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Summary
Background Vaccination of infants with pneumococcal conjugate vaccines (PCV) is recommended by the World
Health Organization. Evidence is mixed regarding the differences in immunogenicity and efficacy of the different
pneumococcal vaccines.

Methods In this systematic-review and network meta-analysis, we searched the Cochrane Library, Embase, Global
Health, Medline, clinicaltrials.gov and trialsearch.who.int up to February 17, 2023 with no language restrictions.
Studies were eligible if they presented data comparing the immunogenicity of either PCV7, PCV10 or PCV13 in
head-to-head randomised trials of young children under 2 years of age, and provided immunogenicity data for at
least one time point after the primary vaccination series or the booster dose. Publication bias was assessed via
Cochrane’s Risk Of Bias due to Missing Evidence tool and comparison-adjusted funnel plots with Egger’s test.
Individual participant level data were requested from publication authors and/or relevant vaccine manufacturers.
Outcomes included the geometric mean ratio (GMR) of serotype-specific IgG and the relative risk (RR) of
seroinfection. Seroinfection was defined for each individual as a rise in antibody between the post-primary
vaccination series time point and the booster dose, evidence of presumed subclinical infection. Seroefficacy was
defined as the RR of seroinfection. We also estimated the relationship between the GMR of IgG one month after
priming and the RR of seroinfection by the time of the booster dose. The protocol is registered with PROSPERO,
ID CRD42019124580.

Findings 47 studies were eligible from 38 countries across six continents. 28 and 12 studies with data available were
included in immunogenicity and seroefficacy analyses, respectively. GMRs comparing PCV13 vs PCV10 favoured
PCV13 for serotypes 4, 9V, and 23F at 1 month after primary vaccination series, with 1.14- to 1.54- fold significantly
higher IgG responses with PCV13. Risk of seroinfection prior to the time of booster dose was lower for PCV13 for
serotype 4, 6B, 9V, 18C and 23F than for PCV10. Significant heterogeneity and inconsistency were present for most
serotypes and for both outcomes. Two-fold higher antibody after primary vaccination was associated with a 54%
decrease in risk of seroinfection (RR 0.46, 95% CI 0.23–0.96).

Interpretation Serotype-specific differences were found in immunogenicity and seroefficacy between PCV13 and
PCV10. Higher antibody response after vaccination was associated with a lower risk of subsequent infection. These
findings could be used to compare PCVs and optimise vaccination strategies.
*Corresponding authors. Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford OX3 7LE, UK.
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Research in context

Evidence before this study
The World Health Organization (WHO) recommends
vaccination of all children worldwide with at least 3 doses of a
licensed pneumococcal conjugate vaccine (PCV) in infancy and
does not recommend one product over another. A 2017
systematic review of pneumococcal vaccines which reviewed
all data on different pneumococcal vaccine products, included
five head-to-head studies comparing PCV13 vs PCV10. This
review identified differences in immunogenicity between
PCV10 and PCV13 after the primary series and after the
booster dose, showing that PCV13 induced higher antibody
than PCV10 in some common serotypes at both time points,
e.g. serotypes 1, 5, 7F and 23F, while evidence was mixed for
other serotypes. The review did not contain a meta-analysis,
or head-to-head comparisons of the protection provided by
different PCVs.

Added value of this study
We estimated serotype-specific difference in antibody
responses and seroinfection between PCV13 and PCV10 and
showed that for some serotypes, PCV13 induces higher

antibody responses. Higher antibody responses corresponded
with higher levels of protection against seroinfection (a proxy
for carriage) such that in our models comparing two vaccines,
a two-fold higher antibody response with one vaccine
resulted in a 54% reduction in seroinfection (Relative Risk
(RR) 0.46, 95% CI 0.23–0.96). Additionally, we found that
PCVs from different manufacturers that produce equivalent
levels of antibody provide comparable levels of protection
against subclinical infections.

Implications of all the available evidence
Our findings suggest that PCV13 provides better protection
against subclinical infection for some, but not all serotypes.
Evidence from this network meta-analysis could help to guide
vaccination strategies, and we recommend considering these
serotype-specific differences in efficacy in future PCV health-
economic evaluation. These findings also emphasise the
importance of higher antibody responses when considering
the rollout of new PCVs especially for serotypes that have
suboptimal protection with current vaccines.
Introduction
Streptococcus pneumoniae (pneumococcus) causes severe
disease including bacterial pneumonia, meningitis, and
sepsis, leading to substantial morbidity and mortality
worldwide, with the highest disease burden being in
young children and older adults.1,2 There have been
more than 100 serotypes of pneumococcus documented
as of 2020, not all of which cause severe disease, and the
distribution of these serotypes varies substantially be-
tween countries.1,2 Three pneumococcal conjugate vac-
cines (PCV)s, have been widely deployed in the past two
decades: PCV7 (Prevnar, Pfizer), PCV10 (Synflorix,
GSK) and PCV13 (Prevenar 13, Pfizer), resulting in
substantial reduction in disease.1,3 New PCVs such as
PCV15, PCV20 and PCV10–SII have been recently
licensed but have yet to be widely implemented.

Currently, three PCVs are recommended by the
World Health Organization (WHO) for infants world-
wide: PCV13, PCV10, and a new 10-valent PCV manu-
factured by Serum Institute of India (PCV10-SII,
PNEUMOSIL) which was prequalified by WHO in
December 2019.4–6 PCV13 contains three additional se-
rotypes (3, 6A and 19A) to the 10 serotypes included in
PCV10 (serotype 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and
23F). PCV10-SII covers serotypes 1, 4, 5, 6B, 7F, 9V, 14,
18C, 19F and 23F. The licensure of PCVs is bench-
marked against anti-capsular IgG antibody responses
above a threshold of 0.35 mcg/mL for all vaccine sero-
types, which was established using data from three
randomised controlled efficacy trials.7

The WHO does not preferentially endorse one PCV
over another. Both PCV13 and PCV10 have been shown
to provide both direct and indirect protection against
pneumococcal pneumonia, invasive pneumococcal dis-
ease and nasopharyngeal carriage.3,6,8 Although there are
10 common serotypes in these two vaccines the content
of the vaccines differ, with different carrier proteins
used in the conjugation process, as well as different
amounts of polysaccharide, and these differences may
contribute to differences in protection. In 2017 a sys-
tematic review of head-to-head studies comparing
PCV10 vs PCV13 showed differences in anti-
pneumococcal IgG responses between vaccines.9 How-
ever, no meta-analysis was included in this review and
there remains uncertainty over whether one vaccine is
consistently more immunogenic, and whether
www.thelancet.com Vol 61 July, 2023
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differences in immunogenicity result in clinically
important differences in protection.9 Large head-to-head
randomised controlled trials of PCVs with invasive
pneumococcal disease as the primary outcome are not
feasible. Studies that assessed the impact of different
PCVs on nasopharyngeal carriage have reported very
few or no differences.10,11 Episodes of nasopharyngeal
carriage often last only a few days or weeks therefore
cross-sectional swabbing studies may misclassify par-
ticipants when swabs are not taken at the time of
infection, resulting in underpowered comparisons. We
previously used seroinfection as an outcome for esti-
mating correlates of protection for PCVs against pneu-
mococcal carriage,12 where seroinfection is defined as an
increase in antibody levels between the primary vacci-
nation series (typically at 5–7 months of age) and the
booster dose (typically at 9–18 months of age). Seroin-
fection can be regarded as evidence of exposure to the
pathogen and a resultant sub-clinical infection, given
antibody responses wane rapidly during this period
otherwise.12

In this study, we meta-analysed individual partici-
pant data from head-to-head studies of PCVs to compare
the immunogenicity and relative risk of seroinfection
(seroefficacy) of PCV10 with PCV13 for each serotype.
We aimed to determine if serotype-specific immune
responses were higher for either vaccine, and whether
this resulted in greater protection again seroinfection
for the same serotypes. In addition, we explored the
overall relationship between the higher immune
response and protection against seroinfection.
Methods
Our systematic review is reported in line with the rec-
ommendations from the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses statement plus
the extension statements for network and individual
patient data systematic reviews.13–15

Primary and secondary objectives
The primary objective was to compare the immunoge-
nicity of PCV10 vs PCV13 for each serotype contained in
the vaccines. The secondary objectives were: 1) to
compare the seroefficacy of PCV10 vs PCV13 for each
serotype contained in the vaccines, 2) for PCV10 and
PCV13 separately, to estimate immunogenicity and
seroefficacy in comparison to the older PCV7 vaccine,
and 3) to determine how the comparisons of immuno-
genicity and efficacy of PCV10 to PCV13 are affected by
the co-administration of different routine vaccines.

Systematic review
We conducted a systematic review identifying studies
that compared the immunogenicity of licensed PCVs for
infants or children in head-to-head randomised trials.
The PCVs included in the review were PCV13, PCV10
www.thelancet.com Vol 61 July, 2023
and PCV7. The last was included so that we could
compare PCV13 and PCV10 indirectly through them
each being compared with PCV7 for the same serotypes.

Search strategy
The search strategy was devised and conducted by an
information specialist (NR). Five databases and two trial
registers were searched from database inception to 17th
February 2023. No date or language limits were applied.
Full search criteria are listed in the Supplemental
material.

Study selection
Two reviewers (JM, NP) independently reviewed the title
and abstract of each reference and identified potentially
relevant references. Two reviewers (JM, NP) indepen-
dently selected studies to be included in the review from
retrieved full-text papers using predetermined inclusion
criteria. Disagreements about study inclusion were
resolved by a third reviewer (MV).

Randomised controlled trials were included if they
provided head-to-head comparisons of either PCV7,
PCV10, or PCV13 among infants and children less than
2 years of age, and if they provided estimates on anti-
body responses (serotype-specific anti-pneumococcal
IgG) to PCVs for at least one time point of 1) between
4 and 6 weeks after the primary vaccination series, and/
or one-month after a booster vaccination. Trials were
eligible only if they included at least one of the three
vaccines of interest (PCV10, PCV13, PCV7. Trials were
excluded that enrolled immuno-compromised (e.g.
HIV) children.

Data retrieval
For all eligible trials, the publication authors/data
owners were approached for trial and individual partic-
ipant level data. Baseline characteristics and potential
effect modifiers were extracted for participants’ age, sex,
country, immunogenicity assays, co-administered study
vaccines and vaccine schedules.

Aggregate data from publications were extracted if
individual participant data were not available. Data
extraction of published results and individual partici-
pant level data were independently completed by SF and
MV. Individual participant data completeness was
examined, and baseline characteristics distribution were
compared between studies with and without individual
participant data.

Assessment of risk of bias in included studies
Risk of bias in results of the included studies was
assessed independently by two reviewers (JM, NP) using
the Cochrane Risk of Bias Tool (RoB 2).16 This considers
the risk of bias in five domains (randomisation process,
deviations from the intended interventions, missing
outcome data, measurement of the outcome, selection
of the reported result) and generates an overall risk of
3
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bias. The possible risk of bias judgments for each
domain, and overall, are ‘low risk of bias’, ‘some con-
cerns’ and ‘high risk of bias’. Disagreements between
reviewers were resolved by consensus. Results for the
risk of bias assessment were presented using robvis
(visualisation tool).17 Publication bias was assessed via
Cochrane’s Risk Of Bias due to Missing Evidence tool
and comparison-adjusted funnel plots with Egger’s test.
Full details are given in the Supplemental material.

Assessment of heterogeneity and inconsistency of
network meta-analysis
To assess the statistical heterogeneity and inconsistency
of NMA, we evaluated the transitivity assumption by
visually comparing the distribution of the baseline
characteristics and potential effect modifiers across the
different pairwise comparisons. We assessed the pres-
ence of heterogeneity using estimated values of the
heterogeneity variance parameters (τ) and the I-squared
statistic and its 95% confidence interval that measures
the percentage of variability in point estimates that
cannot be attributed to random error, and estimated the
Q statistic. We evaluated the inconsistency, i.e. coher-
ence between direct and indirect evidence, using a Q
statistic,18 which measures the deviation from consis-
tency. The random-effects model was fitted following
the graph-theoretical approach and using the GMR and
RR as effect estimate with 95% CI.19

Some individual participant level data were missing
due to laboratory errors, insufficient blood sample vol-
ume or participant withdrawal. Data were not imputed
and missing data were considered missing-completely-
at-random. Individual participant level data were ana-
lysed according to the vaccine received.

Outcomes
The primary outcome was serotype-specific anti-
capsular pneumococcal immunoglobulin G. Antibodies
measured one-month after the primary series of 1–3
doses in infancy, prior to a booster dose, and one-month
post-booster dose were included. The outcome for
seroefficacy analyses was the difference between log10-
transformed serotype-specific anti-pneumococcal IgG
measured one-month after the primary series of doses
and prior to administration of the booster dose.

Statistical analysis
Immunogenicity
Each trial that had individual participant level data
available was analysed to obtain the log of the ratio of
geometric means (log-GMR) and its standard error, for
each serotype and time point of interest. If individual
participant data were unavailable, published GMR es-
timates and confidence intervals were used. The esti-
mates combined from individual participant data and
aggregate data formed the input data for data
synthesis.
Seroefficacy
As a binary variable, seroinfection was equivalent to 1 if
antibody levels increased by any amount, or 0 otherwise.
To assess the seroefficacy of the PCVs, we calculated the
proportion of participants with seroinfection in each
vaccine group and calculated seroefficacy as the relative
risk (RR) of seroinfection. When no seroinfection
occurred in any group (numerator of absolute risk was
0), a small nonzero value (0.5) was added to both
numerator and denominator to allow estimation of the
RR. The log-RRs and their standard errors were then the
input data for evidence synthesis. Only trials supplying
individual participant data were included in seroefficacy
analyses.

Data synthesis by network meta-analysis and meta-analysis
Serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F were con-
tained in all three vaccines, therefore evidence could be
synthesized using a network meta-analysis of all com-
parisons between PCVs, including PCV7 (see
Supplementary Fig. S1). Serotypes 1, 5, 7F, 3, 6A and
19A are only included in PCV10 and PCV13 vaccines
therefore for these serotypes evidence was synthesized
by meta-analysing studies that directly compared PCV13
vs PCV10.

For the analysis of immunogenicity, we synthesized
evidence for all PCV13 serotypes, However, seroefficacy
could only be assessed in situations where the serotypes
of interest were included in both vaccines and therefore
seroefficacy of serotypes 3, 6A, and 19A could not be
assessed as these are only included in one vaccine
(PCV13). Sensitivity analysis is described in
Supplementary material.

Association between ratios of immunogenicity and
seroefficacy
To estimate separate serotype-specific relationships be-
tween the GMRs and RRs, study level data were com-
bined regressing the RR of seroinfection on the GMR
using linear regression models weighted by the sample
size of the study. Weighted Pearson correlation co-
efficients were calculated.

To estimate the overall association between antibody
GMR and RR across all serotypes, we fitted a mixed-
effect model regressing study-level RRs of seroinfec-
tion on GMRs across serotypes, weighted by the sample
size of each study. Fixed-effects included GMR, sero-
type, and interactions between GMR and serotype
(allowing serotype-specific association), while study was
included as a random effect. As a sensitivity analysis, we
reversed both RRs and GMRs estimated (i.e. PCV13 vs
PCV7 was changed to PCV7 vs PCV13). By shifting
comparators, we aimed to evaluate of the stability of the
association estimates.

To evaluate if differences between products from two
different manufacturers change the relationship be-
tween antibody levels and protection, we assessed the
www.thelancet.com Vol 61 July, 2023
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association between immunogenicity and seroefficacy
restricting to studies that compared PCV13 vs PCV10
and PCV7 vs PCV10 only (comparisons between PCV13
and PCV7 were removed from analysis as these vaccines
are from the same manufacturer). We examined
whether PCVs of different manufacturers that produce
equivalent levels of antibody (GMR = 1) also provide
comparable seroefficacy (RR = 1).

All analyses were performed in R 4.2.2. NMA and
meta-analysis were conducted using the netmeta and
metafor packages.18,19

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the paper.
Results
Database registry and hand searches identified 4699
publication records (Fig. 1), of which 47 studies (78
publication reports) satisfied our eligibility criteria.10,11,20–96

19 studies (24 publication reports) were excluded from
the analysis: 6 studies did not provide individual patient
or aggregate data,72–75 and 13 studies (18 publication re-
ports) were head-to-head studies with the vaccines of
interest, but it was not possible to form a loop within the
network meta-analysis to provide indirect evidence
(See Supplementary Fig. S1 and Supplementary
Table S2).76–91,93–96 The remaining 28 studies (54 publica-
tion records) from 2009 to 2023 were included in the
network meta-analyses.10,11,20–71,92

The 28 included studies comprised 31 cohorts of
children as one study conducted in two countries re-
ported results separately,23,24 and one study included
head-to-head comparisons of 3 vaccination schedules21,50

(Table 1). Studies with multiple NCT numbers or pub-
lications but the same population were counted as one
cohort. These 31 cohorts were representative of 38
countries in six continents—Europe (n = 11 cohorts),
Asia (n = 9 cohorts), North America (n = 3 cohorts),
Africa (n = 3 cohort), Oceania (n = 4 cohort) and South
America (n = 1 cohort).

There were 7 studies comparing PCV10 vs PCV7, 14
studies comparing PCV13 vs PCV7, and 8 studies
comparing PCV13 vs PCV10 (Supplementary Fig. S1b).
Two cohorts used a 1 + 1 schedule with the first dose
administered at either 6- or 14- weeks of age to South
African infants and compared PCV13 with PCV10.50

Five cohorts used a 2 + 1 prime-boost schedule, while
three cohorts used a 3 + 0 schedule. The remaining 20
cohorts tested a 3 + 1 schedule, with most cohorts
receiving a primary series at 2-4-6 months (n = 9) and a
booster at around 12 months (n = 18). Most cohorts
reported or cited types of co-administered vaccines
(n = 25) (Table 1). Serotype-specific IgG antibody re-
sponses were defined as primary outcomes in all
www.thelancet.com Vol 61 July, 2023
studies. Geometric mean concentrations (GMC) were
reported at 28 days post-primary series (n = 29 cohorts),
prior to a booster (n = 18 cohorts) and 28 days post-
booster (n = 26 cohorts). Individual participant data
were available from 25 of 31 (80.6%) cohorts.

Risk of bias assessments for the 28 included studies
are summarised in Supplementary Fig. S2. Results of
ten studies33,35,38,40,53,57,58,67,69,71 were assessed to be at ‘low
risk of bias’ across all domains and overall. Two
studies25,68 had results judged to be at ‘high risk of bias’
due to problems identified in one domain each: Wysocki
200968 only analysed immunogenicity for a subset of
participants and Bryant 201025 did not report whether
participants or staff delivering the intervention were
blinded to the vaccine received. Lack of information was
reported in Bryant 201025 for the analysis, raising con-
cerns on appropriateness of the analysis for the aggre-
gate data obtained from this study. The remaining 16
studies20,23,26,32,36,39,41,44,50,51,54,59,61,62,66,92 were judged to have
‘some concerns’ over risk of bias. These concerns pre-
dominantly arose because the randomisation process
was not described, and/or the study did not report if the
participants or staff delivering the vaccines were blinded
to which vaccines were given. We did not find any evi-
dence of publication bias by two assessment tools (all p
values for Egger’s test are >0.05). Full details of our
publication bias findings are given in Supplementary
material.

Fig. 2 shows the number of study cohorts included in
each analysis and the estimated GMR for each serotype
and time point, and Supplementary Table S3 summa-
rises the heterogeneity statistics and inconsistency of
the network. Substantial heterogeneity and network
inconsistency were present for most serotypes at all
three time points.

Direct (comparisons between PCV10 and PCV13)
and indirect (comparisons of PCV13 vs PCV7 and
PCV10 vs PCV7) evidence from 28 cohorts were avail-
able for immunogenicity analysis at 28 days post-
primary vaccination (Supplementary Fig. S3a). GMRs
comparing PCV13 vs PCV10 for any primary series
schedule were higher in PCV13 for serotypes 4, 7F, 9V,
and 23F at 1 month after primary vaccination series,
with 1.14- to 1.54- fold significantly higher IgG re-
sponses in PCV13. Additional serotypes contained only
in the PCV13 vaccine (3, 6A and 19A) also favoured
PCV13 as expected. GMRs were similar for the
remaining serotypes (1, 5, 6B, 14, 18C, 19F, Fig. 2a).
Within the network meta-analyses comparisons with
PCV7, GMRs favoured PCV7 over either PCV13 or
PCV10 for serotypes 4, 6B, 9V, 14, and 23F. There was
no difference in GMRs for Serotypes 18C and 19F
across three vaccines (Fig. 2a). Heterogeneity was
observed for all serotypes at the post-primary visit
(p-value for heterogeneity <0.05). There were in-
consistencies between direct and indirect evidence from
the network meta-analysis (p-value for inconsistency
5
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Cohort IDa Author & Yeara NCT Individual
participant
data available/
Aggregate data

comparison Country/Region Continent Schedule Schedule
primary series

Schedule
booster

Co-administered
Vaccine(s)

Assay

123,24 Bermal et al.
200923

NCT00344318
NCT00547248

Individual pcv10 vs
pcv7

Philippines Asia 3 + 1 6-10-24 weeks 12–18
months

DTPw-HBV-Hib-
TT + OPV

22F-ELISA

123,24 Bermal et al.
200923

NCT00344318
NCT00547248

Individual pcv10 vs
pcv7

Poland Europe 3 + 1 2-4-6 months 12–18
months

DTPw-HBV-Hib-
TT + IPV

22F-ELISA

239 Kim et al. 201139 NCT00680914 Individual pcv10 vs
pcv7

Korea Asia 3 + 1 2-4-6 months 12–18
months

Hib-TT 22F-ELISA

341 Knuf et al. 201241 NCT00307541
NCT00333450

Individual pcv10 vs
pcv7

Germany Europe 3 + 0 2-3-4 months NA DTPa-HBV-Hib-TT/IPV 22F-ELISA

455–57 Prymula et al.
201757

NCT01204658 Individual pcv13 vs
pcv10

Czech Republic, Germany,
Poland, Sweden

Europe 3 + 1 2-3-4 months 12–15
months

DTPa-HBV-Hib-TT/IPV 22F-ELISA

526 Carmona Martinez
et al. 201926

NCT01616459 Individual pcv13 vs
pcv10

Czech Republic, Germany,
Poland, Spain

Europe 3 + 1 2-3-4 months 12–15
months

DTPa-HBV-Hib-TT/
IPV + MenC-TT (SP)

22F-ELISA

610,48,49,59,60 Temple et al.
201959

NCT01953510 Individual pcv13 vs
pcv10

Vietnam Asia 2 + 1 2–4 months 9.5
months

DTPa-HBV-Hib-TT/IPV modified thirdgeneration
standardised ELISA

762–64 van den Bergh et al.
201162

NCT00652951 Individual pcv10 vs
pcv7

Netherland Europe 3 + 1 2-3-4 months 11–13
months

DTPa-(HBV)-Hib-TT/IPV 22F-ELISA

866 Vesikari et al.
200966

NCT00307554
NCT00370396

Individual pcv10 vs
pcv7

Finland, France, and
Poland

Europe 3 + 1 2-3-4 months 12–18
months

DTPa-(HBV)-Hib-TT/IPV 22F-ELISA

968 Wysocki et al.
200968

NCT00334334
NCT00463437

Individual pcv10 vs
pcv7

Germany, Poland, and
Spain

Europe 3 + 1 2-4-6 months 11–18
months

DTPa-(HBV)-Hib-TT/
IPV + Hib MenC-TT

22F-ELISA

1020 Amdekar et al.
201320

NCT00452790 Individual pcv13 vs
pcv7

India Asia 3 + 1 6-10-14 weeks 12 months DTwP-Hib-HBV + OPV Standardized ELISA

1128–32,37 Dagan et al. 201332 NCT00508742 Aggregate pcv13 vs
pcv7

Israel Asia 3 + 1 2-4-6 months 12 months NA Standardized ELISA

1233 Esposito et al.
201033

NCT00366899 Individual pcv13 vs
pcv7

Italy Europe 2 + 1 3–5 months 11 months DTPa-HBV-Hib-TT/IPV Standardized ELISA

1335 Grimprel et al.
201135

NCT00366678 Individual pcv13 vs
pcv7

France Europe 3 + 1 2-3-4 months 12 months DTPa-Hib-TT/IPV Standardized ELISA

1436 Huang et al. 201236 NCT00688870 Individual pcv13 vs
pcv7

Taiwan Asia 3 + 1 2-4-6 months 15 months DTPa-(HBV)-Hib-TT/IPV Standardized ELISA

1527,34,38 Kieninger et al.
201038

NCT00366340 Individual pcv13 vs
pcv7

Germany Europe 3 + 1 2-3-4 months 11–12
months

DTPa-HBV-Hib-TT/IPV Standardized ELISA

1640,46 Kim et al. 201340 NCT00689351 Individual pcv13 vs
pcv7

Korea Asia 3 + 1 2-4-6 months 12 months DTPa-HBV-Hib-TT/IPV Standardized ELISA

1753 Payton et al.
201353

NCT00444457 Individual pcv13 vs
pcv7

United States North
America

3 + 1 2-4-6 months 12 months DTPa-HBV-Hib-TT/IPV Standardized ELISA

1811,47,54,65 Pomat et al. 201854 NCT01619462 Aggregate pcv13 vs
pcv10

Papua New Guinea Oceania 3 + 1 1-2-3 months 9 months DTPw-HBV-Hib-
TT + OPV

WHO standardized ELISA

1958 Snape et al. 201058 NCT00384059 Individual pcv13 vs
pcv7

United Kingdom Europe 2 + 1 2–4 months 12–13
months

DTPa-Hib-TT/IPV/
MenC + Hib-MenC-TT

Standardized ELISA

2061 Togashi et al.
201561

NCT01200368 Individual pcv13 vs
pcv7

Japan Asia 3 + 1 enr 3–6 m,
4–8 w int

12–15
months

DTPa Standardized ELISA

2167 Weckx et al. 201267 NCT00676091 Individual pcv13 vs
pcv7

Brazil South
America

3 + 1 2-4-6 months 12 months HBV-DTwP-Hib/OPV/
Rotavirus

Standardized ELISA

2269 Yeh et al. 201069 NCT00373958 Individual pcv13 vs
pcv7

United States North
America

3 + 1 2-4-6 months 12–15
months

DTPa-HBV-Hib-TT/IPV Standardized ELISA

2370,71 Zhu et al. 201671 NCT01692886 Individual pcv13 vs
pcv7

China Asia 3 + 1 3-4-5 months 12 months NA Standardized ELISA

(Table 1 continues on next page)
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<0.05) for serotype 6B, 14, 18C and 19F (Supplementary
Table S3).

At the pre-booster time point data were available
from 18 cohorts. IgG responses were higher with
PCV10 compared with PCV13 for all PCV7 serotypes
except for serotype 14, with the point estimates of GMRs
comparing PCV13 vs PCV10 ranging from 0.44 to 0.78.
IgG responses were higher for PCV13 for serotypes 1, 5
and 7F. GMRs comparing PCV13 vs PCV7 showed
higher IgG with PCV7 for serotypes 4, 6B, 9V, 14 and
23F, and higher IgG with PCV13 for serotype 19F
(Fig. 2b). Heterogeneity was present for all serotypes (p-
value for heterogeneity <0.05) and inconsistencies were
present for serotype 18C and 19F at the pre-booster time
point (p-value for inconsistency <0.05).

At 28 days post booster, data were available from 26
cohorts. GMRs favoured PCV13 over PCV10 for sero-
type 6B, 9V, 14 and 23F, and favoured PCV10 over
PCV13 for serotype 18C (Fig. 2c). For serotype 1, 5 and
7F, antibody responses were higher in PCV13 compared
with PCV10. PCV7 recipients had higher GMCs
compared with PCV13 for all PCV7 serotypes except 6B
for which there was no difference, and19F, which fav-
oured PCV13. For PCV13-only serotypes (3, 6A and
19A), GMRs favour PCV13 at all three time points.
Heterogeneity was significant for all serotypes and there
was network inconsistency for serotype 4
(Supplementary Table S3, Supplementary Fig. S3).

To explore potential reasons for the observed het-
erogeneity, we summarised cohort-level GMRs for each
vaccine comparison and present these with concomitant
vaccines and vaccine schedules at all three time points
in Supplementary Fig. S4–S42. These descriptive ana-
lyses revealed a lack of consistency in the direction of
study-level estimates within each vaccine comparison,
resulting in the significant heterogenicity. There was
also no observable pattern in any trial level variable
(region, co-administered vaccines, vaccine schedule),
from which one might propose a mechanism that would
adequately explain this variation in GMRs, although
studies which compared vaccines with the same carrier
protein seemed to have more consistent estimates. In
sensitivity analysis, we restricted to 11 cohorts providing
IgG results for all the three time points, and observed
similar results (Supplementary Fig. S43). The sensitivity
analysis was unable to be stratified by co-administered
vaccines due to the limited number of cohorts (less
than five) reporting the same co-administered vaccines.
Sensitivity analysis stratified by region and vaccine
schedule demonstrated reduced heterogeneity for some
serotypes and similar patterns compared with main
analysis (Supplementary Fig. S44–S46). Additional
sensitivity analyses excluding two studies with ‘high risk
of bias’ and separately, excluding the study which used a
1 + 1 schedule did not affect the results.

There were 12 studies (15 cohorts) with available
individual participant antibody data at both post-primary
www.thelancet.com Vol 61 July, 2023
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0.1 1 10 100

GMR(IgG)favours PCV10 favours PCV13

Serotype No.
 cohorts

Direct
 Evidence (%)

GMR at 1 month after prime
 PCV13 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV10

GMR (95% CI) 
 PCV7 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV7

..  P = 0.05 for test of heterogeneity   *  P < 0.05 for test of heterogeneity    **  p < 0.001 for test of heterogeneity

4 28 48 ** 1.14 (1.01, 1.30) 1.49 (1.32, 1.70) 0.77 (0.69, 0.86)

6B 28 60 ** 1.02 (0.87, 1.18) 1.27 (1.08, 1.49) 0.80 (0.70, 0.92)

9V 28 48 ** 1.28 (1.14, 1.43) 1.62 (1.45, 1.82) 0.79 (0.71, 0.87)

14 28 49 ** 1.10 (0.98, 1.22) 1.31 (1.18, 1.47) 0.83 (0.76, 0.92)

18C 28 51 ** 0.95 (0.79, 1.16) 1.02 (0.83, 1.24) 0.94 (0.79, 1.11)

19F 28 52 ** 0.87 (0.67, 1.12) 0.89 (0.68, 1.16) 0.98 (0.77, 1.23)

23F 28 55 ** 1.54 (1.34, 1.76) 1.94 (1.68, 2.24) 0.79 (0.70, 0.89)

1 9 100 ** 1.24 (0.94, 1.63) 0.02 (0.01, 0.02) 100.26 (72.28, 139.06)

5 9 100 ** 1.09 (0.81, 1.47) 0.04 (0.02, 0.07) 12.30 (7.81, 19.39)

7F 9 100 * 1.37 (1.22, 1.53) 0.02 (0.01, 0.02) 87.47 (69.63, 109.88)

3 9 100 ** 13.42 (6.35, 28.36) 0.48 (0.19, 1.22) 27.76 (15.54, 49.59)

6A 9 100 ** 6.66 (3.06, 14.49) 1.04 (0.71, 1.53) 6.75 (5.93, 7.69)

19A 9 100 ** 6.57 (3.68, 11.73) 1.12 (0.69, 1.82) 2.86 (1.84, 4.42)

0.1 1 10 100

GMR(IgG)favours PCV10 favours PCV13

Serotype No.
 cohorts

Direct
 Evidence (%)

GMR at before booster
 PCV13 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV10

GMR (95% CI) 
 PCV7 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV7

..  P = 0.05 for test of heterogeneity   *  P < 0.05 for test of heterogeneity    **  p < 0.001 for test of heterogeneity

4 17 69 ** 0.66 (0.56, 0.78) 0.95 (0.80, 1.12) 0.70 (0.58, 0.84)

6B 18 79 ** 0.44 (0.34, 0.55) 0.55 (0.42, 0.73) 0.79 (0.59, 1.05)

9V 18 73 ** 0.77 (0.65, 0.90) 0.97 (0.81, 1.17) 0.79 (0.65, 0.96)

14 18 69 ** 1.33 (1.15, 1.53) 1.56 (1.33, 1.82) 0.85 (0.72, 1.00)

18C 17 66 ** 0.78 (0.67, 0.91) 0.77 (0.66, 0.90) 1.01 (0.85, 1.19)

19F 18 82 ** 0.57 (0.47, 0.68) 0.39 (0.31, 0.48) 1.47 (1.17, 1.85)

23F 18 77 ** 0.68 (0.57, 0.81) 0.82 (0.67, 1.01) 0.82 (0.67, 1.02)

1 8 100 ** 1.46 (1.18, 1.82) 0.13 (0.11, 0.16) 12.77 (10.17, 16.05)

5 8 100 ** 1.34 (1.16, 1.55) 0.18 (0.11, 0.29) 4.61 (2.72, 7.82)

7F 8 100 ** 1.23 (1.06, 1.44) 0.05 (0.04, 0.06) 20.97 (17.43, 25.23)

3 7 100 ** 2.70 (1.78, 4.09) 0.95 (0.51, 1.76) 2.90 (2.07, 4.06)

6A 8 100 ** 2.13 (1.61, 2.83) 0.75 (0.59, 0.95) 2.77 (2.16, 3.55)

19A 8 100 ** 2.07 (1.62, 2.63) 0.63 (0.47, 0.85) 1.50 (1.28, 1.76)

a

b

Fig. 2: Geometric mean ratios from meta-analyses of head-to-head studies at a) 28 days post-primary vaccination series, b) pre-booster,
and c) 28 days post-booster. GMR: Geometric mean ratio; PCV: Pneumococcal conjugate vaccine. Each line in the figure shows the output
from a network meta-analyses (PCV7 serotypes) or direct meta-analyses (PCV13 but non-PCV7 serotypes). Blue boxes and blue lines show the
point estimates and confidence intervals for geometric mean ratios comparing PCV13 vs PCV10. Points to the right of the vertical line are those
with higher antibody responses in the PCV13 arm of the study, and points to the left are those with higher antibody responses in the PCV10
arm. The direct evidence column shows the percentage of evidence from studies directly comparing PCV13 vs PCV10 that contributes to the
estimates presented in the figure in blue (PCV13 vs PCV10). GMR of PCV13 vs PCV10 for PCV10 and PCV13 serotypes are from a meta-analysis
of only head-to-head studies of PCV13 vs PCV10.
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0.1 1 10 100

GMR(IgG)favours PCV10 favours PCV13

Serotype No.
 cohorts

Direct
 Evidence (%)

GMR at 1 month after booster
 PCV13 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV10

GMR (95% CI) 
 PCV7 vs PCV10

GMR (95% CI) 
 PCV13 vs PCV7

..  P = 0.05 for test of heterogeneity   *  P < 0.05 for test of heterogeneity    **  p < 0.001 for test of heterogeneity

4 25 53 ** 1.11 (0.99, 1.24) 1.38 (1.24, 1.54) 0.80 (0.74, 0.87)

6B 26 60 ** 1.54 (1.30, 1.82) 1.64 (1.38, 1.95) 0.94 (0.82, 1.07)

9V 26 58 ** 1.48 (1.32, 1.67) 1.73 (1.53, 1.95) 0.86 (0.78, 0.94)

14 26 51 ** 1.54 (1.38, 1.72) 1.80 (1.61, 2.01) 0.86 (0.79, 0.93)

18C 25 54 ** 0.79 (0.70, 0.90) 0.92 (0.81, 1.04) 0.86 (0.78, 0.95)

19F 26 58 ** 0.85 (0.72, 1.00) 0.55 (0.46, 0.65) 1.55 (1.36, 1.78)

23F 26 64 ** 1.79 (1.57, 2.04) 2.32 (2.03, 2.66) 0.77 (0.69, 0.85)

1 7 100 * 1.76 (1.57, 1.97) 0.01 (0.01, 0.02) 150.67 (115.77, 196.09)

5 7 100 ** 1.98 (1.66, 2.36) 0.06 (0.04, 0.12) 11.76 (7.25, 19.08)

7F 7 100 * 1.69 (1.50, 1.89) 0.01 (0.01, 0.02) 111.10 (89.72, 137.58)

3 6 100 ** 10.56 (6.03, 18.49) 0.76 (0.50, 1.15) 14.02 (11.93, 16.47)

6A 7 100 ** 14.01 (9.29, 21.11) 2.34 (1.91, 2.88) 4.26 (3.90, 4.65)

19A 7 100 ** 7.72 (5.86, 10.17) 0.77 (0.54, 1.10) 3.20 (2.56, 4.00)

c

Fig. 2: (continued)
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and prior to the booster dose, allowing serotype-specific
estimation of seroefficacy from a total of 5152 partici-
pants. Of these 15 cohorts, 6 compared PCV10 vs PCV7,
3 compared PCV13 vs PCV7 and 6 compared PCV13 vs
PCV10 (Supplementary Fig. S2b). No issue was found
regarding to the integrity of individual participant data.

The relative risk of seroinfection from the network
meta-analysis for each serotype is summarised in Fig. 3
and a summary of direct and indirect evidence is given
in Supplementary Fig. S47. The I2 and p value indicate
some heterogeneity for all PCV7 serotypes except for
serotype 4 and 19F (Supplementary Table S4).

Among PCV7 serotypes, the risk of seroinfection was
lower with PCV13 than PCV10 for serotypes 4, 6B, 9V,
18C and 23F, while no difference was seen for serotype
14 and 19F (Fig. 2). The RRs of seroinfection (PCV13 vs
PCV10) for PCV7 serotypes ranged from 0.32 (95% CI
0.19, 0.52) for serotype 4 to 1.28 (95% CI 0.95, 1.74) for
serotype 14. The direct evidence contributed to around
80%–95% of total evidence, and we found no inconsis-
tency between direct and indirect evidence for all but
serotype 19F (p values > 0.05, Supplementary Table S4,
Supplementary Fig. S48–S57).

For serotypes 1, 5, and 7F, evidence was summarised
from 6 studies directly comparing PCV13 with PCV10.
Heterogeneity was observed for serotype 5 and all con-
fidence intervals overlapped 1.0. Comparisons between
PCV13 and PCV7 favoured neither vaccine over the
other, whereas comparisons between PCV7 and PCV10
favoured PCV7 for serotypes 5, 6B, 9V, 18C, and 23F.
Sensitivity analyses of studies conducted in Europe and
using 3 + 1 schedule showed similar RRs as estimated
from the main analysis (Supplementary Fig. S58 and
S59). The seroefficacy analysis results remained
consistent after removing one “high risk of bias” study
from the analysis.

Supplementary Fig. S60 shows the serotype-specific
relationships between immunogenicity (GMRs) and
seroefficacy (RRs). Log-GMRs and log-RRs were highly
or moderately correlated for all PCV7 serotypes (with
weighted Pearson correlation coefficients (r) ranging
from −0.76 to −0.60, all p < 0.05) except for serotype 14
(r = −0.30, p = 0.26).

In the combined analysis across all serotypes
vaccines that produced the same amount of antibody
(GMR = 1) had very similar protection (adjusted RR:
0.80, 95%: CI 0.41–1.58, Fig. 4). The model estimate
indicates that for each two-fold increase in antibody
response, the risk of seroinfection was halved
(GMR of 2.0; RR 0.46, 95% CI 0.23–0.96, Fig. 4a
and b). The estimates were stable when estimates of
PCV13 vs PCV7 were analysed in reverse as PCV7 vs
PCV13 (GMR of 2.0; RR: 0.51, 95% CI 0.23–1.15,
Fig. 4c).

When analyses were restricted to comparison be-
tween products from different manufacturers the rela-
tionship between immunogenicity and seroefficacy
remained similar to the main analysis with a confidence
interval that incorporates 1.0 (GMR 1.0; RR: 0.73, 95%
CI 0.36–1.47) (Fig. 4d).
www.thelancet.com Vol 61 July, 2023
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Fig. 3: Relative risk of seroinfection from meta-analyses of head-to-head studies. RR: Relative risk; PCV: Pneumococcal conjugate vaccine.
Each line in the figure shows the output from a network meta-analyses (PCV7 serotypes) or direct meta-analyses (PCV10 serotypes). Blue boxes
and blue lines show the point estimates and confidence intervals of relative risk of seroinfection comparing PCV13 vs PCV10. The direct ev-
idence column shows the percentage of evidence from studies directly comparing PCV13 vs PCV10. Results for PCV10 serotypes are from a
meta-analysis of only head-to-head studies of PCV13 vs PCV10, therefore estimates of PCV7 vs PCV10 and PCV13 vs PCV7 were not available.

Articles
Discussion
In our study we used a novel methodology to define
seroinfection from immunogenicity data to compare
the seroefficacy of pneumococcal conjugate vaccines.
The results from our global meta-analysis, provide the
first estimates of the comparative protection afforded by
different pneumococcal vaccines, and shows that for
many serotypes, seroinfection is less common after
PCV13 than PCV10, in line with the higher antibody
response to PCV13. In addition, we quantify the rela-
tionship between the immune response to vaccination
and protection against seroinfection, and show that a
higher antibody response to vaccination is associated
with greater protection from subsequent infection.

The heterogenicity we observed was unexpected.
We assumed that if one vaccine is able to induce more
antibody than another, then it would do so with
some degree of consistency. However, comparisons of
the same vaccines in different studies gave widely
www.thelancet.com Vol 61 July, 2023
varying estimates and although we have reported the
summary estimates in our meta-analyses, the large de-
gree of between-study heterogeneity in these models
means overall estimates are difficult to interpret. In
some settings PCV13 performed better yet in others
PCV10 was the more immunogenic vaccine. No study-
level factor was identified that might explain the varia-
tion in estimate. However, only three candidate factors
could be considered (location, schedule, and co-
administered vaccines) and data on co-administered
vaccines was not comprehensive. It is unlikely that dif-
ferences in assays used would cause this variation as
these assays are WHO standardised and only head-to-
head comparisons were included.

Of note, comparisons between vaccines from the
same manufacturer (PCV13 vs PCV7) were more
consistent than comparisons between vaccines from
different manufacturers. Immune interference
(“bystander effects”) can occur when vaccines with
11
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Fig. 4: Overall association between geometric mean ratio and relative risk across all serotypes in PCV10. RR: Relative risk; GMR: Geometric
mean ratio; PCV: Pneumococcal conjugate vaccine. Each point shows results of a serotype specific head-to-head comparison between two
vaccines from one study. Solid line shows the relationship between relative risk predicted from the model and geometric mean ratio. Dashed
line shows the confidence intervals of predicted relative risk. Reference lines show geometric mean ratio equivalent to one (vertical) and relative
risk equivalent to one (horizontal) which represent values associated with no difference between vaccines. Points sizes represent sample size of
the trial. Panel A) shows the relationship by 13 serotypes covered by PCV13, B) shows the same data as panel A classified by vaccine comparison
groups, C) shows the same data as panel B, however, studies comparing PCV13 vs PCV7 are analysed and displayed as PCV7 vs PCV13 as a
sensitivity analysis D) shows a further sensitivity analysis that excludes studies of PCV13 vs PCV7 and only shows studies that compared vaccines
from two different manufacturers.
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similar components are co-administered,97 and this may
have different effects for vaccines from different man-
ufacturers. An additional potential confounder that is
unmeasured in these studies, is the exposure to circu-
lating serotypes of pneumococcus in each setting, which
may also influence the immune response to vaccines.
Further investigation into the predictors of vaccine-
specific immune responses may be warranted to deter-
mine which product is best in diverse settings.

Licensure of new vaccines is based on non-inferiority
comparisons with current vaccines and the proportion
of antibody responses above the agreed threshold as a
minimum requirement. Once a vaccine meets this “at-
least-as-good-as” immunogenicity criteria, it has previ-
ously not been clear whether exceeding it is of benefit,
and the WHO position paper states “It is unknown
whether a lower serotype-specific GMC of antibody indicates
less efficacy”.6 We modelled the relationship between
seroefficacy (RRs) and immunogenicity (GMRs), to
determine whether higher antibody responses were
associated with better protection. This regression did
not require a meta-analysis to be performed, but instead
used individual trial estimates, thereby capitalising on
the observed between-study heterogenicity rather than
www.thelancet.com Vol 61 July, 2023
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being hindered by it. Our results show that lower pro-
tection against subclinical infection does indeed follow
from lower antibody production, and that two vaccines
that produce a similar level of antibody will provide
similar levels of protection, even if they are from
different manufacturers.

The implications of these findings are of greatest
importance when a new vaccine rollout is being
considered. Lower antibody production or lower
seroefficacy for one vaccine product does not necessarily
imply poor effectiveness against invasive pneumococcal
diseases when considering vaccines such as PCV10 and
PCV13 which have been shown to be highly effective
vaccines in many settings. Instead, lower antibody pro-
duction would lead to less rapidly observed indirect
protection after implementation into a national pro-
gramme as a smaller proportion of transmission events
would be blocked. For serotypes where protective impact
has not been observed (serotype 3), new vaccines with
substantially higher antibody responses may be needed.
A phase II clinical trial of PCV15 compared with PCV13
reported almost twice the antibody level for serotype 3 at
28 days post-primary series for PCV15 (GMR 1.93, 95%
CI 1.71, 2.18).85 Based on our modelled association be-
tween GMR and RR, the relative risk of seroinfection
with PCV15 versus PCV13 was estimated to be 0.48.
The previously reported vaccine effectiveness for sero-
type 3 was −27% (95% CI −180, 44) against nasopha-
ryngeal carriage,98 and this translates to a point estimate
of 40% vaccine effectiveness against carriage of this
serotype with PCV15 (VE(pcv15)=(1-RR(pcv15 vs pcv13)*(1-
VE(pcv13)/100%))*100%).

This evidence of differences in serotype-specific pro-
tection can be incorporated into cost-effectiveness models
used to compare vaccine products.99 Cost-effectiveness
studies have highlighted the lack of head-to-head evi-
dence of efficacy for different PCVs, resulting in cost-
effectiveness models that ignore serotype-specific differ-
ences and assume equivalent efficacy for different
PCVs.100–102 Our study fills this evidence gap and allows
researchers and policy-makers to use more accurate
vaccine-specific models in decision-making.

There is substantial evidence from pneumococcal
challenge studies that participants exposed (“chal-
lenged”) with pneumococcus who go on to develop an
established carriage infection experience significant in-
creases in antibody post-exposure, whereas those who
remain carriage negative do not.103–105 Cross-sectional
carriage studies using nasopharyngeal swabs are sus-
ceptible to misclassification bias when the time of
sampling is not at the exact time of peak infection
resulting in a negative swab. Using seroinfection as an
outcome reduces this type of bias as the antibody
response to carriage persists for a longer period of time
than the carriage event. Nevertheless, misclassification
bias can exist if antibody wanes quickly following
infection, which may bias the RR estimates to the null.
www.thelancet.com Vol 61 July, 2023
Seroefficacy analyses need to be restricted to sero-
types contained in both vaccines. Comparing a vacci-
nated cohort to a cohort that is unvaccinated, or who
received a vaccine that does not contain the serotype of
interest, will result in biased estimates as the immune
response after exposure to a pathogen will differ in
children whose immune system is primed for that
pathogen, when compared with a naïve population. For
this reason, we restricted our seroefficacy analysis to
shared serotypes between vaccines. Whilst seroinfection
is most likely an indicator of nasopharyngeal carriage, it
may also represent cases of asymptomatic bacteremia.

In conclusion, we estimated serotype-specific differ-
ence in both seroefficacy and immunogenicity between
PCV10 and PCV13. Higher IgG antibody levels confer
better protection against seroinfection. We recommend
incorporating serotype-specific vaccine seroefficacy es-
timates when modelling cost-effectiveness of future
vaccine introductions. In addition, we recommend that
the impact of lower geometric mean antibody responses
for new vaccines be considered in light of the likely
reduced effect on transmission.
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