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SCOPE: predicting future 
diagnoses in office visits using 
electronic health records
Pritam Mukherjee 1, Marie Humbert‑Droz 1, Jonathan H. Chen 1 & Olivier Gevaert 1,2*

We propose an interpretable and scalable model to predict likely diagnoses at an encounter based on 
past diagnoses and lab results. This model is intended to aid physicians in their interaction with the 
electronic health records (EHR). To accomplish this, we retrospectively collected and de-identified EHR 
data of 2,701,522 patients at Stanford Healthcare over a time period from January 2008 to December 
2016. A population-based sample of patients comprising 524,198 individuals (44% M, 56% F) with 
multiple encounters with at least one frequently occurring diagnosis codes were chosen. A calibrated 
model was developed to predict ICD-10 diagnosis codes at an encounter based on the past diagnoses 
and lab results, using a binary relevance based multi-label modeling strategy. Logistic regression 
and random forests were tested as the base classifier, and several time windows were tested for 
aggregating the past diagnoses and labs. This modeling approach was compared to a recurrent neural 
network based deep learning method. The best model used random forest as the base classifier and 
integrated demographic features, diagnosis codes, and lab results. The best model was calibrated and 
its performance was comparable or better than existing methods in terms of various metrics, including 
a median AUROC of 0.904 (IQR [0.838, 0.954]) over 583 diseases. When predicting the first occurrence 
of a disease label for a patient, the median AUROC with the best model was 0.796 (IQR [0.737, 0.868]). 
Our modeling approach performed comparably as the tested deep learning method, outperforming 
it in terms of AUROC (p < 0.001) but underperforming in terms of AUPRC (p < 0.001). Interpreting the 
model showed that the model uses meaningful features and highlights many interesting associations 
among diagnoses and lab results. We conclude that the multi-label model performs comparably with 
RNN based deep learning model while offering simplicity and potentially superior interpretability. 
While the model was trained and validated on data obtained from a single institution, its simplicity, 
interpretability and performance makes it a promising candidate for deployment.

Widespread adoption of electronic health records (EHR) has offered great potential for learning and applying 
from real-world data streams, while simultaneously burdening practitioners with documentation clerical work 
that takes away from direct patient care. Primary care physicians may spend as much as one-half of their workday 
interacting with the EHR1, reducing the time dedicated to patient care2. Further, the documentation load may 
reduce the satisfaction of physicians and may even lead to burnout3. Additionally, EHR data is often biased4 and 
suffers from missing and incomplete data5,6. Here we seek to develop machine learning methods to address these 
key challenges to unlock the potential of EHRs in the outpatient office visit setting.

The key focus of our work is predicting likely diagnoses for patients from past medical history. In recent years, 
there has been a body of work on the prediction of diagnoses and patient outcomes from past medical history 
obtained from EHRs7–9. Our work focuses exclusively on outpatient visits. In terms of methods, recent work has 
focused heavily on deep learning approaches10; here however, we propose classical machine learning models 
such as logistic regression and random forests which offer much greater interpretability as well as modularity 
and scalability. Finally, instead of focusing on only one or a few diseases11, we evaluate these models across a 
wide range of diseases at an appropriate level of granularity, subject to data constraints. This is motivated by 
the fact that patients in the outpatient clinic often present with multiple chronic and acute diseases, and while 
single disease models are very useful, it quickly becomes cumbersome to maintain and get meaningful predic-
tions from multiple disparate models. We present a unified approach to modeling the broad scope of practice 
in the outpatient clinic.
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An important consideration for machine learning analysis of EHRs is interpretability. By interpretability12, we 
mean not only post hoc explainability of predictions, but also algorithmic transparency and model decompos-
ability whereby each step of the inference process including the inputs, the parameters and the computations can 
be interpreted by humans. This is in contrast to deep learning models which may be post hoc explainable, e.g. 
using Shapley additive explanations13, but are still “black boxes" in terms of the parameters and computational 
steps during inference, and may not be suitable for clinical use14. Interpretable models such as linear models and 
decision trees behave predictably, are typically more robust and allow deep inspection when biases or discrepan-
cies are observed, thus engendering trust among physicians.

We propose to use machine learning to lessen the physician burden by developing a machine learning model 
that can predict the likely cause of an office visit using missing or incomplete EHRs data from outpatient office 
visits. For this approach, we do not confine ourselves to a single disease specialty but rather aim at developing a 
broadly applicable tool. To that end we developed SCOPE (SCalable One-vs-all PrEdictor) an inference engine 
powered by an interpretable machine learning model, that predicts likely diagnoses for an office visit encounter 
based on the patient’s past medical history. Before the visit, defined as the pre-visit, SCOPE predicts the likely 
diagnoses for a patient based on the data of their previous visits and explains its predictions by highlighting 
the features responsible for its predictions. This can help the physicians plan out the encounter more efficiently, 
potentially saving them time and effort. In the post-visit documentation stage, the model can act like a recom-
mender system, helping physicians fill out the diagnoses for the visit. This can reduce the likelihood of missing 
or incomplete diagnoses records. Using a binary relevance based multi-label modeling approach, we developed 
a model that is extensible, interpretable, and shows state-of-the-art predictive performance on a large EHR 
dataset obtained from Stanford hospital and clinics. We show that these models perform at par or better than 
the popular deep learning methods15–18.

Materials and methods
EHR data processing.  This study was approved by the Stanford IRB under protocol IRB-50033 “Machine 
Learning of Electronic Medical Records for Precision Medicine”. Consent for this study was waived by the IRB. 
For this study, the EHR data of 2,701,522 patients at Stanford Healthcare with 55,068,909 encounters over a time 
period from January 2008 to December 2016 was retrospectively collected and deidentified in accordance with 
approved IRB guidelines. We selected all encounters that were completed office visits with a “frequent" (present 
in at least 500 patients) ICD-10 diagnosis code (see Fig. 1). The full set of patients were split into a training 
(60%), a validation (20%) and a testing (20%) set. All models are trained on the training set; the performance on 
the validation set is used for model selection or choosing modeling parameters such as the aggregation window. 
The testing set is used only for the final performance evaluation.

Input features and output labels.  The output labels at each encounter were the corresponding ICD-10 
diagnostic codes. The ICD-10 codes start with a letter (letter prefix) which roughly categorize the disease type or 
affected system (Supplementary Table 1); for e.g. codes starting with I correspond to diseases of the circulatory 
system. We excluded codes starting with R, U, V, W, X, Y and Z, since they comprise either symptoms, codes for 
special purposes, external causes of morbidity and mortality or factors influencing health status and contact with 

Figure 1.   Cohort selection for this study.
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health services. To avoid the large cardinality of all possible ICD-10 diagnosis codes, we grouped codes under 
their 3-character prefixes, for example, all codes starting with I25 are assigned the same label I25. Each label is 
further designated as acute or chronic using the Chronic Condition Indicator for ICD-10-CM19.

In order to predict the probable diagnoses at an encounter, we considered patient demographics (age and 
sex), past diagnoses codes, and lab results. We considered four time windows for diagnosis codes: 90, 180, 365 
and 3650 days, and four time windows for lab results: 30, 90, 180 and 365 days. We built models based on both 
diagnostic codes and lab results individually for each of the respective aggregation windows. The best time win-
dows were chosen for both diagnostic codes and lab results and were used for multi-modal feature integration 
in the next step.

Modeling strategy.  We adopted a binary relevance based multi-label classification strategy using either 
logistic regression (LR) or random forest (RF) as the base classifier. In this framework, we train L different logis-
tic regression or random forest models Ml , one for each label l, l = 1, . . . , L , based on a preprocessed dataset 
Xl , obtained from the same feature set X . During inference, the input features are preprocessed appropriately 
for each label and the corresponding model predicts the presence or absence of the label given the input. In our 
case, for the LR models, the preprocessing for training includes a majority under-sampling step (1:1 positive to 
negative ratio), followed by a maximum absolute scaler, followed by a logistic regression classifier with an l1 or 
l2 penalty. The processing pipeline for the RF models consists of the majority under-sampling step, followed by 
a random forest classifier.

After selecting the best time windows for both diagnostic codes and lab features, we used an early stage 
integration strategy where the respective feature vectors are concatenated to form a longer vector in order to 
combine features from multiple modalities (i.e. demographics, diagnosis codes and lab results). The best model 
is selected among the different combinations of estimators (LR or RF) and input modalities. To evaluate and 
compare the efficacy of different models, we primarily use the Area under the Receiver Operating Characteristics 
Curve (AUROC) since it is insensitive to varying class imbalance across different labels. For the final model, we 
also employ other metrics including the Area under the Precision Recall Curve (AUPRC), recall@ k (see Sup-
plementary Information for details) and coverage error, and evaluate its performance for de novo predictions, 
i.e., the performance at predicting the first occurrence of the a given label. For this we only consider encounters 
till the first occurrence of a given label, for each patient—thus, subsequent occurrences of the label (which may 
be easier to predict) are not considered when evaluating the performance of the model in this case. Finally, the 
model was calibrated using isotonic regression20 on the training set, and interpreted using the SHAP (SHapley 
Additive exPlanations) framework13.

Comparison with deep learning.  We implemented the deep learning architecture proposed in Choi 
et al.15. It was designed for the same problem of predicting future diagnoses for a broad range of diseases in the 
outpatient setting, and thus, we can directly compare the performance of our modeling approach to it. To ensure 
a fair comparison, we trained the deep learning model (DL) to predict future diagnoses using past diagnosis 
codes only and compared it to multi-label classifiers using LR and RF as the base classifier trained on diagnosis 
codes only. We adopted the best performing model architecture in Choi et al.15 as the reference: an RNN with 
two hidden layers, and experimented with various embedding dimensions (i.e. 100, 500, 1000, 1500 and 2000), 
the number of past encounters considered in the input (10, or 20), and initialization of the embedding layer with 
random vs Skip-gram21 embeddings. We compared the performance of the best performing DL model with the 
proposed LR and RF based pipelines.

Modeling, analysis and visualization.  Most of the modeling tasks performed in this paper, including 
cleaning the data, developing the LR and RF models, as well as model calibration and interpretation were per-
formed in Python 3.6 using various packages including numpy22, pandas23, scikit-learn24, matplotlib25, imbal-
anced-learn26, pint, and WorldCloud. The statistical analysis and plotting was performed in R. The Wilcoxon 
signed rank test27 is used for comparing between models, unless otherwise stated. In particular, the ggpubr 
package was used for several of the plots.

Results
Stanford cohort.  Out of 2,701,522 patients in the original data, 919,069 patients had a completed office visit 
encounter. Removing encounters and patients with no ICD-10 diagnostic codes reduced the number of patients 
to 752,734. At this stage, there were 24,617 unique ICD-10 codes. Dropping infrequent codes (occurring for 
fewer than 500 patients) and patients with only one encounter reduced the number of patients to 524,198 and 
the number of ICD-10 codes to 2045 (see Table 1 for summary statistics of the selected cohort).

The original labs data for the chosen 524,198 patients had 13,891 unique lab names. After harmonizing the 
lab names and dropping the infrequent labs (occurring in fewer than 500 patients), we ended up with 1504 labs 
comprising 356 nonnumeric and 1148 numeric labs. The values for each of these 1504 labs were harmonized to 
have consistent units for numeric labs and binary values for the nonnumeric labs; overall less than 5% of the lab 
result instances were dropped during this harmonization process. In terms of output labels, out of 1460 relevant 
three-character ICD-10 codes (after dropping R and U to Z codes), the final cohort covers 583 labels.

Aggregating past encounters improves predictive performance.  For diagnosis codes, we tested 
four time windows for aggregation: 90, 180, 365 and 3650 days. For lab results, the four time windows were 30, 
90, 180 and 365 days (Supplementary Fig. 1). For both cases, increasing the length of the aggregation windows 
significantly improved the overall AUROC performance (p < 0.001 ) on the validation set. Thus, we chose the 
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longest aggregation windows: 3650 days for diagnostic codes and 365 days for the lab results for further model 
development.

Integration of diagnostic codes, lab results and demographic data.  Models were developed using 
diagnostic codes alone (Diag), lab results alone (Labs), a combination of lab results and diagnostic codes (Lab-
sDiag) and the combination of lab results, diagnostic codes and demographic features (LabsDiagDemo) (Sup-
plementary Fig. 2). The LabsDiagDemo models perform best in terms of average AUROC. For both LR and 
RF, using diagnostic codes only leads to significantly better performance than using lab results only (median 
AUROC 0.896 vs 0.758, p < 0.001 ). For LR, combining the diagnostic codes and lab results slightly improves the 
AUROC performance further from 0.893 to 0.894 (Supplementary Fig. 2). For RF, however, the performance 
with LabsDiag is statistically comparable (at p = 0.05 ) as that of Diag. Adding the demographic features slightly 
but significantly improves the performance (0.899 vs 0.894, and 0.906 vs 0.904, Supplementary Fig. 2) on the 
validation set for both LR and RF models. Thus, we use the combination of diagnostic codes, lab results and 
demographic features (LabsDiagDemo) for further model development and analysis.

Random forests outperforms logistic regression.  The LR and RF models developed on Diag, Labs, 
LabsDiag and LabsDiagDemo were compared in terms of AUROC performance (Fig. 2). On LabsDiagDemo, RF 
significantly outperforms LR, both overall (median AUROC 0.906 vs 0.899, p < 0.001 ), and for most individual 
letter prefixes as well (Table 2). Thus, RF is chosen as the best approach for subsequent model development and 
analysis.

Next, the RF pipeline is used to develop calibrated models using isotonic regression with five-fold cross-
validation on the training set. The calibrated model was used to predict on the validation and test sets. The model 
shows good calibration for most labels (Supplementary Fig. 3).

Interpretation of the model.  The RF based multi-label model is essentially a collection of independent 
RF models, one for each disease label; therefore to interpret predictions for a particular label, it suffices to con-
sider only the corresponding model. Each RF model is an ensemble of decision trees which are algorithmically 
transparent, i.e., during inference, the prediction path, consisting of several binary comparisons, can be traced 
from the inputs (which are trivially interpretable without any preprocessing or embedding). This is quite unlike 
deep learning models in which the inference path cannot be meaningfully interpreted or traced.

Chapter level feature importances for a select few cases were visualized using word clouds (Supplementary 
Fig. 4). For several letter prefixes such as C: neoplasms, F: mental and behavioural disorders, I: diseases of the 
circulatory system, and J: diseases of the respiratory system, we can observe that diagnostic codes figure promi-
nently as important features for every letter prefix; in particular, codes belonging to the same letter prefix.

We also visualized important features (based on the SHAP framework, see Supplementary Information for 
details) for individual labels (Supplementary Fig. 5). For example for lung cancer, the important features include 
prior history of lung cancer, other abnormalities in the lung, age, presence of glucose measurements as well as 
blood counts. Blood count tests are routinely ordered for lung cancer patients to monitor overall health and aid 
in treatment decisions.

Next, for bipolar disorder, a history of bipolar disorder and age appear as important features. In addition, we 
see codes for several related disorders such as major depressive disorder, anxiety disorder, hypertension, insomnia 
which are known to be associated with bipolar disorder28,29. Notably, we also see tests for lithium, tricyclics and 
valproic acid which are used to treat bipolar and depressive disorders.

For heart failure, besides a history of heart failure, we prominently see age and natriuretic peptide tests (BNP 
and NT-proBNP) which are used to diagnose heart failure. We can also observe several factors that are known to 
be associated with higher incidence of heart failure: presence of atrial fibrillation30, atherosclerotic heart disease 
and higher QRSD interval31, higher heart rate32, higher red cell distribution width33, lower estimated globular 
filtration rate (eGFR)34 and hypertension which is often a precursor of heart failure35.

Finally, for chronic obstructive pulmonary disease (COPD), codes indicating a history of COPD, nico-
tine dependence, asthma or dyspnea appear as important features. Additionally, we observe the well-known 

Table 1.   Summary statistics of the Stanford cohort.

Total Train Validation Test

Number of patients 524,198 314,518 104,840 104,840

 Male 232,789 (44%) 139,660 (44%) 46,489 (44%) 46,640 (44%)

 Female 291,377 (56%) 174,839 (56%) 58,344 (56%) 58,194 (56%)

 Unknown 32 (0%) 19 (0%) 7 (0%) 6 (0%)

 Number of encounters 5,332,739 3,196,459 1,064,381 1,071,899

Number of encounters per patient

 Median 5 5 5 5

 5% quantile 2 2 2 2

 95% quantile 34 34 34 34
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association of COPD with chronic kidney disease36 through kidney function lab tests such as eGFR, blood urea 
nitrogen (BUN), and creatinine, and heart diseases such as atherosclerosis and heart failure37. Overall, the model 
selects meaningful and interpretable features for predicting these diagnoses.

Comparing with the deep learning approach.  We compared the performance of our modeling 
approach to the deep learning proposed in Choi et al.15 In terms of overall AUROC performance across all labels, 
both the LR and RF multi-label classifiers trained on diagnostic codes only outperform the best deep learning 
model (p < 0.001, datanotshown ). In terms of AUPRC however, the DL model performs significantly better 
across all letter prefixes (p < 0.001, datanotshown).

The situation reverses for de novo predictions: the overall AUROC performance of the DL model is better 
across all letter prefixes (p < 0.001 , Fig. 3, Supplementary Fig. 6) than the LR and RF based models; however, 
the AUPRC performance is significantly worse (p < 0.001).

Model calibration and comparison with existing literature.  Next, the performance of the calibrated 
model was assessed on the validation and test sets in terms of AUROC (Fig. 4) and AUPRC (Fig. 5) and compar-
ing overall and de novo predictions. We observe that the predictive performance of the model is better on overall 
predictions vs. de novo encounters (Figs. 4, 5). This difference in AUPRC can be attributed to increased class 
imbalance; when only de novo encounters are considered for a label, the prevalence decreases, and the AUPRC 
decreases correspondingly. The model also performs significantly better (median overall AUROC 0.934 vs 0.848, 
p < 0.001 ) on chronic disease vs. acute diseases. The overall AUROC performance on chronic diseases such as 
neoplasms and mental and behavioral disorders is superior to the performance on letter prefixes with more 
acute diseases such certain infectious and parasitic diseases injury, poisoning and certain other consequences 
of external causes.

Figure 2.   Violin plots showing the AUROC performance comparison between logistic regression (LR) and 
random forest (RF) with different inputs: diagnostic codes only (Diag), lab results only (Labs) integration 
of both diagnostic codes and lab results (LabsDiag) and integration of diagnostic codes, lab results and 
demographic features (LabsDiagDemo). The p-values obtained by a paired Wilcoxon signed-rank test (top of 
the plots) shows that RF outperforms LR significantly in every case.
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Next, we compared the RF and DL models with two previous studies using DL: Choi et al.15 and Rashid-
ian et al.11 In terms of the recall@k metric, the RF model performs similarly with the results reported in those 
reported by Choi et al. on their data. However, their DL model trained with diagnostic codes on Stanford data 
performs worse (Table 3). Secondly, we compared our results for three diseases studied by Rashidian et al.—in 
each case, the AUROC performance of the RF model exceeds the results reported in Rashidian et al., as well as 
the DL model trained on Stanford data.

Discussion
In this paper, we have developed SCOPE a model for predicting ICD-10 diagnoses codes for a patient at a given 
encounter, based on the patient’s demographics, past diagnoses and lab test results. We adopted a binary relevance 
based multi-label modeling approach that is easily extensible and allows us to inspect and interpret the models for 
each individual label separately. SCOPE showed good calibration in the held-out test set and performed compa-
rably or better with other models in the literature. The final model, SCOPE was a binary relevance based classifier 
with a RF trained on the concatenation of aggregated diagnostic codes, lab results and demographic features.

The proposed model predicts three-character prefixes of ICD-10 codes instead of the full code. In practical 
use, we envision a human-in-the-loop setup where the model suggests the three-character code prefix and the 
physician adds the relevant suffix. There are several advantages of this choice. First, for many codes, it is not 
possible to specify the exact code accurately just based on past medical history—for example, the codes under 
F31 (bipolar disorder) specify the severity of the disease at the current encounter and requires evaluation by 
the physician based on other factors such as current symptoms. Second, the exact ICD-10 billing code used in 
a situation can vary based on the physician’s subjective opinion and the medical institution’s conventions—the 
three-character prefix is more robust to such variation and the model will likely generalize better. Finally, from a 
technical standpoint, it is beneficial to reduce the cardinality of the target labels and achieve better performance.

Our work is similar in spirit to several existing papers in the literature. With the widespread adoption of EHR 
and the availability of large datasets, deep learning approaches have been used for most EHR based modeling and 
prediction tasks such as learning patient or context representation16,18, outcome prediction7,8,38–40, and predic-
tion of future diagnoses11,17,41 in recent years10,42,43. In particular, Choi et al.15 used a recurrent neural network 
(RNN) model to predict diagnosis codes from past diagnosis codes and medication data obtained from the EHR, 
and showed it outperformed a baseline logistic regression model. Indeed in our initial experiments, we found 
that a naïve logistic regression does not perform well on the prediction task. In contrast, we find that a binary 
relevance based multi-label strategy with logistic regression as the base model outperforms the RNN model of 
Choi et al.15 We hypothesize that this disparity is caused by the two factors: first, the high class imbalance for 
the different codes, which can be detrimental to the prediction performance44,45, and secondly, different codes 
have very different prevalence rates which likely hurts the performance for rarer diseases disproportionately.

Table 2.   Breakdown of average AUROC for LR and RF models trained on LabsDiagDemo by ICD-10 
letter prefixes. The letter prefixes represent groupings of diagnostic codes (roughly organized by disease 
type and affected systems, for e.g., codes prefixed with I represent diseases of the circulatory system) in the 
ICD-10 coding system. The p-value is obtained using Wilcoxon signed rank test with alternative hypothesis 
RF outperforming LR, and then are adjusted for multiple hypothesis tests using the Benjamini–Hochberg 
procedure with false discovery rate < 0.05. The highlighted cells indicate that the p < 0.05.

Letter prefix Label_count LR RF p value

A 10 0.832 0.848 3.36E−02

B 21 0.844 0.858 7.60E−03

C 28 0.977 0.972 1.00E+00

D 35 0.889 0.903 7.98E−05

E 34 0.915 0.927 4.04E−05

F 37 0.929 0.934 6.11E−02

G 30 0.908 0.918 1.93E−03

H 42 0.853 0.872 2.98E−05

I 44 0.919 0.926 2.09E−03

J 31 0.861 0.871 1.94E−03

K 45 0.849 0.864 2.98E−05

L 44 0.821 0.842 9.50E−06

M 53 0.886 0.897 9.50E−05

N 51 0.898 0.907 1.67E−04

O 7 0.981 0.979 7.82E−01

P 3 0.995 0.994 7.82E−01

Q 16 0.939 0.935 1.00E−00

S 38 0.821 0.832 2.94E−03

T 14 0.809 0.810 4.31E−01
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We adopt a conceptually simple binary relevance based classifier testing a logistic regression and a random 
forest pipeline base. Besides being a natural choice for modeling multi-label outputs, the binary relevance based 
approach provides several additional benefits. First, it allows us to account for the fact that different labels have 
very different prevalence. To combat class imbalance, we use majority under-sampling, which also reduces the 
computational expense. Also, we can calibrate each model independently based on the prevalence of the cor-
responding label. Another advantage to the binary relevance based approach is that the model can be easily 
extended to accommodate additional labels of interest—if new target labels are introduced (say, due to availability 
of new data over time), we only need to train one additional model for each new label. Also, if the prevalence of 
an individual label changes with time (many diseases show a seasonal pattern, for example), we can recalibrate 
only the corresponding model. In essence, the binary relevance based approach allows us to update SCOPE 
simply and efficiently.

Another key consideration in developing SCOPE was interpretability, particularly as it relates to 
transparency12. Logistic regression and random forests are well understood theoretically and are obviously more 
algorithmically transparent to deep learning models such as RNNs. We have also striven to preserve decompos-
ability, which relates to the idea that each component of the model including the inputs, the parameters and the 

Figure 3.   Violin plots showing the chapterwise AUPRC Performance of DL vs LR vs RF on diagnostic codes for 
de novo predictions. The numbers atop the plots indicate the p-values obtained by a paired Wilcoxon signed-
rank test with the alternative hypothesis that DL is better on overage.
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computational steps should be intelligible. To that end, we adopted the early stage feature integration strategy 
of concatenating features obtained from different modalities, avoided extensive feature preprocessing or feature 
engineering and chose not to use deep learning based feature embeddings. These choices ensured that each 
input to SCOPE is interpretable to the user. Finally, the binary relevance based approach greatly enhances post 
hoc interpretability, which relates to the explanations or contextual information such as feature importance that 
provide insight about the trained model. Since we have a separate model for each label, performing post hoc 
interpretation of each model separately allows us to infer how the features interact in predicting the individual 
label. While the notion and importance of interpretability of models has been subject to some debate46,47, we 
believe transparency can facilitate adoption of machine learning models in the clinic. It may also reduce fears 
of brittleness, particularly prevalent in deep learning models, where small perturbations of input may lead to 
wildly different predictions in edge cases48.

Interpretable models are particularly attractive if they do not suffer from performance penalties. Fortunately, 
this seems to be the case with SCOPE which performs at par or better based on our results with existing models. 
In particular, we note that in terms of recall@k , our results are at par with the best results in Choi et al.15 (Table 3). 

Figure 4.   Violin plots showing the chapter-wise AUROC performance of the calibrated model on the validation 
and test sets for all encounters (overall) and de novo encounters.
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Also, in terms of AUROC on individual labels, our model achieves better results than those reported in Rashidian 
et al.11, and the deep learning model proposed in Choi et al.15 when trained on diagnostic codes only.

Our work also suggest several avenues for future research. First, SCOPE was trained, validated and tested on a 
single dataset obtained from Stanford hospital and clinics. While model interpretation shows that the important 
features are meaningful, we have not assessed the performance of this model on external datasets, nor have we 
tried to validate or draw causal connections between the identified important features and the predicted diag-
noses from a clinical point of view. Unfortunately, to the best of our knowledge, there are no publicly available 
EHR datasets that track office visits (rather than hospitalization/ICU visits as MIMIC49 does). Despite starting 
with more than 2.5 million patients, the model was developed for 583 diagnostic codes which covers only around 
40% of all relevant three-character ICD-10 codes. This points to the fact that many codes are rare and more data 
is likely required for developing models to cover them. We dropped infrequent codes in our modeling approach. 
We note however, that this does not detract from the usefulness of our model since these codes are quite rare 
and occurred in less than 500 (out of > 500,000) patients, or less than 0.1% of our cohort. Finally, EHR data can 
be incomplete and biased4 and models developed on them can be susceptible to that bias.

Figure 5.   Scatter plots showing the chapter-wise AUPRC performance of the calibrated model on the validation 
and test sets as a function of prevalence for all encounters (overall) and de novo encounters.
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In conclusion, we found that SCOPE, an RF model using diagnostic codes and labs results, can predict 
future outpatient visit diagnosis as well as a or better than popular deep learning benchmarks, but with greater 
interpretability of contributing features. The promise of SCOPE is that by predicting the likely diagnoses for a 
patient based on past medical history, it can guide the physicians in their pre-visit preparation or aid them fill 
out the post-visit documentation, and in the process potentially reduce the incidence of missing or incomplete 
entries in the EHRs.

Data availability
The EHR data obtained from Stanford Healthcare cannot be made publicly due to HIPAA issues and data requests 
should be directed to the corresponding author.
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