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Loss of the extracellular matrix protein 
Perlecan disrupts axonal and synaptic 
stability during Drosophila development
Ellen J Guss, Yulia Akbergenova, Karen L Cunningham, J Troy Littleton*

The Picower Institute for Learning and Memory, Department of Biology, Department 
of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 
United States

Abstract Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular 
matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan 
is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. 
Although a core component of the ECM, the role of Perlecan in neuronal structure and function is 
less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval moto-
neuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, 
followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes 
are not prevented by blocking Wallerian degeneration and are independent of Perlecan’s role in 
Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction 
phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause 
synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell 
autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural 
lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in 
the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. 
In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual 
hemi-segments throughout larval development. These observations indicate disruption of neural 
lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, 
revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.

eLife assessment
This study presents valuable new insights into the role of the extracellular matrix component 
(ECM) Perlecan in axon integrity, with downstream consequences for the maintenance of synaptic 
structures. The evidence for Perlecan's role in this process is solid, although negative results for 
Perlecan's mechanism of action should be strengthened with the addition of appropriate controls 
centered on the relevant pathways and mechanisms involved as well as more careful analyses 
and interpretations. The authors provide convincing data identifying and describing the cellular 
sequence from ECM perturbations to axonal and synaptic degeneration, but additional data 
pinpointing the requirements of Perlecan for axonal maintenance would further improve the impact 
of this study.

Introduction
Neurons require regulated polarization and transport of synaptic material to maintain their distinc-
tive shape and electrical properties. Indeed, disruption of axonal transport is linked to numerous 
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neurodevelopmental and neurodegenerative disorders (Cheng et  al., 2022; De Vos et  al., 2008; 
DiAntonio, 2019; Fernandopulle et  al., 2021; Krench and Littleton, 2013; Luo and O’Leary, 
2005; Mariano et al., 2018; Neukomm and Freeman, 2014). Neuronal development depends upon 
multiple transmembrane and secreted proteins that facilitate intercellular communication and inter-
actions with the extracellular environment. The heparan sulfate proteoglycans (HSPGs), including the 
transmembrane Syndecans, the glycosylphosphatidylinositol (GPI)-linked Glypicans and the secreted 
Agrin and Perlecan proteins (Bernfield et al., 1999; Häcker et al., 2005; Kamimura and Maeda, 
2021; Lin, 2004; Sarrazin et al., 2011), play multiple roles in neuronal development. These include 
regulating neuronal migration and axon guidance, controlling diffusion of secreted signaling ligands, 
forming ECM barriers that maintain cell boundaries, and clustering transmembrane and secreted 
proteins (Arikawa-Hirasawa et al., 2002; Cho et al., 2012; Fox and Zinn, 2005; Johnson et al., 
2006; Kamimura et al., 2013; Kamimura and Maeda, 2021; Kinnunen, 2014; Nitkin et al., 1987; 
Sanes et al., 1978). HSPGs encode core proteins with multiple extracellular motifs that are heavily 
modified by covalently attached heparan sulfate sugar chains that undergo enzymatic modifications 
(Bishop et al., 2007). Perlecan has the largest core mass of all HSPGs and is a conserved compo-
nent of the extracellular matrix (ECM) and basement membranes (BMs) with Laminin, Nidogen and 
type IV Collagen (Carson et al., 1993; Erickson and Couchman, 2000; Hassell et al., 1980; Martin 
et al., 1988; Martin and Timpl, 1987; Mouw et al., 2014; Noonan et al., 1991). The ECM plays 
essential structural and signaling roles by maintaining tissue integrity and restricting diffusion of 
secreted signaling ligands (Aviezer et al., 1994; Lindner et al., 2007; Park et al., 2003; Schaefer 
and Schaefer, 2010). In this study, we identified a role for Perlecan in maintaining the stability of the 
ECM surrounding nerve bundles, with loss of the protein resulting in axonal breakage and degenera-
tion, followed by synaptic retraction.

Drosophila larval motoneurons (MNs) and their glutamatergic neuromuscular junctions (NMJs) are 
a robust system for studying neuronal development and function due to abundant genetic toolkits 
and their ease of use for live and fixed imaging (Andlauer and Sigrist, 2012; Bellen et al., 2019; 
Collins and DiAntonio, 2007; Harris and Littleton, 2015; Kanca et al., 2017; Owald and Sigrist, 
2009; Sambashivan and Freeman, 2021; Şentürk and Bellen, 2018). Many HSPGs are highly 
conserved in Drosophila and several function in neuronal development (Dani et al., 2012; Han et al., 
2020; Johnson et al., 2006; Kamimura et al., 2019; Kamimura et al., 2013; Koper et al., 2012; 
Nguyen et al., 2016). The Drosophila Perlecan homolog is encoded by the gene terribly reduced 
optic lobes (trol) (Datta and Kankel, 1992; Friedrich et al., 2000; Voigt et al., 2002) and has been 
suggested to play a signaling role at NMJs by regulating Wingless (Wg) diffusion (Kamimura et al., 
2013).

Given Perlecan has important structural functions as an ECM component in other developing 
tissues (Costell et al., 1999; Skeath et al., 2017), we examined if the protein played a similar role 
during synapse development or maintenance at Drosophila NMJs. Strikingly, trolnull MNs developed 
progressive morphological defects over the course of larval development. Although NMJs devel-
oped normally in trolnull larvae, they subsequently underwent retraction and displayed characteristic 
postsynaptic footprints where presynaptic material had been dismantled, similar to other Drosophila 
retraction mutants (Eaton et al., 2002; Massaro et al., 2009; Pielage et al., 2011; Pielage et al., 
2008; Pielage et al., 2005). Although trolnull MNs had normal synaptic output prior to retraction, 
MNs with disrupted NMJ structure lacked synaptic transmission. In addition, trolnull MNs displayed 
an abnormal axonal cytoskeleton and underwent axonal breakage and loss. These phenotypes 
were independent of Perlecan’s role in Wg diffusion and were not prevented by blocking Wallerian 
degeneration. Cell-type-specific knockdown and rescue experiments indicated trolnull phenotypes 
were non-cell autonomous and required Perlecan secretion from multiple cell types. Within the 
peripheral nervous system (PNS), Perlecan was enriched in the neural lamella, a thick ECM structure 
that surrounds nerve bundles, the ventral nerve cord (VNC) and brain lobes (Edwards et al., 1993; 
Stork et al., 2008). Mutations in trol disrupted the neural lamella surrounding peripheral nerves, 
similar to previously identified defects in the CNS neural lamella (Skeath et al., 2017). Consistent 
with disruption of the neural lamella triggering axonal instability, loss of entire axonal bundles and 
NMJs temporally coincided within individual larval hemisegments. Together, these data indicate 
Perlecan plays a key role within the ECM to regulate the integrity and stability of MN axons and 
synapses.

https://doi.org/10.7554/eLife.88273
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Results
Perlecan is a conserved HSPG that localizes to the neural lamella 
surrounding peripheral nerves in Drosophila larvae
Perlecan is an evolutionary conserved HSPG with a similar domain architecture in invertebrates, verte-
brates, and the early multicellular eukaryote Trichoplax adhaerens (Warren et al., 2015). Drosophila 
Perlecan is encoded by the trol locus, which resides on the X chromosome and encodes 25 predicted 
Perlecan splice variants ranging in size from 2853 to 4489 amino acids (Figure 1A). To compare the 
relationship of Drosophila Perlecan to other secreted HSPGs, a phylogenetic tree was constructed 
using homologs of Perlecan, Agrin and Drosophila Carrier of Wingless (Cow). One of the longest 
isoforms of Drosophila Perlecan (Trol-RAT) was used for the analysis. Ciona intestinalis, Danio rerio, 
Mus musculus, Rattus norvegicus, Homo sapiens, Caenorhabditis elegans, and Trichoplax adhaerens 
homologs were identified with NCBI blast searches. FASTA sequences of the longest isoform from 
each species was used in a Clustal Omega multiple sequence alignment and visualized in Jalview as 
an average distance phylogenetic tree using the BLOSUM62 algorithm (Figure 1B). The Trichoplax 
Perlecan and Agrin homologs were the most distantly related, but still clustered within their specific 
subfamily. Drosophila Perlecan clustered in a leaf with other Perlecan homologs and distinct from the 
Agrin family. Although Agrin plays a key role in cholinergic NMJ development (Gautam et al., 1996; 
Nitkin et al., 1987; Sanes and Lichtman, 2001), Drosophila contains glutamatergic NMJs and lacks 
an Agrin homolog (Littleton and Ganetzky, 2000). Drosophila Cow was more closely aligned with 
Agrin homologs than the Perlecan family.

Given the absence of an Agrin homolog in Drosophila, Perlecan might play similar roles in orga-
nizing Drosophila synaptic proteins. Indeed, a previous study identified defects in GluRIIA receptor 
clustering and synaptic Wg diffusion in trol mutants (Kamimura et al., 2013). These data suggested 
Perlecan may regulate organization of Drosophila synapses, prompting us to further evaluate its func-
tion. To examine Perlecan localization within the larval PNS, an endogenous trolGFP insertion allele 
from the FlyTrap protein-tagging library was characterized (Morin et al., 2001). TrolGFP was enriched 
along nerve bundles (Figure 1C–F) and present at lower levels on the surface of body wall muscles 
(Figure 1C and G–I). The enrichment of Perlecan around nerve bundles is consistent with its localiza-
tion within the neural lamella, a large ECM compartment that surrounds axons and glia of the CNS and 
PNS. Indeed, Perlecan has been previously observed within the neural lamella surrounding the VNC 
and peripheral nerves (Brink et al., 2012; Skeath et al., 2017). In addition, the localization of Viking 
(Vkg), the Drosophila secreted type IV Collagen homolog and a known component of the neural 
lamella (Yasothornsrikul et al., 1997), was disrupted in trol mutants (see below). Although immu-
nogold electron microscopy (EM) identified Perlecan in the subsynaptic reticulum (SSR) surrounding 
NMJs (Kamimura et al., 2013), TrolGFP did not display synaptic enrichment beyond the homogenous 
expression over the entire muscle surface (Figure  1G–I). To confirm TrolGFP signal was specific to 
Perlecan, an RNAi construct targeting trol (UAS-trol-RNAi.1, Figure 1A) was recombined with TrolGFP 
and driven with the ubiquitous tubulin-Gal4 driver. TrolGFP was eliminated by co-expression of the 
RNAi, with no signal observed along nerve bundles or on the muscle surface (Figure  1D–I). The 
TrolGFP line also displayed normal NMJ growth and maintenance (Figure 1—figure supplement 1), 
in contrast to trol mutants (see below), indicating endogenous TrolGFP produces a functional Perlecan 
protein.

trolnull NMJs undergo synaptic retraction
To examine a role for Perlecan in synaptic development and function, a previously generated null 
mutant that deletes the trol locus (Figure 1A) was characterized (Voigt et  al., 2002). Male trolnull 
larvae are smaller than their heterozygous female trolnull/+counterparts and display disrupted loco-
motion and lethality during the 3rd instar stage (Datta and Kankel, 1992; Voigt et al., 2002). To 
examine synaptic morphology in trolnull and heterozygous control 3rd instars, immunostaining was 
performed at muscle 4 NMJs for presynaptic Complexin (Cpx) and postsynaptic Discs-large (Dlg). In 
trolnull/+controls, Cpx and Dlg colocalized at NMJ boutons (Figure 2A). Although some trolnull/y larvae 
had intact NMJs, many trol NMJs displayed Dlg +boutons that lacked presynaptic Cpx (Figure 2A). 
The presence of postsynaptic ‘footprints’ lacking presynaptic material is a defining feature of mutants 
that undergo synaptic retraction (Eaton et al., 2002; Graf et al., 2011; Koch et al., 2008; Pielage 
et al., 2008; Pielage et al., 2005). Trolnull mutants also displayed fewer synaptic boutons (Figure 2B), 

https://doi.org/10.7554/eLife.88273
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Figure 1. Perlecan conservation and localization within the Drosophila PNS. (A) Diagram of the trol-RAU isoform with exons (boxes) and introns (lines) 
indicated. Sequence locations targeted by two UAS-trol RNAi lines and start sites for two overexpression constructs (UAS-trol.RD and UAS-trol.RG) used 
in this study are noted. The location of P-elements l(1)G0271 and EP(1)1619 previously mobilized to generate the trolnull deletion allele (Voigt et al., 
2002) is also shown. (B) Phylogenetic tree of Perlecan, Agrin and Carrier of Wingless (Cow) from the indicated species generated using BLOSUM62 

Figure 1 continued on next page
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in addition to increased synaptic footprints (Figure 2C), compared to control NMJs in abdominal 
segments A3-A5 (bouton number p values: 0.0379 for A3, 0.0012 for A4,<0.0001 for A5). Consistent 
with other retraction mutants (Graf et al., 2011), the trolnull phenotype was more severe in posterior 
abdominal segments (Figure 2B and C). NMJs showing severe synaptic retraction, defined by retrac-
tion footprints and decreased number of synaptic boutons two standard deviations compared to 
controls, were only observed in trolnull larvae, with increasing severity in posterior abdominal segments 
(Figure 2D). Together, these data suggest NMJs are lost over development in larvae lacking Perlecan.

To determine if synaptic loss is specific to the absence of Perlecan and not the trolnull genetic 
background, NMJs were examined in trolnull larvae in trans to a deficiency (Df(1)ED411) that removes 
the trol locus. Df(1)ED411/+ heterozygous  NMJs appeared normal and lacked postsynaptic foot-
prints. In contrast, Df(1)ED411/trolnull NMJs had significantly reduced bouton number (p=0.0048), with 
50% of NMJs showing postsynaptic footprints (Figure  2—figure supplement 1A–C). In addition, 
expression of UAS-trol-RNAi.2 with the ubiquitous tubulin-Gal4 driver resulted in reduced bouton 
number, with >65% of NMJs showing postsynaptic footprints compared to RNAi or Gal4 only controls 
(Figure 2—figure supplement 1D–F).

The experiments described above examined synaptic retraction of type Ib glutamatergic MNs. 
However, larval muscles are also innervated by type Is glutamatergic and type II and III neuromodula-
tory MNs. The two glutamatergic MNs have distinct morphology and physiology, with tonic-like (Ib) or 
phasic-like (Is) properties (Aponte-Santiago and Littleton, 2020). To assay if Perlecan is required for 
stability of other MN subtypes, synaptic retraction was quantified at Is NMJs in trolnull larvae. Similar 
to Ib, trolnull Is NMJs displayed a significant reduction in bouton number (p=0.0011 A3, p=0.0238 A4, 
p=0.0068 A5), with >30% showing severe retraction phenotypes compared to heterozygous controls 
(trolnull/+, Figure  2—figure supplement 2A–C). In addition to glutamatergic MNs, type II and III 
neuromodulatory MNs also displayed missing NMJs (data not shown). Together, these data indicate 
synaptic retraction occurs across all MN subtypes in 3rd instar larvae lacking Perlecan.

Synaptic retraction is independent of Perlecan’s role in Wingless 
signaling
A previous study identified changes in pre- and postsynaptic Wg levels at trol mutant NMJs, suggesting 
Perlecan restricts Wg diffusion within the synaptic cleft. The absence of Perlecan resulted in enhanced 
presynaptic and reduced postsynaptic Wg signaling (Kamimura et  al., 2013). Although synaptic 
retraction has not been previously associated with the Wg pathway at Drosophila NMJs (Franco 
et  al., 2004; Mathew et  al., 2005; Mosca and Schwarz, 2010; Packard et  al., 2002; Restrepo 
et  al., 2022), genetic interaction studies were conducted to assay whether increased presynaptic 
Wg output might contribute to synaptic retraction phenotypes observed in trolnull mutants. A UAS 
construct expressing a constitutively active (CA) form of the Drosophila GSK3 serine/threonine kinase 
Shaggy (Sgg, UAS-sggS9A), which dominantly blocks Wg signaling (Cook et al., 1996; Siegfried et al., 
1992), was expressed in glutamatergic MNs of trolnull larvae using vGlut-Gal4. NMJ bouton number 
and synaptic retraction were quantified at muscles 6 and 7 in UAS-sggS9A controls, in trolnull, vGlut-
Gal4, and in trolnull mutants expressing CA-Sgg (trolnull; vGlut-Gal4  >sggSS9A). Like muscle 4, muscle 

average distance. (C) Representative images of muscle 4 NMJs stained for Perlecan (Pcan) and Hrp in control (trolGFP, UAS-trol-RNAi.1/+;+;+) or Perlecan 
knockdown (trolGFP, UAS-trol-RNAi.1/+;+;tub-Gal4/+) larvae. White boxes denote location of insets depicted in D and G. Dashed white lines denote 
location of insets depicted in lower left corner. Left inset displays orthogonal section through axon bundles, showing Perlecan signal in the neural 
lamella (scale bar 2 μm). Right inset displays orthogonal section through individual axon, showing Perlecan signal in the neural lamella (scale bar 1 μm). 
(D, G) Magnified view of control and trol RNAi axons (D) and boutons (G), highlighting loss of Perlecan following RNAi knockdown. Dashed lines show 
representative sites for line scanning quantification for panels E-F, H-I. (E–F, H–I) Line scan profiles of Perlecan (E, H) or Hrp (F, I) mean fluorescent 
intensity through axons (E, F) or synaptic boutons (H, I) at muscle 4 in segment A2 (control: 14 axons from 8 larvae; trol RNAi: 19 axons from 11 larvae; 
control: 14 NMJs from 8 larvae; trol RNAi: 22 NMJs from 11 larvae). Control measurements are denoted in green and trol RNAi in magenta.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw Values and Statistics for Figure 1 Perlecan Localization.

Figure supplement 1. Endogenous TrolGFP strain produces a functional Perlecan protein.

Figure supplement 1—source data 1. Raw Values and Statistics for Figure 1—figure supplement 1 on Bouton Number.

Figure 1 continued

https://doi.org/10.7554/eLife.88273
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Figure 2. Synaptic retraction in trolnull motoneurons. (A) Representative images of muscle 4 NMJs in control (trolnull/+;+;+, left panel) and trolnull 
(trolnull/y;+;+) larvae stained for Cpx (magenta) and Dlg (yellow). Example trol NMJs of increasing retraction severity are shown in the right panels. 
Highlighted areas in the merged image are shown as insets at the bottom. For mild and moderately retracted NMJs, inset 1 displays a bouton with 
pre- and postsynaptic material still co-localized while inset 2 highlights a synaptic footprint with only postsynaptic material remaining. (B) Quantification 
of Dlg +Ib bouton number from control and trol muscle 4 NMJs for abdominal segments A3-A5. Each point represents the number of boutons at one 
NMJ, with mean bouton number indicated with the solid black line. Quantification of bouton number: control A3: 23.5±1.8, 13 NMJs from 7 larvae; trol 
A3: 17.2±1.6, 25 NMJs from 13 larvae, p<0.05; control A4: 21.1±1.3, 13 NMJs from 7 larvae; trol A4: 12.0±1.7, 25 NMJs from 13 larvae, p<0.01; control 
A5: 22.1±1.5, 13 NMJs from 7 larvae; trol A5: 8.9±1.6, 21 NMJs from 13 larvae, p<0.0001. (C) Percentage of control or trol NMJs with one or more 

Figure 2 continued on next page
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postsynaptic footprints (Dlg bouton lacking Cpx) for segments A3-A5 from the dataset in B. (D) Percentage of control or trol NMJs with severe retraction 
for segments A3-A5 from the dataset in B.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw Values and Statistics for Figure 2 on Synapse Number and Retraction.

Figure supplement 1. Synapse retraction occurs in trolnull mutants over deficiency and in trol RNAi knockdown larvae.

Figure supplement 1—source data 1. Raw Values and Statistics for Figure 2—figure supplement 1 on Trol Mutant and RNAi Retraction.

Figure supplement 2. trolnull Is synapses retract.

Figure supplement 2—source data 1. Raw Values and Statistics for Figure 2—figure supplement 2 on Segmental Retraction.

Figure 2 continued
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Figure 3. Synaptic retraction in trol mutants is not prevented by blocking presynaptic Wg signaling. (A) Representative images of muscle 6/7 NMJs 
at segment A4 in control (+;UAS-sggS9A/+;+, left panel), trolnull (trolnull,vGlut-Gal4/y;+;+, middle panels) and trolnull, sggCA (trolnull,vGlut-Gal4/y;UAS-
sggS9A/+;+, right panels) larvae stained for Cpx (magenta) and Dlg (yellow). Example NMJs that are in early or severe stages of retraction are shown for 
both trol genotypes. Highlighted areas in the merge are shown as insets in the bottom panel with either intact (early) or retracting (severe) boutons. 
(B) Quantification of Dlg +Ib and Is bouton number from control, trolnull and trolnull, sggCA muscle 6/7 NMJs for abdominal segment A4. Each point 
represents the number of boutons at one NMJ, with mean bouton number indicated with the solid black line. Quantification of bouton number: control: 
50.1±7.0, 11 NMJs from 6 larvae; trol: 31.3±3.2, 14 NMJs from 7 larvae, p<0.05 compared to control; trol, sggCA: 28.2±3.4, 11 NMJs from 6 larvae; p<0.01 
compared to control, p=0.8814 compared to trol. (C) Percentage of control, trol, or trol, sggCA NMJs with one or more postsynaptic footprints for the 
dataset in B.

The online version of this article includes the following source data for figure 3:

Source data 1. Raw Values and Statistics for Figure 3 on Perlecan - Wingless Pathway Interactions.

https://doi.org/10.7554/eLife.88273
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6/7 NMJs showed reduced bouton number (P=0.0174) and postsynaptic footprints in >90% of trolnull 
larvae, indicating synaptic retraction is not restricted to MNs innervating muscle 4 (Figure 3A–C). 
Blocking presynaptic Wg signaling with CA-Sgg did not suppress the loss of boutons or prevent 
synaptic retraction in trolnull mutants (Figure 3A–C, p=0.8814 between trol and trol, sggCA bouton 
numbers). These data indicate Perlecan’s function in controlling synaptic stability is independent of its 
effects on Wg signaling.

trolnull NMJs develop normally and retract during the 3rd instar larval 
stage
Although postsynaptic footprints are a hallmark of synaptic retraction, it is possible that Perlecan 
loss disrupts early MN or synaptic development such that synapses classified as retracted never 
contained presynaptic material. To dynamically visualize NMJ development, serial intravital imaging 
of larval muscle 26 NMJs was performed over 4 days in trolnull and heterozygous controls following 
brief anesthesia as previously described (Akbergenova et al., 2018). Larvae containing endogenously 
tagged nSynaptobrevin (nSybGFP) (Guan et al., 2020) and a construct expressing GluRIIARFP (Schmid 
et  al., 2008) were used to visualize presynaptic vesicles and postsynaptic receptors, respectively 
(Figure 4A). Although control and trolnull larvae had similar NMJ area at the 2nd instar stage when 
imaging began (Figure 4B), only control NMJs continued to grow on subsequent days of imaging 
(Figure  4C). In contrast, both pre- and postsynaptic area declined in trolnull larvae during the 3rd 
instar imaging window. Control NMJs had greater pre- than postsynaptic area, while trolnull larva had 
smaller nSybGFP than GluRIIARFP area by the final day of imaging, consistent with loss of presynaptic 
material and lingering postsynaptic footprints (Figure 4C). Several patterns of presynaptic loss were 
observed in trolnull NMJs during serial imaging (Figure 4A). In some cases, an entire branch of an 
axonal arbor was lost between imaging days. At other NMJs, presynaptic material was absent from 
internal boutons in an axon branch, with proximal and distal boutons from the same axon containing 
nSybGFP. These findings confirm that trolnull MNs form NMJs that are subsequently retracted during 
development.

In vivo imaging indicated trolnull NMJs are morphologically intact prior to retraction. However, loss 
of Perlecan could cause functional disruption of synaptic output earlier in development. To assay 
synaptic function at intact versus retracting NMJs in trolnull 3rd instars, two-electrode voltage-clamp 
(TEVC) electrophysiology was performed at muscle 6. Following physiological recordings, dissected 
trolnull larvae were bathed with fluorescent anti-Hrp to visualize NMJs and determine if they were intact 
or retracted at the recording site (Figure 4D). At intact trolnull NMJs, nerve stimulation resulted in 
evoked release amplitude similar to controls, indicating normal presynaptic output prior to retraction 
(Figure 4E and F, p=0.3189). In contrast, fully retracted trolnull NMJs completely lacked evoked release 
(Figure  4E and F, p=0.0001). Quantal imaging with postsynaptic membrane-tethered GCaMP7s 
(Akbergenova et al., 2018; Melom et al., 2013) revealed a similar loss of spontaneous release in 
retracted NMJs (data not shown). When evoked responses from intact and retracted trolnull NMJs 
were combined and averaged, a significant reduction in evoked excitatory junctional current (eEJC) 
was observed compared to controls (Figure 4F, p=0.027). The gradual loss of NMJs is consistent with 
other cell types where Perlecan is dispensable for the initial formation of BMs and only required for 
their maintenance (Costell et al., 1999; Matsubayashi et al., 2017).

Non-cell autonomous Perlecan secretion is required for synaptic 
stability
The largest source of Perlecan in Drosophila comes from the larval fat body, where it is secreted into 
the hemolymph and incorporated into the ECM surrounding most cell types (Pastor-Pareja and Xu, 
2011). Although abundant in the fat body, trol mRNA is also present at lower levels in larval MNs 
and muscles (Jetti et al., 2023). To determine the cell type(s) responsible for Perlecan secretion that 
controls synaptic stability, UAS-trol RNAi.2 was driven with a panel of cell-type-specific Gal4 drivers. As 
indicated above, ubiquitous knockdown of trol mRNA with tubulin-Gal4 abolishes Perlecan expression 
(Figure 1D–G) and causes synaptic retraction (Figure 2—figure supplement 1). In contrast, knock-
down of Perlecan with UAS-trol-RNAi.2 (Figure 1A) driven by multiple Gal4 lines expressed in specific 
cell populations, including pan-neuronal (elavC155), neuronal and muscle (elavC155 and mef2-Gal4), glial 
(repo-Gal4), fat body (ppl-Gal4, Lsp2-Gal4), hemocytes (Hml-Gal4), and fat body and hemocytes 

https://doi.org/10.7554/eLife.88273
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Figure 4. Trol mutant NMJs form normally but are not maintained over development. (A) Representative NMJ images during serial intravital imaging of 
muscle 26 in control (trolnull/+;+;nSybGFP/GluRIIARFP, left) and trolnull (trolnull/y;+;nSybGFP/GluRIIARFP, right) larvae over 4 days starting at the 2nd instar stage. 
nSybGFP is shown in green and GluRIIARFP in red. Dashed lines highlight areas where presynaptic nSyb is missing while postsynaptic GluRIIA remains 
(retraction footprints). Severe NMJ retraction is seen in both example trolnull NMJs by day 4, while control NMJs continue to grow. (B) Quantification of 
muscle 26 presynaptic NMJ area in control and trolnull 2nd instar larvae at the beginning of serial intravital imaging sessions. No differences in NMJ area 
are present during this stage of early development. Quantification of NMJ area: control: 168.5±8.974, 15 NMJs from 4 larvae; trol: 168.5±8.855, 17 NMJs 
from 4 larvae, p=0.9991. NMJs from multiple abdominal segments were imaged. (C) Percent change in NMJ area during each day of imaging for control 
and trolnull larvae. Both presynaptic and postsynaptic area continue to increase in controls, while synaptic area is lost in trolnull larvae. (D) Representative 
images of muscle 6/7 NMJs stained with anti-Hrp following TEVC physiology in control (trolnull/+;+;+) and trolnull (trolnull/y;+;+) 3rd instar larvae. Examples 
of intact (middle) and retracted (bottom) NMJs are shown. (E) Average eEJC traces in 0.3 mM Ca2+ saline in control and all trolnull NMJs combined (top), 
together with average traces from NMJs of only intact or retracted trolnull NMJs (bottom). (F) Quantification of average eEJC peak amplitude (nA) per 
NMJ in segments A3 and A4 for the indicated genotypes. Intact and retracted trol NMJs were determined post-hoc blinded following anti-Hrp staining 
and paired with their corresponding eEJC data. Quantification of EJC amplitude: control: 40.8±3.5 nA, 16 NMJs from 7 larvae; trol combined: 23.8±6.6, 
15 NMJs from 6 larvae, p<0.05 compared to control; trol intact: 48.8±8.9 nA, 6 NMJs from 4 larvae, p=0.3189 compared to control; trol retracted: 
0.5±0.1, 3 NMJs from 2 larvae, p<0.0001 compared to control.

Figure 4 continued on next page
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(c564-Gal4), failed to trigger synaptic retraction or reduce synaptic bouton number (Figure 5A and B). 
In addition, knockdown of Perlecan in the three cell types that form or surround NMJs (MNs, muscles 
and glia) failed to reduce TrolGFP signal around larval nerves or on the muscle surface (Figure 5C–G). 
Although it is possible that these individual drivers are weaker than tubulin-Gal4, no phenotypes were 
observed when trol-RNAi was driven by elavC155, elavC155 and mef2, and repo at 29 °C to increase Gal4 
activity (data not shown). Together, these data suggest Perlecan secretion from multiple cell types is 
required to stabilize NMJs.

The majority of proteins that control synaptic stability at Drosophila NMJs function cell autono-
mously within the neuron (Eaton et al., 2002; Graf et al., 2011; Koch et al., 2008; Pielage et al., 
2008; Pielage et al., 2005). To determine whether MN secretion of Perlecan is sufficient to stabilize 
synapses, UAS-trol constructs encoding two different Perlecan isoforms (Figure  1A) were overex-
pressed with vGlut-Gal4 in the trolnull background. Overexpression of Perlecan specifically in MNs 
did not rescue the reduction in bouton number or synaptic retraction phenotypes in trolnull larvae 
(Figure  5—figure supplement 1A–C, p=0.54 for bouton number with trolRG rescue), suggesting 
neuronally secreted Perlecan is insufficient for maintaining synaptic stability. Together, these data 
indicate Perlecan acts non-cell autonomously from multiple cell types to stabilize larval NMJs.

NMJ loss in trol mutants is not exacerbated by mechanical stress from 
enhanced muscle contraction
Studies of Perlecan’s role within the ECM of other Drosophila cell types and in several mammalian 
tissues indicate the protein helps withstand mechanical stress during tissue development (Arikawa-
Hirasawa et al., 2002; Costell et al., 1999; Pastor-Pareja and Xu, 2011; Skeath et al., 2017; Töpfer 
et al., 2022). Although Perlecan is not enriched at synaptic boutons, trolnull NMJs could retract due 
to a failure to withstand mechanical stress from repeated contractions during larval crawling that 
would normally be buffered by the small amount of Perlecan normally on muscles. To test this model, 
a mutation in Myosin heavy chain (MhcS1) that causes a dominant hypercontractive muscle phenotype 
(Montana and Littleton, 2006; Montana and Littleton, 2004) was brought into the trolnull back-
ground to assay if synaptic retraction phenotypes were enhanced. Despite increased muscle contrac-
tion in trolnull; MhcS1/+ larvae, no enhancement of synaptic retraction or decreases in bouton number 
were observed (Figure  6A and B, p=0.5975). Given hypercontraction in MhcS1 mutants requires 
synaptic transmission (Montana and Littleton, 2004) and retracted trolnull NMJs lack evoked release 
(Figure 4C–E), we cannot exclude the possibility that MhcS1 mutants only enhance early stages of 
synaptic retraction prior to loss of presynaptic output. To examine if muscle hypercontraction increases 
Perlecan NMJ abundance as a protective mechanism to withstand elevated muscle contraction force, 
endogenous TrolGFP was brought into the MhcS1 mutant background. No enhancement of Perlecan 
staining was observed around axons, at NMJs, or on muscles in TrolGFP; MhcS1/+ larvae compared to 
TrolGFP alone (Figure 6C–E). Together with the lack of Perlecan enrichment around boutons, the failure 
of muscle hypercontraction to increase instability of trolnull NMJs suggest the protein is unlikely to play 
a mechanical role within the extracellular space around boutons to directly stabilize NMJs.

The absence of Perlecan disrupts the neural lamella and triggers 
coordinated synaptic loss across abdominal hemisegments
Drosophila MN cell bodies reside within the VNC and their axons exit in segmental nerve bundles that 
also contain incoming sensory neuron axons. Nerve bundles are wrapped by several layers of glial 
cells and surrounded by the neural lamella (Edwards et al., 1993; Stork et al., 2008), a specialized 
ECM structure containing Perlecan. Although trolnull mutants display synaptic retraction phenotypes 
at larval NMJs, Perlecan is primarily expressed within the neural lamella surrounding larval nerves and 
not at NMJs (Figure 1D–I). As such, where Perlecan acts to regulate synaptic stability is unclear. If 
loss of Perlecan compromises the function of the neural lamella as a physical and protective barrier 
for encapsulated axons over time, NMJ retraction might occur for all axons within a nerve bundle in 

The online version of this article includes the following source data for figure 4:

Source data 1. Raw Values and Statistics for Figure 4 on Trol Serial Imaging and Physiology.

Figure 4 continued
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Figure 5. Perlecan acts in non-cell autonomous fashion to control synaptic maintenance. (A) Representative images of larval muscle 4 NMJs at segment 
A4 stained for Brp (yellow), GluRIIC (magenta) and anti-Hrp (cyan, only shown in inset) in control (+;UAS-trol-RNAi.2/+;+) and trol RNAi knockdown in 
the indicated cell types (UAS-trol-RNAi.2 (one copy) driven by elavC155, elavC155 and mef2-Gal4, repo-Gal4, ppl-Gal4, Lsp2-Gal4, Hml-Gal4, and c564-
Gal4 (one copy)). The merged image is shown below with location of the insets highlighting single boutons. Inset scale bar is 2 μm. (B) Quantification 

Figure 5 continued on next page
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a temporally coordinated manner across larval hemisegments. To examine if synapses within each 
segmental nerve bundle showed evidence of coordinated loss, abdominal bodywall hemisegments of 
trolnull larvae expressing vGlut-Gal4; UAS-10xGFP were examined. NMJ area on muscle 6/7, 4, and 1 
was quantified for each hemisegment and compared to controls. NMJs were often completely absent 
in one hemisegment, while fully intact in others. Indeed, Trolnull NMJs within each individual hemiseg-
ment displayed similar decreases in synaptic area (Figure  7A–C), indicating entire hemisegments 
undergo coordinated synaptic loss while others remain intact.

To determine if the neural lamella surrounding peripheral nerves was disrupted in the absence of 
Perlecan, the expression and localization of the neural lamella-localized Collagen IV homolog Vkg was 
assayed. In control segmental nerves, Vkg showed a similar localization to Perlecan and surrounded 
axon bundles exiting the VNC and at nerve branch points to muscles (Figure 8A and E). In contrast, 
Vkg expression in trolnull nerve bundles was dimmer with gaps in staining around axonal segments, 
along with abnormal aggregation at specific sites along the nerve (Figure 8A, B and E). To quantify 
neural lamella disruption, fluorescence intensity of Vkg and anti-Hrp (to label axons) was determined 
for segmental nerve bundles. Unlike controls, Vkg staining in axonal cross sections from trolnull larvae 
showed a thinner, or in some cases absent, neural lamella surrounding Hrp +axon bundles (Figure 8B). 
Anti-Hrp staining was also brighter in trolnull axon bundles, suggesting there may be greater antibody 
penetration in the absence of a functional neural lamella (Figure 8A and B). The mean fluorescence of 
Vkg and Hrp signal was calculated in axon bundles traveling over muscle 4. Vkg signal around axons 
was significantly reduced in trolnull larvae, with the Vkg/Hrp ratio significantly lower in trolnull axons 
than controls (Figure 8C and D, p=0.0014 and 0.0004). This phenotype was independent of whether 
NMJs had undergone retraction, as nerves for both intact and retracted NMJs displayed a reduced 
neural lamella. Compared to controls, Vkg staining was also non-evenly distributed along nerves, 
with multiple sites showing extracellular accumulation of Vkg beyond the traditional boundaries of 
the neural lamella (Figure 8E). In some protrusions, Hrp +axonal material protruded from its normal 
boundary to co-localize with Vkg. As such, Perlecan may play a role in capturing or retaining Vkg 
within the neural lamella surrounding larval nerves.

of Hrp+/GluRIIC +positive Ib bouton number at muscle 4 NMJs in segment A4 in controls and following cell-type specific trol RNAi knockdown. Each 
knockdown was analyzed in separate experiments with both UAS only and Gal4 only controls. Significance was calculated for each experimental 
comparison, but a single control that represents the average bouton number of every experiment is plotted for ease of visualization. Quantification of 
trol knockdown with tubulin-Gal4 at A4 (from Figure 2—figure supplement 1) is included for comparison. Unlike pan-cellular RNAi, cell-type specific 
RNAi does not induce synaptic retraction. Quantification of bouton number: neuron UAS only control: 23.25±1.399, 12 NMJs from 6 larvae; neuron Gal4 
only control: 23.75±1.226, 12 NMJs from 6 larvae; elavC155 >UAS-trol-RNAi.2: 21.17±1.359, 12 NMJs from 6 larvae; p=0.4424 compared to UAS control; 
p=0.2994 compared to Gal4 control; neuron and muscle UAS only control: 21.21±1.130, 14 NMJs from 7 larvae; neuron and muscle Gal4 only control: 
23.43±1.189, 14 NMJs from 7 larvae; elavC155, mef2 >UAS-trol-RNAi.2: 26.44±1.248, 16 NMJs from 8 larvae; p=0.0066 (<0.01) compared to UAS control; 
p=0.1437 compared to Gal4 control; glia UAS only control: 26.83±1.375, 12 NMJs from 6 larvae; glia Gal4 only control: 23.79±1.407, 14 NMJs from 7 
larvae; repo >UAS-trol-RNAi.2: 20.25±1.643, 12 NMJs from 6 larvae; p=0.0078 (<0.01) compared to UAS control; p=0.1666 compared to Gal4 control; fat 
body (ppl) UAS only control: 25.57±1.312, 14 NMJs from 7 larvae; fat body (ppl) Gal4 only control: 26.21±0.7644, 14 NMJs from 7 larvae; ppl >UAS-trol-
RNAi.2: 19.75±1.216, 16 NMJs from 8 larvae; p<0.01 compared to UAS and Gal4 controls (0.0014 compared to UAS; 0.0004 compared to Gal4); fat body 
2 (Lsp2) UAS only control: 19.08±1.412, 13 NMJs from 7 larvae; fat body 2 (Lsp2) Gal4 only control: 25.07±0.7593, 14 NMJs from 7 larvae; Lsp2 >UAS-
trol-RNAi.2: 23.64±2.053, 14 NMJs from 7 larvae; p=0.0731 compared to UAS control; p=0.7249 compared to Gal4 control; hemocyte UAS only control: 
18.93±0.8285, 14 NMJs from 7 larvae; hemocyte Gal4 only control: 26±1.441, 14 NMJs from 7 larvae; Hml >UAS-trol-RNAi.2: 25.19±0.9841, 16 NMJs 
from 8 larvae; p=0.0005 (<0.001) compared to UAS control; p=0.8242 compared to Gal4 control; hemocyte and fat body UAS only control: 23.14±1.181, 
14 NMJs from 7 larvae; hemocyte and fat body Gal4 only control: 24.25±0.8972, 12 NMJs from 6 larvae; c564 >UAS-trol-RNAi.2: 23.44±0.9999, 16 
NMJs from 8 larvae; p=0.9705 compared to UAS control; p=0.8149 compared to Gal4 control. (C) Representative images of muscle 4 NMJs stained for 
Perlecan and Hrp in control (TrolGFP,UAS-trol-RNAi.1) or trol RNAi knockdown by elavC155, elavC155 and mef2-Gal4, or repo-Gal4 (one copy of UAS and 
Gal4 constructs). (D–G) Line scanning profiles of Perlecan (D,F) or Hrp (E,G) mean fluorescent intensity through axons (D,E) or synaptic boutons (F,G) at 
muscle 4 in segment A4. Measurements are color-coded as indicated: control (green), trol RNAi in neurons (magenta), neurons and muscles (blue), 
or glia (light blue). No reduction in Perlecan around nerves or on the muscle surface surrounding boutons was observed compared with tubulin-Gal4 
knockdown (Figure 1F–I, replicated here (‘All cells’) for comparison).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw Values and Statistics for Figure 5 on Cell-type Specfic Trol Knockdown.

Figure supplement 1. Overexpression of Perlecan in trolnull motoneurons does not rescue synaptic retraction phenotypes.

Figure supplement 1—source data 1. Raw values and statistics for Figure 5—figure supplement 1 on cell-type specific trol rescue.

Figure 5 continued
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Figure 6. Enhanced muscle contraction does not exacerbate synaptic retraction in trol mutants. (A) Representative images of muscle 4 NMJs at 
segment A3 in trol (trolnull/y;+;+) and trol; MhcS1 (trolnull/y;MhcS1/+;+) larvae stained for Cpx (magenta) and Dlg (yellow). Examples of intact and retracted 
NMJs are shown for both genotypes. Brightness for images of retracted NMJs was enhanced to show residual synaptic material. (B) Quantification of 
Dlg +Ib bouton number from trol and trol; MhcS1 muscle 4 NMJs at segment A3. Each point represents the number of boutons at one NMJ, with mean 
bouton number indicated with the solid black line. Quantification of bouton number: trol: 10.5±1.6, 19 NMJs from 10 larvae; trol; MhcS1: 11.7±1.5, 19 
NMJs from 10 larvae, p=0.597. (C) Representative images of muscle 4 NMJs stained for Perlecan, Hrp and GluRIIC in control (trolGFP/y;+;+) or MhcS1 
(trolGFP/y;MhcS1/+;+.) larvae. (D,E) Line scanning profiles of Perlecan and Hrp fluorescent intensity through axons (D) or synaptic boutons (E) at muscle 4 
in segment A4. For both axons and boutons, line profiles from 12 control NMJs from 6 larvae and 10 MhcS1 NMJs from 5 larvae were averaged. Control 
measurements are denoted in green and MhcS1 in orange.

The online version of this article includes the following source data for figure 6:

Source data 1. Raw Values and Statistics for Figure 6 on Trol - Mhc Interactions.
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Figure 7. NMJ loss occurs in a temporally coordinated manner across abdominal hemisegments in trol mutants. (A) Representative images of larval 
hemisegments in four control (trolnull,vGlut-Gal4/+;+;UAS-10xGFP/+, left panels) or trolnull (trolnull,vGlut-Gal4/y;+;UAS-10xGFP/+, right panels) larvae 
expressing 10X-GFP in motoneurons (green) and stained for Phalloidin to label muscle Actin (red). (B) Area of listed NMJs (muscle 6/7, muscle 4, muscle 
1) in trol segment A2 as a percentage of mean control NMJ area. Percent area is largely consistent across NMJs along the hemisegment, indicating 

Figure 7 continued on next page
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Mutations in trol cause axonal damage independent of the Wallerian 
degeneration pathway
Prior studies indicated disruptions to the microtubule cytoskeleton often proceed NMJ loss in other 
synaptic retraction mutants (Eaton et al., 2002; Pielage et al., 2005). Given loss of Perlecan compro-
mises the neural lamella, we examined axonal morphology in trolnull mutants by visualizing the axonal 
and synaptic microtubule network with immunostaining for Futsch, the Drosophila homolog of micro-
tubule associated protein 1B (MAP1B) (Hummel et  al., 2000). Microtubule bundles in MN axons 
innervating muscle 4 were examined in larvae expressing vGlut-Gal4; UAS-10xGFP or UAS-myrRFP. 
Microtubules in heterozygous trolnull/+ control larvae formed filamentous tracks within axons that 
extended into synaptic boutons (Figure 9A). In contrast, trolnull axons contained fragmented and non-
continuous microtubule tracks or lacked Futsch staining altogether at branch points where the axon 
exited towards the muscle (Figure  9A). Quantification of Futsch staining intensity in trolnull axons 
revealed a significant reduction (Figure 9B, p<0.0001). Similar defects were observed within synaptic 
terminals, where NMJs undergoing retraction lacked Futsch staining or displayed fragmented micro-
tubules (Figure 9A). These data indicate disruptions to the microtubule cytoskeleton within trolnull 
axons and NMJs accompany synaptic retraction.

To determine if axons showed more severe defects in morphology, axon bundles and microtu-
bules were imaged at different developmental timepoints. In mature 3rd instar controls, axon bundles 
have defined boundaries with smooth tracks of Futsch + microtubules (Figure 9C). In contrast, trolnull 
axon bundles displayed progressive defects throughout larval development. 2nd instar trolnull larvae 
had some axonal swellings, small RFP + protrusions beyond the normal nerve boundary, and slightly 
twisted and disorganized Futsch + microtubule tracts (Figure 9C). By early 3rd instar, nerve bundles 
were disorganized, with numerous protrusions and tangled microtubules (Figure 9C). At the mature 
3rd instar stage, some axon bundles were entirely severed, with large tangled nets of disorganized 
Futsch at the ends of severed nerves (Figure 9C–D), similar to previously described retraction balls 
that form after axonal injury in mammals (Cajal, 1928). When nerve bundles in a hemisegment were 
severed, NMJs in that hemisegment displayed severe retraction. Single motoneuron labeling with a 
MN1-Ib Gal4 driver (Aponte-Santiago et al., 2020) expressing UAS-CD4-TdT to label axons in trolnull 
larvae revealed discontinuous axon membrane labeling (Figure 9E). The time course of these deficits 
suggests that axonal damage and breakage occurs upstream of synapse loss, given that 2nd instar 
trolnull larvae have normal synaptic area but display altered axonal structure (Figure 9C–D, Figure 3B).

Loss of distal axons following damage is a well-known trigger for neurodegeneration in both inver-
tebrates and vertebrates (Gerdts et al., 2016; Perlson et al., 2010). Neurite loss, synaptic retraction 
and eventual neuronal death following axonal damage often proceeds through a defined molecular 
cascade known as Wallerian degeneration (Coleman and Höke, 2020; Conforti et al., 2014; Llobet 
Rosell and Neukomm, 2019; Luo and O’Leary, 2005; Sambashivan and Freeman, 2021; Wang 
et al., 2012). Inhibiting this protein cascade promotes distal axon survival following injury in multiple 
systems (DiAntonio, 2019; Fang et al., 2012; Figley et al., 2021; Gerdts et al., 2015; Gilley et al., 
2017; Gilley et al., 2015; Llobet Rosell et al., 2022; Neukomm et al., 2017; Sasaki et al., 2016). To 
determine whether NMJ loss in trolnull mutants utilizes the Wallerian degeneration signaling cascade, 
an established RNAi inhibitor of an upstream component of the pathway, dSarm (Gerdts et al., 2015; 
Gerdts et al., 2013; Osterloh et al., 2012), was expressed in trolnull MNs. Inhibition of this pathway did 
not rescue distal axon maintenance, as trolnull larvae expressing dSarm RNAi still had reduced synaptic 
bouton number (P=0.5387 between trol and Wallerian degeneration inhibition conditions), with >80% 
of NMJs displaying postsynaptic footprints associated with synaptic retraction (Figure 9F–H). These 
data indicate Drosophila MNs undergo axonal degeneration and synaptic retraction in trolnull mutants 
independent of the Wallerian degeneration pathway. Together, we conclude that loss of Perlecan 
disrupts the neural lamella, leading to axonal damage that causes cytoskeletal disruption and synaptic 

synapses retract or are maintained together with their hemisegment. (C) Area of listed NMJs (muscle 6/7, muscle 4, muscle 1) in trol segment A3 as a 
percentage of mean control NMJ area.

The online version of this article includes the following source data for figure 7:

Source data 1. Raw Values and Statistics for Figure 7 on Hemi-segment Coordinated NMJ Retraction.

Figure 7 continued
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Figure 8. Loss of Perlecan disrupts the neural lamella. (A) Representative images of muscle 4 NMJs in control 
(trolnull/+;vkgGFP/+;+) and trolnull (trolnull/y;vkgGFP/+;+) larvae stained for Vkg (yellow), Hrp (cyan), and GluRIIC 
(magenta). Images of intact and retracted trol NMJs are shown. White lines in Vkg panels indicate borders for 
quantification of axon bundle fluorescence in panels C and D. (B) Representative cross-sections of control (top) 

Figure 8 continued on next page
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retraction in a temporally coordinated manner across individual hemisegment nerve bundles during 
larval development (Figure 10).

Discussion
In this study, we identified a role for the ECM protein Perlecan in regulating the structure and integ-
rity of the neural lamella surrounding segmental nerve bundles in Drosophila larvae. Loss of Perlecan 
caused defects in neural lamella ECM function, with reduced thickness of the lamella based on staining 
for the type IV collagen Vkg. In addition, Vkg accumulated at aberrant sites along nerve bundles, 
with neuronal axons present outside of their normal boundary and within neural lamella protrusions. 
Although MNs formed functional NMJs in the absence of Perlecan, these synapses destabilized and 
rapidly retracted during later stages of larval development. Defects in axonal morphology and disrup-
tions to the microtubule cytoskeleton were present before NMJs retracted, suggesting insults to 
axonal integrity and function were early events triggering synaptic retraction in trol mutants.

The normal development of Drosophila larval MNs and NMJs in trol mutants, followed by desta-
bilization and subsequent breakdown, is consistent with a late role for Perlecan in ECM function and 
stability described in other systems (Hayes et al., 2022). In vertebrates, Perlecan loss causes degener-
ation of the developing heart only after pumping begins (Costell et al., 1999). The C. elegans Perlecan 
homolog Unc-52 regulates a late stage of muscle-epidermis attachment (Rogalski et  al., 2001; 
Rogalski et al., 1995) and can promote ectopic presynaptic growth after synapse formation when 
other ECM components are missing (Qin et al., 2014). Within developing Drosophila egg chambers, 
Perlecan and type IV Collagen function to establish mechanical properties of the ECM, protecting the 
egg from osmotic stress (Töpfer et al., 2022). In some contexts, Perlecan and type IV Collagen have 
opposing roles in regulating ECM rigidity (Pastor-Pareja and Xu, 2011; Skeath et al., 2017). Within 
the neural lamella surrounding the Drosophila VNC and brain, Perlecan acts to reduce ECM stiffness 
established by Vkg and β-integrin (Skeath et al., 2017). EM imaging of the VNC neural lamella in 
trol mutants demonstrates a much thinner ECM (Skeath et al., 2017), consistent with reduced Vkg 
thickness around larval nerve bundles identified in this study. Studies in Drosophila embryos indicate 
Perlecan is a late delivered component of BMs and ECMs, requiring type IV Collagen for its incorpo-
ration into the matrix (Matsubayashi et al., 2017; Pastor-Pareja and Xu, 2011). Together, these data 
support a key role for Perlecan as a regulator of tissue maturation and maintenance.

Perlecan can be produced in numerous cell types in Drosophila, with specific roles requiring 
secretion from neurons (Cho et  al., 2012), muscles (Kamimura et  al., 2013), glia (Skeath et  al., 
2017), hemocytes and fat body (Isabella and Horne-Badovinac, 2015; Pastor-Pareja and Xu, 2011; 
Ramos-Lewis et al., 2018), intestinal stem cells (You et al., 2014) and wing imaginal discs (Bonche 
et al., 2021). In contrast to these cases of a single cell type supplying the source of Perlecan, the 
neural lamella’s role in regulating MN axonal and synaptic stability requires Perlecan to act in a non-
cell autonomous role and be secreted from multiple cell types. RNAi knockdown of trol in neurons, 
muscles, glia, fat body, or hemocytes was not sufficient to induce synaptic retraction, in contrast to 
pan-cellular knockdown with tubulin-Gal4. In addition, expression of Perlecan specifically in neurons 
in trol mutants was not sufficient to rescue synaptic retraction phenotypes, in contrast to other char-
acterized retraction mutants where the affected gene acts cell-autonomously (Eaton et al., 2002; 

and trol (bottom) axon bundles with Vkg in yellow and Hrp in cyan. (C) Quantification of mean Vkg fluorescence 
in the axon bundle crossing over muscle 4. Each point represents one axonal segment measurement. (Control: 7 
larvae; n=11; 62.00±4.476; trol: 9 larvae; n=18; 45.04±2.549; P=0.0014). (D) Quantification of the ratio of mean Vkg 
fluorescence divided by mean Hrp fluorescence in the axon bundle crossing over muscle 4. Each point represents 
the ratio for one axonal segment measurement. (Control: 7 larvae; n=11; 1.219±0.08998; trol: 9 larvae; n=18; 
0.7402±0.07467, p<0.001). (E) Representative images of axon bundles stained for Vkg (yellow) and Hrp (cyan) 
exiting the proximal VNC or those located more posteriorly. Control nerve bundles are on the left, with trol nerve 
bundles on the right. White dashed lines indicate the posterior tip of the VNC. White arrows note areas of Vkg 
accumulation and protrusions from the neural lamella.

The online version of this article includes the following source data for figure 8:

Source data 1. Raw Values and Statistics for Figure 8 on Vkg Alterations in Neural Lamella.

Figure 8 continued
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Figure 9. Fragmentation of the microtubule cytoskeleton and axons in trol mutants. (A) Representative images of Ib motoneurons innervating muscle 
4 in control (trolnull,vGlut-Gal4/+;+;UAS-10xGFP/+, left panel) or trol (trolnull,vGlut-Gal4/y;+;UAS-10xGFP/+, right panel) larvae expressing 10X-GFP 
in motoneurons (green) and stained for Futsch to label microtubules (red). White boxes indicate area of axon with Futsch fluorescence quantified in 
B. (B) Quantification of mean Futsch fluorescence in individual axons. Each point represents the average fluorescence in one axon. Quantification of 

Figure 9 continued on next page
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Eaton and Davis, 2005; Graf et al., 2011; Koch et al., 2008; Massaro et al., 2009; Pielage et al., 
2011; Pielage et al., 2008; Pielage et al., 2005). Our data suggest multiple cell types are required 
to secrete Perlecan for proper incorporation and function within the neural lamella, consistent with 
examples where multiple cell types are required to secrete Perlecan for its functional role in several 
contexts (Bonche et al., 2022; Bonche et al., 2021; You et al., 2014).

Following our initial observations of synaptic retraction in trol mutants, we hypothesized that 
mechanical stress caused by repeated muscle contraction during larval crawling might destabilize 
synaptic boutons due to defects in synaptic cleft rigidity. Indeed, Perlecan can act to resist mechanical 
stress during tissue development in Drosophila and other species by providing malleability to the 
ECM and BM (Costell et al., 1999; Farach-Carson et al., 2014; Khalilgharibi and Mao, 2021; Pastor-
Pareja and Xu, 2011; Qin et al., 2014; Ramos-Lewis et al., 2018; Skeath et al., 2017; Töpfer et al., 
2022). However, increasing the mechanical stress of muscle contraction with a previously generated 
hyperactive Mhc mutant in the lab (Montana and Littleton, 2004) did not enhance synaptic retrac-
tion in trol mutants. We also found no role for local regulation of Wg diffusion with the synaptic cleft, 
as blocking presynaptic Wg output did not prevent retraction. The same genetic approach to block 
presynaptic Wg signaling prevented formation of some satellite boutons observed early on in trol 
mutants (Kamimura et al., 2013). As such, the low levels of Perlecan at the NMJ do not appear to be 
the site of action for how it normally prevents synaptic retraction.

Together with the lack of Perlecan enrichment at synaptic boutons, we focused on the neural lamella 
surrounding nerve bundles as a potential site of action in regulating synaptic stability. MN axons are 
under constant tension during larval crawling with fixed points of attachment at somas within the VNC 
and terminal anchors at the NMJ (Fan et al., 2019; Fan et al., 2017; Siechen et al., 2009; Tofangchi 
et al., 2016). Indeed, larval axons degenerated over development in trol mutants. Synaptic micro-
tubules were absent in retracting NMJs, and fragmented microtubules with breaks at the site where 
axons entered the synaptic field were often observed, along with breakage of entire axon bundles 
upstream of NMJs. Imaging of the type IV collagen Vkg, an essential component of ECMs and the 
neural lamella, revealed reduced Vkg thickness and abnormal accumulation of the protein around 
nerve bundles in trol mutants. Axon retraction events were also temporally correlated in individual 
hemisegments, suggesting catastrophic breakdown of the neural lamella in single segmental nerves is 
likely the trigger for axon bundle breakage and loss of the entire nerve bundle.

In summary, this study indicates a critical role for Perlecan in neural lamella integrity that prevents 
axonal degeneration and synaptic retraction in Drosophila MNs. Despite the involvement of axons in 
Perlecan-dependent synaptic retraction, inhibition of Wallerian degeneration did not prevent synapse 
loss in trolnull mutants. Although the morphology of glia involved in wrapping axons and forming the 
blood brain barrier was not characterized, it would not be surprising if they displayed morphological 

mean fluorescence: control: 36725±2679, 14 NMJs from 6 larvae; trol: 11476±675.7, 17 NMJs from 7 larvae, p<0.0001. Multiple abdominal segments 
were imaged. (C) Representative images of VNCs and axon bundles stained for Futsch (green) and expressing MyrRFP (red) in control (trolnull,vGlut-
Gal4/+;UAS-myrRFP/+;+) and trol (trolnull,vGlut-Gal4/y; UAS-myrRFP/+;+) larvae at the indicated stage. Mature 3rd instar control axon bundles have 
continuous tracks of microtubules within intact axons. trol axons show progressive disruption, with early swelling of the axon and mildly twisted 
microtubules (white dashed box depicts location of swollen axon and twisted microtubules shown in inset). The 2nd instar axon bundle image is 
replicated in the next panel to indicate an area of membrane material leaving the axon boundary (white arrow). By late 3rd instar, trol axons are severed 
and nets of tangled microtubules form balls at either end of the axon bundle breakage. (D) Quantification of the number of Futsch nets in mature 3rd 
instar control and trol larvae at multiple developmental stages. Each point indicates the number of Futsch nets in one larvae. (E) Representative images 
of MN1-Ib-Gal4 driving expression of UAS-CD4-TdTomato (red) to visualize single axons and synapses in control (trolnull/+;+;MN1-Ib-Gal4,UAS-CD4-
TdTomato) and trol (trolnull/y;+;MN1-Ib-Gal4,UAS-CD4-TdTomato) 3rd instar larvae. (F) Representative images of larval muscle 4 NMJs stained for Cpx 
(magenta) and Dlg (yellow) in control (+;UAS-dSarm-RNAi/+;+), trol, vGlut-Gal4 (trolnull,vGlut-Gal4/y;+;+) and trolnull expressing dSarm RNAi (trolnull,vGlut-
Gal4/y;UAS-dSarm-RNAi/+,+). Brightness for images of retracted NMJs was enhanced to show residual synaptic material. (G) Quantification of Dlg +Ib 
bouton number at muscle 4 NMJs in segment 4 in control, trol, vGlut-Gal4, and trolnull expressing dSarm-RNAi. Each point represents bouton number 
from one NMJ with the mean indicated by the solid black line. Quantification of bouton number: control: 20.08±1.048, 12 NMJs from 6 larvae; trol, 
vGlut-Gal4: 8.083±2.811, 12 NMJs from 7 larvae, p<0.001 compared to control; trolnull expressing dSarm-RNAi: 5.083±1.667, 12 NMJs from 6 larvae, 
p<0.0001 compared to control, P=0.5387 compared to trolnull. (H) Percentage of control, trol, vGlut-Gal4 or trolnull expressing dSarm-RNAi NMJs with 
footprints from the dataset in F.

The online version of this article includes the following source data for figure 9:

Source data 1. Raw Values and Statistics for Figure 9 on Microtubule Disruption in Trol Mutants.

Figure 9 continued

https://doi.org/10.7554/eLife.88273


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Guss et al. eLife 2023;12:RP88273. DOI: https://doi.org/10.7554/eLife.88273 � 20 of 30

Presynaptic 

Postsynaptic 

Neural lamella

Neuronal membrane 

Microtubules

Wild type

2nd instar trolnull larvae

Early 3rd instar trolnull larvae

Mature 3rd instar trolnull larvae

Mature 3rd instar trolnull larvae

Axon bundles Synapses

Figure 10. Model of progressive axonal and synaptic defects in the absence of Perlecan. In control, axonal bundles (neuronal membrane in cyan) have 
a thick neural lamella (orange) and continuous, straight tracks of microtubules (light green). Synapses have apposed pre- (magenta) and postsynaptic 
(dark green) material. In 2nd instar trolnull larvae, microtubules appear twisted and small protrusions of neuronal membrane and a thinner neural lamella 
are found. In early 3rd instar larvae lacking Perlecan, microtubules are severely disorganized and neural lamella and axonal membrane protrusions are 

Figure 10 continued on next page
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and functional defects due to disruption of the neural lamella that contributes to axonal injury. Both 
glia and the neural lamella can signal or interact directly with MNs (Bittern et al., 2021; Edwards 
et al., 1993; Hunter et al., 2020; Lee and Sun, 2015; Meyer et al., 2014; Stork et al., 2008; Weiss 
et al., 2022), providing multiple avenues by which loss of Perlecan could disrupt axonal integrity. 
Disruptions of interactions that Perlecan normally makes with components regulating the spectrin 
cytoskeleton could also contribute, as α- and β-Spectrin localize to MN axons and RNAi against either 
protein results in synaptic retraction (Pielage et al., 2005). Integrins function as ECM receptors in 
Drosophila (Bittern et al., 2021; Hunter et al., 2020) and provide a direct link between Perlecan and 
the spectrin cytoskeleton. Given hypomorphic Perlecan mutations cause Schwartz-Jampel syndrome 
in humans, a condition characterized by persistent muscle contraction and cartilage and bone abnor-
malities (Arikawa-Hirasawa et al., 2002; Farach-Carson et al., 2014; Nicole et al., 2000), and null 
alleles of Perlecan are incompatible with life (Arikawa-Hirasawa et al., 1999; Costell et al., 1999; 
Farach-Carson et al., 2014; Gubbiotti et al., 2017; Hayes et al., 2022), further characterization of 
the role of this critical ECM protein in axonal and synaptic maintenance will provide further insights 
into its role in tissue integrity.

Materials and methods
Drosophila stocks
Flies were maintained at 18–25°C and cultured on standard medium. 3rd instar larvae were used for all 
experiments unless otherwise noted. Larvae lacking Perlecan were collected at 1st or 2nd instar stage 
and separated from wild type counterparts and placed on petri dishes containing standard medium 
to facilitate survival to 3rd instar stage. Male and female larvae were used depending upon genetic 
background; see figure legends for genotypes. Canton-S (CS) was used as the wild type background 
in heterozygous controls except in the case of Df(1)ED411/+, where the wild type background was 
w1118 (BDSC# 3605). trol strains used include trolnull (Voigt et al., 2002; provided by Brian Stramer 
and Yutaka Matsubayashi), GFP-tagged trol (referred to in text as TrolGFP, KDSC #110–836), trol defi-
ciency (Df(1)ED411, BDSC #8031, 36516), trol overexpression constructs (UAS-trol.RD BDSC #65274, 
UAS-trol.RG BDSC #65273), and trol RNAis (UAS-trol-RNAi.1 VDRC #22642, UAS-trol-RNAi.2 VDRC 
#24549). Gal4 drivers used were: tubulin-Gal4 (BDSC #5138), vGlut-Gal4 (provided by Aaron DiAn-
tonio), elavC155-Gal4 (BDSC #8765), mef2-Gal4 (BDSC #27390), repo-Gal4 (Lee and Jones, 2005), ppl-
Gal4 (BDSC #58768), Lsp-Gal4 (BDSC #6357), Hml-Gal4 (BDSC #6395), c564-Gal4 (BDSC #6982), and 
MN1-Ib-Gal4 (BDSC #40701). Overexpression of constitutively active Shaggy was performed using 
UAS-sggS9A (BDSC #5255). Presynaptic labeling for intravital imaging was performed using CRISPR-
generated nSybGFP (Guan et al., 2020). PSD labeling for intravital imaging was performed using GluRI-
IA-RFP inserted onto chromosome III under the control of its endogenous promoter (provided by 
Stephan Sigrist). The hypercontractive MhcS1 mutation (Montana and Littleton, 2004) was used to 
assess mechanical stress. UAS-dSarm-RNAi (VDRC #105369, provided by Aaron DiAntonio) was used 
to inhibit Wallerian degeneration in the trolnull background. UAS-10xGFP (Poukkula et  al., 2011), 
UAS-CD4-TdTomato (BDSC #77139), and UAS-myrRFP (BDSC #7118) were used to visualize individual 
motoneuron axon anatomy. VikingGFP (DGRC #110692, G00454 original FlyTrap identifier, provided by 
David Bilder) was used to visualize the neural lamella surrounding peripheral nerves.

Immunocytochemistry
3rd instar larvae were filleted in Ca2+-free HL3.1 solution (in mM: 70 NaCl, 5 KCl, 4 MgCl2, 10 NaHCO3, 
5 trehalose, 115 sucrose, 5 HEPES, pH 7.18) and fixed in 4% paraformaldehyde for 15 min, washed in 
Ca2+ -free HL3.1 twice and 0.1-PBT (1 x PBS with 0.1% Triton X-100) once, then blocked in 5% normal 
goat serum (NGS) in 0.5-PBT (1 x PBS with 0.5% Triton X-100) for 30 min at room temperature or 
overnight at 4 °C. Samples were incubated overnight at 4 °C in blocking solution containing primary 
antibodies, and then washed three times with 0.1-PBT. Samples were incubated for 2  hr at room 

larger. Some presynaptic material is lost from synapses in the first stages of retraction. By the mature 3rd instar larval stage, axons have broken entirely, 
and tangled nets of microtubules are observed on both sides of the breakage. Synapses are retracting and continue to retract until few or no boutons 
remain.

Figure 10 continued
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temperature in blocking solution containing fluorophore-conjugated secondary antibodies. Primary 
antibodies used in this study were mouse anti-Brp at 1:500 (Nc82 DSHB, Iowa City, IA), rabbit anti-
GluRIIC at 1:2000 (Jorquera et al., 2012), rabbit anti-Cpx at 1:5000 (Huntwork and Littleton, 2007), 
mouse anti-Dlg at 1:500 (4F3 DSHB, Iowa City, IA), mouse anti-Futsch (22C10 DSHB, Iowa City, IA) and 
mouse anti-GFP at 1:1000 (#A-11120, Thermo Fisher Scientific, Waltham, MA). Secondary antibodies 
used in this study were goat anti-mouse Alexa Fluor 488-conjugated IgG at 1:500 (#A-32723, Thermo 
Fisher Scientific, Waltham, MA), goat anti-rabbit Alexa Fluor 568-conjugated IgG at 1:500 (#A-11011, 
Thermo Fisher Scientific, Waltham, MA), goat anti-mouse 555-conjugated IgG at 1:500 (#A-32727, 
Thermo Fisher Scientific, Waltham, MA) and goat anti-mouse 647-conjugated IgG at 1:500 (#A-32728, 
Thermo Fisher Scientific, Waltham, MA). For Hrp staining, samples were incubated in DyLight 649 or 
488 conjugated Hrp at 1:500 (#123-605-021, #123-485-021; Jackson ImmunoResearch Laboratories, 
West Grove, PA, USA). For Phalloidin staining, samples were incubated in Texas Red-X Phalloidin 
at 1:500 (#T7471, Thermo Fisher Scientific, Waltham, MA). Samples were mounted in Vectashield 
Vibrance hard setting antifade mounting medium (#H-1700, Vector Laboratories, Burlingame, CA).

Confocal imaging and imaging data analysis
Images of fixed NMJs were acquired on a Zeiss Pascal confocal microscope (Carl Zeiss Microscopy, 
Zena, Germany) using a 63 X Zeiss pan-APOCHROMAT oil-immersion objective with a 1.3 NA. 3D 
image stacks were merged into a maximum intensity projection using Zen (Zeiss) software. Abdominal 
segments and muscle numbers imaged are listed in figure legends or in results text. Boutons were 
counted manually using the parameters specified in each experiment (e.g. Dlg +or Hrp/GluRIIC+). 
Severe retraction was calculated by taking the mean bouton number of control genotype(s) in an 
individual experiment and calculating the standard deviation. A bouton number of <mean – 2*SD and 
presence of postsynaptic footprints indicated severe retraction. Line profiles of fluorescence intensity 
across axons or boutons were generated in Volocity 3D Image Analysis software (PerkinElmer) using 
the ‘measure line profile’ algorithm in Volocity 3.2 or 5 software. Lines were drawn between 4.17–
4.22 µM for axon line profiles and 2.4–2.6 µM boutons were chosen and lines extended 2 µM in either 
direction for bouton line profiles. Mean Vkg and Hrp intensity were calculated from maximum intensity 
projections using Volocity 3D Image Analysis software with the “Find Objects” algorithm and a Vkg 
threshold that identified neural lamella area in both genotypes. Images of live NMJs and live and fixed 
axons were acquired on a Zeiss Axio Imager 2 with a spinning-disk confocal head (CSU-X1; Yokagawa) 
and ImagEM X2 EM-CCD camera (Hamamatsu) using an Olympus LUMFL N 60 X water-immersion 
objective with a 1.10 NA. Low magnification images of fixed larvae were acquired on a Zeiss LSM 800 
confocal microscope using a 10 x objective. A 3D image stack was acquired for each axon, NMJ, or 
larvae imaged. Futsch nets were counted manually. Mean fluorescence intensity of Futsch signal was 
calculated from the maximum intensity projection using Volocity 3D Image Analysis software. A 5 μm2 
ROI at the point of individual axon exit from the nerve bundle (muscle branch point) was generated 
and Volocity calculated the mean intensity within this ROI.

Live intravital imaging and data analysis
Larvae were anesthetized with SUPRANE (desflurane, USP) from Amerinet Choice. Larvae were 
covered with a thin layer of halocarbon oil and incubated with a small paper towel containing Suprane 
for 1–2  min in a fume hood. Anesthetized larvae were arranged ventral side up on a glass slide 
between spacers made by tape. Larvae were covered with a fresh thin film of halocarbon oil and then 
with a cover glass. After each imaging session, larvae were placed in numbered chambers with food 
at room temperature. The same data acquisition settings were used to visualize NMJs at each session. 
Larvae were imaged every 24 hr. Area of pre- and postsynaptic material was calculated from maximum 
intensity projections using Volocity 3D Image Analysis software with the ‘Find Objects’ algorithm and 
a pre- or postsynaptic threshold that identified presynaptic boutons or postsynaptic receptor fields in 
both genotypes. The same threshold was used to analyze images from each day of analysis.

Two-electrode voltage clamp electrophysiology and post-hoc imaging
Postsynaptic currents were recorded with a –80 mV holding potential. Experiments were performed in 
room temperature HL3.1 saline solution as previously described with final [Ca2+] adjusted to 0.3 mM 
(Jorquera et al., 2012). Recordings were performed at muscle 6 of segments A3 and A4 in 3rd instar 
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larvae. Motor axon bundles were cut and individual bundles were suctioned into a glass electrode for 
stimulation. Action potentials were stimulated at 0.33 Hz using a programmable stimulator (Master8, 
AMPI; Jerusalem, Israel). Data acquisition and analysis was performed using Axoscope 9.0 and 
Clampfit 9.0 software (Molecular Devices, Sunnyvale, CA, USA). Inward currents are labeled on a 
reverse axis. For post-hoc Hrp staining, samples were incubated for 5 min in DyLight 488 conjugated 
Hrp (2 µL of stock solution applied directly to filleted larvae and washed twice with HL3.1 before 
imaging) (#123-485-021; Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Live imaging 
was performed as described above.

Bioinformatics
NCBI BLAST and NCBI Gene search were used to identify Perlecan homologs and to select the 
longest isoforms of Perlecan, Agrin, and Carrier of Wingless (Cow) in the genomes of D. melano-
gaster, C. elegans, C. intestinalis, D. rerio, M. musculus, H. sapiens, and T. adhaerens. Clustal Omega 
multiple sequence alignment (with default parameters) was used to align all of the sourced sequences 
(Madeira et al., 2022). Jalview was used to generate a phylogenetic tree using a BLOSUM62 matrix 
and average distance clustering. Sequences used for alignment and phylogenetic tree included:

Protein Species
Accession number 
(NCBI)

Carrier of 
Wingless

D. melanogaster NP_001262857.1

Agrin H. sapiens XP_005244806.1

M. musculus XP_006538554.1

C. intestinalis XP_026691460.1

D. rerio XP_021325505.1

C. elegans NP_001022152.3

T. adhaerens XP_002113830.1

Perlecan H. sapiens XP_011539620.1

M. musculus XP_030109089.1

C. intestinalis XP_018666843.1

D. rerio XP_021325650.1

D. melanogaster NP_001027034.2

C. elegans NP_001364664.1

T. adhaerens AKE31564.1

Statistical analysis
Graphing and statistical analysis were performed using GraphPad Prism (San Diego, CA, USA).

For comparisons between two groups, statistical significance was determined using a Student’s 
t-test. For comparisons between three of more groups, statistical significance was determined using 
a one-way ANOVA followed by multiple comparisons with p-values corrected for multiple hypoth-
esis testing using either Tukey, Šidák, or Dunnett’s multiple comparisons tests (individual test chosen 
based on Prism recommendation). Figures depict the mean of each distribution and individual data 
points. N indicates the number of individual NMJs analyzed unless otherwise noted. Number of larvae 
per group, mean ± SEM, n, and the p values are indicated in figure legends. Asterisks in the figures 
denote p-values of: *, p≤0.05; **, p≤0.01; ***, p≤0.001; and ****, p≤0.0001. The Source Data and 
Statistical Analysis file contains spreadsheets for each figure and includes all primary source data and 
statistical comparisons.
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