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Abstract 

Background  Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt 
are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp pro-
tocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis 
of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognos-
tic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investi-
gate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, 
or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional 
GG4 cohort.

Methods  By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number vari-
ations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) 
treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting 
for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data.

Results  By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiologi-
cal parameters including extent of resection, preoperative volume and residual volume was confirmed. An associa-
tion between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS 
was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, 
an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/
megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB.

Conclusions  The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 
patients was defined by ML modeling.
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Introduction
Glioma grade 4 (GG4) tumors, which include astrocy-
toma IDH-mutant grade 4 and the astrocytoma IDH wt 
(that currently defines the glioblastoma class) are the 
most common and aggressive primary tumors of the cen-
tral nervous system [1–3]. Compelling evidence, based 
on objective tumor volume analysis, supports the role 
of the extent of resection (EOR) in high grade glioma 
patients as the first step of patients management. Surgi-
cal treatment, however, can rarely be considered as radi-
cal, due to infiltrating nature, multifocal presentation, 
and ill-defined tumor margins [3–5]. Although the Stupp 
protocol was introduced as postoperative standard treat-
ment more than 15 years ago, alternative treatments have 
not been recently developed, and the poor 5-year survival 
rate has not changed significantly in these last decades 
[6–9]. The infiltrative growing, the rapid proliferative 
rate of malignant cells and the appearance of treatment-
resistant cell clones shortly after initial therapy induces 
recurrence within 2 cm of resection margins, regardless 
the initial EOR. In addition GG4 are characterized by 
high spatial and temporal molecular heterogeneity, which 
implies a poor prognosis, especially in glioblastoma cases 
with a median survival of less than 15 months [1, 2, 6–8, 
10–12].

The intraoperative treatment with Carmustine Wafers 
(CW) implantation [marketed as Gliadel, biodegradable 
copolymers discs impregnated with the alkylating agent 
Bis-ChloroethylNitrosoUrea (BCNU)], for newly high 
grade glioma was introduced in 2003 as a therapeutic 
bridge between surgery and Stupp protocol onset. After 
an initial enthusiasm, its employment has been gradually 
reduced, mainly for contrasting results in terms of effi-
cacy and safety, but not completely abandoned [13–19].

The differences in overall survival (OS) and response 
to treatment are largely due to the wide heterogeneity of 
GG4, with a variable distribution of biological features 
associated with aggressiveness between tumors as well as 
within a single tumor. Several prognostic factors for GG4 
have been proposed including MGMT promoter meth-
ylation status, IDH1, IDH2 mutation, EOR and residual 
volume [10, 20–23]. In addition, comprehensive multi-
platform genome-wide analyses have demonstrated that 
GG4 heterogeneity is dependent from specific molecular/
genetic features [12, 24–26]. Finally, a high tumor muta-
tion burden (TMB) in glioma has been significantly asso-
ciated with short OS [27]. However, the prognostic value 
of TBM in GG4 has not been fully elucidated [27–29].

In the last years, machine learning (ML) techniques 
have been applied in the oncology field with the aim 
of improving diagnosis, prediction and prognosis of 
cancers, being characterized by the capability of tak-
ing in account interaction effects and nonlinearities. In 

particular, several ML techniques have been adapted in 
order to be applied on censored data for survival anal-
yses. In this context, survival tree methods are non-
parametric, flexible methods that have been developed 
with the aim of dealing with high dimensional covariate 
data [30–32].

In the present study, with the aim of better defining 
prognostic markers for OS, we performed a compre-
hensive molecular characterization of surgical speci-
mens of a monoistitutional cohort of 102 patients who 
underwent surgical resection of newly GG4 and adju-
vant postoperative Stupp protocol. By a next-generation 
sequencing (NGS) approach using a broad exome panel 
of 523 genes, analysis of copy number variations and of 
types and distribution of nonsynonymous mutations 
was performed. ML models were developed by using 
eXtreme Gradient Boosting for survival (XGBoost-
Surv) to investigate the contribution in predicting OS 
of the different available data (e.g. clinical data includ-
ing follow-up, radiological data, or molecular data 
derived by panel-based sequencing such as presence of 
somatic mutations and amplification).

Methods
Patient cohort
The study included 102 patients who underwent a sur-
gical resection of a newly diagnosed GG4 at the Neu-
rosurgery Department of Udine Hospital between 2014 
and 2019 [1–3]. Median age of diagnosis was 60 years. 
Written informed consent was obtained for surgery. 
Patients provided informed consent in accordance with 
the local institutional review board requirements and 
the Declaration of Helsinki. After surgery, all patients 
were treated with combinations of concomitant adju-
vant radiotherapy and chemotherapy, followed by adju-
vant chemotherapy, as recommended by Stupp [7, 8], 
and were included in a study approved by the local Eth-
ics Committee (protocol N. 0036566 /P/ GEN/EGAS, 
ID study 2538). Treatment with CW was applied in 39 
out of 102 GG4 cases. All the 102 cases were charac-
terized for the main clinical, radiological and molecu-
lar parameters with prognostic significance that were 
reported in Additional file 1: Table S1 [20–23].

DNA extraction
DNA material was extracted from frozen GG4 sample 
sections using the Allprep DNA / RNA / miRNA Uni-
versal Kit (Qiagen). Alternatively, DNA was extracted 
from formalin-fixed, paraffin-embedded (FFPE) GG4 
samples using the AllPrep DNA / RNA FFPE Kit 
(Qiagen).
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Sequencing analysis and “Tumor Mutational Burden” (TMB) 
determination
The 102 GG4 cases included in the series were all 
sequenced using the TruSight Oncology 500 DNA kit 
(TSO500). The library was prepared manually accord-
ing to the manufacturer’s protocol. NGS was performed 
using the NextSeq 550 instrument (Illumina) with eight 
libraries per sequencing run. Further information regard-
ing sequencing analysis and determination of TMB is 
reported in the Additional file 1: Methods section S1.

The calculation of the “Tumor Mutational Burden” 
(TMB) using the data obtained from sequencing employ-
ing the TSO500 panel (Illumina) was determined by 
using the local TruSight Oncology 500 version 2.3 (Illu-
mina) app. The manufacturer’s quality control criteria 
were used to determine whether a TMB determination 
result with TSO500 was valid, including NGS library 
concentration ≥ 1 ng / µL, median insert size ≥ 70  bp, 
median coverage exon ≥ 50, count and percentage of 
exons with coverage of at least 50 counts ≥ 90%. TMB 
metrics were calculated following small variant call-
ing. TMB was determined as the ratio of the number 
of eligible variants (mutations) to eligible DNA regions 
[expressed in megabases (Mb)]. Eligible variants (rep-
resenting the numerator) include only coding variants 
with a frequency ≥ 5% and coverage ≥ 50 reads. Single 
Nucleotide Variants (SNV) and insertion/deletion (indel) 
were included, but multi-nucleotide variants (MNVs) 
and variants with a cosmic count ≥ 50 were excluded. 
Variants in blacklisted regions with poor mapability were 
also excluded. For the denominator, all eligible coding 
regions (with coverage ≥ 50x) were included, except for 
the blacklist regions. Small variants were exported from 
the TSO500 pipeline. All passed filter data, including 
TMB and “small variants” (SNV and indel) were provided 
in the CombinedVariantOutput.tsv file for each sample. 
All the small variants calls were merged into one file. An 
additional quality control for the call of “small variants”, 
TMB, copy number variations (CNV) was used to select 
samples with the best quality.

Evaluation of the TMB in the TCGA cohort
The tumor mutational burden (TMB) was calculated 
from the MC3 Public MAF file as previously described 
[33]. Only primary tumors from the high grade glioma 
TCGA cohort were included in the analysis [25].

Machine learning approach for survival prediction
The approach used to predict patient OS was based on 
the application of ML methods [31, 32, 34]. The datasets 
were composed by integrating different information. The 
main resource variables, divided into clinical (radiological 

and clinical variables), and molecular including gene 
mutation status, and copy number results (amplifications 
and deletions), are reported in Additional file 1: Table S2.

EXtreme Gradient Boosting for survival (XGBoost-
Surv) modeling t was performed in Python (V3.8) using 
the xgboost and sklearn_surv library partially evaluated 
using the scikit-learn library [35]. In each of the data-
sets, string-based categorical variables were converted 
to numerical values, and each continuous variable was 
standardized. All XGBoost models were trained using 
the survival Cox objective function. Additionally, for each 
dataset, hyperparameter tuning was performed using the 
HyperOpt package [36, 37]. The mean Harrell’s concord-
ance index (c-index) was computed using the five-fold 
cross-validation (CV) approach and used as metric [31, 
38, 39]. After identifying the hyperparameters, the model 
was subsequently evaluated on the same total dataset 
using five-fold CV with the randomly selected folds being 
distinct from those used in the tuning of the hyperpa-
rameters to accurately assess the generalizability of the 
model [31]. Further details have been included as Addi-
tional Information.

Because of the high number of variables in the datasets 
used compared with the number of cases, the dimension-
ality of the input in the datasets was reduced by feature 
selection. In this context, selection was applied firstly 
considering all mutations included in the output and 
then used the merged TMB trace to filter out germline 
variants. Other variants were excluded by filtering the 
mutation type. Specifically, only in the case in which a 
mutation found by the sequencing was considered to per-
turb the gene (i.e., missense variant, stop loss, start loss), 
the mutation and therefore the gene were selected. Thus, 
only genes with at least one non-silent mutation were 
recorded into a presence or absence mutation (binary-
valued patients)-by-genes matrix. Multiple hit mutations 
and singular mutations were both indicated as presence 
of mutation (representing in both cases a mutated status 
for the gene). Of note, from this list of variants that was 
generated, clinical data were integrated into the previous 
produced matrix.

In detail, to perform ML modeling, 4 different data-
sets were created. Two datasets (dataset 1 and dataset 
2) were created considering the whole series of the 102 
GG4 cases (Additional file  1: Tables S3 and S4). Two 
other datasets (dataset 3 and 4) were created in the 
context of a subgroup of 71 out of 102 cases that were 
characterized by values above the 75 percentile for the 
following parameters: median insert size, median cover-
age exon, and PCT_exon 50x (Additional file  1: Tables 
S3 and Table  S4). Specifically, in dataset 1 all the avail-
able variables arisen from the 102 cases were considered. 
In dataset 2 and dataset 3, feature selection was applied 
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by selecting somatic gene mutations present in at least 4 
GG4 cases. For both dataset 2 and dataset 3, the selection 
of most important features was obtained by using the 
EXtreme Gradient Boosting for survival (XGBoost-Surv) 
modeling t performed in Python (V3.8), which provides 
a way to compute feature importance by measuring how 
concordance index (c-index) decreases when a feature is 
not available. In the survival framework, the remotion of 
the relationship of a certain feature with the survival time 
is executed by random shuffling of its values: the weight 
of each feature is quantified by the drop on average of the 
c-index [40]. Finally, dataset 4 was obtained by applying 
expert selection, by considering only genes included in 
the PI3K-AKT-mTOR signaling pathway (WP3844) [41].

In order to understand how the models yielded their 
predictions, Shapley Additive exPlanations (SHAP) val-
ues were used to obtain a visualization of the overall 
feature importance for the models [30–32]. Then, SHAP 
dependence plots were generated for each model in order 
to compare how the features contributed to the corre-
sponding model’s output.

Results
Impact of established prognosticators in the whole GG4 
cohort
The main clinical and molecular markers with established 
prognostic significance in the 102 GG4 cases entering the 
study cohort are reported in Additional file 1: Table S1. 
Median age of diagnosis was 60 years. Eight/102 (7.8%) 
GG4 cases were IDH mutated and 94/102 cases (92.2%) 
were IDH wild type. Sixty-two/102 GG4 cases (60.8%) 
showed a methylated MGMT promoter whereas 40/102 
GG4 cases showed an unmethylated MGMT promoter. 
Median OS was 15.5 months (range 2–48 months). Treat-
ment with CW was applied during surgical resection in 
39/102 GG4 cases (38.2%).

By univariate Cox regression analysis, preopera-
tive volume (hazard ratio (HR) = 1.10, p = 0.033), EOR 
(HR = 0.92, p < 0.001), a methylated status of the MGMT 
promoter (HR = 0.44, p < 0.001) and CW treatment 
(HR = 0.53, p = 0.003) showed a significant impact on 
OS. In a multivariate Cox regression analysis model in 
which all parameters with significant impact in the uni-
variate Cox regression analysis were included, EOR 
(HR = 0.85, p = 0.002), MGMT promoter methylation sta-
tus (HR = 0.47, p < 0.001) and CW treatment (HR = 0.62, 
p = 0.032) retained an impact on OS (Table 1) [10, 13–20].

Impact of molecular and clinical variables on OS by a ML 
approach
The most frequently found gene mutations for the 102 
cases are shown in Fig.  1. In particular, the 3 most fre-
quently altered genes were EGFR, TP53 and BRAF [25]. 

The gene with the higher rate of amplification was EGFR 
gene (Additional file 1: Figure S1) [25].

To account for genomic features in predicting OS 
of GBM cases, we used a ML approach to build a mul-
tiparametric clinical-molecular prediction model that 
includes clinical information, somatic mutations, and 
amplifications [31, 32, 34, 42]. In this ML modeling, func-
tional mutations and amplifications were considered only 
on the basis of their presence or absence, regardless of 
their specific location, according to the generated simple 
matrix, as reported in methods’ section.

To perform ML modeling, several feature selec-
tion methods were employed. By using this approach, 
we obtained 2 datasets (dataset 1 and dataset 2) for the 
entire cohort of 102 GG4 cases and 2 datasets (dataset 3 
and dataset 4) for the subset of 71 patients in which TMB 
calculation met the appropriate metrics according to the 
Illumina pipeline (Additional file 1: Tables S3 and S4). A 
first preliminary comprehensive model developed using 
417 gene mutations, 45 gene amplifications and 12 clini-
cal/radiological variables (dataset 1) showed a concord-
ance - index (c-index) of 0.537 in the test set. To better 
define the contribute of the most relevant somatic muta-
tions in predicting OS, in the context of a model that also 
considered clinical variables, the number of gene muta-
tions was reduced by selecting those present in at least 4 
GG4 cases. By this approach, the model developed using 
107 variables constituted by 95 gene mutations and 12 
clinical/radiological variables (dataset 2) showed the best 
c-index (c-index of 0.682 in the test set, Additional file 1: 
Table  S3). Figure  2 shows the SHAP analysis reporting 
the first 20 variables that explain the model developed 
using dataset 2. The directions in the SHAP plots of these 
variables showed a significant contribution in predicting 
OS for the well-established prognosticators: residual vol-
ume, preoperative volume, EOR and methylation status 
of MGMT, also in keeping with results of Cox regression 
analysis. With this model, IDH1 mutation status had also 
a prognostic significance [10, 20, 23, 43]. The direction in 
the SHAP plots was also consistent with the multivariate 
Cox regression analysis for the treatment with CW, that 
was considered as a protective variable [13–19]. SHAP 
analysis in Fig. 2 also reported the contribution of gene 
mutations in predicting OS. Among gene mutations, the 
higher contribution was reported for BRAF. Several other 
genes such as POLE, PTEN, NOTCH3 and TP53 emerged 
as important for OS prediction [24–26, 44–49].

To evaluate the effect not only of genes but also of 
the new emerging biomarker TMB as OS prognostic 
indicator, a further dataset (dataset 3) was considered 
(Additional file  1:  Tables S3 and S4). In detail, by using 
dataset 3, composed by 108 features constituted by 95 
gene mutations, 12 clinical/radiological variables, and 
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Table 1  Univariate and multivariate Cox regression analysis of OS in the whole cohort (102 GG4 cases)

CI confidence interval, HR hazard ratio, EOR extent of resection. In bold p-value < 0.05 

Characteristic N Univariate Multivariate

HR 95% CI p-value HR 95% CI p-value

CW 102

0; untreated 63 – – – –

1; treated 39 0.53 0.34, 0.81 0.003 0.62 0.40, 0.96 0.032 

Age 102 1.01 1.0, 1.04 0.2

EOR 102 0.92 0.89, 0.96 < 0.001 0.94 0.91, 0.98 0.002 

Localization 102

0; precentral 41 – –

1; postcentral 21 1 0.58, 1.72 > 0.9

2; temporoinsular 40 1.09 0.70, 1.71 0.7

Ki67 102 1.01 1.00, 1.02 0.14

IDH mutational status 102

0; unmutated 94 – –

1; mutated 8 0.65 0.32, 1.35 0.3

Side 102

0; left 54 – –

1; right 48 1.2 0.81, 1.80 0.4

Preoperative volume 102 1.01 1.00, 1.02 0.033 1.01 1.00, 1.02 0.25

Extent of resection_2 categories 102

0; ≤99% 52 – –

1; ≥100% 50 0.81 0.54, 1.20 0.3

MGMT status 102

0; unmethylated 40 – –

1; methylated 62 0.44 0.28, 0.68 < 0.001 0.47 0.30,0.74 < 0.001 

Gender: female 102 1.18 0.76, 1.82 0.5

TET2

ALK

PTPN11

PLCG2

TSC2

SPTA1

MGA

NOTCH3

FANCD2

BRCA2

PIK3CA

CREBBP

LRP1B

POLE

FAT1

PTEN

NF1

BRAF

TP53

EGFR

8%

8%

8%

8%

9%

9%

9%

10%

10%

10%

10%

11%

11%

13%

13%

14%

14%

16%

25%

30%

No. of samples

C>T

C>G

C>A

T> A

T> C

T> G

Missense_Mutation
Nonsense_Mutation

Multi_Hit

Altered in 91 (89.22%) of 102 samples.
0

Fig. 1  Distribution and classification of the gene mutations found in the 102 sequenced GG4 cases. The distribution of the type of mutations 
(e.g. missense mutations, nonsense mutations and multihit) and mutation frequencies for the 20 genes most frequently found mutated are shown. 
The number of mutated cases for each gene is also shown
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TMB (dataset 3), a model with a c-index of 0.625 in the 
test set was obtained (Additional file  1:  Table  S3). Of 
note, SHAP analysis highlighted the importance for the 
predicting of OS for TMB, with higher TMB values asso-
ciated with shorter OS (Fig. 3).

The results of the 3 ML models (dataset1, dataset 2, 
dataset 3, Additional file 1: Tables S3, S4) were summa-
rized by a circular barplot to comprehensively consider 
variable importance of clinical and radiological variables, 
TMB and signaling pathways putatively dysregulated by 
gene mutations. Figure 4 shows a main contribution for 
clinical and radiological variables together with a contri-
bution for genes belonging to several categories including 
“activated NTRK2 signals through PI3K”. These results 
confirmed the importance of clinical and radiological 
variables in predicting OS of GG4 cases as well as a role 
for TMB. Moreover, these results confirmed the role of 
gene mutations involved in the PI3K pathway alteration 
in affecting the clinical outcome of GG4 cases [25, 50].

Recently, several signaling pathways have been high-
lighted as a potential focus for therapeutic intervention 
strategies [51]. Among these, a key role was attributed 
to the PI3K-AKT-mTOR signaling pathway [50]. Thus, 
to further investigate the role of the PI3K-AKT-mTOR 
pathway, we restricted the ML approach to the genes 
belonging to this pathway (WP3844)[41], in a dataset 
also comprising clinical and radiological data, and TMB 
data (dataset 4; Additional file  1: Tables S3 and S4). In 
this model, 27 features were included, constituted by 16 
genes, 10 clinical and surgical variables and TMB (dataset 
4). With this approach, a c-index of 0.670 in the test set 
was obtained (Additional file  1:  Table  S3). SHAP analy-
sis confirmed the importance of clinical and radiological 
variables and further suggested a role for TMB in pre-
dicting OS (Additional file  1:  Figure  2A, B). Moreover, 
SHAP analysis defined a contribution of genes belong-
ing to PI3K-AKT-mTOR signaling pathway in particular 
BRAF and PI3KCA (Additional file 1: Figure S2A) [25, 44, 
50].

Impact of TMB as OS prognosticator
Based on the results of the ML modeling, the role of 
TMB as OS prognostic indicator was further explored to 
define a TMB cutoff to separate GG4 cases into 2 sub-
groups with different OS. In the context of the 71 GG4 
cases in which the TMB calculation met the appropri-
ate metrics, maximally selected log-rank statistics iden-
tified the cutoff value of 1.7 mutations/MB as the most 
appropriate cutoff value (not shown). By dividing this 71 
GG4 cases into 2 categories, 56 cases were included in 
the TMB category ≥ 1.7 mutations/MB and 15 cases were 
included in the TMB category < 1.7 mutations/MB. By 
using this cutoff, GG4 cases with a TMB ≥ 1.7 mutations/

residual volume

age

preoperative volume

Ki67

MGMT methylated

CW

EOR

IDH1 mutated

BRAF

EOR 2 categories

POLE

MGA

RB1

ARID1B

DNMT3B

ERCC3

INSR

TP53

PTEN

NOTCH3

Survival Xgboost Feature Importance

residual volume

age

preoperative volume

Ki67

MGMT methylated

CW

EOR

IDH1 mutated

BRAF

EOR 2 categories

Fig. 2   Feature importance ranked by “mean absolute magnitude” 
of SHAP values using dataset 2. The model was developed for the 102 
GG4 series using 107 variables constituted by 95 genes and 12 
clinical/radiological variables (dataset 2). Upper panel: mean absolute 
values corresponding to the magnitude of feature importance. 
Lower panel: summary plots for SHAP values; for each considered 
feature, a single patient is represented by one point. Along the x axis 
the position of a point corresponds to the logarithm of the mortality 
risk associated with that feature for a specific patients. This value 
corresponds to the impact that the feature had on the model output 
for that specific patient. Data clusters with SHAP values around zero 
indicate low impact on the model. Along the y axis, the different 
features are disposed according to their importance corresponding 
to the mean of their absolute SHAP values. Features with the higher 
importance are disposed on the upper part of the summary plots. 
SHAP, Shapley Additive exPlanation



Page 7 of 13Dal Bo et al. Journal of Translational Medicine          (2023) 21:450 	

MB (median OS = 16 months) had shorter OS compared 
with GG4 cases with a TMB < 1.7 mutations/MB (median 
OS = 21 months, p = 0.047, Fig. 5A). Of note, in our GG4 
series, high TMB values were frequently present in GG4 
cases characterized by other biomarker of worse progno-
sis (Fig.  5B). Finally, using the cutoff value of 1.7 muta-
tions/MB for TMB, a difference (although not significant) 
was also observed in the context of high grade glioma 
cases from the TCGA series in which, however, data were 
obtained by a whole exome sequencing approach at dif-
ference from the panel-based sequencing approach we 
used (Additional file 1: Figure S3).

Discussion
Newly diagnosed GG4 represents a heterogeneous group 
of brain tumors, characterized by minimally effective 
genotype-targeted therapies, in which surgery followed 
by Stupp protocol is still the current first-line treatment 
despite decades of research [1, 2, 6–8]. In the present 
study, a comprehensive molecular characterization using 
a NGS approach with a wide panel of 523 genes was per-
formed in the context of a mono-institutional cohort of 
newly diagnosed GG4 patients who underwent neuro-
surgery followed by Stupp protocol and CW treatment. 
Then, ML modeling was applied with the aim of defining 
the prognostic value of clinical, radiological and molecu-
lar parameters in predicting OS.

Several challenges need to be overcome in order to 
define prognostic markers for OS in cancer diseases, 
including GG4. They mainly include the different vari-
ables to be considered and the way these variables inter-
act with each other. This has became crucial with the 
introduction of NGS approaches capable to generate high 
amount of genomic data of which interpretation could 
become complex [30–32]. To overcome this complexity, 
ML approaches have been proposed in cancer research. 
In our study a ML approach was applied using XGBoost 
to develop multi-parametric predictor models for sur-
vival analysis [31, 32, 34]. Moreover, to describe the con-
tribution of each variable to prediction, SHAP values 
were employed [30–32].

We chose Cox regression analysis as the starting point 
for our study to confirm the prognostic significance of 
established prognosticators for survival in the context of 
our GG4 case cohort, as this analysis is the most com-
monly used approach for survival analysis in a variety of 
fields, including oncology, where it is mainly used to iden-
tify the prognostic factors that have an impact on patient 
occurrence or survival [52]. However, Cox regression 
analysis is generally considered an inappropriate model 
for high-dimensional associations and relies on some 
other restrictive assumptions such as proportionality of 
hazard functions for any two patients and uncorrelated 
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characteristics. Furthermore, Cox regression analysis is 
not able to model non-linearities and interaction effects 
[30–32]. In this context, we introduced ML modeling to 
incorporate the large amount of genomic data obtained 
by NGS using the panel of 523 genes in the analysis 
[30–32].

In particular, the ML approach allowed us to take in 
consideration the specific contribution on the prediction 

of the high amount of data obtained by the panel-based 
sequencing regarding the presence of somatic genomic 
alterations (e.g. somatic mutations and amplifications). 
Thus, in the present study, different ML models were 
developed both in the context of the entire cohort of 102 
GG4 cases and in the subgroup of 71 GG4 cases in which 
TMB values were considered useful. Specifically, in addi-
tion to the preliminary comprehensive dataset 1 model, 
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the model using dataset 2 focused mainly on determin-
ing the contribution of the major somatic mutations as 
OS prognosticators, when clinical variables were also 
considered. The dataset 3 model was mainly focused on 
defining the contribution of TMB as a OS prognosticator. 
Finally, the dataset 4 model focused specifically on the 
role of the PI3K-AKT-mTOR pathway given the potential 
implications for targeted therapeutic strategies.

The intra-operative treatment with CW was developed 
according to the rational of locally interfering with the 
potential tumor re-growth in the proximity of the origi-
nal tumor site [13–19]. Although this treatment option 
seems to have lost clinical importance in the recent few 
years, recent long-term follow up investigations have 
demonstrated a survival benefit in selected cases, shed-
ding thus the light on the effectiveness of this therapeutic 
option [16]. Despite controversies in current literature 
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[13–19], our data from ML modeling showed that CW 
treatment was associated with longer OS. This result was 
also in keeping with multivariate Cox regression analysis. 
Even if such data prevent to drive final conclusions due to 
the small sample size, they suggest to further re-consider 
the application of CW in sequential combination with 
the Stupp protocol in selected cases to avoid the known 
side effects (young patients with small lesion and without 
ventricle opening during surgery) [16].

The ML approach also showed that, for all the devel-
oped models, the radiological variables EOR, residual 
volume and preoperative volume, and the MGMT meth-
ylated status were located in the top positions of the 
SHAP diagrams, thus highlighting their role as OS prog-
nosticators in GG4 cases undergoing surgery followed by 
Stupp protocol, in keeping with previous investigations 
[10, 20–23].

Considering somatic gene mutations, results of the 
ML approach showed that a mutated status for different 
genes was defined as having a role in OS prediction. The 
outcome of the developed predictor models with differ-
ent identified genes was dependent by the choices of the 
employed feature selection. However, in this context, the 
great majority of altered genes was previously identified 
as associated with high grade glioma and contributing in 
the dysregulation of key pathways involving tumor sup-
pressors or oncogenes [25, 44–51, 53]. In particular, a role 
for gene mutations of BRAF was highlighted by the ML 
modeling. Specifically, the presence of BRAF mutations 
was defined as associated with longer OS, as previously 
reported [44]. ML modeling also suggested a prognostic 
relevance for genes involved in the PI3K-AKT-mTOR 
signaling pathway [50, 53]. This give emphasis for fur-
ther studies to better clarify the functional impact of the 
presence of these gene mutations in the progression and 
treatment resistance of high grade glioma. Moreover, 
these results could suggest useful targets for personalized 
therapy for the treatment of patients affected by GG4 [47, 
50, 51, 53]. In this context, a panel-driven approach such 
as that evaluating 523 genes that has been adopted in the 
present study may allow an accurate molecular diagno-
sis of tumor specimens of GG4 patients [53, 54]. This 
panel-driven approach also represents an useful tool for 
identifying and elucidating complicated pathways such as 
the PI3K pathway, therefore allowing the repositioning of 
drugs or the development of novel drugs for personalized 
therapy. It also allows the possibility of combining thera-
pies targeting different pathways in GG4 [50, 51, 53].

Finally, the application of XGBoost in the subgroup of 
71 cases, in which TMB calculation met the appropri-
ate criteria according to the Illumina TMB metrics, sug-
gested an association between a higher TMB and shorter 
OS [55]. In our study, 1.7 mutations/MB was proposed 

as the optimal cutoff value for TMB to separate GG4 
cases into 2 subgroups with different OS. Different cut-
offs have been previously proposed by other studies [27]. 
The lack of a common cutoff between the different stud-
ies might depend on the different intrinsic characteris-
tics of the analyzed series (e.g., volumetric or subjective 
evaluation of EOR, WHO classification applied, number 
of needle biopsies included) as well as on the sequencing 
method (whole exome sequencing, such as in the TCGA 
cohort, vs. panel-based sequencing). Direct comparisons 
between TMB cutoffs obtained with different panels can 
be very problematic, as a TMB cutoff certainly depends 
on the genomic features and bioinformatics platform 
used in a given panel [27, 28, 54]. Nevertheless, the cor-
relation between higher TMB and shorter OS found 
in the present study for GG4 cases is consistent with a 
previously published analysis of TCGA and CGGA data-
bases [27]. This evidence is in keeping with the concept 
that a high TMB could be considered as an indicator of a 
high rate of somatic mutations putatively associated with 
cell proliferative advantages as well as chemoresistance 
molecular mechanisms [12, 24–26]. The TMB has been 
proposed as a predictive marker for response to immune-
checkpoint inhibitors [56]. However, an association of 
high TMB with high responsiveness to immunecheck-
point inhibitor treatment in cohorts of aggressive glioma 
patients undergoing such immunotherapy remains to be 
fully elucidated [28, 29, 55–57].

The present study suffers for several limitations mainly 
due to the retrospective nature of this investigation and 
the simple size, expecially in the subgroup of 71 GG4 
cases with available TMB values., In this context, the ret-
rospective acquisition of data could be associated to the 
lack of standardized follow-up. However, the fact that 
the present study analyzed a mono-institutional cohort 
determined that all the GG4 cases included in this study 
were homogeneously treated, thus attenuating the pos-
sible lack of standardization. On the other hand, the 
analysis of a mono-institutional cohort could challenge 
the generalizability of results when an external patient 
population is considered. The ML approach we employed 
was chosen in an attempt to overcome these limitations. 
However, in the present study, our modeling principle 
was a trade-off between a minimal number of features 
and the ability to make good predictions, thus avoid-
ing overfitting. Our aim was to strike a balance between 
interpretability of the model and improved accuracy. 
Although interpretable models are preferred in the clin-
ical setting, it is possible that a black box model would 
have resulted in better performance [30–32].

Further integrative analysis, including a MRI radiomic 
approach may contribute to refine a preoperative prog-
nosis, to plan personalized surgical treatment and to 
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offer patients preoperative counseling. In the future, a 
prospective multicenter study with a larger sample size is 
needed to optimize prediction models for clinical prac-
tice, and to overcome the intrinsic limitations of retro-
spective studies.

Conclusions
In conclusion, the results of the present study showed 
that the proposed ML approach using XGBoost was 
capable to define a key role for radiological variables in 
predicting OS of GG4 cases undergoing surgical resec-
tion and Stupp protocol. A protective role for CW treat-
ment was also suggested. Moreover, this approach was 
capable to recapitulate the contribution as OS prognos-
ticators of somatic mutations of several genes, including 
BRAF and other genes involved in the PI3K-AKT-mTOR 
signaling pathway. In addition, with the same approach, 
we showed that, the TMB, as defined by the wide target 
gene panel of 523 genes, appeared to be associated with 
shorter OS. Therefore, TMB could be useful to refine the 
prognosis of GG4 patients undergoing to surgical resec-
tion and Stupp protocol.
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