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Abstract

Introduction: Harmonization protocols that address batch effects and cross-site

methodological differences in multi-center studies are critical for strengthening elec-

troencephalography (EEG) signatures of functional connectivity (FC) as potential

dementia biomarkers.

Methods:We implemented an automatic processing pipeline incorporating electrode

layout integrations, patient–control normalizations, and multi-metric EEG source

space connectomics analyses.

Results: Spline interpolations of EEG signals onto a headmeshmodelwith 6067 virtual

electrodes resulted in an effective method for integrating electrode layouts. Z-score
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transformations of EEG time series resulted in source space connectivity matrices

withhighbilateral symmetry, reinforced long-range connections, anddiminished short-

range functional interactions. A composite FCmetric allowed for accuratemulticentric

classifications of Alzheimer’s disease and behavioral variant frontotemporal dementia.

Discussion: Harmonized multi-metric analysis of EEG source space connectivity can

address data heterogeneities in multi-centric studies, representing a powerful tool for

accurately characterizing dementia.

KEYWORDS

AD, automatic harmonization, bvFTD, dementia classification, EEG, inverse solution methods,
multi-centric studies, whole-brain functional connectivity

1 INTRODUCTION

Alzheimer’s disease (AD) and behavioral variant frontotemporal

dementia (bvFTD) are two of the most common and impactful forms

of dementia globally. As a result, AD and bvFTD are life-limiting

conditions that represent an enormous burden on developing coun-

tries and across underrepresented populations, where socioeconomic

and educational inequities compromise access to traditional demen-

tia biomarkers and undermine the timely diagnosis of the disease.1,2

Efforts to overcome these challenges include the development of

biomarkers derived from high-density electroencephalography (hd-

EEG), a cost-effective, scalable, and portable technology that allows

for the accurate assessment of brain oscillatory dynamics and network

disintegration.3,4 In this regard, functional connectivity (FC) analy-

ses are particularly relevant because FC is associated with cognitive

deficits and neuronal dysfunction in neurodegeneration.5,6

Two major challenges underpin the development of dementia

biomarkers derived from EEG connectivity. First, progress in this field

relies on large-scale multi-center studies addressing geographic and

sociodemographic heterogeneities. These studies require harmoniza-

tion protocols to bring heterogeneous data together into a unified

analytical space, thereby minimizing batch effects.7,8 Second, various

conceptual frameworks comprising different connectivity metrics and

estimation procedures have been used to assess EEG connectivity.9,10

To comprehensively characterize abnormal FC in dementia, compos-

ite connectivity metrics that provide insight into various types of

functional interactions are needed.10,11 Joint analyses of FC ben-

efit from EEG source localization methods,12,13 since they provide

topographic information on brain functional interactions and reduce

spurious effects commonly observed in sensor-space connectivity

analyses.14

This study presents a novel framework for dementia characteri-

zation, in which joint analyses of EEG source space connectivity in

site-harmonized data serve as input for gradient-boosting machine

learning classifiers tuned by Bayesian optimization.15,16 The tool con-

siders four essential stage of harmonization that follow recommen-

dations for assesing EEG connectivity in neurodegenerative diesasese

(the ConnEEGtome),11 the tool incorporates four critical harmoniza-

tion stages: (a) adoption of standards for data storage that facilitate

information exchange17; (b) adequate reference schemes by imple-

menting average reference or Reference Electrode Standardization

Technique (REST)18,19; (c) integration of different electrode layouts20;

and (d) EEG rescaling using patient–control normalizations.11,15

Wehypothesized that (1) spline interpolationsof re-referencedEEG

allow for the integration of different electrode layouts, (2) amore com-

prehensive representation of the EEG source space connectomics is

obtained after the patient–control normalization of the EEGdata using

Z-score transformations, and (3) multi-metric analyses of source space

connectivity allow for the accurate classification of dementia subtypes.

The following sections describe the workflow for data harmonization

and classification. The validity of the harmonization procedures and

the use of themulti-metric approach to source space EEG connectivity

for dementia characterization is illustrated. The study is accompanied

by a repository where the code, a user guide, and source space con-

nectivity matrices are available (https://github.com/PavelPrado/EEG-

Harmonization).

2 METHODS

2.1 Data set for validation (AD, bvFTD, and HCs)

Because the resting state EEG (rsEEG) is the ideal acquisition proto-

col for data harmonization in EEGmulticentric studies,11 the pipeline’s

functioning is described using this EEG modality. To illustrate the dif-

ferent steps of the processing pipeline, we used eyes-closed rsEEG

acquired from participants enrolled in two centers of the Multi-

Partner Consortium to Expand Dementia Research in Latin America

(ReDLat),2 a regional effort aimed at the harmonization of participant

enrollment and neurocognitive assessment in multi-centric studies.

Therefore, the pipeline’s validation was carried out using data from

a well-described cohort that was recruited and assessed for cogni-

tive abilities using standardized procedures. Consequently, inter-site

variability was restricted predominantly to the EEG acquisition.

Participants were patients with AD (n = 35), patients with bvFTD

(n = 19), and healthy control (HCs, n = 46). All patients were in

https://github.com/PavelPrado/EEG-Harmonization
https://github.com/PavelPrado/EEG-Harmonization
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the early/mild stages of the disease and had no proven track of

substance abuse, primary language deficits, and neurological or psy-

chiatric disorders. The demographic information of the sample (Table

A1), the diagnosis criteria, and the neurophysiological examinations

are presented in Appendix A. The EEG acquisition is also described in

Appendix A. The study was approved by the institutional review board

at each recruitment site. A signed informed consentwas providedby all

participants, following the Declaration of Helsinki.

2.2 Analysis workflow

The pipeline runs with a default workflow that can be modified

following instructions provided in the user guide (Appendix B). Addi-

tional technical and practical information is provided elsewhere.21 The

pipeline has a modular organization in which a module can offer dif-

ferent processing alternatives, for example, seven data normalizations,

three methods for EEG source space estimation, and 22 possible joint

analyses of connectivity (Table C1, Appendix C). Therefore, more than

462 different processing strategies can be implemented.

2.2.1 Data structure

The pipeline (Figure 1) is implemented in Matlab as a Command Line

Interface and built upon pre-existing tools. Data (rsEEGor task-related

activity) is organized according to the EEG-BIDS format, an extension

of the brain imaging data structure (BIDS) that addresses the het-

erogeneity of data organization by following the FAIR principles of

findability, accessibility, and interoperability.17

2.2.2 Preprocessing

In the preprocessing module (Figure 1A), filtering (default cut-off: 0.5

and 40 Hz) and resampling (default frequency: 512 Hz) are executed

automatically via EEGLAB.22 These steps are followed by a bad chan-

nel inspection that incorporates abuilt-in graphical user interface (GUI)

to facilitate the manual identification of noisy channels. Next, data are

referenced using the average reference (AVE, the average time series

of all channels) or REST.18,19 Artifact removal can be carried out with

(1) ICLabel, a classification method that labels EEG-independent com-

ponents into signals and different categories of noise,23 (2) EyeCatch,

a tool containing a database of manually identified eye-related ICA

scalp maps,24 and (3) BLINKER, a toolbox for blinking extraction and

quantification of ocular indices.25 Subsequently, channels marked as

noisy are replaced by spherical interpolation of neighboring channels
26 (Figure 1A).

2.2.3 Spatial normalization

In this stage, EEG acquired with different electrode layouts is regis-

tered into a common topographical space using a modified version of

RESEARCH INCONTEXT

Systematic review: Authors reviewed the literature using

traditional sources (e.g., PubMed) regarding functional

connectivity (FC) with electroencephalography (EEG) for

dementia and harmonization protocols to target cross-site

variability and batch effects in multi-center studies. In

addition, integrative connectivity analysis in the EEG source

space were reviewed. No previous work has proposed a

harmonized, multi-centric andmulti-metric approach to EEG

source connectivity in dementia research.

Interpretation: Findings indicate the effectiveness of critical

harmonization steps to reduce cross-sitemethodological dif-

ferences. The high accuracy of classifications based on joint

analysis of theoretical information metrics of FC highlights

the relevance of integrative approach to assess complex

connectivity patterns that profit the characterization and

classification of dementia subtypes.

Future directions: Results strengthen global strategies for

the assessment of dementia based on scalable and cost-

effective technologies. Future studies need to explore har-

monization steps to control the effect of demographic covari-

ates, and the test–retest reliability of the composite metrics

for connectivity.

the EEGLAB function “headplot,”26,27 which projects the original EEG

into a 6067-point mesh head model and projects the signal back into

the desired layout (Figure 1B). Currently the spatial normalization step

supports two EEG layouts: Biosemi128 and Biosemi64 (international

10/20 system).

2.2.4 Patient–control normalization

This data rescaling aims to reduce cross-site (centers) variability. The

normalization is carried out separately by each recruitment center and

consists of computing a constant for rescaling (weighting factor) from

the data belonging to HCs (Figure 1B). Subsequently the EEG of all

individuals is rescaled using the same weighting factor. Seven options

of normalization are included, where the default option is the Z-score

transformation.15,16 The latter metric describes the position of a raw

score in terms of its distance from the mean when measured in stan-

dard deviation units. Other rescaling factors included in the pipeline

are (1) the robust standard deviation of all data, (2) the robust stan-

dard deviation per channel, (3) the Huber mean of robust standard

deviation per channel, (4) the Huber mean of the robust standard

deviation per subject, (5) the mean of robust standard deviation per

subject, and (6) the L-2 norm of the robust standard deviation per

subject.20
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F IGURE 1 Flowchart of the pipeline for dementia classification based onmulti-metric analyses of electroencephalography (EEG) source space
connectivity. From left to right, the figure presents the fivemodules of the pipeline. Traditional reprocessing steps are indicated inmodule 1. This is
followed by the normalization stage, where spatial harmonization and data rescaling are conducted (module 2). Source reconstruction (module 3)
assessing the inverse problem in EEG is implemented for joint analyses of functional whole-brain functional connectivity in Alzheimer’s disease
(AD) and behavioral variant frontotemporal dementia patients (bvFTD) (module 4), alongside parameters describing the performance of machine
learning classification of each dementia subtype (module 5).

2.2.5 EEG source space estimation

The pipeline includes three methods for solving the EEG inverse prob-

lem. The default method is the exact Low-Resolution Electromagnetic

Tomography (eLORETA),28 which is a distributed, linear,weightedmini-

mumnorm inverse solutionmethod providing exact localization to test

seeds, albeit with a high correlation between neighboring generators.

Alternatively, EEG sources can be localized using the Bayesian model

averaging (BMA)method.29 TheBMAmethod considers anatomic con-

straints to address the model uncertainty, thereby allowing for the

accurate estimation of deep EEG generators. The second alternative is

theminimum-norm estimation (MNE)method, which provides the EEG

inverse solution that best fits the sensor data with minimum overall

amplitude of brain activity.30

2.2.6 Estimation of FC

Whole-brain FC is computed using 82 anatomic compartments of

the Automated Anatomical Labeling Atlas (AAL atlas)31 (Table C2,

Appendix C), and therefore comprises 3321 pair-wise functional

interactions.32,33 The set of connectivity metrics comprises four

frequency-domain connectivity metrics (Table 1), which in turn con-

siders instantaneous, lagged, and total connectivity in eight EEG

frequency bands: delta (𝛿: 1.5–4 Hz), theta (𝜃: 4–8 Hz), alpha1 (𝛼1:

8–10 Hz), alpha2 (𝛼2: 10–13 Hz), beta1 (𝛽1: 13–18 Hz), beta2 (𝛽2: 18–

21 Hz), beta3 (𝛽3: 21–30 Hz), and gamma (𝛾: 30–40 Hz). This results

in 96 frequency-domain connectivity metrics (96 representations of

TABLE 1 Connectivity metrics for the analysis of whole-brain
functional connectivity.

Functional connectivity

Frequency-domain Time-domain

Linear

metrics

Linear connectivity (LC) Pearson’s correlation (rho)

Coherence (Coh)

Nonlinear

metrics

Nonlinear connectivity

(nLC)
Mutual information (MI)

Phase synchronization

(PS)
Weightedmutual

information (WMI)

Conditional mutual

information (CMI)

O-information (O_info)

whole-brain FC). In addition, five time-domain connectivity metrics

can be computed (Table 1). Therefore, it is possible to conduct joint

analyses of up to 101 connectivity metrics.34 The FC metrics and the

technical parameters used to compute the FC matrices are presented

in Prado et al.34 and in Appendix C (sections Connectivity metrics and

Feature selection, respectively).

2.3 Multi-feature analyses for classification

A threefold multi-feature analysis16,35,36 is implemented using the

entire set (or a predefined subset) of connectivity metrics. First, the
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most relevant EEG features for binary classifications (i.e., ADvsHCand

bvFTD vsHC) are identified by combining statistical tests and progres-

sive feature elimination in the training sets, which consisted of 80%

of the total samples (one set containing ADs and HCs, the other con-

taining bvFTD and HCs). In this stage, statistical criteria are used to

reduce the dimension of the connectivity matrices to those connec-

tions with statistically significant differences between the dementia

subtype (AD or bvFTD) and HCs (Feature filter selection section).

Once optimum features are selected, the machine learning classifier is

used on new out-of-sample data. Finally, we run a feature importance

analysis to gain insights into which features played a more signifi-

cant role in classifying the testing sample (machine learning algorithm

section).

2.3.1 Filtering for feature selection

The dimension of the connectivity matrices is reduced using group-

level statistics.34 This step is conducted independently for each con-

nectivity metric by comparing the whole-brain connectivity maps of

the groups being assessed (a given dementia subtype and HCs, for

example) using nonparametric permutation tests (α = 0.05; 5000

randomizations).37 To control the false discovery rate (FDR), the Ben-

jamini and Hochberg FDR method was utilized.38 This filter method39

avoids adaptation to the data set specificities (overfitting) and there-

fore increases generalizability.40 Furthermore, this approach allows for

a more direct interpretation of the results than other alternatives of

dimensionality reduction, such as principal component analysis,41 it

is computationally inexpensive, and does not consider the classifier

performance.39 Connections with statistically significant differences

between groups (e.g., HCs-AD, and HCs-bvFTD) are selected for the

subsequent analysis steps.

2.3.2 Machine learning algorithm

Machine learning classifiers utilize connections that vary significantly

between groups as features to distinguish between dementia subtypes

and HCs, using the procedure described in Moguilner et al.16 Ran-

dom divisions of the data set are obtained using an 8:2 split ratio

for training and testing, respectively, without using the testing data

set during the validation phase for out of k-folds (k = 10) predic-

tions. Stratified cross-validation is used during the training phase to

tune Bayesian hyperparameters and ensure equal sample distribution

among the folds, thereby reducing potential biases in classification due

to imbalanced sample sizes.

In addition, regularized boosting helps to reduce overfitting. The

classification accuracy values (F1 score) are reported along with the

receiver-operating characteristic (ROC) curve and the SHapley Addi-

tive exPlanations (SHAP),which allow identifying the set of parameters

that provide a compressive explanation of the classification. Further

details of the classification algorithm are provided in Section 8.2,

Appendix B.

3 RESULTS

Validation of the pipeline approached critical steps for data harmo-

nization (spatial normalization and Z-transformation for EEG rescal-

ing) and using a composite connectivity metric to classify AD and

bvFTD.

3.1 Spatial normalization for harmonization
of EEG data

Wequantitatively evaluated the spatial normalization by transforming

the EEG (128 channels, Biosemi acquisition system) to a 64-channel

10/20 layout, using the 6067-point head model, and repeating the

process in the opposite direction (Figure 2A). The validity of the nor-

malization was expressed as the absolute error of the transformation,

that is, the absolute difference between the original and recreated sig-

nals. For all electrode locations, the transformation error was always

twoorders ofmagnitude lower than the original signal (Figure 2A). Fur-

thermore, regression analyses showed that the recreated signal was

accurately predicted from the original voltages. In this scenario, the

spatial normalization resulted in moderate underestimations of volt-

ages indistal frontotemporal scalp locations (Figure2B). This distortion

in the EEG topology resulted in phantom activities estimated in infe-

rior portions of frontolateral, temporal, and occipitotemporal cortical

regions (Figure2B).Nevertheless, themaximumerror in the estimation

of cortical activities (differences of the current density maps derived

from the original and recreated EEG topologies) was also two orders

of magnitude lower than the original cortical activity, which confirmed

the validity of the spatial normalization.

3.2 Effect of data rescaling on FC

Examples of time courses of EEG at different scalp locations, along

with the corrections derived from theZ-score transformation, are illus-

trated in Figure 3A. The rescaling caused only slight variations in the

EEG topology. At the source space level, the spatial normalization did

not disturb the topographical distribution of the EEG generators. Nev-

ertheless, the current density of some cortical areas varied (Figure 3B).

In this illustrative example, the latter is reflected in the reduced activ-

ity of the left inferior frontal gyrus, and the left inferior temporal gyrus

obtained after normalization (Figure 3B).

Furthermore, rescaling induced modest corrections of the EEG

source space connectivitymaps (Figure 3C). To illustrate the above, the

20 strongest connections in theEEGalpha bandwere estimatedbefore

andafter applying theZ-score transformation.Connectivitymapswere

computed with two frequency-domain metrics: coherence and phase

synchronization (Figure 4). The EEG rescaling resulted in brain FCwith

reduced hemispheric asymmetry (lateralization). This was reflected by

the emergence of interhemispheric connections and long-range con-

nections within a particular hemisphere, accompanied by a reduction

of short-range interactions (Figure 4).
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F IGURE 2 Spatial normalization of electroencephalography (EEG). (A) A scheme of the validation strategy (comparison of original and
estimated voltage samples of the 128 Biosemi electrode layout) is illustrated in the left, top panel. The absolute error between the original and
estimated voltages recorded in one healthy control is presented for each electrode in the left, inferior panel. Original and estimated voltages, as
the theoretical line representing the relationship between original and predicted voltages, are plotted in the right panel. The parameters of the
regression analysis are presented in the table. (B) Scalp distribution of voltages of the original and recreated EEG, as well as their corresponding
brain generators estimated using the eLORETAmethod. Errors (differences between the original and recreated voltages) are provided.

3.3 Classification of dementia subtypes using a
composite metric of FC

Figure 5 illustrates how joint analyses of FC help characterize demen-

tia. In this case, AD and bvFTD were classified by integrating infor-

mation theoretic metrics (MI: mutual information, CMI: conditional

mutual information, and O info: Organizational information). A com-

prehensive analysis of the integration of frequency-domain connectiv-

ity metrics is reported elsewhere.34

The number of features used for the classification (which resulted

from the feature filter selection step, section 2.3) is presented in Table

C3 (Appendix C). The location of these featureswithin the connectivity

matrices is illustrated in Figure SC1 (Appendix C), which is comple-

mented by the list of AAL regions provided in Table C4 (Appendix C).

The complete list of connections used for the classifications is provided

in Tables C4 (AD vs HCs classification) and C5 (bvFTD vs HCs classi-

fication) (Appendix C). Finally, how features were sorted to input the

classifier is illustrated in Figure C1 (Appendix C).

During the validation stage, the maximum performance of the

classification (F1) was 0.93 (for AD vs HCs) and 0.97 (for bvFTD

vs HCs) (Figure 5). The complete list of optimum features is pre-

sented in Table C7 (Appendix C). It is noteworthy that the opti-

mum set of features comprised connections captured by differ-

ent metrics (Table C2). Furthermore, these sets of features varied
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F IGURE 3 Electroencephalography (EEG) rescaling using the Z-score transformation. (A) Illustrative examples of EEG time series acquired at
different scalp locations, from an elderly healthy control. Original signals are presented along with their corresponding transformations. (B) Scalp
distribution of voltages of the original and rescaled EEG, as well as their corresponding brain generators estimated using the eLORETAmethod.
Different views of the brain are presented. (C)Whole-brain functional connectivity estimated in the low alpha EEG frequency bandwith different
frequency-domain connectivity metrics. Functional connectivity matrices computed from original and rescaled EEG. The differences between the
connectivity matrices are illustrated. For clarity, only inferior triangles of the connectivity matrices are presented. ext, external; in, internal; phase
sync., phase synchronization.

for the AD and bvFTD classifications. The classifications resulted

in ROC curves of 0.89 and 0.91 for AD and bvFTD, respectively.

The complete set of performance metrics is presented in Table C8

(Appendix C).

Regionswith atypical connectivity included the superiormiddle and

inferior frontal gyri, the parahippocampal gyrus and the anterior cin-

gulate cortex, the middle temporal pole, the supramarginal gyrus, and

the fusiform gyrus (Figure 5A, model explanation). For bvFTD, atyp-

ical connectivity was restricted mainly to areas in the frontal and

temporal lobes (Figure 5B, topographical information). The areas iden-

tified included the precentral gyrus, the superior and middle frontal

gyri, the Heschl gyrus, and the supramarginal gyrus (Figure 5A, model

explanation).

The analyses above were repeated in a matched subsample with

an equal number of subjects to ensure that the results were not

driven by the differences in sample size or demographics (Table C9,

Appendix C). The results (Table C10 and C11, Appendix C) confirmed

the classifications obtained with the whole sample.
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F IGURE 4 Topographic distribution of the 20 strongest brain functional connections estimated in the electroencephalography (EEG) low
alpha frequency bandwith (A) instantaneous coherence and (B) instantaneous phase synchronization. The EEG source space connectivity was
estimated from the original time series (Left panels: Z-transformed representations). Left, right, and interhemispheric connections are illustrated
with different colors.

4 DISCUSSION

An automatic pipeline supporting multi-centric studies of EEG source

space connectomics was implemented. The pipeline incorporates stan-

dards for data storage and critical harmonization stages, including

integrating different electrode layouts and rescaling algorithms for

patient–control normalizations. Results show that joint analyses of

connectivity allow for assessing complex connectivity patterns not evi-

dent in traditional single metric approaches, thereby improving the

characterization of dementia subtypes. The automatic processing step

sequence facilitates the analysis of large data volumes with minimal

supervision. The pipeline’s strengths rely on storage, transparency,

data set reusability, and reproducibility of the results.

4.1 Harmonization steps

The four essential elementsof dataharmonizationarediscussedbelow.

The first relates to adopting BIDS standards for storage and data

exchange.17 The second aspect is incorporating uniform criteria for
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F IGURE 5 Dementia classification based on source localized resting state EEG (rsEEG) connectivity estimatedwith theoretic-information
metrics. (A) Classification of Alzheimer’s disease (AD). (B) Classification of behavioral variant frontotemporal dementia (bvFTD). For each
classification, the performance of the classification (F1 during validation) is presented as a function of the number of features (functional
connections) that were sequentially included in the analyses. The performance (F1) obtained with the optimum set of features is provided. The
topographical information of the optimum set of features of the classification is shown (topographical information). Regions denoted by “mult” in
the color bar belong to atypical connections captured by different connectivity metrics. The z coordinate of the horizontal plane of the brain is
presented in the right low portion of each volume view. The receiver-operating characteristic (ROC) curves are presented. The area under the
curve (AUC) is indicated for each case. ROC curves are presented as themean (thick line) and the 95% confidence interval (shadows), which were
obtained by bootstrapping (5000 times). Connections with the highest contributions to the predictivemodel are presented (model explanation) in
descendent order of relevance (SHAP values). ACC: anterior cingulate cortex; AD, Alzheimer’s disease; AUC, area under the curve; bvFTD,
behavioral variant frontotemporal dementia; CMI, conditional mutual information; FG, fusiform gyrus; HG, Helsch gyrus; IFGoper, opercular part
of the inferior frontal region;MFG, middle frontal gyrus; MI: mutual information; O_info: Organizational information; ORBmid: orbital part of the
middle frontal gyrus; ORBsup: orbital part of the superior frontal gyrus; PCG, precentral gyrus; PHG, parahippocampal gyrus; ROC, receiver
operating characteristic curves; SFG, superior frontal gyrus; SHAP, SHapley Additive exPlanations; SMG, supramarginal gyrus, TPOmid, middle
temporal pole.

EEG re-referencing, which is achieved by using the AVE reference

and the infinite reference estimated with REST. These two reference

choices provide consistent results in EEG connectivity studies and

outperform single electrode (Cz) and linked mastoid references.18,19

The third element is the integration of different electrode layouts,

which had been addressed previously using assignment/replacement

procedures based on the closest equivalent electrodes and minimum

electrode distance.20,42 In this study, electrode layouts are integrated

by generating virtual sensors computed from topographic interpola-

tion transforms. The high correlation between the EEG topographies

constructed from the spherically splined EEG fieldmap and that result-

ing from theoriginal signals reflect the efficacy of thismethodof spatial

harmonization (Figure 2A).

The fourth aspect, the patient–control normalization using the Z-

score transform, has been applied successfully in multi-centric studies

on neurodegeneration15,16 and has been crucial to developing quanti-

tative EEG norms8 that increase the diagnostic accuracy of brain dys-

function. In addition, the Z-score transformation results in FCmatrices

with higher bilateral symmetry than that obtained with unharmonized

EEG (Figure 4). This method promotes the emergence of interhemi-

spheric connections and long-range connections within a particular

hemisphere while reducing short-range interactions (Figure 4). The

latter is particularly relevant because short-range connections can

be interpreted as spurious interactions that result from head volume

conduction effects on the estimation of FC.43

4.2 A multi-metric analysis of FC for dementia
classification

EEGsource space connectivity analyses provide topographic represen-

tations of brain functional interactions14 with increased test–retest

reliability, compared to sensor-space estimates.44 FC analyses pro-

vide better classification performance of dementia in comparison

with spectral descriptors.45,46 Likewise, joint analyses of connectiv-

ity result in a more robust classification of dementia than single
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metric approaches.45,47 The heterogeneous set of features underlying

ADandbvFTDclassifications (Figure 5A) confirms the relevance of this

integrative approach and the utility of joint analyses of EEG spectral

measures and FC descriptors.9,46,47

The atypical connectivity observed in AD supports the hypothesis

that AD is a disconnection syndrome, mainly affecting posterior brain

regions.9,48 Nodes of the default mode network (DMN) are signifi-

cantly affected by this condition.49,50 In bvFTD, the anterior cingulate

and the insula (hubs of the salience network),51 the dorsolateral pre-

frontal cortex, and the orbitofrontal cortex are critically impaired. 50,52

Other frontotemporal regions with atypical connectivity have been

associated with diverse symptoms in bvFTD.52

It is noteworthy that the multi-metric approach to dementia imple-

mented in this study is boostedbymachine learning algorithms. Critical

elements are recursive feature reduction (from thousands to dozen) to

prevent overfitting, and Bayesian optimization for tuningmodel hyper-

parameters on datasets consisting of several features. As a result, the

performance of dementia classifications based on this multi-metric

and multi centric framework16,46 approaches those obtained using

advanced biomarkers.

4.3 Limitations and future directions

The main limitation of this study resides in the lack of steps to con-

trol the effects of demographic covariates (age, sex, and ages of formal

education)8,53 on dementia classification (but see the confirmation

results using matched samples in Appendix C). Future pipeline imple-

mentations will allow for the inclusion of demographics in the clas-

sification, as is done elsewhere.16,35,36 Likewise, future studies must

address statistical approaches to validate the best pipelines created by

the synergy of available choices (options for spatial normalization, EEG

source reconstruction, connectivity metrics, and classification algo-

rithms). Although this study focused on integrating three time-domain

connectivity metrics, network topologies across EEG frequency bands

and dementia classifications based on integrating frequency-domain

connectivitymetrics have been provided.34 Nevertheless, the accuracy

of classifications based on integrating frequency- and time-domain

metrics needs to be explored. Furthermore, although joint connectivity

analyses benefit dementia classification even without controlling for

metric crosswalk,34 a better classification accuracymaybe achieved by

limiting the analysis to uncorrelatedmetrics.54

To confirm if the advantages of spatial normalization mentioned

in this research are relevant to electrode arrangements offered by

other suppliers, additional testing is required. Likewise, EEG inverse

solution methods that reduce distortions in connectivity due to the

leakage effect55 and the use of individual head models based on

electrode digitalization and anatomic MRI information should be fur-

ther considered. Future research should include additional validation

by comparing normalized versus non-normalized data and resting-

state fMRI. In addition, the benefits of using simultaneous recording

of EEG and functional near-infrared spectroscopy could be explored.

Furthermore, conceptualizing short-range connections as potentially

spurious is a complex issue requiring further investigation, as well

as the enhanced bilateral symmetry and long-range connectivity that

resulted from spatial normalization. To ensure accuracy and validity,

it is important to gather diverse and sizable samples from both main-

stream and underrepresented populations.15,16 It is also essential to

test the reliability of connectivity analyses through repeated testing.56

Doing so will help address geographic and socioeconomic variability

and validate classification strategies with worldwide impact.

5 CONCLUSIONS

We present a robust workflow for harmonizing multi-metric analysis

of source space EEG connectivity and developing composite metrics

of FC for the classification of dementia subtypes. Findings emphasize

the importance of spatial and patient–control normalizations to con-

trol cross-site variance. In addition, the study highlights the relevance

of joint analyses of information-theoretic metrics of EEG connectivity

to accurately classify dementias. Thismulti-metric approachmay allow

for a more comprehensive characterization of functional brain inter-

actions in neurodegeneration, supporting the development of neu-

roimaging biomarkers of dementia basedon scalable and cost-effective

technologies.

ACKNOWLEDGMENTS

The authors thank the ReDLat participants and their families for their

valuable time and commitment to our study. AI is supported by Takeda

Grant CW2680521; CONICET; FONCYT-PICT (2017-1818, 2017-

1820); ANID/FONDECYT Regular (1210195, 1210176, 1220995);

ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096;

ANID/FONDEF ID20I10152, ID22I10029; and the Multi-Partner

Consortium to Expand Dementia Research in Latin America (ReDLat),

funded by the National Institutes of Aging of the National Institutes

of Health under award number R01AG057234, an Alzheimer’s Asso-

ciation grant (SG-20-725707-ReDLat), the Rainwater Foundation,

and the Global Brain Health Institute. SF is an Atlantic Fellow for

Equity in Brain Health at the Global Brain Health Institute (GBHI)

and is supported with funding from GBHI, BrainLat, ANID/FONDEF

ID22I10029, and CONICET. MO is supported by ANID/FONDECYT

Postdoctorado 3210508. The content is solely the responsibility of the

authors and does not represent the official views of these institutions.

Open access funding provided by IReL.

CONFLICT OF INTEREST STATEMENT

Agustín Ibáñez is partially supported by grants of TakedaCW2680521;

FONCYT PICT (2017-1818, 2017-1820); ANID/FONDECYT Reg-

ular (1210195, 1210176, 1220995); ANID/FONDAP (15150012);

FONDEF ID20I10152, ID22I10029;ANID/PIA/ANILLOSACT210096;

and the Multi-Partner Consortium to Expand Dementia Research in

Latin America (ReDLat), funded by the National Institutes of Aging of

the National Institutes of Health under award number R01AG057234,

an Alzheimer’s Association grant (SG-20-725707-ReDLat), the Rain-

water Foundation, and the Global Brain Health Institute (GBHI).



PRADO ET AL. 11 of 12

Pavel Prado, Jhony A. Mejía, Agustín Sainz-Ballesteros, Agustina

Birba, Sebastian Moguilner, Rubén Herzog, Mónica Otero, Jhosmary

Cuadros, Lucía Zepeda, Daniel Franco-O’Byrne, and Mario Parra have

nothing todisclose. The contentof thearticle is solely the responsibility

of the authors and does not represent the official views of these insti-

tutions. The authors thank the ReDLat participants and their families

for their commitment to our study. Author disclosures are available in

the supporting information.

CONSENT STATEMENT

Before enrolling, a signed informed consent was provided by all the

participants following the Declaration of Helsinki.

REFERENCES

1. LAC-CD. Parra MA, Garcia AM, Ibanez A. Addressing dementia chal-

lenges through international networks: evidence from the Latin Amer-

ican and Caribbean Consortium on Dementia (LAC-CD). Alzheimers
Dement. 2021;17(S8):e055106. doi:10.1002/alz.055106

2. Ibanez A, Yokoyama JS, Possin KL, et al. The multi-partner consor-

tium to expand dementia research in Latin America (ReDLat): driv-

ing multicentric research and implementation science. Front Neurol.
2021;12:631722. doi:10.3389/fneur.2021.631722

3. Babiloni C, Arakaki X, Azami H, et al. Measures of resting state EEG

rhythms for clinical trials in Alzheimer’s disease: recommendations

of an expert panel. Alzheimers Dement. 2021;17(9):1528-1553. doi:10.
1002/alz.12311

4. Goriely A, Kuhl E, Bick C. Neuronal oscillations on evolving net-

works: dynamics, damage, degradation, decline, dementia, and death.

Phys Rev Lett. 2020;125(12):128102. doi:10.1103/PhysRevLett.125.
128102

5. Bhattarai A, Chen Z, Chua P, et al. Network diffusion model predicts

neurodegeneration in limb-onset amyotrophic lateral sclerosis. PLoS
One. 2022;17(8):e0272736. doi:10.1371/journal.pone.0272736

6. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurode-

generative diseases target large-scale human brain networks. Neuron.
2009;62(1):42-52. doi:10.1016/j.neuron.2009.03.024

7. Pavlov YG, Adamian N, Appelhoff S, et al. Investigating the replicabil-

ity of influential EEG experiments. Cortex. 2021;144:213-229. doi:10.
1016/j.cortex.2021.03.013

8. LiM,Wang Y, Lopez-Naranjo C, et al. Harmonized-Multinational qEEG

norms (HarMNqEEG). Neuroimage. 2022;256:119190. doi:10.1016/j.
neuroimage.2022.119190

9. Briels CT, Schoonhoven DN, Stam CJ, De Waal H, Scheltens P, Gouw

AA. Reproducibility of EEG functional connectivity in Alzheimer’s

disease. Alz Res Therapy. 2020;12(1):68. doi:10.1186/s13195-020-
00632-3

10. Mohanty R, Sethares WA, Nair VA, Prabhakaran V. Rethinking

measures of functional connectivity via feature extraction. Sci Rep.
2020;10(1):1298. doi:10.1038/s41598-020-57915-w

11. Prado P, Birba A, Cruzat J, et al. Dementia ConnEEGtome: towards

multicentric harmonizationof EEGconnectivity in neurodegeneration.

Int J Psychophysiol. 2022;172:24-38. doi:10.1016/j.ijpsycho.2021.12.
008

12. Babiloni C, Del Percio C, Lizio R, et al. Abnormalities of resting-

state functional cortical connectivity in patients with dementia due to

Alzheimer’s and Lewy body diseases: an EEG study. Neurobiol Aging.
2018;65:18-40. doi:10.1016/j.neurobiolaging.2017.12.023

13. San-Martin R, Fraga FJ, Del Percio C, et al. Classification of

patients with Alzheimer’s disease and dementia with Lewy bod-

ies using resting EEG selected features at sensor and source

levels: a proof-of-concept study. CAR. 2021;18(12):956-969.

doi:10.2174/1567205018666211027143944

14. Thompson PM, Jahanshad N, Schmaal L, et al. The enhancing neu-

roimaging genetics through meta-analysis consortium: 10 years of

global collaborations in human brain mapping. Hum Brain Mapp.
2022;43(1):15-22. doi:10.1002/hbm.25672

15. Birba A, Santamaría-García H, Prado P, et al. Allostatic-Interoceptive

overload in frontotemporal dementia. Biol Psychiatry. 2022;92(1):54-
67. doi:10.1016/j.biopsych.2022.02.955

16. Moguilner S, Birba A, Fittipaldi S, et al. Multi-feature computational

framework for combined signatures of dementia in underrepresented

settings. J Neural Eng. 2022;19(4):046048. doi:10.1088/1741-2552/
ac87d0

17. Pernet CR, Appelhoff S, Gorgolewski KJ, et al. EEG-BIDS, an exten-

sion to the brain imaging data structure for electroencephalography.

Sci Data. 2019;6(1):103. doi:10.1038/s41597-019-0104-8
18. Dong L, Li F, Liu Q, et al. MATLAB toolboxes for Reference Elec-

trode Standardization Technique (REST) of Scalp EEG. Front Neurosci.
2017;11:601. doi:10.3389/fnins.2017.00601

19. Hu S, Lai Y, Valdes-Sosa PA, Bringas-Vega ML, Yao D. How do ref-

erence montage and electrodes setup affect the measured scalp

EEG potentials? J Neural Eng. 2018;15(2):026013. doi:10.1088/1741-
2552/aaa13f

20. Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K.

Automated EEG mega-analysis II: cognitive aspects of event related

features. Neuroimage. 2020;207:116054. doi:10.1016/j.neuroimage.

2019.116054

21. Ballesteros AS, Prado P, Ibanez A, Perez JAM, Moguilner S, A pipeline

for large-scale assessments of dementia EEG connectivity across mul-

ticentric settings. OFS Preprints, 22 Feb. 2023. doi:10.31219/osf.io/

h2wgv

22. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of

single-trial EEG dynamics including independent component analysis.

J Neurosci Methods. 2004;134(1):9-21. doi:10.1016/j.jneumeth.2003.

10.009

23. Pion-Tonachini L, Kreutz-Delgado K, Makeig S. ICLabel: an auto-

mated electroencephalographic independent component classifier,

dataset, and website. Neuroimage. 2019;198:181-197. doi:10.1016/j.
neuroimage.2019.05.026

24. Bigdely-Shamlo N, Kreutz-Delgado K, Kothe C, Makeig S, EyeCatch:

data-mining over half a million EEG independent components to

construct a fully-automated eye-component detector. 35th Annual
International Conference of the IEEE Engineering in Medicine and Biol-
ogy Society (EMBC). IEEE; 2013:5845-5848. doi:10.1109/EMBC.2013.

6610881

25. Kleifges K, Bigdely-Shamlo N, Kerick SE, Robbins KA. BLINKER:

automated extraction of ocular indices from EEG enabling large-

scale analysis. Front Neurosci. 2017;11:12. doi:10.3389/fnins.2017.
00012

26. Kothe CA,Makeig S. BCILAB: a platform for brain–computer interface

development. J Neural Eng. 2013;10(5):056014. doi:10.1088/1741-
2560/10/5/056014

27. Melnik A, Legkov P, Izdebski K, et al. Systems, subjects, sessions: to

what extent do these factors influence EEG Data? Front Hum Neurosci.
2017;11:150. doi:10.3389/fnhum.2017.00150

28. Pascual-Marqui RD, Lehmann D, Koukkou M, et al. Assessing interac-

tions in the brain with exact low-resolution electromagnetic tomogra-

phy. Phil Trans R Soc A. 2011;369(1952):3768-3784. doi:10.1098/rsta.
2011.0081

29. Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA. Bayesian

model averaging in EEG/MEG imaging. Neuroimage. 2004;21(4):1300-
1319. doi:10.1016/j.neuroimage.2003.11.008

30. Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the

brain: minimum norm estimates.Med Biol Eng Comput. 1994;32(1):35-
42. doi:10.1007/BF02512476

31. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new par-

cellation of the orbitofrontal cortex in the automated anatomical

https://doi.org/10.1002/alz.055106
https://doi.org/10.3389/fneur.2021.631722
https://doi.org/10.1002/alz.12311
https://doi.org/10.1002/alz.12311
https://doi.org/10.1103/PhysRevLett.125.128102
https://doi.org/10.1103/PhysRevLett.125.128102
https://doi.org/10.1371/journal.pone.0272736
https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/10.1016/j.cortex.2021.03.013
https://doi.org/10.1016/j.cortex.2021.03.013
https://doi.org/10.1016/j.neuroimage.2022.119190
https://doi.org/10.1016/j.neuroimage.2022.119190
https://doi.org/10.1186/s13195-020-00632-3
https://doi.org/10.1186/s13195-020-00632-3
https://doi.org/10.1038/s41598-020-57915-w
https://doi.org/10.1016/j.ijpsycho.2021.12.008
https://doi.org/10.1016/j.ijpsycho.2021.12.008
https://doi.org/10.1016/j.neurobiolaging.2017.12.023
https://doi.org/10.2174/1567205018666211027143944
https://doi.org/10.1002/hbm.25672
https://doi.org/10.1016/j.biopsych.2022.02.955
https://doi.org/10.1088/1741-2552/ac87d0
https://doi.org/10.1088/1741-2552/ac87d0
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.3389/fnins.2017.00601
https://doi.org/10.1088/1741-2552/aaa13f
https://doi.org/10.1088/1741-2552/aaa13f
https://doi.org/10.1016/j.neuroimage.2019.116054
https://doi.org/10.1016/j.neuroimage.2019.116054
https://doi.org/10.31219/osf.io/h2wgv
https://doi.org/10.31219/osf.io/h2wgv
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1109/EMBC.2013.6610881
https://doi.org/10.1109/EMBC.2013.6610881
https://doi.org/10.3389/fnins.2017.00012
https://doi.org/10.3389/fnins.2017.00012
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.3389/fnhum.2017.00150
https://doi.org/10.1098/rsta.2011.0081
https://doi.org/10.1098/rsta.2011.0081
https://doi.org/10.1016/j.neuroimage.2003.11.008
https://doi.org/10.1007/BF02512476


12 of 12 PRADO ET AL.

labeling atlas. Neuroimage. 2015;122:1-5. doi:10.1016/j.neuroimage.

2015.07.075

32. Herzog R, Rosas FE, Whelan R, et al. Genuine high-order inter-

actions in brain networks and neurodegeneration. Neurobiol Dis.
2022;175:105918. doi:10.1016/j.nbd.2022.105918

33. Cruzat J, Herzog R, Prado P, et al. Temporal irreversibility of

large-scale brain dynamics in Alzheimer’s disease. J Neurosci.
2023;43(9):1643-1656. doi:10.1523/JNEUROSCI.1312-22.2022

34. Prado P, Moguilner S, Mejía JA, et al. Source space connectomics of

neurodegeneration: one-metric approach does not fit all.Neurobiol Dis.
2023;179:106047. doi:10.1016/j.nbd.2023.106047

35. Santamaría-García H, Baez S, Aponte-Canencio DM, et al. Uncovering

social-contextual and individual mental health factors associated with

violence via computational inference. Patterns. 2021;2(2):100176.
doi:10.1016/j.patter.2020.100176

36. Maito MA, Santamaría-García H, Moguilner S, et al. Classification

of Alzheimer’s disease and frontotemporal dementia using routine

clinical and cognitive measures across multicentric underrepresented

samples: a cross sectional observational study. Lancet Reg Health Am.
2023;17:100387. doi:10.1016/j.lana.2022.100387

37. Manly BFJ. Randomization, Bootstrap, and Monte Carlo Methods in
Biology. 3rd ed. Chapman &Hall/CRC; 2007.

38. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a prac-

tical and powerful approach to multiple testing. J R Stat Soc Series
B StatMethodol. 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.
tb02031.x

39. Kassraian-FardP,MatthisC, Balsters JH,MaathuisMH,WenderothN.

Promises, pitfalls, and basic guidelines for applying machine learning

classifiers to psychiatric imaging data, with autism as an example. Front
Psychiatry. 2016;7:177. doi:10.3389/fpsyt.2016.00177

40. Müller AC, Guido S. Introduction to Machine Learning with Python: A
Guide for Data Scientists. 1st ed. O’Reilly media, INC. 2016.

41. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and

fMRI: a tutorial overview. Neuroimage. 2009;45(1):S199-S209. doi:10.
1016/j.neuroimage.2008.11.007

42. Farzan F, Atluri S, Frehlich M, et al. Standardization of electroen-

cephalography for multi-site, multi-platform and multi-investigator

studies: insights from the Canadian biomarker integration network

in depression. Sci Rep. 2017;7(1):7473. doi:10.1038/s41598-017-
07613-x

43. Colclough GL, Smith SM, Nichols TE, et al. The heritability of multi-

modal connectivity in human brain activity. eLife. 2017;6:e20178.
doi:10.7554/eLife.20178

44. Pourmotabbed H, Jongh Curry AL, Clarke DF, Tyler-Kabara EC,

Babajani-Feremi A. Reproducibility of graph measures derived from

RESTING-STATE MEG functional connectivity metrics in sensor and

source spaces. Hum Brain Mapp. 2022;43(4):1342-1357. doi:10.1002/
hbm.25726

45. Blinowska KJ, Rakowski F, Kaminski M, et al. Functional and effective

brain connectivity for discrimination between Alzheimer’s patients

andhealthy individuals: a studyon resting stateEEGrhythms.ClinNeu-
rophysiol. 2017;128(4):667-680. doi:10.1016/j.clinph.2016.10.002

46. Hughes LE, Henson RN, Pereda E. Biomagnetic biomarkers for

dementia: a pilot multicentre study with a recommended method-

ological framework for magnetoencephalography. Alzheimers Dement.
2019;11(1):450-462. doi:10.1016/j.dadm.2019.04.009

47. Alonso JF, Poza J, MÁMañanas, Romero S, Fernández A, Connectivity

HorneroRMEG. Analysis in patients with Alzheimer’s disease using

cross mutual information and spectral coherence. Ann Biomed Eng.
2011;39(1):524-536. doi:10.1007/s10439-010-0155-7

48. Yu M, Gouw AA, Hillebrand A, et al. Different functional connec-

tivity and network topology in behavioral variant of frontotem-

poral dementia and Alzheimer’s disease: an EEG study. Neuro-
biol Aging. 2016;42:150-162. doi:10.1016/j.neurobiolaging.2016.03.
018

49. Hafkemeijer A, Möller C, Dopper EGP, et al. Resting state functional

connectivity differences between behavioral variant frontotemporal

dementia and Alzheimer’s disease. Front Hum Neurosci. 2015;9:474.
doi:10.3389/fnhum.2015.00474

50. Zhou J, Greicius MD, Gennatas ED, et al. Divergent network con-

nectivity changes in behavioural variant frontotemporal dementia

and Alzheimer’s disease. Brain. 2010;133(5):1352-1367. doi:10.1093/
brain/awq075

51. SeeleyWW.TheSalienceNetwork: aNeural System forPerceivingand

Responding to Homeostatic Demands. J Neurosci. 2019;39(50):9878-
9882. doi:10.1523/JNEUROSCI.1138-17.2019

52. O’Connor CM, Landin-Romero R, Clemson L, et al. Behavioral-variant

frontotemporal dementia: distinct phenotypes with unique func-

tional profiles. Neurology. 2017;89(6):570-577. doi:10.1212/WNL.

0000000000004215

53. Parra MA. Barriers to Effective Memory Assessments for Alzheimer’s

Disease. J Alzheimers Dis. 2022;90(3):981-988. doi:10.3233/JAD-

215445

54. Dauwels J,VialatteF,MushaT,CichockiA.A comparative studyof syn-

chrony measures for the early diagnosis of Alzheimer’s disease based

on EEG. Neuroimage. 2010;49(1):668-693. doi:10.1016/j.neuroimage.

2009.06.056

55. Gonzalez-Moreira E, Paz-Linares D, Areces-Gonzalez A, et al. Caulk-

ing the leakage effect inMEEG source connectivity analysis. Published

online December 1, 2019. Accessed May 29, 2023. http://arxiv.org/

abs/1810.00786

56. Rolle CE, Narayan M, Wu W, et al. Functional connectivity using

high density EEG shows competitive reliability and agreement across

test/retest sessions. J Neurosci Methods. 2022;367:109424. doi:10.
1016/j.jneumeth.2021.109424

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Prado P,Mejía JA, Sainz-Ballesteros

A, et al. Harmonizedmulti-metric andmulti-centric

assessment of EEG source space connectivity for dementia

characterization. Alzheimer’s Dement. 2023;15:e12455.

https://doi.org/10.1002/dad2.12455

https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1016/j.nbd.2022.105918
https://doi.org/10.1523/JNEUROSCI.1312-22.2022
https://doi.org/10.1016/j.nbd.2023.106047
https://doi.org/10.1016/j.patter.2020.100176
https://doi.org/10.1016/j.lana.2022.100387
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3389/fpsyt.2016.00177
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1038/s41598-017-07613-x
https://doi.org/10.1038/s41598-017-07613-x
https://doi.org/10.7554/eLife.20178
https://doi.org/10.1002/hbm.25726
https://doi.org/10.1002/hbm.25726
https://doi.org/10.1016/j.clinph.2016.10.002
https://doi.org/10.1016/j.dadm.2019.04.009
https://doi.org/10.1007/s10439-010-0155-7
https://doi.org/10.1016/j.neurobiolaging.2016.03.018
https://doi.org/10.1016/j.neurobiolaging.2016.03.018
https://doi.org/10.3389/fnhum.2015.00474
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1212/WNL.0000000000004215
https://doi.org/10.1212/WNL.0000000000004215
https://doi.org/10.3233/JAD-215445
https://doi.org/10.3233/JAD-215445
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1016/j.neuroimage.2009.06.056
http://arxiv.org/abs/1810.00786
http://arxiv.org/abs/1810.00786
https://doi.org/10.1016/j.jneumeth.2021.109424
https://doi.org/10.1016/j.jneumeth.2021.109424
https://doi.org/10.1002/dad2.12455

	Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Data set for validation (AD, bvFTD, and HCs)
	2.2 | Analysis workflow
	2.2.1 | Data structure
	2.2.2 | Preprocessing
	2.2.3 | Spatial normalization
	2.2.4 | Patient-control normalization
	2.2.5 | EEG source space estimation
	2.2.6 | Estimation of FC

	2.3 | Multi-feature analyses for classification
	2.3.1 | Filtering for feature selection
	2.3.2 | Machine learning algorithm


	3 | RESULTS
	3.1 | Spatial normalization for harmonization of EEG data
	3.2 | Effect of data rescaling on FC
	3.3 | Classification of dementia subtypes using a composite metric of FC

	4 | DISCUSSION
	4.1 | Harmonization steps
	4.2 | A multi-metric analysis of FC for dementia classification
	4.3 | Limitations and future directions

	5 | CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	CONSENT STATEMENT
	REFERENCES
	SUPPORTING INFORMATION


