 

deep methods in the context of predicting MHC antigen presentation and T cell epitopes.

Several aspects of the underlying biology underlying MHC antigen presentation are poorly 

understood and described. One example is the abundance of protein antigens available 

for processing and presentation (146, 147). Studies of MHC EL datasets have suggested 

that high protein expression [as measured by RNA sequencing (RNA-seq) expression] can 

compensate and allow for antigen presentation of relatively weak MHC-binding peptides 

(126, 167). However, how to optimally integrate the information contained within RNA-
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seq data is not trivial, and no publicly available prediction method currently offers the 

integration of expression data. Another example is the recent discovery of the TAPBPR 

quality control mechanism, which is believed to ensure that only peptides stably bound to 

MHC class I are exported to the APC surface and presented (168).

T cell recognition requires that pMHCs are matched by an appropriate TCR in the repertoire 

of the individual in question. This repertoire is uniquely shaped in a self-referential manner 

through thymic events that are controlled by MHC and by the specificity and cross-reactivity 

of the TCR, the latter of which we know very little. Finely characterizing the rules of T 

cell recognition may be the single most important new development to be done. Ideally, 

one should aim to generate recombinant (preferably soluble) TCRs, establish efficient 

trimolecular TCR:peptide:MHC binding assays, generate large columns of such interaction 

data, and construct the corresponding predictors. If this could be done, then the entire 

T cell repertoire of an individual could be modeled. This goal is already being pursued. 

Analyses of TCR data suggest that TCRs sharing common cognate peptide–MHC ligands 

share tractable common sequences (169, 170) and structural properties (171), in principle 

allowing for the prediction of T cell ligands (172, 173). Currently, the performance of 

such prediction models is severely hampered by the limited amount of data available. 

The majority of the data are, at present, limited to the CDR3 segment of the TCR beta 

chain. Lanzarotti et al. (171) have demonstrated that this gives an inadequate view of TCR 

specificity, suggesting that paired TCR alpha and beta sequence information will be needed. 

Recent technological advances have greatly improved researchers’ ability to obtain such 

paired sequence information from epitope-specific T cells (174). As more of this kind of 

data become available, it is very likely that reliable TCR:peptide:MHC binding predictions 

will become a reality.

Another T cell phenomenon, immunodominance, is also poorly understood. This is a 

situation where the immune response in a given patient is predominantly focused toward 

a limited subset of the available T cell epitopes, causing a hierarchy of immune responses 

in terms of magnitude and prevalence. It is not clear what defines this hierarchy. Differential 

features of HLA antigen processing and presentation, and properties of the T cell repertoire 

shaped by infection history, precursor frequencies, and the VDJ (variable–diversity–joining) 

germ lines of the individual, are likely to play a critical role (175, 176).

Addressing these unsolved questions will require continued basic research on antigen 

processing and presentation, as well as on T cell recognition and responses. This will go 

hand in hand with technological developments supporting large-scale and high-throughput 

assays of the same.
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Figure 1. 
(a) The MHC class I antigen-presenting pathway. Proteins transcribed and translated are 

proteolytically processed in the cytosol by the proteasome; peptides are translocated into the 

ER via TAP and potentially undergo further trimming by ERAP prior to binding to de novo 

synthesized MHC I molecules in the ER; a quality control step is completed (not shown); 

and the resulting pMHCs are translocated to the cell surface for CD8+ T cell scrutiny. (b) 

The MHC class II antigen-presenting pathway. Exogenous antigens are taken up by APCs by 

endocytosis, and peptides are generated by enzymatic fragmentation and traffic to MIIC. De 

novo synthesized MHC class II molecules bind to CLIP and traffic to MIIC. Here, controlled 

by HLA-DM/DO, the CLIP peptide is removed and the incoming peptides are offered to 

MHC class II molecules. The bound peptides are exported as pMHCs to the cell surface for 

CD4+ T cell scrutiny. Abbreviations: APC, antigen-presenting cell; β2m, β2 microglobulin; 

CLIP, MHC class II–associated invariant chain peptide; ER, endoplasmic reticulum; ERAP, 

ER aminopeptidase; Ii, invariant chain; HLA, human leukocyte antigen; MIIC, MHC 

class II compartment; pMHC, peptide–MHC complex; TAP, transporter associated with 

antigen processing; TCR, T cell receptor. Panel adapted with permission from Reference 4; 

copyright 2012 Springer Nature.
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Figure 2. 
Structure of MHC class I and II molecules. An extended peptide-binding groove is formed 

between two parallel alpha helices situated over a floor made up of an antiparallel beta-

sheet. The binding groove for class I is closed, whereas the binding groove for class II is 

open. The T cell receptor (TCR) interacts with the peptide–MHC complex predominantly 

via six complementarity-determining regions (CDRs), three from each chain. The two 

CDR3s interact mainly with the peptide. Figure courtesy of Kamilla Kjærgaard Munk.
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Figure 3. 
The NNAlign machine learning framework. Different kinds of peptide–MHC binding 

data are integrated in a machine learning framework leveraging information between 

multiple MHC molecules and peptide length, resulting in a pan-length, pan-MHC prediction 

method that captures individual binding motifs and allows for accurate epitope prediction. 

Abbreviations: BA, binding affinity; EL, eluted ligand.
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Table 1

MHC binding prediction methods available and described in this review

Method URL Pan-specific Includes EL data Reference

Class I

NetMHC http://www.cbs.dtu.dk/services/NetMHC No No 37

NetMHCpan http://www.cbs.dtu.dk/services/NetMHCpan Yes Yes 38

MixMHCpred https://github.com/GfellerLab/MixMHCpred No Yes 39

MHCflurry https://github.com/openvax/mhcflurry No Yes 40

BIMAS Decommissioned on March 8, 2019 No No 41

SYFPEITHI http://www.syfpeithi.de No Yes 42

SMM http://tools.iedb.org/mhci No No 43

Class II

NetMHCIIpan http://www.cbs.dtu.dk/services/NetMHCIIpan Yes No 44

Abbreviation: EL, eluted ligand.
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